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Abstract. The main efficiency metrics for a cryptographic primitive
are its speed, its code size and its memory complexity. For a variety of
reasons, many algorithms have been proposed that, instead of optimizing,
try to increase one of these hardness forms.
We present for the first time a unified framework for describing the hard-
ness of a primitive along any of these three axes: code-hardness, time-
hardness and memory-hardness. This unified view allows us to present
modular block cipher and sponge constructions which can have any of
the three forms of hardness and can be used to build any higher level
symmetric primitive: hash function, PRNG, etc.
We also formalize a new concept: asymmetric hardness. It creates two
classes of users: common users have to compute a function with a certain
hardness while users knowing a secret can compute the same function
in a far cheaper way. Functions with such an asymmetric hardness can
be directly used in both our modular structures, thus constructing any
symmetric primitive with an asymmetric hardness. We also propose the
first asymmetrically memory-hard function, Diodon.
As illustrations of our framework, we introduce Whale and Skipper.
Whale is a code-hard hash function which could be used as a key deriva-
tion function and Skipper is the first asymmetrically time-hard block
cipher.

Keywords: white-box cryptography, memory hardness, big-key encryp-
tion, Skipper, Whale, Diodon

1 Introduction

The design of cryptographic algorithms is usually a trade-off between security
and efficiency. Broadly speaking, the efficiency of an algorithm is defined along
three axes: time, memory and code size. Yet in some scenarios it is desirable
to design primitives that are purposefully inefficient for one or several of these
metrics. This can be done to slow down the attackers, provide different levels of
service to privileged and non-privileged users, adjust cost of operation in proof-
of-work schemes, etc.. Primitives with different forms of computational hardness
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have been scattered in time and in several seemingly unrelated research/appli-
cation areas. In this paper we propose a simple unifying framework which allows
us to build new provably hard modes of operation and primitives.

The simplest illustration of functions designed to be time consuming to com-
pute is that of key derivation functions (KDF). A KDF is typically built by iter-
ating a one-way function (for example a cryptographic hash function), multiple
times. Such functions are intended to prevent an adversary from brute-forcing a
small set of keys (corresponding to, say 12 letter strings) by making each attempt
very costly.

Time, however, is not the only form of hardness for which an artificial increase
can be beneficial. Memory-hardness was one of the design goals of the winner
of the Password Hashing Competition, Argon2 [12], the aim being to prevent
hardware optimization of the primitive. As another example, one research direc-
tion in white-box cryptography is nowadays focusing on designing block ciphers
such that the code implementing them is very large in order to prevent duplica-
tion and distribution of their functionality [11,16,22,17,7]. In this case, the aim
could be to implement some form of Digital Right Management or to prevent
the exfiltration of a block cipher key by malware.

Since hardness is an inherently expensive property, there are cases where a
trap-door could be welcome. This is the case for the most recent weak white-box
block ciphers [11,16,22]: while the white-box implementation requires a signif-
icant code size, there exists a functionally equivalent implementation which is
much smaller but cannot be obtained unless a secret is known. That way, two
classes of users are created: those who know the secret and can evaluate the block
cipher efficiently and those who do not and thus are forced to use the code-hard
implementation.

The different forms of hardness, their applications and typical instances from
the literature are summarized in Table 1.

Time Memory Code size

Applications
kdf, Password hashing, White-box crypto,

time-lock egalitarian computing big-key encryption

Symmetrically
PBKDF2 [25]

Argon2 [12], XKEY2 [7],

hard functions Balloon [18] Whale (Sec. 5.2)

Asymmetrically RSA-lock [30],
Diodon (Sec. 2.4)

White-box block ciphers

hard functions Skipper (Sec. 5.1) [11,16,22,17]

Table 1: Six types of hardness and their applications.
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Our Contribution Regardless of the form of hardness, the aim of the designer
of a hard primitive is to prevent an attacker from by-passing this complexity,
even if the attacker is allowed significant precomputation time. Informally, a
user cannot decrease the hardness of the computation below a certain threshold.
Inspired by the formal definitions of hardness used in white-box cryptography,
we provide for the first time a unified framework to study and design crypto-
graphic algorithms with all forms of hardness. Our framework is easily extended
to encompass asymmetric hardness, a form of complexity which can be bypassed
provided that a secret is known.

Our approach consists in combining simple functions called plugs having the
desired form of hardness with secure cryptographic primitives. Algorithms are
then built in such a way as to retain the cryptographic security of the latter
while forcing users to pay for the full hardness of the former. In fact, we provide
a theoretical framework based on random oracles which reduces the hardness of
the algorithms we design to that of their plugs.

Furthermore, we introduce the first asymmetrically memory-hard function,
Diodon. It is a function based on scrypt [28] modified in such a way as to
allow users knowing an RSA private key to evaluate it using a constant amount
of memory. It can of course be used as a plug within our framework.

Finally, we used this approach to build a code-hard hash function called
Whale and an asymmetrically time-hard block cipher called Skipper. It is im-
possible to design a functionally equivalent implementation of the Whale hash
function which is much smaller than the basic one. On the other hand, encrypt-
ing a block with Skipper is time consuming but this time can be significantly
decreased if an RSA private key is known.

Outline. First, Section 2 provides more details about the different forms of hard-
ness and their current usage for both symmetric and asymmetric hardness. We
also introduce the first asymmetrically memory-hard function, Diodon, in Sec-
tion 2.4. Then, Section 3 presents our generic approach for dealing with all forms
of hardness at once. To this end, plugs achieving all forms of hardness are intro-
duced in the same section. We deduce practical modes of operation for building
hard block ciphers and hard sponges which are described in Section 4. Our con-
crete proposals, called Skipper and Whale, are introduced in Section 5.

2 Enforcing Hardness

In this section, we argue that many recent ideas in symmetric cryptography can
be interpreted as particular cases of a single general concept. The aim of several
a priori different research areas can be seen as imposing the use of important
resources for performing basic operations or in other words, bind an operation
to a specific form of hardness. We restrict ourselves to the basic case of a well-
defined function mapping each input to a unique output. It means in particular
that protocols needing several rounds of communication or randomized algo-
rithms which may return any of the many valid solution to a given problem such
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as HashCash (see below) are out of our scope. We also tie each function to an
algorithm evaluating it: further below, functionally equivalent functions evalu-
ated using different algorithms are considered like different functions. Thus, the
“hardness” discussed is the hardness of the algorithm tied to the function.

The three main metrics for assessing the efficiency of an algorithm are its
time complexity, its RAM usage and its code size. As we explain below, different
lines of research in symmetric cryptography can be interpreted as investigating
the design of algorithms such that one of these metrics is abnormally high and
cannot be reduced while limiting the impact on the other two as much as possible.

Time-hardness is discussed in Section 2.1, memory-hardness in Section 2.2
and code-hardness in Section 2.3. Finally, in Section 2.4, we present the general
notion of asymmetric hardness.

It is also worth mentioning that the three forms of hardness are not com-
pletely independent from one another. For example, due to the number of mem-
ory access needed in order for a function to be memory-hard, a function with
this property cannot be arbitrarily fast.

2.1 Time Hardness

While the time efficiency of cryptographic primitives is usually one of the main
design criteria, there are cases where the opposite is needed. That is, algorithms
which can be made arbitrarily slow in a controlled fashion.

One of the most simple approaches is the one used for instance by the key
derivation function PBKDF2 [25]. This function derives a cryptographic key
from a salt and a password by iterating a hash function multiple times, the aim
being to frustrate brute-force attacks. Indeed, while the password may be from
a space small enough to be brute-forced, evaluating the key derivation function
for each possible password is made infeasible by its time-hardness.

Somewhat similarly, proofs-of-work such as HashCash (used by the cryp-
tocurrency Bitcoin [26]) consist in finding at least one of many solutions to a
given problem. The hardness in this case comes from luck. Miners must find a
value such that the hash of this value and the previous block satisfies the dif-
ficulty constraint. However, the subset of such valid values is sparse and thus
miners have to try many random ones. Two different miners may find two dif-
ferent but equally valid values. Because of this randomness, such puzzles are out
of our scope. In this paper, we only consider functions which are equally hard to
evaluate on all possible inputs, not puzzles for which finding a solution is hard
on average.

Furthermore, in order to mitigate the impact of adversaries with vast amount
of processors at their disposal, we consider sequential time-hardness. Using a
parallel computer should not help an attacker in evaluating the function much
quicker. Formalizing parallel time hardness the way we do it for sequential time-
hardness is left as a future work.

Overall, the goal of time-hardness is to prevent an adversary from computing
a function in a time significantly smaller than the one intended. In other words,
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it must be impossible to compress the amount of time needed to evaluate the
function on a random input.

2.2 Memory Hardness

Informally, a function is memory-hard if even an optimized implementation re-
quires a significant amount of memory. For each evaluation, a large amount of
information is written and queried throughout the computation. As a conse-
quence, a memory-hard function cannot be extremely fast.

