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Abstract. In the setting of secure multiparty computation, a set of
mutually distrustful parties carry out a joint computation of their inputs,
without revealing anything but the output. Over recent years, there has
been tremendous progress towards making secure computation practical,
with great success in the two-party case. In contrast, in the multiparty
case, progress has been much slower, even for the case of semi-honest
adversaries.
In this paper, we consider the case of constant-round multiparty compu-
tation, via the garbled circuit approach of BMR (Beaver et al., STOC
1990). In recent work, it was shown that this protocol can be efficiently
instantiated for semi-honest adversaries (Ben-Efraim et al., ACM CCS
2016). However, it scales very poorly with the number of parties, since
the cost of garbled circuit evaluation is quadratic in the number of par-
ties, per gate. Thus, for a large number of parties, it becomes expensive.
We present a new way of constructing a BMR-type garbled circuit that
can be evaluated with only a constant number of operations per gate.
Our constructions use key-homomorphic pseudorandom functions (one
based on DDH and the other on Ring-LWE) and are concretely efficient.
In particular, for a large number of parties (e.g., 100), our new circuit
can be evaluated faster than the standard BMR garbled circuit that uses
only AES computations. Thus, our protocol is an important step to-
wards achieving concretely efficient large-scale multiparty computation
for Internet-like settings (where constant-round protocols are needed due
to high latency).

Keywords: Garbled Circuits, Constant Round MPC, Key-Homomorphic PRFs,
Concrete Efficiency
∗The first author was supported by ISF grants 544/13 and 152/17, by a grant from

the BGU Cyber Security Research Center, and by the Frankel Center for Computer
Science. The second author is supported by the European Research Council under
the ERC consolidators grant agreement n. 615172 (HIPS) and by the BIU Center for
Research in Applied Cryptography and Cyber Security in conjunction with the Israel
National Cyber Bureau in the Prime Minister’s Office. The third author is supported
by a grant from the Israeli Science and Technology ministry and by a Israel Science
Foundation grant 544/13.



1 Introduction
1.1 Background

Protocols for secure multiparty computation enable a set of parties to carry out
a joint computation on private inputs, without revealing anything but the out-
put. In the 1980s, powerful feasibility results were presented, showing that any
polynomial-time function can be securely computed [37, 18, 9]. These feasibility
hold both for semi-honest adversaries (who follow the protocol specification, but
try to learn more than allowed by inspecting the transcript), and for malicious
adversaries who can run any arbitrary adversarial strategy. Furthermore, pro-
tocols for constant-round secure computation were demonstrated both for the
two-party case [37] and for the multiparty case [5]. These constant-round pro-
tocols work by constructing a garbled circuit, which is essentially an encrypted
version of the circuit, that can be evaluated obliviously.

Over the past decade, there has been a major research effort to improve
the efficiency of secure computation, with great success. For the two-party case,
there are highly efficient protocols for both the semi-honest and malicious cases,
and following both the garbled-circuit and secret sharing paradigms (see [21,
30, 23, 21, 20, 2, 6, 34, 38] for just a handful of examples). As a result, it is
possible to run secure two-party computation protocols in practice, for many
real-world problems. We remark that a significant portion of the research effort
to achieve efficient secure two-party computation focused on the simpler case
of semi-honest adversaries. The results for this case proved to be crucial for
obtaining efficient protocols for malicious adversaries as well. Thus, the study of
efficiency for semi-honest adversaries has proved itself important in the goal of
achieving stronger security as well.

In contrast to the aforementioned success for the specific case of two parties,
in the setting of multiparty secure computation, with strictly more than two par-
ties, progress has been much slower. In particular, for the case of constant-round
protocols for many parties, no honest majority, and semi-honest adversaries, the
only work has been in [7, 8].4 The recent work of [8] shows that constant-round
secure multiparty computation can be achieved with good performance for the
case of semi-honest adversaries. However, the technique of BMR [5] for obtain-
ing constant-round protocols via a multiparty garbled circuit has an inherent
scalability problem.

In order to understand this, we first remark that the BMR protocol can be
divided into two phases: In the first phase, the parties run a secure protocol
to construct a multiparty garbled circuit. This phase can be run even before

4There has been work for the malicious setting, with no honest majority [14, 25, 27], but these
protocols are of course much more expensive. Very recently, the work of [19] showed how to extend the
results of [8] to the malicious setting with very little overhead, and [36] also presented similar results
for the malicious setting using a different protocol. These results suffer from the same scalability
problem of [8] that we describe. We argue that it is important to go back to the semi-honest setting
and improve efficiency, in order to enable future improvements for the malicious setting.

In addition, there has been work—e.g., in [13]—for the semi-honest setting that follows the GMW
paradigm [18] and so has a number of rounds equal to the depth of the circuit being computed. Such
protocols can perform very well in very fast networks, but not in Internet-like networks with high
latency.
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the inputs are provided, and involves relatively heavy computation in order
to securely build the garbled circuit. Then, in the second online phase, after
the parties receive their inputs, the parties merely send keys on the input wires
associated with their inputs, and then each party can locally evaluate the garbled
circuit and obtain output. This paradigm is very attractive since the online
phase requires almost no communication, and efficient local computation only.
Note that the evaluation of the garbled circuit requires symmetric decryption
operations only which are extremely fast in practice using AES-NI instructions.
Despite the above, [8] discovered that even the local evaluation computation can
become very expensive when the number of parties is large. The reason for this
is that each gate requires O(n2) AES operations, when the number of parties
is n. Thus, for a large number of parties—say n = 100—the number of AES
operations per gate is 10,000. Therefore, the cost of evaluating a BMR garbled
circuit for 100 parties is about 10,000 times higher than the cost of evaluating
a two-party (Yao) garbled circuit.

1.2 Our Results

Motivated by the results in [8] and the inherent scalability problem with BMR
garbled circuits, our aim in this paper is to construct a variant of the BMR
garbled circuit that scales well as the number of parties grow. We remark that
if one only focuses on the problem of the cost of the online phase, then the
scalability problem can be easily solved. Specifically, one can use any generic
multiparty protocol like that of [18] to securely compute a standard Yao two-
party garbled circuit, with no party knowing any of the actual keys on the wires
(and the parties receiving secret shares of the keys on the input wires). Then, in
the online phase, they merely need to exchange shares on the input wires, and can
compute the output by evaluating a standard two-party garbled circuit. From
a theoretical perspective, this method has many attractive properties; amongst
other things, the online time is independent of the number of parties. However,
if we are interested in constructing concretely efficient protocols that can be
implemented and run in practice, then this approach completely fails. The reason
for this is that constructing a Yao garbled circuit via multiparty computation is
completely unrealistic in practice. This is because the encryption function itself
must be computed inside the secure computation, multiple times for every gate.

The above leads us to the following important research goal:

Design a new BMR-type garbled circuit that can be constructed securely
with concrete efficiency in the offline phase, and can be efficiently
evaluated in the online phase at a cost that is independent of the
number of parties.

As discussed above, our goal is concrete efficiency, and thus we are interested in
obtaining constructions that can be implemented and run in practice, and are
faster than previous approaches. Thus, our goal is to obtain a method that is
strictly faster than the optimized version of [8] for the case of a large number of
parties.
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Our method for achieving the above goal utilizes key-homomorphic pseudo-
random functions (KHPRF), introduced by Naor et al. [31] in the random oracle
model, and by Boneh et al. [10] in the standard model. Informally speaking, a
pseudorandom function is key-homomorphic if there exist appropriate opera-
tions +̃ , ·̃ such that for every pair of keys k1, k2 and every input x, it holds
that F

k1 +̃ k2
(x) = Fk1(x) ·̃ Fk2(x). Intuitively, this means that n parties with

independent keys k1, . . . , kn can compute FK(x) for K = k1 +̃ · +̃ kn, by
each locally computing Fki(x), and then using secure computation to compute
FK(x) = Fk1(x) ·̃ · · · ·̃ Fkn(x). We now informally explain how this can be used
to construct a scalable BMR-type circuit.