A function requiring large amounts of RAM for its computation prevents at-
tacker from building ASICs filled with huge number of cores for parallel compu-
tations. This implies that memory-hard functions make good password hashing
functions and proofs-of-work. One of the first to leverage this insight was the
hash function scrypt [28] which was recently formally proved to be memory-hard
in [3]. More recently several other memory-hard algorithms have been designed,
such as the password hashing competition winner Argon2 [12] as well as the more
recent Balloon Hashing [18] and Equihash [14]. Those can be used as building
blocks to create memory-hard proofs-of-work which can offset the advantage of
cryptocurrency miners using dedicated ASICs.

The idea of using memory-hard functions for general purpose computations
was further explored in the context of egalitarian computing [13]. Similarly, proofs
of space [21,5] are protocols which cannot be run by users if they are not able
to both read and write a large amount of data. However, those are interactive
protocols and not functions.

The recent research investigating memory-hardness has lead to several ad-
vances in our understanding of this property. For example, the difference between
amortized and peak memory hardness was highlighted in [4].

2.3 Code Hardness

First of all, let us clarify the distinction we make between memory and code-
hardness. With code-hardness, we want to increase the space needed to store
information that is needed to evaluate a function on all possible inputs. However,
the information itself does not depend on said input. During evaluation of the
function, it is only necessary to read the memory in which the code is stored. In
contrast, memory-hardness deals with the case where we need to store a large
amount of information which depends on the function input and which is thus
different during each evaluation of the function. In this case, one must be able to
both read and write to the memory. Furthermore, in a typical code-hard function,
only a small fraction of the whole information stored in the implementation is
read during each call to the function. On the other hand, if a memory-hard
function uses 𝑀 bytes of memory, then all of those bytes will be written and
read at least once.

Code-hardness is very close to what was first defined as memory-hard white-
box implementation (or weak white-box) in the paper introducing the ASASA
crypto-system [11], and later formalized under different names as (𝑀, 𝑧)-space
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hardness [16,17] or as incompressibility in [22] following the more general defini-
tion from [20]. In all cases, the aim is the same: the block cipher implementation
must be such that it is impossible to write a functionally equivalent imple-
mentation with a smaller code. This stands in contrast to strong white-box
cryptography (as defined in [11]) where inverting a function given its white-box
implementation should be impossible. We do not consider this case in this paper.

As was pointed out in [22], what we call code-hardness is also the goal of
so-called big-key encryption. For instance, the XKEY2 scheme introduced in [7]
achieves this goal: it uses a huge table and a nonce to derive a key of regular
size (say, 128 bits) to be used in a standard encryption algorithm, e.g. a stream
cipher. Bellare et al. show that even if an attacker manages to obtain half of
the huge table, i.e. half of the code needed to implement the scheme, then they
are still unable to compute the actual encryption key with non-negligible proba-
bility. Using our terminology, XKEY2 can be seen as a code-hard key derivation
function. A more detailed analysis of the literature on code-hardness is provided
in the full version of this paper [15].

The concept of proof of storage can also be interpreted as a particular type
of code-hard protocol. Indeed, in such algorithms, challengers must prove that
they have stored a given file.

2.4 Asymmetric Hardness

In this section, we discuss the concept of asymmetric hardness which introduces
two classes of users. Common users evaluate a hard function but privileged users,
who know a secret key, can evaluate a functionally equivalent function which is
not hard. We also introduce Diodon, the first asymmetrically memory-hard
function.

Asymmetric Code-Hardness The most recent white-box block ciphers such
as SPACE [16], the PuppyCipher [22] and SPNbox [17] can be seen as providing
asymmetric code-hardness. Indeed, while the first aim of these algorithms is to
provide regular code-hardness, referred to as “space-hardness” for the former and
“incompressibility” for the latter, they both allow the construction of far more
code-efficient implementation. For both SPACE and the PuppyCipher, the idea
is to compute a large table containing the encryptions of the first 2𝑡 integers with
AES-128 for 𝑡 in {8, 16, 24, 32}. These tables are then used as the code-hard part
of the encryption which cannot be compressed because doing so would require a
break of the AES. However, a user knowing the 128-bit AES key can get rid of
these tables and merely recompute the entries needed on the fly, thus drastically
decreasing the code-hardness of the implementation.

In fact, both constructions can be seen as structures intended to turn an
asymmetrically code-hard function into an asymmetrically code-hard block ci-
pher. In both cases, the asymmetrically code-hard function consists in the eval-
uation of the AES on a small input using either the secret key, in which case
the implementation is not code-hard, or using only the public partial codebook
which, because of its size, is code-hard.
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Time-Hardness While the asymmetry of its hardness was not insisted upon,
there is a known asymmetrically time-hard function, which we call RSA-lock. It
was proposed as a time-lock in [30], that is, a function whose output cannot be
known before a certain date.

It is based on the RSA cryptosystem [29]. It consists in iterating squarings in
an RSA modular ring: a user who does not know the prime factor decomposition
of the modulus 𝑁 must perform 𝑡 squarings while a user who knows that 𝑁 = 𝑝𝑞
can first compute 𝑒 = 2𝑡 mod (𝑝 − 1)(𝑞 − 1) and then raise the input to the
power 𝑒. If 𝑡 is large enough, the second approach is much faster.

Memory-Hardness We are not aware of any asymmetrically memory-hard
function in the existing literature. Thus, we propose the first such function which
we call Diodon. It is based on the ROMix function used to build scrypt [28]
and relies on the RSA crypto-system to provide the asymmetry, much like in
RSA-lock.

Diodon maps an element 𝑥 of {0, 1}𝑡 to a an element 𝑦 of {0, 1}𝑢 using RSA
computations and a hash function 𝐻. It is parametrized by an RSA modulus 𝑁
of size 𝑛𝑝, a hash function 𝐻 and its input and output sizes 𝑡 and 𝑢. Only priv-
ileged users know the prime factor decomposition of the RSA modulus. Finally,
a parameter 𝑀 is used to tune its memory-hardness while parameters 𝐿 and 𝜂
decide its time complexity. The computation is described in Algorithm 1 and in
Figure 1. In both, 𝑇𝑢 denotes the function truncating a bitstring to its 𝑢 bits of
lowest weight.

Algorithm 1 Diodon Asymmetrically memory-hard function
Inputs: 𝑡-bit block 𝑥; RSA modulus 𝑁 of 𝑛𝑝 bits; 𝑀,𝐿;
Output: 𝑢-bit output 𝑦

𝑉0 = 𝑥
for all 𝑖 ∈ {1, ...,𝑀 − 1} do

𝑉𝑖 = 𝑉 2𝜂

𝑖−1 mod 𝑁
end for
𝑆 = 𝑉𝑀−1

for all 𝑖 ∈ {0, ..., 𝐿− 1} do
𝑗 = 𝑆 mod 𝑀
𝑆 = 𝐻(𝑆, 𝑉𝑗)

end for
return 𝑇𝑢(𝑆)

A user without knowledge of the factorization of 𝑁 must use Algorithm 1 to
evaluate Diodon(𝑥). However, if a user knows the factorization of 𝑁 = 𝑞𝑞′, she

does not need to store the vector 𝑉 . Indeed, she can simply evaluate 𝑉𝑖 = 𝑥2𝑖×𝜂

mod 𝑁 in constant time by first reducing 2𝑖×𝜂 modulo (𝑞 − 1)(𝑞′ − 1) and then
raising 𝑥 to the corresponding exponent. One may call her ability to access an
arbitrary element of 𝑉 in constant time an RSA RAM. Her evaluation strategy
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Fig. 1: The evaluation of 𝑦 = Diodon(𝑥).

is summarized in Algorithm 2. Basic users need to perform 𝜂×𝑀 RSA squarings
while privileged ones need to perform roughly (𝐿 + 1) × 𝑛𝑝 of those as 𝑒 and
each exponent 𝑒𝑗 is a priori of length 𝑛𝑝.

Algorithm 2 Diodon for privileged users
Inputs: 𝑡-bit block 𝑥; RSA factors 𝑞, 𝑞′; 𝜂; 𝑀,𝑇 ;
Output: 𝑢-bit output 𝑦

𝑒 = 2(𝑀−1)×𝜂 mod (𝑞 − 1)(𝑞′ − 1)
𝑆 = 𝑥𝑒 mod (𝑞𝑞′)
for all 𝑖 ∈ {0, ..., 𝐿− 1} do

𝑗 = 𝑆 mod 𝑀
𝑒𝑗 = 2𝑗×𝜂 mod (𝑞 − 1)(𝑞′ − 1)
𝑆 = 𝐻

(︀
𝑆, (𝑥𝑒𝑗 mod (𝑞𝑞′))

)︀
end for
return 𝑇𝑢(𝑆)

Let us first consider the simplest parameters, that is 𝜂 = 𝑛𝑝 and 𝐿 = 𝑀 . In
this case, the time complexity for both users is comparable as each class of user
needs to perform 𝑀 RSA encryptions.4 Furthermore, without the knowledge of
the secret key, the computation is essentially scrypt ROMix function which was
shown to be optimally linearly memory hard [3], keeping time-memory product
constant. It means that it is either necessary to store all the values 𝑉𝑖 for the
computation or any algorithm that saves a factor 𝑓 in memory will have to pay
the same factor in time.

The choice of the parameters 𝜂,𝑀,𝐿 and 𝑛𝑝 has a significant impact on the
time efficiency of Diodon. It is investigated in the full version of this paper [15]
where we also propose some concrete instances.

4 The privileged user still has a small advantage in this case since knowing the prime
factor decomposition of the modulus allows the use of the Chinese Remainder The-
orem (DRT) to speed the exponentiation.
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3 A Generic Framework

As we have seen, all the techniques presented in the sections above are intended
to enforce some form of computational hardness. In this section, we present a
unified framework for building any symmetric algorithm with some form of guar-
anteed hardness. We describe our aim in Section 3.1 and our design strategy with
the generic hardness definition it is based on in Section 3.2. Our constructions
need small functions with the intended hardness type to be bootstrapped. We
provide examples of those in Section 3.3.

3.1 Design Strategy

Our aim is to design a general approach to build any cryptographic primitive
with any form of hardness. To achieve this, we will build modes of operations
allowing us to combine secure cryptographic primitives, such as the AES block
cipher [19] or the Keccak sponge [9], with small functions called plugs. These
plugs are simple functions with the desired form of hardness.

Our modes of operations, which are presented in Section 4, are all based
on the same principle: ensuring that enough plug calls with an unpredictable
input are performed so as to guarantee that, with overwhelming probability, an
adversary cannot bypass the hardness of all plug evaluations. This ensures that
the full complexity of a plug evaluation is paid at least once.

Indeed, regardless of the hardness form considered, the strategy of a generic
adversary will always be the same. Provided that the plugs are indeed hard
to evaluate, the only strategy allowing an adversary to bypass their hardness
consists in storing a (feasibly) large number of plug outputs in a database and
then querying those. If 2𝑝 outputs of a plug 𝑃 : {0, 1}𝑡 → {0, 1}𝑣 have been
stored, the plug can be evaluated successfully without paying for its hardness
with probability 2𝑝−𝑡.

An alternative strategy using the same space consists in storing 2𝑝(𝑣/𝑑) par-
tial outputs of length 𝑑. In this case, the success probability becomes 2𝑝−𝑡(𝑣/𝑑)×
2𝑑−𝑣: the input is partially known with a higher probability 2𝑝−𝑡(𝑣/𝑑) but (𝑣−𝑑)
bits of the output remain to be guessed. This method is (𝑣/𝑑)× 2𝑑−𝑣 more effi-
cient than the basic one but, for 1 ≤ 𝑑 < 𝑣, this quantity is always smaller than
one. The strategy consisting in storing full outputs is therefore the best.

However, if the output size of the plug is small enough, it might be more
efficient for the adversary to directly guess the whole output. The probability
that an adversary merely guessing the output of the plug gets it right5 is 2−𝑣.

Our aim is therefore to guard our constructions from the adversary defined
below. Protecting our structure against those is sufficient to reduce their hard-
ness to that of the plug they use. Recall that we tie each function to a specific
algorithm evaluating it. Thus, the hardness is actually that of the corresponding
algorithm.

5 This is only true under the assumption that the output of the plug is uniformly
distributed. As we will see later, the plug can still be used if it is not the case.
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Definition 1 (2𝑝-adversary). Let 𝑓 be a time-, memory- or code-hard func-
tion. A 2𝑝-adversary is an adversary trying to generate a function 𝑓 ′ which does
not have the hardness of 𝑓 but which does not have access to more memory than
needed to store 2𝑝 outputs of 𝑓 .

A 2𝑝-adversary can perform more than 2𝑝 calls to the function it is trying
to approximate when generating 𝑓 ′, although 𝑓 ′ itself cannot have access to
more than 2𝑝 of those. Still, 𝑓 ′ can perform additional computations using the
information stored during its generation.

However, the computational power of this adversary is not unbounded. More
precisely we consider only 2𝑝-adversaries which cannot perform more than 2100

operations. This means for example that recovering a 128-bit AES key is out of
their reach. We are not interested in guarding against unrealistic, computation-
ally unbounded adversaries.

Similarly, the complexity of the plug approximation along the other axes
cannot be arbitrarily high. Consider a code-hard function 𝑓 which uses a table
𝑠 of 𝑀 bits and an approximation 𝑓 ′ which works as follow:

1. Evaluate and store several values of 𝑓(𝑖) for random inputs 𝑖 using far fewer
than 𝑀 bits of storage.

2. When given a random input 𝑥:

(a) brute-force all possible values of 𝑠, i.e. 2𝑀 values using 𝑀 bits of RAM
to store each candidate table 𝑠′;

(b) try each candidate 𝑠′ to see if they yield 𝑓 ′(𝑖) = 𝑓(𝑖) using the values of
𝑓(𝑖) previously stored;

(c) once the right 𝑠 has been found, use it to evaluate 𝑓 ′(𝑥), return it and
then erase 𝑠′.

Such an approximation 𝑓 ′ is not code-hard, it merely needs enough space to store
𝑓(𝑖) for several 𝑖. However, it is memory-hard since it needs to store the same
amount of information as is stored in the implementation of 𝑓 , although the
storage is in RAM rather than code. Much more importantly, its time-hardness
is astronomical: 𝑀 will typically be in the millions, if not the billions, meaning
that enumerating all 2𝑀 candidates 𝑠′ is utterly impossible.

We explicitly do not consider such extreme trade-offs: in our cases, the hard-
ness of 𝑓 remains practical—though expensive—, meaning that a 2𝑝-adversary
trying to bypass its hardness is trying to optimize an already usable imple-
mentation. It does not make sense for her to trade code-hardness for a wildly
impractical time-hardness.

3.2 Theoretical Framework

Generic Symmetric Hardness We are now ready to formally define hardness.
We use a generalization to all forms of hardness of the incompressibility notion
from [22].
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Definition 2 (R-hardness). We say that a function 𝑓 : 𝒳 → 𝒴 is R-hard
against 2𝑝-adversaries for some tuple R = (𝜌, 𝑢, 𝜖(𝑝)) with 𝜌 ∈ {Time,Code,RAM}
if evaluating the function 𝑓 using less than 𝑢 units of the resource 𝜌 and at
most 2𝑝 units of storage is possible only with probability 𝜖(𝑝). More formally, the
probability for a 2𝑝-adversary to win the efficient approximation game, which is
described below, must be upper-bounded by 𝜖(𝑝).

1. The challenger chooses a function 𝑓 from a predefined set of functions re-
quiring more than 𝑢 units of 𝜌 to be evaluated.

2. The challenger sends 𝑓 to the adversary.
3. The adversary computes an approximation 𝑓 ′ of 𝑓 which, unlike 𝑓 , can be

computed using less than u units of the resource 𝜌.
4. The challenger picks an input 𝑥 of 𝒳 uniformly at random and sends it to

the adversary.
5. The adversary wins if 𝑓 ′(𝑥) = 𝑓(𝑥).

This game is also represented in Figure 2. The approximation 𝑓 ′ computed by the
adversary must be evaluated using significantly less than 𝑢 units of the resource
𝜌, although the precomputation may have been more expensive.

challenger 2𝑝-adversary

Choose 𝑓

𝑓

𝑓 ′ ← Precompute(𝑓)

𝑥
$←− 𝒳

𝑥

𝑓 ′(𝑥)

𝑓(𝑥) = 𝑓 ′(𝑥)?

Fig. 2: The game corresponding to the definition of (𝜌, 𝑢, 𝜖(𝑝))-hardness against
2𝑝-adversaries.

In order for this definition to be relevant, the power of the adversary must be es-
timated. For example, preventing attacks from 2512-adversaries would most defi-
nitely be over engineering and, conversely, preventing attacks from 220-adversaries
would be useless since such precomputation is always feasible.

Our definition is not the strongest in the sense that it does not encompass
e.g. “strong space-hardness” [16]. This definition of code-hardness aims at pre-
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venting the attacker from encrypting a plaintext of their choosing, a far stronger
requirement than preventing the encryption of a random plaintext.

In the efficient approximation game described above, 𝑓 ′ must be less hard
than 𝑓 along the appropriate axis. For example, if 𝑓 is code-hard then the code
implementing 𝑓 ′ must be significantly smaller than that implementing 𝑓 , mean-
ing that the game corresponding to code-hardness when 𝑓 is an encryption al-
gorithm is essentially the same as the one used in the definition of encryption
incompressibility [22]. Indeed, the computation of 𝑓 ′ and its use by the adversary
corresponds in this case to the computation of the leakage function on the secret
large table and its use by the adversary to approximate the original table.