In a BMR garbled circuit, for every wire w, each party Pi chooses
two keys k0

w,i, k
1
w,i. Then, a garbled gate with input wires u, v and out-

put wire w is constructed by masking all of the keys on the output wire
with the appropriate keys on the input wires. For example, in an AND
gate, the values (k0

w,1, . . . , k
0
w,n) need to be masked with the combina-

tions of
(
(k0
u,1, . . . , k

0
u,n), (k0

v,1, . . . , k
0
v,n)

)
,
(
(k0
u,1, . . . , k

0
u,n), (k1

v,1, . . . , k
1
v,n)

)
, and(

(k1
u,1, . . . , k

1
u,n), (k0

v,1, . . . , k
0
v,n)

)
, whereas the values (k1

w,1, . . . , k
1
w,n) need to be

masked with
(
(k1
u,1, . . . , k

1
u,n), (k1

v,1, . . . , k
1
v,n)

)
. This ensures that if the parties

have the appropriate keys on the input wires of the gate, then they will obtain
the appropriate keys on the output wire of the gate. Now, in order to ensure
security, it must be that every single key on the input wires suffices to mask the
output. Thus, for example, each of k0

u,i and k0
v,i must mask all of (k0

w,1, . . . , k
0
w,n).

This is achieved by setting the ciphertext C0,0, associated with inputs (0, 0), to
be

C0,0 =
(

n⊕
i=1

Fk0
u,i

(g‖1)‖ . . . ‖Fk0
u,i

(g‖n)
)
⊕

(
n⊕
i=1

Fk0
v,i

(g‖1)‖ . . . ‖Fk0
v,i

(g‖n)
)

⊕
(
k0
w,1‖ . . . ‖k0

w,n

)
,

where ‖ denotes concatenation, g is the gate identity, and F is a pseudorandom
function (in practice, AES). Each gate is then constructed as four ciphertexts,
for all of the four combinations of input values. Observe that using this method,
if party Pi alone is honest, then its single key suffices for masking the output
(because the pseudorandom function is used to obtain a long pseudorandom
string which masks the keys on the output wire).

Given the above, it is now clear that in order to evaluate a garbled gate, the
parties need to invoke the pseudorandom function 2n2 times. Specifically, given
keys on the inputs wires

(
k0
u,1‖ . . . ‖k0

u,n

)
and

(
k0
v,1‖ . . . ‖k0

v,n

)
, the pseudorandom

function is invoked n times for each of the 2n keys. Concretely, for n = 100, this
means that 20,000 pseudorandom computations are made for every gate. In the
two-party case, only two invocations are needed (or one, using the fixed-key
method of [6]).

Now, consider the possibility of constructing ciphertexts as above, but using
a key-homomorphic pseudorandom function instead. Concretely, we now define
the ciphertext C0,0 as follows:
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C0,0 =
(
Π̃n
i=1(Fk0

u,i
(g))

)
·̃
(
Π̃n
i=1(Fk0

v,i
(g))

)
·̃
(
k0
w,1 +̃ . . . +̃ k0

w,n

)
,

where ·̃ , +̃ are the key-homomorphic operations informally defined above
and Π̃n

i=1(yi)
def= y1 ·̃ . . . ·̃ yn. Intuitively, such a ciphertext could be securely

computed in the offline phase at a cost that is comparable to the original BMR
ciphertext, by replacing ⊕ with the ·̃ operation. Of course, in order to fulfill our
goal, the offline phase must also be concretely efficient and thus we do indeed
show that this equation can be efficiently computed securely. Now, the important
observation is that the ciphertext C0,0 above is actually equal to

C0,0 =
(
F
K0
u +̃ K0

v
(g)
)
·̃ K0

w

where K0
u = k0

u,1 +̃ . . . +̃ k0
u,n, K0

v = k0
v,1 +̃ . . . +̃ k0

v,n, and K0
w =

k0
w,1 +̃ . . . +̃ k0

w,n. Thus, the result is a garbled circuit that can be evalu-
ated using only one invocation of the pseudorandom function, irrespective of the
number of parties. It is important to note that key-homomorphic pseudorandom
functions are much more expensive to compute than a plain pseudorandom func-
tion. Nevertheless, by implementing and running a comparison with the code of
[8], we show that for a large number of parties—say n = 100—it is faster to com-
pute a key-homomorphic pseudorandom function than 2n2 AES computations
(even using AES-NI with a fixed key, as first proposed in [6]).

We mention that [1] used key-homomorphic properties of the LWE-based
fully-homomorphic encryption schemes of [11, 12] to obtain a secure multiparty
protocol (in the CRS model) with only three rounds of interaction and communi-
cation complexity that is independent of the underlying function. However, their
construction utilizes fully homomorphic encryption, and thus requires parties to
locally preform very heavy computation. Furthermore, the intensive part of the
computation requires the encryption of the inputs, and therefore done in the
online phase. Thus, it is less relevant for the goal of concrete efficiency in the
online phase that we consider in this work.

Instantiations and implementation. We present two concrete instantiations of
our protocol, using two different key-homomorphic pseudorandom functions; the
first is secure under the DDH assumption, and the second is secure assuming
Ring-LWE. For each instantiation, we describe a concretely efficient protocol
for securely generating the appropriate multiparty garbled circuit in the offline
phase. We implemented the online version of our protocols, which is dominated
by the local evaluation of the garbled circuit. In Section 6, we describe our imple-
mentation and results. Figure 1 contains a graph of the online circuit evaluation
time for different schemes: BMR refers to the original BMR circuit and is clearly
quadratic; all of the other lines are different versions of our protocol, and the
circuits have evaluation time that is independent of the number of parties. As
we mentioned above, this clearly demonstrates that even though the original
BMR circuit uses only very fast primitives (AES), it runs slower than all other
schemes when enough parties participate.

We remark that the “unoptimized” and “with precomputation” lines refer to a
construction based on the standard DDH assumption with a 1024-bit safe prime,
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whereas the DLSE lines refer to an instantiation based on the assumption that
DDH is still hard with short exponents; larger primes were also tested and the
results appear in Section 6. In [24], it was proven that the hardness of DDH with
short exponents is implied by the standard DDH assumption and the assumption
that the discrete log problem is hard with short exponents. We prove variants of
this that are needed for our optimized key-homomorphic pseudorandom function.
The “Ring-LWE” refers to our instantiation based on Ring-LWE.

Fig. 1: Online Computation Time

Paper organization. In Section 2, we recall the basic definitions required in
this work, including those of secure multiparty computation, pseudo-random
functions, and the Ring-LWE, DDH and DLSE problems. In Section 3, we de-
scribe our general paradigm construction, prove its correctness and state our
main security theorem. The proof of security will appear in the full version. In
Section 4, we show how to instantiate our general paradigm based on the DDH
problem: In Section 4.1, we review the DDH and DLSE problems and prove a
few statements. In Section 4.2, we describe an instantiation in the random oracle
model. In Section 4.3, we show an instantiation without a random oracle, and a
significantly optimized instantiation based on DDH and DLSE. In Section 4.4,
we describe two possible offline protocols, one based on the BGW protocol [9]
assuming an honest majority, and another that is secure up to n − 1 corrupt
parties in the OT-hybrid model. In Section 5, we explain an instantiation based
on Ring-LWE: in section 5.1 we explain the online phase. In Section 5.2 we ex-
plain a “tailored” offline protocol that runs in time quasilinear in the number of
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parties. In Section 6, we provide experimental results of the online computation
time of our protocols and a comparison with the online computation time of
BMR.

2 Preliminaries

A function µ : N → N is negligible if for every positive polynomial p(·) and all
sufficiently large κ it holds that µ(κ) < 1

p(κ) . We use the abbreviation PPT to
denote probabilistic polynomial-time. A probability ensemble X = {Xκ}κ∈N is an
infinite sequence of random variables indexed by κ. Two distribution ensembles
X = {Xκ}κ∈N and Y = {Yκ}κ∈N are computationally indistinguishable, denoted
X

c≡ Y , if for every PPT D, there exists a negligible function µ (·) such that for
every κ ∈ N,

∣∣∣Pr [D(Xκ, 1κ)) = 1]− Pr [D(Yκ, 1κ) = 1]
∣∣∣ < µ (κ).

For a distribution D over a finite set A, we let x← D denote the selection of
an element x ∈ A according to distribution D. If D is the uniform distribution
over A, we simply write x← A. For i ∈ N, we denote by Ui the random variable
defined by x← {0, 1}i. For an integer `, we denote [`] = {1, . . . , `}.

2.1 The DLSE and the DDH Problems over Short Exponents

The DLSE (discrete logarithm over short exponents) problem was first intro-
duced in [32]. Following the presentation of this problem in [24], we provide a
parameterized version of it. Let κ ∈ N be the security parameter, let q be a κ-bit
prime, and let c ∈ N is such that 0 ≤ c < κ.

Notation 1 For 0 ≤ c ≤ κ, let Rκ−c = {2κ−cu | 0 ≤ 2κ−cu < q}.

Specifically, Rκ = Zq. As we will see below, the set Rκ−c will denote the domain
from which exponents are chosen in the short discrete log and DDH problems.

Let G be a generation algorithm that on input 1κ returns a triplet (G, q, h),
where G is a cyclic group of order q (with q of length κ), and h is a generator
of G. The discrete-log over short exponents problem, denoted DLSEc, is defined
as follows:

Definition 1 (discrete logarithm over short exponents). Let c ∈ N be a
constant. The DLSEc problem is hard with G if for all PPT algorithms A, there
exists a negligible function µ(·), such that

Pr
(G,q,h)←G(1κ),v←Rκ−c

[A(G, q, h, hv) = v] ≤ µ(κ).

The standard DL problem is DLSEc with c = κ, and the hardness of DLSEc
clearly depends on c. Using similar notation as above, we define the DDH (de-
cisional Diffie-Hellman) problem over short exponents, as first considered by
Koshiba and Kurosawa [24].
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Definition 2 (decisional Diffie-Hellman over short exponents). Let
c1, c2 ∈ N be constants. Then, the DDHc1,c2 problem is hard with G, if

{(G, q, h, hx, hy, hxy)}κ∈N
c≡ {(G, q, h, hx, hy, hz)}κ∈N ,

where the distributions are generated by choosing (G, q, h) ← G(1κ), and then
choosing x, y, z ← Rκ−c1 ×Rκ−c2 × Zq.

The DDHc1,c2 is also referred to as the (short-short)-DDH if c1 = c2 are much
smaller than κ, and as the (short-full)-DDH if c1 is much smaller than κ and
c2 = κ (i.e., y is uniform in Zq). The standard DDH problem is DDHκ,κ.

In [24], it was shown that if both DDH and DLSE are hard then so are the
the (short-full) -DDH and (short-short)-DDH, and further that the converse also
holds. That is, amongst other things, they proved the following:

Theorem 2. [24, Theorem 2] Let G be a generation algorithm and let c ∈ N. If
both DDH and DLSEc are hard with G, then DDHc,κ is hard with G.

2.2 The Ring-LWE Problem

We briefly state a simple variation of the Ring-LWE hardness assumption. A
more complete definition can be found in [28]. Let p = 2N +1 be a prime, where
N , called the dimension or security parameter, is a power of two. We fix the
polynomial ring Rp = Zp[X]/(XN + 1), i.e., the polynomials over Zp modulo
XN + 1.

Definition 3. The decisional Ring-LWE hardness assumption states that it is
hard to distinguish between the following two sets of pairs:

1. {(ai, bi)}i∈I
2. {(ai, ai · k + ei)}i∈I

where {ai}i∈I , {bi}i∈I , and k are chosen uniformly at random from the ring,
and {ei}i∈I are chosen from a spherical Gaussian distribution. Furthermore, by
transforming to the “Hermite normal form”, the assumption holds also if k is
chosen from a spherical Gaussian distribution as well.

In general, it is necessary to bound |I|, i.e., the number of samples, usually
by some ` = O(1) or ` = O(logN). More information, generalizations, and
improvements can be found in [28, 29].

2.3 Key Homomorphic Pseudorandom Functions

Recall that a function is pseudorandom if no PPT adversary given oracle access
to either the function with a randomly chosen key, or to a truly random function,
can distinguish between the cases. A weak pseudorandom function is as above,
except that the adversary only receives the function output on randomly chosen
inputs.

8



We next recall the definition of key-homomorphic PRFs. Key-homomorphic
PRFs were introduced by Naor et al. [31]. The formal definition and first key-
homomorphic PRF without a random oracle, based on LWE, were introduced
by Boneh et al. [10].

Definition 4. A family of functions {Fk : X → G}k∈D is a family of key-
homomorphic functions if the key domain, D, and the image, G, are equipped
with group operations, (D, +̃ ) and (G, ·̃ ), respectively, such that for every
k1, k2 ∈ D and x ∈ X it holds that F

k1 +̃ k2
(x) = Fk1(x) ·̃ Fk2(x). A key-

homomorphic PRF (KHPRF) (resp., key-homomorphic weak PRF(KHWPRF)) is a
pseudorandom (resp., weak pseudorandom) function that is key-homomorphic.

Let {Fk : X → G}k∈D be a family of key-homomorphic functions. Then,

the inverse of an element h ∈ G is denoted (h)−̃1. We denote Σ̃m
i=1(ki)

def=
k1 +̃ · · · +̃ km and Π̃m

i=1(hi)
def= h1 ·̃ · · · ·̃ hm.

In general, it may be the case that D 6= G. As we shall see, this can pose some
difficulty because keys from D are encrypted in G. Furthermore, we also need
to encrypt the bit necessary for point-and-permute. Therefore, we will assume
throughout the existence of an efficiently computable function f : D×{0, 1} → G,
with an efficiently computable inverse f−1. We note that for all known KHPRFs,
such a function exists.

2.4 Secure Multiparty Computation

We follow the standard definition of secure multiparty computation for semi-
honest adversaries, as it appears in [17]. In brief, an n-party protocol π is de-
fined by n interactive probabilistic polynomial-time Turing machines P1, . . . ,Pn,
called parties. The parties hold the security parameter 1κ as their joint input
and each party Pi holds a private input xi. The computation proceeds in rounds.
In each round j of the protocol, each party sends a message to each of the other
parties (and receives messages from all other parties). The number of rounds in
the protocol is expressed as some function r(κ) in the security parameter.