In the case of code-hardness the maximum code size of the implementation of
𝑓 ′ must coincide with the power of the 2𝑝-adversary. Indeed, the implementation
of the approximation 𝑓 ′ needs at least enough space to store 2𝑝 outputs of the
plug.

For time-hardness, the time is measured in number of simple operations. For
example, if a function requires evaluating a hash function 𝑡 times, the unit of time
is a hash computation. Memory- and code-hardness are measured in bytes. In
our examples, code-hardness is achieved not by using programs with a complex
logic but by forcing them to include large and incompressible tables. Much like
in most recent white-box block ciphers, the size of the logic of the program is
considered to be negligible and the size of the implementation is reduced to that
of its incompressible tables.

A function which is easy to compute on a subset of its domain or whose
output is not uniformly distributed in its range can still be (𝜌, 𝑢, 𝜖)-hard as such
limitations can be taken into account by modifying the 𝜖 factor. For example, if
a function is easy to evaluate on a fraction 𝑓 of its domain then this limitation
is simply captured by the fact that 𝜖 ≥ 1/𝑓 .

Generic Asymmetric Hardness This generic definition is easily generalized
to encompass asymmetric hardness.

Definition 3 (Asymmetric R-hardness). We say that a function 𝑓 : 𝒳 → 𝒴
is asymmetrically R-hard against 2𝑝-adversaries for some tuple R = (𝜌, 𝑢, 𝜖(𝑝))
with 𝜌 ∈ {Time,Code,RAM} if it is impossible for a 2𝑝-adversary to win the
approximation game of Definition 2 with probability higher than 𝜖(𝑝), unless a
secret 𝐾 is known.

If this secret is known then it is possible to evaluate another function 𝑓𝐾
which is is functionally equivalent to 𝑓 but does not have its hardness.

An immediate consequence of this definition is that extracting the secret key
𝐾 from the description of 𝑓 must be computationally infeasible. Otherwise, the
adversary could simply recover 𝐾 during the precomputation step, use 𝑓𝐾 as
their approximation and then win the approximation game with probability 1.
This observation is reminiscent of the unbreakability notion presented in [20].

White-box block ciphers are simple example of asymmetrically code-hard
functions. This concept can also be linked to the proof of work or knowledge
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presented in [6]. It is a proof of work where a solution can be found in a more
efficient way if a secret is known.

Asymmetric hardness is a different notion from public key encryption. Indeed,
in the latter case, the whole decryption functionality is secret. In our case, the
functionality is public. What is secret is a method to evaluate it efficiently.

A Counter-Example The inversion of a one-way function may seem like a
natural example of a time-hard function. However, as described below, it may
not satisfy the requirements of our definition of (Time, 𝑢, 𝜖(𝑝))-hardness.

Let ℎ : {0, 1}50 → {0, 1}50 be the function mapping a 50-bit string to the first
50 bits of their SHA-256 digest and let 𝑓 be the inverse of ℎ. In other words, 𝑓
returns a preimage of a given digest. This function may seem time-hard at first
glance as SHA-256 is preimage resistant. More specifically, it might be expected
to be about (Time, 250, 2−20)-hard against a 230-adversary. However, as is well
known, such constructions can be attacked using Hellman’s tradeoff [24] in the
form of rainbow-tables allowing an attacker to recover a preimage in far less time
at the cost of significant but practical pre-computation and storage. If 𝑀 is the
size of this table and 𝑇 is the time complexity of an inversion using this table
then it must hold that 𝑀𝑇 2 = 𝑁2 where 𝑁 = 250 in our case. The failure of 𝑓
to be time-hard in the sense of Definition 2 can be seen in the following strategy
to win the approximation game.

1. The challenger chooses a secure hash function (SHA-256) and sends its de-
scription to the adversary.

2. The 230-adversary precomputes Hellman-type rainbow tables with in total
230 entries using about 250 calls to ℎ. This adversary chooses 𝑀 = 230 and
𝑇 = 𝑁/

√
𝑀 = 235.

3. The challenger chooses a random value 𝑥 ∈ {0, 1}50 and sends it to the
adversary.

4. With high probability, the adversary computes 𝑓(𝑥) using their precomputed
table in time 𝑇 = 235 which is 215 times smaller than the time needed for
brute-force.

Thus, such a function is not time-hard in the sense of Definition 2.

3.3 Examples of Plugs

As our modes rely on smaller R-hard function to achieve their goal, we describe
an array of such components, one for each hardness goal. A summary of all the
plugs we describe, along with what we consider to be their hardness against
2𝑝-adversaries, is given in Table 2.

While we provide an intuition on why we assume these plugs to have the
hardnesses we claim, we do not prove that it is the case.

If the output it is too large to be used in a higher level construction then it is
possible to truncate it to 𝑣 bits. If we denote 𝑇𝑣 the function discarding all but
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Hardness Symmetric Asymmetric

Time
IterHash𝑡

𝜂 RSAlock𝑡
𝜂

(Time, 𝜂, 2𝑝−𝑡) (Time, 𝜂, 2𝑝−𝑡)

Memory
Argon2 Diodon

(RAM,𝑀/5, 2𝑝−𝑡) (RAM,𝑀/10, 2𝑝−𝑡)

Code
BigLUT𝑡

𝑣 BcCounter𝑡𝑣

(Code, 2𝑝, 2𝑝−𝑡) (Code, 2𝑝, 2𝑝−𝑡)

Table 2: Possible plugs, i.e. sub-components for our constructions which we as-
sume to be R-hard against 2𝑝-adversaries.

the first 𝑣 bits of its input and if 𝑃 is a plug with a 𝑡-bit input which is (𝜌, 𝑢, 𝜖(𝑝))-
hard against 2𝑝-adversaries, then 𝑥 ↦→ 𝑇𝑚 (𝑃 (𝑥)) is (𝜌, 𝑢,max(𝜖(𝑝), 2𝑝−𝑡))-hard
against 2𝑝-adversaries. Overall, the probability of success of an approximation
made by a 2𝑝-adversary of a plug mapping 𝑡 to 𝑣 bits is lower-bounded by
max(2−𝑣, 2𝑝−𝑡) if its output is uniformly distributed in its range.

Time-Hard plug This hardness has been considered in previous works for
instance in the context of key stretching and key derivation or for time-lock
encryption. In fact, the constructions proposed for each use case can be used to
provide time-hardness and asymmetric time-hardness respectively.

Symmetric Hardness. IterHash𝑡
𝜂 iterates a 𝑡-bit hash function on a 𝑡-bit input

block 𝜂 times where 𝜂 must be much smaller than 2𝑡/2 to avoid issues related
to the presence of cycles in the functional graph of the hash function. If we
denote by 𝐻 the hash function used, then IterHash𝑡

𝜂(𝑥) = 𝐻𝜂(𝑥). Evaluating
this function requires at least 𝜂 hash function calls and, provided that the hash
function iterated is cryptographically secure, it is impossible for an adversary to
guess what the output is after 𝜂 iterations with probability higher than 2−𝑡/2.

We consider that this function is (Time, 𝜂, 2𝑝−𝑡)-hard against 2𝑝-adversaries,
as long as 𝑝≪ 𝑡/2.

Asymmetric Hardness. RSAlock𝑡
𝜂 is a function performing 𝜂 squaring in a RSA

modular ring of size 𝑁 = 𝑞𝑞′ ≈ 2𝑡, where 𝑞 and 𝑞′ are secret primes. Using
these notations, RSAlock𝑡

𝜂(𝑥) = 𝑥2𝜂 mod 𝑁 . The common user therefore needs
to perform 𝜂 squarings in the modular ring.

However, a user who knows the prime decomposition of the RSA modulo can
first compute 𝑒 = 2𝜂 mod (𝑞 − 1)(𝑞′ − 1) and thus compute RSAlock𝑡

𝜂(𝑥) = 𝑥𝑒

mod 𝑁 . Furthermore, such a user can also use the Chinese remainder theorem
to further speed up the computation which increases their advantage over com-
mon users. Thus, as long as 𝑡 > 𝑛, the privileged user has an advantage over
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the common. We consider that RSAlock𝑡
𝜂 is asymmetrically (Time, 𝜂, 2𝑝−𝑡)-hard

against 2𝑝-adversaries.

Code-Hard plug As explained in Section 2.3, the main goals of code-hardness
are white-box and big-key encryption. The structures used for both purposes rely
on the same building block, namely a large look-up table where the entries are
chosen uniformly at random or as the encryption of small integers. The former,
BigLUT𝑡

𝑣, is code-hard. The latter, BcCounter𝑡𝑣, is asymmetrically code-hard.
Furthermore, an identical heuristic can be applied to both of them to increase
the input size of the plug while retaining a practical code size. It is described at
the end of this section.