The view of a party in an execution of the protocol contains its private
input, its random string, and the messages it received throughout this exe-
cution. The random variable viewπ

Pi(x, 1
κ) describes the view of Pi when ex-

ecuting π on inputs x = (x1, . . . , xn) (with security parameter κ). Here, xi
denotes the input of party Pi. The output an execution of π on x (with se-
curity parameter κ) is described by the random variable Outputπ (x, 1κ) =(
OutputπP1

(x, 1κ) , . . . ,OutputπPn (x, 1κ)
)
, where OutputπP (x, 1κ) is the output

of party P in this execution, and is implicit in the view of P .
Similarly, for a set of parties with indices I ⊆ [n], we denote by xI the set of

their inputs, by viewπ
I (x, 1κ) their joint view, and by OutputπI (x, 1κ) their joint

output. In the setting of this work, it suffices to consider deterministic func-
tionalities. We therefore provide the definition of security only for deterministic
functionalities; see [17] for a motivating discussion regarding the definition.
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Definition 5 (security for deterministic functionalities). A protocol π t-
securely computes a deterministic functionality f : ({0, 1}∗)n 7→ ({0, 1}∗)n in the
presence of semi-honest adversaries if the following hold:

Correctness: For every κ ∈ N and every n-tuple of inputs x = x1, . . . , xn, it
holds that

Pr [Outputπ(x, 1κ) = f(x)] = 1, (1)

where the probability is taken over the random coins of the parties.
Privacy: There exists a probabilistic polynomial-time (in the security parame-

ter) algorithm S (called “simulator”), such that for every subset I ⊆ [n] of
size at most t:
{SA (xI , fI(x), 1κ)}x∈({0,1}∗)n;κ∈N

C≡ {viewπI (x, 1κ)}x∈({0,1}∗)n;κ∈N . (2)

3 Multiparty Garbled Circuits via Key-Homomorphic
PRFs

In this section, we describe a general paradigm for constructing garbled circuits
for many parties via key-homomorphic PRFs. As explained above, the goal is
to allow parties to efficiently construct a multiparty garbled circuit in which
the number of decryptions per gate and the size of the decryption keys are
independent of the number of parties.

In Section 3.1 we define our main offline functionality, FGC , that constructs
a garbled circuit from a key-homomorphic PRF. In Section 3.2 we describe an
online protocol for computing outputs using FGC . In Section 3.3 we show the
correctness of the protocol and we state conditions when FGC is secure, i.e.,
when a secure implementation of FGC , along with the online protocol, can be
used as a secure multiparty protocol for computing any boolean circuit. The
proof of security will appear in the full version.

In the following, let C denote the Boolean circuit and let |C| denote the
number of gates in C. For every gate g in C, we let g(α, β) denote the gate
operation on α, β ∈ {0, 1}. We further abuse notation by also using g to denote
the index of the gate in a fixed topological ordering of C.

The parties are denoted P1, . . . , Pn, where n denotes the number of parties.
The set of all wires in the circuit is denoted by W . For each wire ω ∈ W each
party Pi will hold two keys kiω,0, kiω,1 ∈ D, which we will call the individual
keys. The “summations” of the individual keys, kw,0

def= Σ̃n
i=1(kiw,0) and kw,1

def=
Σ̃n
i=1(kiw,1), will be termed the joint keys.

We associate a hidden bit λω to each wire ω ∈ W , generally unknown to all
parties. During the online phase, the parties reveal an external value bit eω for
each wire ω. It will later become clear that eω = λω ⊕ tω, where tω is the real
bit of the wire ω in an ungarbled computation of C for the inputs provided by
the parties.
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3.1 The Offline Phase

In this section, we describe the main functionality of the offline phase of our
protocol, Functionality FGC . This functionality constructs a garbled circuit from
a family of key-homomorphic PRFs.

Functionality FGC receives as public input a circuit C with wires W , a family
of key-homomorphic functions {Fk}, and a set x0, . . . , x4|C|−1 ∈ X . The func-
tionality also receives from each party Pi two individual keys, kiω,0 and kiω,1, for
each wire ω ∈ W . The functionality associates to each wire ω ∈ W a hidden
bit λω, that is generally not revealed to any of the parties. The functionality
then computes and outputs to the parties a version of Yao’s garbled circuit, in
which the keys for the encryption are the joint keys. More precisely, for each
gate g ∈ C with input wires u, v and output wire w and for every α, β ∈ {0, 1},
the functionality secretly computes ew,α,β

def= g((λu ⊕ α), (λv ⊕ β)) ⊕ λw and

KEYw,α,β
def=
{
kw,0 ew,α,β = 0
kw,1 ew,α,β = 1. The value ew,α,β is equal to the external value

of the wire that would be revealed to the parties during evaluation, if the exter-
nal values of u and v are α and β respectively. KEYw,α,β is the joint key that
corresponds to this external value.

The functionality outputs to all parties the garbled gates

g̃α,β =
(
F
ku,α +̃ kv,β

(x4g+2α+β)
)−̃1

·̃ f(KEYw,α,β , ew,α,β).

The functionality also outputs to each party the λ’s associated with its input
and output wires. The full details of Functionality FGC appear in Figure 2.

3.2 The Online Phase

In this section, we describe our online phase protocol. In this phase, the parties
exchange garbled inputs and compute the output of the garbled circuit. The
general flow of the online phase is the same as in the BMR protocol. Specifically,
it contains two short rounds of communication, in which the parties learn the
keys for input wires. From then on, all computations are done locally.

In the first step of the protocol, each party computes and broadcasts the
external values eω = λω ⊕ bω for each of its input wires ω. This is possible, as
each party knows the real value bω of each of its input wires, and the party knows
λω of its input wires from the output of functionality FGC .

In the next step, the parties broadcast their individual keys corresponding
to the external values for each of the input wires and compute the joint keys for
these wires. Then, each party locally decrypts the correct row at each gate in
topological order, and recovers the key and external value for the output wire
of that gate. In this way, at the end of this step the parties recover the external
values of the output wires. Finally, the parties then recover the real outputs of
the function by XORing the output external values with the corresponding λ’s,
which they know from the output of functionality FGC .
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Functionality FGC for Constructing the Garbled Circuit

Public Inputs: a circuit C with wires W , a family of key-homomorphic func-
tions {Fk} and values x0, . . . , x4|C|−1 ∈ X .
Private Inputs: Each party Pi gives as input two keys kiw,0, kiw,1 ∈ D for
every wire w ∈W .
Denote kw,0

def= Σ̃n
i=1(kiw,0) and kw,1

def= Σ̃n
i=1(kiw,1).

Random Input: To each wire ω ∈ W of the circuit, a hidden random bit
λω ∈R {0, 1} is associated.
Output: The functionality outputs to all parties the garbled circuit GC – for
every gate g ∈ C, with input wires u, v, and output wire w, and for every
α, β ∈ {0, 1}, it outputs:

g̃α,β =
(
F
ku,α +̃ kv,β

(x4g+2α+β)
)−̃1

·̃ f(KEYw,α,β , ew,α,β) (3)

Where

ew,α,β
def= g((λu ⊕ α), (λv ⊕ β))⊕ λw (4)

and
KEYw,α,β

def= kw,ew,α,β . (5)
Notice that

F
ku,α +̃ kv,β

(x4g+2α+β) = F
Σ̃n
i=1(kiu,α +̃ ki

v,β
)(x4g+2α+β)

= Π̃n
i=1(F

kiu,α +̃ ki
u,β

(x4g+2α+β)). (6)

In addition, each party Pi receives the λ’s corresponding to its input and
output wires.

Fig. 2: Functionality FGC

3.3 Correctness and Security

In this section we show the correctness of using the online protocol in the FGC
hybrid model, and state condition under which this results in a secure multiparty
protocol for any Boolean circuit. The proof of security is deferred to the full
version.

Correctness. We now show that the outputs received by the parties from the on-
line phase corresponds to the correct outputs. By Step 3c of the online protocol,
it follows from the following claim:

Claim 3 For each ω ∈ W , the external value eω revealed by the parties in the
online protocol is equal to λω ⊕ tω, where tω is the true value of the wire ω in
an ungarbled computation with the same inputs.

The proof is by induction on the topological ordering of C. We give a sketch of
the proof, omitting the proof of correctness of the decryption in Step 3b.
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Online Protocol

Public Inputs: a circuit C with wires W , a family of key-homomorphic func-
tions {Fk} and values x0, . . . , x4|C|−1 ∈ X .
Private Inputs: All parties hold their input to the functionality FGC and
the output they received from it.
In addidition, each party holds its input bit bω for each of its input wires ω.
Computation:

1. Each party broadcasts eω = λω ⊕ bω for the each of its input wires ω.
2. Each party Pi broadcasts kiω,eω for each input wire of the circuit.
3. Each party does the following computation locally:

(a) Computes kω,eω = Σ̃n
i=1(kiω,eω ) for every input wire ω of the circuit.