Symmetric Hardness. BigLUT𝑡
𝑣 uses a table 𝐾 consisting in 2𝑡 entries, each

being a 𝑣-bit integer picked uniformly at random. Evaluating BigLUT𝑡
𝑣 then

consists simply in querying this table: BigLUT𝑡
𝑣 is the function mapping a 𝑡-bit

integer 𝑥 to the 𝑣-bit integer 𝐾[𝑥].
This function is (Code, 2𝑝, 2𝑝−𝑡)-hard against 2𝑝-adversaries. Indeed, an ad-

versary who has access to 2𝑝 outputs of the function cannot evaluate it efficiently
on a random input with probability more than 2𝑝−𝑡. Simply guessing the output
succeeds with probability 2−𝑣 which is usually much smaller than 2𝑝−𝑡. Thus,
we consider that BigLUT𝑡

𝑣 is (Code, 2𝑝, 2𝑝−𝑡)-hard against 2𝑝-adversaries.

Asymmetric Hardness. BcCounter𝑡𝑣 is the function mapping a 𝑡-bit integer 𝑥
to the 𝑣-bit block 𝐸𝑘(0𝑣−𝑡||𝑥), where 𝐸𝑘 is a 𝑣-bit block cipher with a secret
key 𝑘 of length at least 𝑣. A common user would be given the codebook of this
function as a table of 2𝑡 integers while a privileged user would use the secret key
𝑘 to evaluate this function.

The hardness of BcCounter𝑡𝑣 is the same as that of BigLUT𝑡
𝑣 for a common

user. The contrary would imply the existence of a distinguisher for the block ci-
pher, which we assume does not exist. However, a privileged user with knowledge
of the secret key used to build the table can bypass this complexity.

Furthermore, as the key size is at least as big as the block size in modern
block ciphers, an adversary guessing the key is not more efficient than one who
merely guesses the output of the cipher. Thus, we consider that BigLUT𝑡

𝑣 is
asymmetrically (Code, 2𝑝, 2𝑝−𝑡)-hard.

Increasing the input size. Both BigLUT𝑡
𝑣 and BcCounter𝑡𝑣 have a low input size

and leave a fairly high success probability for an attacker trying to win the
efficient approximation game without using a lot of resource. An easy way to
work around this limitation is to use ℓ > 1 distinct instances of a given function
in parallel and XOR their outputs. For example, 𝑥 ↦→ 𝑓(𝑥) where

𝑓(𝑥0||...||𝑥ℓ−1) = ⊕ℓ−1
𝑖=0𝐸𝑘(byte(𝑖)||0𝑛−𝑡−8||𝑥𝑖)

and where byte(𝑖) denotes the 8-bit representation of the integer 𝑖 combines ℓ
different instances of BcCounter𝑡𝑣. We consider that, against 2𝑝-adversaries, it is
asymmetrically

(︀
Code, 2𝑝,max(2𝑝−𝑣, (2𝑝−𝑡/ℓ)ℓ)

)︀
-hard.
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Indeed, an attacker could store 2𝑝/ℓ entries of each of the ℓ distinct tables, in
which case they can evaluate the whole function if and only if all the table entries
they need are among those they know. This happens with probability (2𝑝−𝑡/ℓ)ℓ.
Alternatively, they could store the output of the whole function for about 2𝑝

values of the complete input. In that case, they can evaluate the function if
and only if the whole input is one that was precomputed, which happens with
probability 2𝑝−𝑣. We assume that there is not better attack for a 2𝑝-adversary
than the ones we just described, hence the hardness we claimed.

It is also possible to use a white-box block cipher as an asymmetrically code-
hard function as this complexity is precisely the one they are designed to achieve.

Memory-Hard plug Definition 2, when applied to the case of memory hard-
ness, corresponds to functions for which a reduction in the memory usage is
either impossible or extremely costly in terms of code or time complexity. We
are not aware of any function satisfying the first requirement but, on the other
hand, there are many functions for which a decrease in memory is bound to cause
a quantifiable increase in time complexity. These are the functions we consider
here.

Symmetric Hardness. Several recent functions are intended to provide memory-
hardness. The main motivation was the Password Hashing Competition (PHC)
which favored candidates enforcing memory-hardness to thwart the attacks of
adversaries using ASICs to speed up password cracking.

The winner of the PHC competition, Argon2 [12], uses 𝑀 bytes of memory
to hash a password, where 𝑀 can be chosen by the user. It was designed so
that an adversary trying to use less than 𝑀/5 bytes of memory would have to
pay a significant increase in time-hardness. Using our definition, if 𝑡 is the size
of a digest (this quantity can also be chosen by the user) and 𝑣 is the size of
the input, then Argon2 is about (RAM,𝑀/5, 2𝑝−𝑡)-hard against 2𝑝-adversaries
as long as enough passes are used to prevent ranking and sandwich attacks [1,2]
and as long as 2𝑝−𝑡 > 2−𝑣.

The construction of memory-hard functions is a very recent topic. Only a
few such functions are known, which is why Argon2 and Diodon are far more
complex than the other plugs proposed in this section. It is an interesting research
problem to build a simpler memory hard function with the relaxed constraint
that it might be cheap to compute on a part of its domain, a flaw which would
easily be factored into the 𝜖(𝑝) probability.

Asymmetric Hardness. The only asymmetrically memory-hard function we are
aware of is the one we introduced in Section 2.4, Diodon. Because of its proxim-
ity with scrypt, we claim that it is (RAM,𝑀/10, 2−𝑢)-hard for basic users [3].
In other words, we consider that Diodon is asymmetrically (RAM,𝑀/10, 2𝑝−𝑡)-
hard — under the assumption, as for Argon2, that 2𝑝−𝑡 > 2−𝑢. Note however
that [3] guarantees only linear penalties if attacker trades memory for time, while
modern memory-hard functions like Argon2 provide superpolynomial penalties.
This leads us to the following open problem.
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Open Problem 1 Is it possible to build an asymmetrically memory-hard func-
tion for which the time-memory tradeoff is superpolynomial, i.e. such that divid-
ing its memory usage by a factor 𝛼 must mutiply its execution time by 𝛼𝑑 for
some 𝑑 > 1?

4 Modes of Operations for Building Hard Primitives

As said above, our strategy is to combine hard plugs with secure cryptographic
primitives in such a way that the input of the plugs are randomized and that
enough such calls are performed to ensure that at least one plug evaluation was
hard with a high enough probability. The method we use is nicknamed plug-
then-randomize. It is formalized in Section 4.1. Then, the block cipher and the
sponge mode of operation based on it are introduced respectively in Sections 4.2
and 4.3.

Unfortunately, our security arguments are not as formal as those used in the
area of provable security. Our main issue is that we are not trying to prevent the
adversary from recovering a secret: in fact, there is none in the case of symmetric
hardness! Furthermore, since an (inefficient) implementation is public, we cannot
try to prevent the attacker from distinguishing the function from an ideal one. It
is our hope that researchers from the provable security community will suggest
directions for new and more formal arguments.

4.1 Plug-Then-Randomize

Definition 4 (Plugged Function). Let 𝑃 : {0, 1}𝑡 → {0, 1}𝑣 be a plug and
let 𝐹 : {0, 1}𝑛 → {0, 1}𝑛 be a function, where 𝑡 + 𝑣 ≤ 𝑛. The plugged function
(𝐹 · 𝑃 ) : {0, 1}𝑛 → {0, 1}𝑛 maps 𝑥 = 𝑥𝑡||𝑥𝑣||𝑥′ with |𝑥𝑡| = 𝑡, |𝑥𝑣| = 𝑣 and
|𝑥′| = 𝑚− 𝑡− 𝑣 to 𝑦 defined by:

(𝐹 · 𝑃 )(𝑥𝑡 || 𝑥𝑣 || 𝑥′) = 𝑦 = 𝐹 (𝑥𝑡 || 𝑥𝑣 ⊕ 𝑃 (𝑥𝑡) || 𝑥′) .

This computation is summarized in Figure 3.

𝐹

𝑃 ⊕

𝑡 𝑣 𝑛− 𝑣 − 𝑡

𝑛

Fig. 3: Evaluating the plugged function (𝐹 · 𝑃 ).
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Lemma 1 (Plugged Function Hardness). If 𝑃 : {0, 1}𝑡 → {0, 1}𝑣 is a plug
(𝜌, 𝑢, 𝜖(𝑝))-hard against 2𝑝-adversaries and if 𝐹 : {0, 1}𝑛 → {0, 1}𝑛 is a public
random (permutation) oracle then the plugged function (𝐹 ·𝑃 ) is (𝜌, 𝑢, 𝜖(𝑝))-hard.

Proof. First, the adversary could try and store 2𝑝 outputs of (𝐹 · 𝑃 ). However,
such an approximation would work only with probability 2𝑝−𝑛 < 2𝑝−𝑣 ≤ 𝜖, so
that it is less successful than an approximation based on an approximation of
the plug.

Without knowledge of the full input of 𝐹 , it is impossible to predict its
output because 𝐹 is a random (permutation) oracle. Therefore, we simply need
to show that the function ℱ𝑃 mapping (𝑥, 𝑦, 𝑧) of {0, 1}𝑡×{0, 1}𝑣 ×{0, 1}𝑛−𝑡−𝑣

to (𝑥, 𝑦 ⊕ 𝑃 (𝑥), 𝑧) is as hard as 𝑃 itself.
By contradiction, suppose that there is an adversary 𝒜 capable of winning

the approximation game for ℱ𝑃 . That is, 𝒜 can compute an approximation
ℱ ′

𝑃 of ℱ𝑃 using less than 𝑢 units of the resource 𝜌 which works with probability
strictly higher than 𝜖(𝑝). Then 𝒜 can win the approximation game for 𝑃 itself as
follows. When given 𝑃 , 𝒜 computes the approximation ℱ ′

𝑃 of the corresponding
function ℱ𝑃 . Then, when given a random input 𝑥 of 𝑃 of length 𝑡,𝒜 concatenates
it with random bitstrings 𝑦 and 𝑧 of length 𝑣 and 𝑛 − 𝑡 − 𝑣 respectively. The
output of 𝑃 is then approximated as the 𝑣 center bits of ℱ ′

𝑃 (𝑥||𝑦||𝑧)⊕(𝑥||𝑦||𝑧) =
0𝑡||𝑃 (𝑥)||0𝑛−𝑡−𝑣. Thus, 𝒜 can violate the (𝜌, 𝑢, 𝜖(𝑝))-hardness of 𝑃 .

We deduce that if 𝑃 is (𝜌, 𝑢, 𝜖(𝑝))-hard, then so is ℱ𝑃 and thus (𝐹 · 𝑃 ). ⊓⊔

Using this lemma, we can prove the following theorem which will play a key
role in justifying the R-hardness of our later constructions.

Theorem 1 (Iterated Plugged Function Hardness). Let 𝐹𝑖, 𝑖 < 𝑟 be a
family of 𝑟 independent random oracles (or random permutation oracles) map-
ping 𝑛 bits to 𝑛. Let 𝑃 : {0, 1}𝑡 → {0, 1}𝑣 with 𝑡+𝑣 ≤ 𝑛 be a plug (𝜌, 𝑢, 𝜖(𝑝))-hard
against 2𝑝-adversaries. Then the function 𝑓 : {0, 1}𝑛 → {0, 1}𝑛 defined by

𝑓 : 𝑥 ↦→
(︀
(𝐹𝑟−1 · 𝑃 ) ∘ ... ∘ (𝐹0 · 𝑃 )

)︀
(𝑥)

is (𝜌, 𝑢,max(𝜖(𝑝)𝑟, 2𝑝−𝑛))-hard against 2𝑝-adversaries.

Proof. We denote 𝑓𝑖 the function defined by 𝑓 : 𝑥 ↦→
(︀
(𝐹𝑖−1 ·𝑃 )∘ ...∘(𝐹0 ·𝑃 )

)︀
(𝑥),

so that 𝑓 = 𝑓𝑟. We proceed by induction on the number of rounds 𝑖, our induction
hypothesis being that the theorem holds for 𝑟 ≤ 𝑖.

Initialization. If 𝑖 = 1 i.e. for 𝑓1 = (𝐹 · 𝑃 ), Lemma 1 tells us that this function
is (𝜌, 𝑢, 𝜖)-hard. As 𝜖 ≥ 2𝑝−𝑣 > 2𝑝−𝑛, the induction holds for 𝑖 = 1.

Inductive Step. Suppose that the theorem holds for 𝑖 rounds. The attack based on
pre-querying 2𝑝 outputs of 𝑓𝑖+1 and then approximating 𝑓𝑖+1 using the content
of this table would still work. Thus, if 𝜖𝑖+1 ≤ 2𝑛−𝑝 then this strategy is the
optimal one. Suppose now that 𝜖𝑖+1 > 2𝑛−𝑝, which also implies that 𝜖𝑖 > 2𝑛−𝑝.

As 𝐹𝑖+1 is a random (permutation) oracle, the only way to evaluate the
output of 𝑓𝑖+1 is to first evaluate 𝑓𝑖 and then to evaluate (𝐹𝑖+1 ·𝑃 ). The existence
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of another efficient computation method would violate the assumption that 𝐹𝑖+1

is a random oracle.
Thus, the adversary needs first to evaluate 𝑓𝑖 and then (𝐹𝑖+1 · 𝑃 ). Let 𝑓 ′

𝑗 be
an approximation of the function 𝑓𝑗 computed by a 2𝑝-adversary and let 𝑔𝑗 be
an approximation of (𝐹𝑗 · 𝐹 ) computed by the same adversary. The probability
of the successful evaluation of 𝑓 ′

𝑖+1 is:

𝑃
[︁
𝑓 ′
𝑖+1(𝑥) = 𝑓𝑖+1(𝑥), 𝑥

$← {0, 1}𝑛
]︁

= 𝑃 [𝑔𝑖+1(𝑦) = (𝐹𝑖+1 · 𝑃 )(𝑦) | 𝑦 = 𝑓𝑖(𝑥)]

× 𝑃
[︁
𝑓 ′
𝑖(𝑥) = 𝑓𝑖(𝑥), 𝑥

$← {0, 1}𝑛
]︁
.

On the other hand, the first term is equal to

𝑃 [𝑔𝑖+1(𝑦) = (𝐹𝑖+1 · 𝑃 )(𝑦) | 𝑦 = 𝑓𝑖(𝑥)]

= 𝑃
[︁
𝑔𝑖+1(𝑦) = (𝐹𝑖+1 · 𝑃 )(𝑦), 𝑦

$← {0, 1}𝑛
]︁ (1)

which, because of Lemma 1, is at most equal to 𝜖.
Equation (1) is true. Were it not the case, then 𝐹𝑖+1 would not be behaving

like a random oracle. Indeed, 𝑦 = 𝑓𝑖(𝑥) is the output of a sequence of random
oracle calls sandwiched with simple bijections consisting in the plug calls that are
independent from said oracle. Therefore, since 𝑥 is picked uniformly at random,
𝑦 must take any value with equal probability. Furthermore, the events 𝑓𝑖(𝑥) = 𝑦
and 𝑔𝑖+1(𝑦) = (𝐹𝑖+1 ·𝑃 )(𝑦) are independent: the latter depends only on the last
random (permutation) oracle 𝐹𝑖+1 while the former depends on all other random
(permutation) oracles. As a consequence, the probability that 𝑓 ′

𝑖+1(𝑥) = 𝑓𝑖(𝑥)
for 𝑥 picked uniformly at random and for any approximation 𝑓 ′

𝑖+1 obtained by
a 2𝑝-adversary is upper-bounded by 𝜖𝑖+1. ⊓⊔

4.2 Hard Block Cipher Mode (HBC)

Let 𝐸𝑘 be a block cipher operating on 𝑛-bit blocks using a key of length 𝜅 ≥
𝑛. Let 𝑃 be a plug (𝜌, 𝑢, 𝜖(𝑝))-hard against 2𝑝-adversaries. The HBC mode of
operation iterates these two elements to create an 𝑛-bit block cipher with a 𝜅-
bit secret key which is (𝜌, 𝑢,max(𝜖(𝑝)𝑟, 2𝑝−𝑛))-hard against 2𝑝-adversaries. This
construction, when keyed by the 𝜅-bit key 𝑘, is the permutation HBC[𝐸𝑘, 𝑃, 𝑟]
which transforms an 𝑛-bit input 𝑥 as described in Algorithm 3. This process is
also summarized in Figure 4. Below, we describe the hardness (Theorem 2) such
an HBC instance achieves. We also reiterate that if an asymmetrically hard plug
is used then the block cipher thus built is also asymmetrically hard.

Our proof is in the ideal cipher model, a rather heavy handed assumption. We
leave as future work to prove the hardness of this mode of operation in simpler
settings.

The role of the round counter XOR in the key is merely to make the block
cipher calls independent from one another. If the block cipher had a tweak, these
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Algorithm 3 HBC[𝐸𝑘, 𝑃, 𝑟] encryption
Inputs: 𝑛-bit plaintext 𝑥; 𝜅-bit key 𝑘
Output: 𝑛-bit ciphertext 𝑦

𝑦 ← 𝐸𝑘(𝑥)
for all 𝑖 ∈ {1, ..., 𝑟} do

𝑦𝑡 || 𝑦𝑛−𝑡 ← 𝑦, where |𝑦𝑡| = 𝑡 and |𝑦𝑛−𝑡| = 𝑛− 𝑡
𝑦𝑛−𝑡 ← 𝑦𝑛−𝑡 ⊕ 𝑃 (𝑦𝑡)
𝑦 ← 𝐸𝑘⊕𝑖(𝑦𝑡||𝑦𝑛−𝑡)

end for
return 𝑦

𝐸𝑘 𝐸𝑘⊕𝑖𝑃

⊕

𝑟 times

Fig. 4: The HBC block cipher mode.

counter additions could be replaced by the use of the counter as a tweak with a
fixed key. It is possible to use block ciphers which are not secure in the related-
key setting and still retain the properties of HBC by replacing the keys 𝑘⊕ 𝑖 by
the outputs of a key derivation function.