(b) In topological order, for each gate g ∈ C, with input wires u, v and
output wire w computes

(kw,ew , ew) = f−1(F
ku,eu +̃ kv,ev

(x4g+2eu+ev ) ·̃ g̃eu,ev ), (7)

and recovers the external value ew and corresponding key kw,ew for
the output wire w of the gate.

(c) For each of its output wires ω computes the true value of the output
eω ⊕ λω.

Output: Each party recovers the true value of the output, eω ⊕ λω, for each
of its output wires ω.

Fig. 3: Online Protocol

Proof Sketch. For the input wires, eω = λω⊕ tω follows from Step 1 of the online
protocol. For any other wire ω ∈W that is the output wire of gate g, with input
wires u, v, we have from Step 3b of the online protocol, Equations (3) and (4)
in functionality FGC , and the induction assumption, that

eω = eω,eu,ev = g((λu ⊕ eu), (λv ⊕ ev))⊕ λω = g(tu, tv)⊕ λω = tω ⊕ λω.
�

Security. We state conditions when a secure implementation of FGC , along with
the online protocol, can be used as a secure multiparty protocol to compute
any Boolean circuit C. We first give two definitions. Let {Fk : X → G}k∈D be a
family of functions, and let R : X → G be random functions.
Definition 6. For x1, . . . , xn ∈ X , we say that Property I(x1, . . . , xn) holds for
{Fk} if for a randomly chosen k ∈ D, it holds that

{(xi, Fk(xi))}ni=1
c≡ {(xi, R(xi))}ni=1 . (8)

Note that if {Fk} is a PRF then Property I(x1, . . . , xn) holds for any choice
of x1, . . . , xn . If x1, . . . , xn are random, then Property I(x1, . . . , xn) holds also
if {Fk} is a weak PRF.

Let C be a Boolean circuit with set of wires W .

13



Definition 7. For x0, . . . , x4|C|−1 ∈ X (possibly with xi = xj for i 6= j), we say
that Property J(x0, . . . , x4|C|−1) holds for C if for every gate g ∈ C it holds that
{x4g, x4g+1, x4g+2, x4g+3} are all distinct and for every wire ω ∈ W that is an
input wire to two different gates g1, g2 ∈ C, it holds that

{xi}4g1+3
i=4g1

∩ {xi}4g2+3
i=4g2

= ∅. (9)

The idea of definition 7 is that if two gates share a common input wire, they
do not share the same x’s. This is to ensure that the same PRF is not queried
twice with the same input. We are now ready to state our main security theorem.

Theorem 4. If Property I(x0, . . . , x4|C|−1) holds for {Fk} and Property
J(x0, . . . , x4|C|−1) holds for C, then the online protocol in Figure 3 securely com-
putes C in the semi-honest FGC-hybrid model with up to n− 1 corrupt parties.

Theorem 4 can be proved in a standard way, similar to the proofs of [26, 27].
We will give a slightly different proof in the full version.
Remark 1. An important observation from the proof is that the security of the
protocol relies on the individual keys, and not the joint keys. Intuitively, this
is because the adversary knows many of the individual keys, and could thus, in
certain circumstances, learn partial information on the joint key. For example,
this observation is important in our DDH instantiation, where we restrict the
individual keys. It is also important in our LWE instantiation, as we shall see in
Section 5.

4 Explicit Instantiation Based on DDH

In this section we describe an explicit instantiation of our key-homomorphic
PRF based MPC protocol that relies on the DDH assumption. The resulting
encryption scheme used in the garbling can be seen as a variant of the ElGamal
scheme. However, using the ElGamal scheme näıvely can be insecure. We show
a simple example demonstrating this in the full version.

In Section 4.1, we prove some properties of the DDH problem and the DLSE
(Discrete Log over Short Exponents) problem. In Section 4.2, we explain our
instantiation relying on DDH and a Random Oracle. In Section 4.3, we explain
how to remove the Random Oracle and also describe some optimizations. Some
of these optimizations explicitly rely on the hardness of DLSE. In Section 4.4,
we describe two possible offline protocols for our DDH instantiation: in Section
4.4.1 we describe a protocol based on BGW that is secure when assuming an
honest majority. In Section 4.4.2 we describe an OT based protocol that is secure
against up to n− 1 corrupt parties.

4.1 Some Properties of DDH and DLSE
In this section we state a couple of properties of DDH and DLSE that we use
in our instantiation. The proofs use theorems from [24] and [31], and will be
supplied in the full version.
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Notation 5 For 0 ≤ c ≤ κ, let R̂κ−c = {u | 0 ≤ 2κ−cu < q}.

Notice that this notation differs from Notation 1 because here the most sig-
nificant bits are zeros. However, it turns out that in prime order groups, the
hardness of DDH with short exponenents is equivalent using Notation 5 or No-
tation 1. This enables us to prove the following variations of a theorem from
[31].

Theorem 6. Assuming the DDH problem is hard,

1. If c = O(log κ) then
{
Fk(x) = xk

}
k∈R̂κ−c

is a key-homomorphic weak PRF.
2. If the DLSEc problem is hard then

{
Fk(x) = xk

}
k∈R̂κ−c

is a key-
homomorphic weak PRF.

Furthermore, if H is a random oracle whose images are generators of the group,
then

{
Fk(x) = H(x)k

}
k∈R̂κ−c

is a key-homomorphic PRF in the above two cases.

4.2 Concrete Instantiation

In this section we describe a concrete instantiation of our protocol, based on the
hardness of DDH. We first assume also that using SHA256 as described below
is a random oracle. In Section 4.3, we explain how to avoid the random oracle
assumption.

Our concrete implementation of our protocol is as follows. Let p = 2q + 1
be a safe prime with κ bits, and denote by Gq the subgroup of order q of the
multiplicative group Zp∗, i.e., the group of quadratic residues. We let our PRF
family {Fk} be Fk(x) = (H(x))k mod p, where H is a random oracle modeled
by H(x) def= (SHA(r||x`)|| · · · ||SHA(r||(x` + (` − 1))))2 mod p with ` =

⌈
κ

256
⌉
,

and r an agreed random nonce. Notice that H(x) is a generator of Gq.5 The
domain of the individual keys is initially Zq, but we slightly modify this below.
We define xi = i, a ·̃ b = a · b mod p, a +̃ b = a + b mod q, and f(a) = a2

mod p, which is in Gq for any non-zero element a ∈ Zp.
We note some difficulties for using the instantiation above.

1. The input of the function f should contain both the key and the external
value.

2. The squaring function has 2 inverses for every entry. Therefore, as f needs
to be invertible, there must be some way for the parties to decide which of
the 2 inverses is correct.

3. The joint key is not well defined. Initially, the individual keys are drawn
from Zq. The summation of the keys in the message to be encrypted will be
modulo p, while the summation of the keys in the exponent will be modulo
q (i.e., the size of the subgroup of the generator).
Since the keys are chosen randomly, the summation of the individual keys of
the parties in the message, which is the joint key revealed during the online

5The only possible exceptions are the values 0 and 1, but this happens with negli-
gible probability.
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phase, and the joint key in the exponent, which is the real key used for
encryption/decryption, will, in general, not be equal. This will cause errors
in the computation.

We solve the above problems by letting the individual keys be drawn from{
0, . . . , q−1

4n
}
⊂ Zq. First, notice that the summation of the keys is now well

defined as kw,0 + kw,1 = Σn
i=1k

i
w,0 + Σn

i=1k
i
w,1 < q < p so it is equal modulo q

and modulo p. Therefore, the key used for the decryption is equal to the sum of
the keys that are revealed from the decryption of the input wires. By Theorem 6,
Item 1, this choice of keys still renders our protocol secure.