Theorem 2 (Hardness of HBC). If the block cipher 𝐸𝑘 used as a component
of HBC[𝐸𝑘, 𝑃, 𝑟] is an ideal block cipher and if the plug 𝑃 is (𝜌, 𝑢, 𝜖(𝑝))-hard
against 2𝑝-adversaries, then the block cipher HBC[𝐸𝑘, 𝑃, 𝑟] is(︀

𝜌, 𝑢,max(𝜖(𝑝)𝑟, 2𝑝−𝑛)
)︀
-hard against 2𝑝-adversaries.

Proof. As 𝐸𝑘 is an ideal cipher, 𝐸𝑘 and 𝐸𝑘⊕𝑖 act like two independent random
permutation oracles. As a consequence, Theorem 1 immediately gives us the
theorem. ⊓⊔

We used the HBC structure to build an asymmetrically time-hard block
cipher, Skipper, which we describe in Section 5.1.

4.3 Hard Sponge Mode (HSp)

The sponge construction was introduced by Bertoni et al. as a possible method
to build a hash function [8]. They used it to design Keccak [9] which later
won the SHA-3 competition. It is a versatile structure which can be used to
implement hash functions, stream ciphers, message authentication codes (MAC),
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authenticated ciphers as described in [10], pseudo-random number generators
(PRNG) and key derivation functions (KDF) as explained for example in [23].
In this section, we first provide a brief reminder on the sponge construction
Then, we show how plugs can be combined with secure sponge transformation
to build R-hard sponges, thus providing R-hard hash function, MAC, etc.

𝑔 𝑔 𝑔
⊕ ⊕0

IV

𝑚0 𝑚1 ℎ0 ℎ1
𝑟

𝑐

Initialization Absorption Squeezing

Fig. 5: A sponge-based hash function.

The Sponge Construction A sponge construction uses an 𝑛-bit public per-
mutation 𝑔 and is parametrized by its capacity 𝑐 and its rate 𝑟 which are such
that 𝑟 + 𝑐 = 𝑛. This information is sufficient to build a hash function, as illus-
trated in Figure 5. The two higher level operations provided by a sponge object
parametrized by the function 𝑔, the rate 𝑟 and the capacity 𝑐 are listed below.

– Absorption. The 𝑟-bit block 𝑚𝑖 of the padded message 𝑚 is xored into the
first 𝑟 bits of the internal state of the sponge and the function 𝑔 is applied.

– Squeezing. The first 𝑟 bits of the internal state are output and the function
𝑔 is applied on the internal state.

The internal state of the sponge obviously needs to be initialized. It can be set
to a fixed string to create a hash function. However, if the initial value is a secret
key, we obtain a MAC. Similarly, if the initial value is a secret key/initialization
pair, we can generate a pseudo-random keystream by iterating the squeezing
operation.

As explained in [10], this structure can be modified to allow single-pass au-
thenticated encryption. This is achieved by using the sponge object to generate
a stream with the added modification that, between the generation of the 𝑟-bit
keystream block and the application of 𝑔 to the internal state, the 𝑟-bit block of
padded message is xor-ed into the internal state, just like during the absorption
phase. In this case, there is no distinction between the absorption and squeezing
phase. Once the whole padded message has been absorbed and encrypted using
the keystream, the sponge object is squeezed to obtain the tag.

Finally, a sponge object can also be used to build a KDF or a PRNG using
a similar strategy in both cases, as proposed in [23]. The general principle is to
absorb the output of the low-entropy source and follow the absorption of each
block by many iterations of 𝑥 ↦→ 0𝑟||𝑇𝑐(𝑔(𝑥)) on the internal state, where 𝑇𝑐(𝑥)
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is equal to the last 𝑐 bits of 𝑥. Setting the first 𝑟 bits of the internal state to zero
prevents the inversion of the update function.

Sponge construction are known to be secure as long as the public update
function 𝑔 has no structural distinguishers such as high probability differentials
or linear approximation with a high bias.

The main advantages of the sponge structure are its simplicity and its versa-
tility. It is simple because it only needs a public permutation and it is versatile
because all symmetric primitives except block ciphers can be built from it with
very little overhead. As we will show below, the fact that its internal state is
larger than that of a usual block cipher also means that attacks based on pre-
computations are far weaker.

4.4 The HSp Mode and its Hardness

Given that a sponge object is fully defined by its rate 𝑟, capacity 𝑐 and public
update function 𝑔, we intuitively expect that building a R-hard sponge object
can be reduced to building a R-hard update function. As stated in the theorem
below, this intuition is correct provided that the family of functions 𝑔𝑘 : {0, 1}𝑐 →
{0, 1}𝑐 indexed by 𝑘 ∈ {0, 1}𝑟 and defined as the capacity bits of 𝑔(𝑥||𝑘) is
assumed to be a family of independent random oracles.

We call HSp the mode of operation described in this section. It is superficially
similar to a round of the HBC block cipher mode.

An update function 𝑔 can be made R-hard using the R-hardness of a plug
𝑃 : {0, 1}𝑡 → {0, 1}𝑣 to obtain a new update function (𝑔 · 𝑃 ) as described in
Algorithm 4.

Algorithm 4 (𝑔 · 𝑃 ) sponge transformation
Inputs: 𝑛-bit block 𝑥;
Output: 𝑛-bit block 𝑦

𝑥𝑡 || 𝑥𝑣 || 𝑥′ ← 𝑥, where |𝑥𝑡| = 𝑡, |𝑥𝑣| = 𝑣, |𝑥′| = 𝑛− 𝑡− 𝑣
𝑥𝑣 ← 𝑥𝑣 ⊕ 𝑃 (𝑥𝑡)
𝑦 ← 𝑔(𝑥𝑡 || 𝑥𝑣 || 𝑥′)
return 𝑦

This process is summarized in Figure 6. In order to prevent the adversary
from reaching either the input or the output of 𝑃 , which could make some attacks
possible, we impose that 𝑡 + 𝑣 ≤ 𝑐 so that the whole plug input and output are
located in the capacity.

Theorem 3 (HSp absorption hardness). Consider a sponge defined by the
𝑛-bit transformation (𝑔 · 𝑃 ), a rate 𝑟 and a capacity 𝑐 so that 𝑟 + 𝑐 = 𝑛 and
𝑟 > 𝑐. Let (𝑔 · 𝑃 ) be defined as in Algorithm 4, where 𝑃 : {0, 1}𝑡 → {0, 1}𝑣 is a
plug (𝜌, 𝑢, 𝜖(𝑝))-hard against 2𝑝-adversaries.
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𝑔

𝑃 ⊕
𝑡 𝑣 𝑟

capacity (𝑐 bits) rate

Fig. 6: The hard sponge transformation (𝑔 · 𝑃 ).

Let Absorb : {0, 1}ℓ×𝑟 → {0, 1}𝑐 be the function mapping an un-padded mes-
sage 𝑚 of ℓ 𝑟-bit blocks to the capacity bits of the internal state of the sponge
after it absorbed 𝑚.

Furthermore, suppose that the 𝑛-bit transformation 𝑔 is such that the family
of functions 𝑔𝑘 : {0, 1}𝑐 → {0, 1}𝑐 indexed by 𝑘 ∈ {0, 1}𝑟 and defined as 𝑔𝑘(𝑥) =
𝑇𝑐 ((𝑔(𝑥||𝑘)) can be modeled as a family of random oracles.

Then Absorb is
(︀
𝜌, 𝑢,max(𝜖(𝑝)ℓ−1, 2𝑝−𝑐)

)︀
-hard against 2𝑝-adversaries.

This theorem deals with un-padded messages. The padding of such a message
imposes the creation of a new block with a particular shape which cannot be
considered to be random.

Proof. Let 𝑔𝑘 : {0, 1}𝑐 → {0, 1}𝑐 be as defined in the theorem. Let the message
𝑚 be picked uniformly at random.

The first call to (𝑔 · 𝑃 ) is not (𝜌, 𝑢, 𝜖(𝑝))-hard. Indeed, the content of the
message has not affected the content of the capacity yet. However, the capacity
bits of the internal state after this first call to (𝑔 · 𝑃 ) are uniformly distributed
as they are the image of a constant by the function indexed by 𝑚0 from a family
of 2𝑟 different random oracles.