To insert the external value bit, we multiply the key by two and add the
external value bit, i.e., f(KEYw,α,β , ew,α,β) = (2KEYw,α,β + ew,α,β)2. Notice
that 2KEYw,α,β+ew,α,β < q−1

2 . Restricted to this domain, the squaring function
has a unique inverse in Zp, which can be computed in polynomial time.

The instantiated functionality FGC and the online protocol are simply ap-
plying the above concrete instantiation, i.e., the key-homomorphic PRF based
on DDH, to the respective figures in Section 3.

4.3 Removing the Random Oracle and Optimizations

In this section we first show how to remove the Random Oracle assumption.
Then, we describe optimizations, some of which need to further assume DLSEc
for sufficiently small c.

Removing the random oracle. Recall that the use of the random oracle was
necessary to show that {Fk} is a PRF family. However, Theorem 4 does not
explicitly require that {Fk} be a PRF. If xi = hi are agreed random distinct
generators of Gq, then defining Fk(a) = ak is sufficient: {Fk} is a weak PRF,
and thus Property I(x1, . . . , x4|C|−1) holds because the generators are random.
Property J(x1, . . . , x4|C|−1) also holds because all the generators are distinct.

Furthermore, it is possible to require less than 4|C| distinct random gener-
ators – we can reuse the same random generators (i.e., xi = hri where ri = rj
may happen for i 6= j), as long as Property J(x1, . . . , x4|C|−1) also holds. I.e., as
long as for every random generator h and individual key k, the pseudorandom
value Fk(h) is used only once for encryption (Equation (3)) in all gates.

We note that the same individual key is always used more than once, both
in two rows of each gate, and also in any other gate with the same input wire.
However, we can bound the number of necessary random generators we need by
8 times the maximal fan-out of the circuit. The proof will be given in the full
version. The proof gives a simple deterministic (with respect to the circuit and
topological ordering) algorithm for deciding which generators to use at each gate.
Furthermore, these agreed generators can be chosen once and used repeatedly
for many different circuits.

We now move on to describing some optimizations to the above protocol.
There are two main bottlenecks for the online computation time – computing
the exponentiations hk, and computing square root modulo p to recover the key
and external value. We next show how to optimize these steps.
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Precomputation. We point out that the set of generators used is already known
in the offline phase. Thus, to speed up the exponentiations, the parties can
precompute h2, h4, , ..., h2blog qc for each generator h. If the number of generators
is small, (e.g., in the version without the random oracle described above), this
will also significantly speed up the offline phase. If the same generators are used
for multiple circuits then this precomputation can be done only once for all the
circuits.

Optimizations based on hardness of DLSE. We now show how, by further assum-
ing the DLSEc assumption for sufficiently small c, we can significantly improve
the computation time. Clearly, assuming the keys are short significantly im-
proves the time of exponentiations – if the domain of the keys is Rn−c then the
exponentiations are approx. κ

c times faster.
A second and less obvious optimization is that assuming DLSEc with c <

κ
2 − logn−2 significantly shortens the time of modular square root. This follows
from the following observation.

Observation 7 If m ∈ N is d bits long with d < κ
2 , then m2 mod p = m2.

Following Observation 7, if the keys are short enough, we can replace taking
square root modulo p by taking regular square root. The time of computing
square root is several orders of magnitude faster than computing square root
modulo p. Thus, this practically removes the time it takes to compute modular
square root.

Remark 2. If we assume both DLSE and that the set of generators is small,
then for computing (hk)−1 for a generator h and key k (such as needed in our
offline protocols in Section 4.4), it is more efficient to compute exponentiation
by a short key (k). This can be done via the equality (hk)−1 = (h−1)k, i.e.,
precomputing the tables also for the inverse of every generator h (of course, this
makes sense only if the number of generators is small, as in the version without
the random oracle).

4.4 Offline Phase Protocols for DDH Based Implementation

We now describe two different secure protocols for computing the offline phase
of the instantiation based on DDH, one based on BGW [9] that requires an
honest majority and another based on oblivious transfer that is secure up to
n− 1 corrupt parties.

The offline protocol for computing the version without the random oracle is
identical except that in all locations H(xi) is replaced by hri as explained in
Section 4.3. If one assumes DLSEc, then the individual keys should be drawn
from

{
0, . . . , q

2κ−c
}

.
The current bottleneck in both suggested protocols is computing unbounded

fan-in multiplication, i.e., computing Shamir or additive shares of Πn
i=1mi, where
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n is the number of parties and mi is known only to party i. Thus, any improve-
ment to protocols computing unbounded fan-in multiplication immediately im-
plies an improvement to our offline protocols. Currently, the best constant round
protocol for computing unbounded fan-in multiplication is the protocol given by
Bar-Ilan and Beaver [4].

4.4.1 BGW based offline protocol for the DDH based FGC . In this
section we describe an offline protocol for our DDH instantiation that is based
on the BGW protocol [9], which requires an honest majority. The running time
of the described protocol is comparable to the running time of BGW based
protocols for the offline phase of the BMR circuit, e.g., [7, 8], when the number
of parties is large.

Our BGW offline protocol is achieved by secret-sharing both the individual
keys ki and the exponentiations g−ki in Shamir secret-sharing, and then using
the BGW protocol to compute the garbled gates

g̃α,β =
(
((H(4g + 2α+ β))ku,α+kv,β

)−1 · (2KEYw,α,β + ew,α,β)2
. (10)

The main protocol is given in Figure 4. The subprotocols are standard using the
BGW protocol. Note that Πn

i=1mi is computed in constant rounds using [4]. The
protocol in Figure 4 is based entirely on BGW, and therefore securely computes
the functionality FGC in the semi-honest model, assuming an honest majority.

4.4.2 OT based offline protocol for the DDH based FGC . In this Section
we describe a protocol for computing the DDH based functionality FGC that is
secure up to n− 1 corrupt parties in the OT-hybrid model.

The basic observation for the OT protocol is that if two (not necessarily
disjoint) sets of parties P1 and P2 hold additive shares (in Zp) of secrets s1, s2 ∈
Zp respectively, then using one OT round, the parties can compute an additive
sharing of s1 · s2 amongst the set of parties P1 ∪ P2.

To show this, we denote s1 = si11 + · · ·+ s
i|P1|
1 and s2 = sj1

2 + · · ·+ s
j|P2|
2 . The

observation then follows by noticing that

s1 · s2 = (si11 + · · ·+ s
i|P1|
1 )(sj1

2 + · · ·+ s
j|P2|
2 )

= si11 · s
j1
2 + · · ·+ si11 · s

j|P2|
2 + · · ·+ s

i|P1|
1 · sj|P2|

2 .

Any multiplication of the form si1 · s
j
2 can be performed using log p string OTs

between parties Pi and Pj , as explained in [22].
The OT protocol for the offline phase is similar to the BGW based protocol,

except that shares are additive, and the multiplications are computed using the
above observation. As in the BGW based protocol, the main bottleneck of the
protocol is to compute unbounded fan-in multiplication.
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Offline Protocol for DDH Instantiation Based on BGW

Inputs: All parties hold the circuit C, the number of parties n, and the prime
field Zp.
Computation: The parties perform the following computations, where all
shares and computations, including those in the sub-protocols, are done over
Zp.

1. For every ω ∈W
(a) Each party Pi randomly selects its individual keys kiw,0, k

i
w,1 ∈{

0, . . . , q−1
4n

}
⊂ Zq ⊂ Zp. We denote the joint keys by kw,0, kw,1 ∈ Zq.

(b) Using two rounds of interaction, the parties run a coin-tossing pro-
tocol and receive Shamir shares of the hidden permutation bit λw ∈
{0, 1}[7].

2. For every gate g ∈ C with input wires u, v and output wire w, and for
every α, β ∈ {0, 1}, do:

(a) Locally compute mi = (H(4g+2α+β))−
(
kiu,α+ki

v,β

)
, and secret share

mi in a t-out-of-n Shamir secret-sharing scheme..
(b) Secret share kiw,0, kiw,1 in a t-out-of-n Shamir secret-sharing scheme.

By summing the received shares, each party recovers a share of kw,0
and kw,1.

(c) Using standard sub-protocols, compute Shamir shares of Πn
i=1mi =(

(H(4g + 2α+ β))ku,α+kv,β
)−1 and of (2KEYw,α,β + ew,α,β)2.

(d) Using a single BGW round, compute shares of

g̃α,β =
(
(H(4g + 2α+ β))ku,α+kv,β

)−1 · (2KEYw,α,β + ew,α,β)2 .

(e) Reconstruct g̃α,β , i.e., broadcast shares of g̃α,β and interpolate.
3. Reconstruct λω for every output wire ω of the circuit.

Outputs: g̃α,β for each gate g ∈ C and every α, β ∈ {0, 1} and λω for every
output wire ω of the circuit.

Fig. 4: BGW Protocol

5 Instantiation Based on Ring-LWE

Boneh et al. [10] and Banerjee and Peikert [3] constructed almost key-
homomorphic PRFs from LWE and ring-LWE respectively. It seems quite pos-
sible that one can use these almost key-homomorphic PRFs in our construction.

We go in a slightly different route – we build a protocol based directly on
decisional ring-LWE hardness assumption. The function we use is not a real PRF,
as it is not deterministic. However, by the decision ring-LWE assumption it is
indistinguishable from random, which we show is sufficient for our construction.

Let p = 2N + 1 be a prime where N is a power of two, and denote Rp =
Zp[X]/(XN + 1). We define F = {fk : Rp → Rp|fk(a) = a · k + e}, where a, k,
and e are polynomials in the ring and the coefficients of e come from a gaussian
distribuition D. Assuming decision ring-LWE, for a bounded constant number
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of distinct random inputs, the output of fk is indistinguishable from random.
Furthermore, the above holds also if the keys themselves come from Gaussian
distribution. Notice that the output of fk is not deterministic due to the error.

Since in this protocol the key domain is a subset of the image of fk, it might
seem at first that the function f used to map the keys into the image of fk can be
the identity. However, this would be problematic due to the error. To avoid the
error, the function f multiplies the coefficients of the key by

⌈√
p
⌉
, see Section

5.1.
The proof of security for the LWE instantiation is similar to the proof of the

DDH instantiation without the random oracle. Notice that the proof did not
require the PRF to be deterministic, only that the function is indistiguishable
from random, and that the decrypted messages can be recovered correctly. For
the latter point, by using correct parameters, this happens with overwhelming
probability. It is important to note that for the encryption, the function is never
queried twice on the same input.

In order to encrypt also the external values, we set the last coordinate of
the key to be 0. Thus, we lose one dimension of the key, which slightly reduces
security. We give a more detailed explanation on the security in the full version.

In the following protocols, using the ideas explained in Section 4.3 for re-
moving the random-oracle, we let a1, . . . , a8·fout be public random elements of
the ring (which is also public), where fout is the maximal fan-out of the circuit.
We denote by A(g, α, β) the random element associated with row (α, β) of gate
g, such that any two gates that share an input wire do not share any of the
random elements (cf. Definition 7). The full description of functionality FGC ,
instantiated as described above, appears in Figure 5. Notice that for security, it
must hold that 8 · fout is less than the bound on the number of samples.

5.1 Online Phase for Ring-LWE Based Instantiation

The online phase of our LWE based instantiation follows the general online phase,
except that after each decryption, the error needs to be eliminated before the
hidden key and external value can be recovered. The main idea for eliminating
the error is that both the error and the key come from a Gaussian distribution.
Thus, they will be far from the mean with only negligible probability.

If the mean is
√
p

2 and the standard deviation is sufficiently small, then with
overwhelming probability the error will be in the range [0,√p]. Therefore, if the
message is multiplied by √p before encrypting, then dividing by √p gets rid of
the error and recovers the message.

Using this method, the probability that the protocol will output correctly
is the probability that both the cumulative error and encrypted message are in
the range [0,√p] in all coordinates of all decrypted rows. If the parameters are
correctly chosen, this happens with overwhelming probability. The online phase
protocol for our ring-LWE based instantiation is given in Figure 6.
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Instantiated Functionality FGC Based on LWE

Private Inputs: Each party Pi gives as input two keys kiw,0, kiw,1 ∈ DN−1 ×
{0} and four noise vectors Eig,α,β ← DN for every wire w ∈ W , where α, β ∈
{0, 1}.
Denote kw,0

def= Σn
i=1k

i
w,0 and kw,1

def= Σn
i=1k

i
w,1.

Random Input: To each wire ω ∈ W of the circuit, a hidden random bit
λω ∈R {0, 1} is associated.
Output: The functionality outputs to all parties the garbled circuit GC –
for every gate g ∈ C with input wires u, v, and output wire w, and for every
α, β ∈ {0, 1}, it outputs:

g̃α,β = A(g, α, β) · (ku,α + kv,β) +Eg,α,β + (d√pe · (KEYw,α,β ||ew,α,β)) , (11)

where
ew,α,β

def= g((λu ⊕ α), (λv ⊕ β))⊕ λw (12)

KEYw,α,β
def= kw,0 + ((kw,1 − kw,0) · ew,α,β) . (13)

and Eg,α,β is the cumulative error, i.e.,

Eg,α,β = Σn
i=1E

i
g,α,β . (14)

In addition, each party Pi receives the λ’s corresponding to its input and
output wires.

Fig. 5: Instantiated Functionality FGC

5.2 Tailored Offline Phase Protocol for Ring-LWE Based
Implementation

We now describe a “tailored” secure protocol for computing the offline phase
for our ring-LWE based instantiation. The protocol is based on oblivious trans-
fer and is secure up to n − 1 corrupt parties. Other protocols for computing
this functionality are also possible, e.g., using BGW if one assumes an honest
majority.

The protocol we describe here is asymptotically better – the amount of work
done by each party grows only quasilinearly in the number of parties. Further-
more, the PRFs are only computed locally and not in MPC, and therefore the
circuit for computing the garbled circuit is independent of the complexity of the
PRF.

The main idea of the protocol is that each party will encrypt its share, by
adding the PRF, and broadcast. The sum of the received encryptions will be the
garbled gate. This works due to the fact that both the shares and the (random-
ized) PRFs are additively homomorphic. Thus, it is reasonable to assume that
a similar protocol exists for all key-homomorphic PRFs in which the operation
on the keys is the same as the operation on the image of the PRFs.

To give more detail, the parties compute additive shares of the keys to encrypt
using a sub-protocol. Then, each party encrypts its share and broadcasts. The
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Online Protocol for LWE Based Instantiation

Private Inputs: All parties hold their input to the functionality FGC and
the output they received from it.
In addidition, each party holds its input bit bω for each of its input wires ω.
Computation:

1. Each party broadcasts eω = λω ⊕ bω for the each of its input wires ω.
2. Each party Pi broadcasts kiω,eω for each input wire of the circuit.
3. Each party does the following computation locally:

(a) Computes kω,eω = Σn
i=1k

i
ω,eω for every input wire ω of the circuit.

(b) In topological order, for each gate g ∈ C, input wires u, v and output
wire w computes

−A(g, α, β) · (ku,eu + kv,ev ) + g̃α,β = Eg,α,β + (d√pe · (kw,ew ||ew)) .

Dividing by √p to get rid of the error, the party recovers the external
value ew and corresponding key kw,ew for the output wire w of the
gate.

(c) For each of its output wires ω computes the true value of the output
eω ⊕ λω.

Output: Each party recovers the true value of the output, eω ⊕ λω, for each
of its output wires ω.

Fig. 6: Online Protocol for LWE Instantiation

parties sum the received broadcasts and recover the garbled gates. Intuitively,
the security follows from Remark 1 and the following:

– For rows that are not decrypted during the online phase, at least one of the
individual keys is unknown to the adversary. Thus, the encryption hides the
share of the party.

– For rows that are decrypted during the online phase, the shares that are
revealed (if the adversary is able to recover them, e.g., if the adversary
controls n− 1 parties) can be simulated by what the adversary can already
learn from his shares and the decrypted key.

The offline protocol is described in detail in Figure 7. The sub-protocol for
computing additive shares of KEYw,α,β ||ew,α,β is straightforward using the ob-
servation in Section 4.4.2.

6 Implementation Details and Experimental Results

In this section we give details on our implementations and report our experi-
mental results for online computation time with and without our various opti-
mizations above.

We wrote our code for the online computation in C++ using the NTL li-
brary [35] for modular arithmetic and OpenSSL [33] for SHA. The code for our

22



Offline Protocol for LWE Instantiation

Inputs: All parties hold the circuit C, the number of parties n, and the prime
field Zp.
Computation: The parties perform the following computations, where all
shares and computations are done in Rpa.

1. For every ω ∈W
(a) Each party Pi selects its individual keys kiw,0, kiw,1 ← DN , and sets

the last coordinate of each key to 0. We denote the joint keys by
kw,0, kw,1. Note that the last coordinate of the joint keys is also zero.

(b) The parties run a coin-tossing protocol and receive additive shares of
the hidden permutation bit λw ∈ {0, 1} for every wire w.

2. For every gate g ∈ C with input wires u, v and output wire w, and for
every α, β ∈ {0, 1}, the parties do the following:
(a) Using a standard sub-protocol, compute additive shares of

kw,ew,α,β ||ew,α,β . Denote the share of party Pi by (kw,ew,α,β ||ew,α,β)i.
(b) Choose a Gaussian noise vector Eig,α,β ← DN and locally compute

the encryption

A(g, α, β) · (kiu,α+kiv,β)+Eig,α,β +
(
d√pe · (kw,ew,α,β ||ew,α,β)i

)
. (15)

(c) Broadcast the encryption and sum, thus recovering

g̃α,β = A(g, α, β) · (ku,α+kv,β)+Eg,α,β +
(
d√pe · (kw,ew,α,β ||ew,α,β)

)
.

(16)
3. Reconstruct λω for every output wire ω of the circuit.

Outputs: g̃α,β for each gate g ∈ C and every α, β ∈ {0, 1} and λω for every
output wire ω of the circuit.

aAs vector spaces, Rp ∼= ZNp , but the multiplication is different

Fig. 7: LWE Offline Protocol

Ring-LWE based instantiation used the building blocks of Gaussian sampling,
NTT transform, and arithmetic operations from [15]. Our code will be made
publicly available.

We tested our code on a circuit with 100,000 AND gates and 0 XOR gates
(see Remark 3 below). Times are the average of 5 runs and reported in seconds.
The experiments were run on Ubuntu 14.04.4 operating system using a single
core of Intel(R) Core(TM) i7-5600U CPU @ 2.60GHz processor. Clearly, times
of all versions can be improved using parallelization, but we leave this to further
research.

DDH Instantiation. The unoptimized version refers to the initial instantiation
described in Section 4.2. The precomputation version refers to version with-
out the random oracle that utilizes the precomputation of the exponent tables,
described in Section 4.3. The DLSE500, DLSE256 and DLSE160 refer to the op-
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timizations relying on DLSE described in Section 4.3, with the individual keys
having 500, 256, and 160 bits respectively. Since the security relies on the num-
ber of bits of the individual keys, and the size of the joint keys has logn more
bits, we fixed the number of these bits to be 10, corresponding to up to 1023
parties. I.e., in DLSE500 the joint keys were 510 bits in DLSE256 266 bits and
in DLSE160 170 bits6. All versions were used with a 1024 bit safe prime. Thus,
c ≈ 500 is the maximal DLSEc that can still use our sqrt. optimization. We
provide a table to show the efficiency of the improvements, and they are also
depicated in Figure 1. The real security of DLSEc is unclear as far as we know.
But there are known attacks that need only ∼ O(2 c2 ) exponentiations. Thus, if
one aims for 80 bits of security, then one should use at least the DLSE160 version.

Version Unoptimized Precomp. DLSE500 DLSE256 DLSE160

Online Computation Time (sec.) 102.3 83.9 16.15 8.4 5.4

We also ran tests using larger safe primes with 1536, 2048, and 3072 bits under
the DLSE256 assumption. The results are given in the following table and in
Figure 8.

Number of bits in prime (DLSE256) κ = 1024 κ = 1536 κ = 2048 κ = 3072
Online Computation Time (sec.) 8.4 14.9 21.65 43.2

LWE Instantiation. Our code for the ring-LWE instantiation used the following
parameters, suggested in [16]: p = 1051649, N = 512, σ = 8√

2 . We chose these pa-
rameter to allow enough room for error, thus allowing a larger number of parties
to participate. Note that for this choice of parameters, the total probability the
entire protocol errs on our chosen circuit is < 2−40 for up to 300 parties. For 500
parties, the total probability for error is ≈ 2−15.5, so changing the parameters
should be considered for this number of parties.

The online copmutation time of our ring-LWE instantiation beat even the
DLSE160 version using a 1024 bit prime, with an average online computation
time of approx. 4.45 seconds. For comparison, the result is depicated in Figures
1 and 8.

Comparison with BMR. For comparison, we also measured the online computa-
tion time of a state of the art BMR implementation of [8] on the same circuit and
hardware, with a varying number of parties. The code of [8] is highly optimized
and uses AES-NI with pipelining for the encryption/decryption. The results are
depicated in Figures 1 and 8 for comparison.

As expected, for a large enough number of parties, our protocols’ online
computation time is faster than the respective time of the BMR protocol. With
a 1024 bit prime: for the unoptimized version, the cutoff point is between 400 and
450 parties. For the precomputation version the cutoff is between 350 and 400

6For the smaller number of parties the joint keys will have a few less bits, e.g., for
< 128 parties and DLSE160 the joint key should have only 167 instead of 170 bits.
Thus, the time could possibly be very slightly better for the smaller number of parties.
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Fig. 8: Online Computation Time with DLSE256 and Varying Primes

parties. For the DLSE500 and DLSE256 versions the cutoff points are between
150 and 175 and between 100 and 125 respectively. The cutoff points for the
DLSE160 and the ring-LWE version are near 75 parties. Cutoff points for larger
primes are at a slightly higher number of parties.

We expect that on different hardware the times and cutoff points will differ,
but the overall conclusion should remain the same. We also note that we did
not use any dedicated hardware optimizations, while the BMR code of [8] uses
pipelined fixed-key AES-NI.

Remark 3. The BMR protocol of [8] contains a free-XOR optimization, while our
code computes XOR gates similarly to AND gates. Thus, for a true comparison
on a specific circuit C with X XOR & XNOR gates and A non-XOR7 gates,
the time t of the BMR protocol should be adjusted to t · A

A+X . However, for any
fixed circuit, this will only change the exact location of the cutoff points, and
not the overall conclusion.

Acknowledgements We would like to thank Shalev Keren, Moria Farbstein
and Lior Koskas for helping with the code, and to thank Shai Halevi and Vadim
Lyubashevsky for helpful discussions on LWE.

7NOT gates can be eliminated even without free-XOR optimization, by modifying the circuit.
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