Let 𝑚′
𝑖 = 𝑚𝑖 ⊕ 𝑧𝑖, where 𝑚𝑖 is the message block with index 𝑖 > 1 and

where 𝑧𝑖 is the first 𝑟 bits of the content of the sponge after the absorption of
𝑚0, ...,𝑚𝑖−1. That is, 𝑧𝑖 is the content of the rate juste before the call to (𝑔 ·𝑃 )
following the addition of the message block 𝑚𝑖. We can therefore represent the
absorption function as described in Figure 7.

Since the message blocks 𝑚𝑖 have been picked uniformly at random, so are
the values 𝑧𝑖. We can therefore apply Theorem 1, where the independent random
oracles are 𝑔𝑧𝑖 , the plug is 𝑃 , the random message is (𝑔𝑚0 ·𝑃 )(0||𝐼𝑉 ), the block
size is 𝑐 and the number of rounds is ℓ− 1. ⊓⊔

As 𝑐 is typically much larger than a usual block cipher size of 128 bits, the
probability of success of a 2𝑝 adversary can be made much smaller when a sponge
is built rather than a block cipher.

Note that if a sponge is used to provide e.g. authenticated encryption, the
same bound should be used as the message is absorbed into the state in the same
fashion in this case.

The following claim describes the hardness of the squeezing operation.
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Fig. 7: An alternative representation of the absorption procedure.

Claim 1 (HSp squeezing hardness) Consider a sponge defined by the 𝑛-bit
transformation (𝑔 · 𝑃 ), a rate 𝑟 and a capacity 𝑐 so that 𝑟 + 𝑐 = 𝑛 and 𝑟 > 𝑐.
Let (𝑔 · 𝑃 ) be defined as in Algorithm 4, where 𝑃 : {0, 1}𝑡 → {0, 1}𝑣 is a plug
(𝜌, 𝑢, 𝜖(𝑝))-hard against 2𝑝-adversaries.

Let Squeezeℓ : {0, 1}𝑛 → {0, 1}ℓ×𝑟 be the function mapping an internal state
of 𝑛 bits to a stream of ℓ 𝑟-bit blocks obtained by iterating ℓ times the Squeeze
operation.

Then Squeezeℓ is
(︀
𝜌, 𝑢,max(𝜖(𝑝)ℓ, 2𝑝−(𝑐+𝑟))

)︀
-hard against 2𝑝-adversaries.

We cannot prove this hardness using Theorem 1 because the transformations
called in each round are all identical. In particular, they cannot be independent.
This situation can however be interpreted as a variant of the one in the proof of
Theorem 3 where 𝑧𝑖 is not formally picked uniformly at random as there is no
message absorption but can be interpreted as such because it is the output of
the sponge function.

The claimed probability of success bound comes from the hardness of ap-
proximating all ℓ calls to the plug composed with the sponge transformation
(𝜖(𝑝)ℓ) and the hardness of using a precomputation of the image of 2𝑝 possible
internal states (2𝑝−(𝑐+𝑟))).

If the sponge is used to provide a simple stream cipher, the bound of Claim 1
should be used. Indeed, since there is no message absorption in this case, Theo-
rem 3 cannot be used.

5 Practical Instances: Skipper and Whale

We illustrate the versatility and simplicity of the modes of operation described
in the previous section by presenting an instance of each. The first is an asym-
metrically time-hard block cipher called Skipper and the second is a code-hard
sponge called Whale.
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5.1 The Skipper Block Cipher

One possible application for egalitarian computing which is mentioned but not
explored in [13] is obfuscation. The idea is to modify a program in such a way
that a memory-hard function must be computed in parallel to the execution of
the program. Using this very general approach, any program or function could
be made memory-hard, not just cryptographic ones. However, a shortcoming in
this case is the fact that the compiler returning the obfuscated code must also
pay the full price of running this parallel memory-hard function.

Solving this issue requires a primitive with asymmetric memory hardness
such as Diodon. However, this primitive is rather slow even for privileged users.
Therefore, we build instead an asymmetrically time-hard block cipher using the
HBC mode to combine the AES and the RSA-lock plug. The result is the asym-
metrically time-hard block cipher Skipper. It could be used to create an effi-
cient obfuscator. The obfuscator would use the fast implementation of the plug
to create an obfuscated program which forces common users to evaluate its slow
version to run the program. That way, the computational hardness is only paid
by the users of the program and not by the compiler. While this cost might be
offset through the use of dedicated hardware for the computation of RSA-lock,
we note that this function cannot be parallelized.

Our proposal Skipper is HBC[𝐴𝐸𝑆 − 128,RSAlock𝑛𝑝
𝜂 , 2], that is, a 128-bit

block cipher using a 128-bit secret key 𝑘, an RSAlock𝑛𝑝
𝜂 instance truncated to

40 bits as a plug and 3 calls to AES-128 sandwiching 2 calls to the plug. The
plug operates modulo 𝑁 ≥ 2𝑛𝑝 . The Skipper encryption procedure is described
in Algorithm 5.

Algorithm 5 Skipper encryption
Inputs: 𝑛-bit plaintext 𝑥; 𝑘-bit key 𝑘; RSA modulus 𝑁
Output: 𝑛-bit ciphertext 𝑦

𝑦 ← AES𝑘(𝑥)
for all 𝑖 ∈ {1, 2} do

𝑦1 || 𝑦2 ← 𝑦, where |𝑦1| = 88 and |𝑦2| = 40
𝑦2 ← 𝑦2 ⊕ 𝑇40(𝑦

2𝜂

1 mod 𝑁)
𝑦 ← AES𝑘⊕𝑖(𝑦1||𝑦2)

end for
return 𝑦

The RSA-based plug we use is asymmetrically
(︀
Time, 𝜂,max(2𝑝−88, 2−40)

)︀
-

hard. As said before in Section 3.3, we assume that no adversary can evaluate
𝑥2𝜂 mod 𝑁 without performing 𝜂 squarings in the modular ring. However, a
2𝑝-adversary can either guess all 40 bits of the output, which succeeds with
probability 2−40, or store 2𝑝 out of the 288 possible outputs, in which case a
successful evaluation is possible with probability 2𝑝−88.

Merely guessing is the best strategy unless the adversary has access to at
least 40 × 288−40 ≈ 253.3 bits of storage, i.e. more than a thousand terabytes.
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Furthermore, the cost of such a pre-computation could only be amortized if
more than 248/2 = 247 blocks are encrypted using the same plug, i.e. 254 bits
(more than a thousand Tb). Otherwise, the time taken by the precomputation
would be superior to the time needed to evaluate the slow function. We therefore
consider 248-adversaries, that is, adversaries capable of pre-computing 248 values
of RSAlock𝑛𝑝

𝜂 (𝑥). Such an adversary is already quite powerful as it has significant
computing power and storage in addition to knowing the secret key 𝑘. Providing
maximum security against more powerful adversaries would probably be over-
engineering. Thus, in our setting, the plug is asymmetrically (Time, 𝜂, 2−40)-
hard.

Claim 2 (Properties of Skipper) The block cipher Skipper is asymmetri-
cally (Time, 𝜂, 2−80)-hard and cannot be distinguished from a pseudo-random per-
mutation using less than 2128 operations.

Skipper is HBC[AES − 128,RSAlock𝑛𝑝
𝜂 , 2] and its plug is asymmetrically

(Time, 𝜂, 2−40)-hard. Thus, by applying Theorem 2 we obtain that Skipper is
asymmetrically

(︀
Time, 𝜂,max

(︀
248−128, (2−40)2

)︀)︀
-hard.

As there is to the best of our knowledge no related-key attack against full-
round AES-128 in the case where the related keys are linked by a simple XOR,
we claim that Skipper cannot be distinguished from a random permutation
using much less than 2128 operations. Should such distinguishers be found, an
alternative key schedule such as the one from [27] could be used.

We implemented Skipper on a regular desktop PC. The corresponding bench-
marks are provided in the full version of this paper [15].

5.2 The Whale Hash Function

Preventing the leakage of encryption keys is a necessity in order for a system
to be secure. A possible method for preventing this was informally proposed
by Shamir in a talk at RSA’2013 and then formalized by Bellare et al. in their
CRYPTO’16 paper. As the throughput of the exfiltration method used by the
attacker is limited, using a huge key would make their task all the harder. To use
our terminology, an encryption algorithm with significant code-hardness would
effectively be bound to the physical device storing it: since the code cannot be
compressed, an attacker would have to duplicate the whole implementation to
be able to decrypt the communications. Even a partial leakage would be of little
use.

The proposal of Bellare et al., XKEY2, is effectively a code-hard key deriva-
tion algorithm which takes as input a random initialization vector and outputs
a secret key. Since it is code-hard, an attacker cannot evaluate this function
without full knowledge of the source code of the function and cannot extract a
smaller (and thus easier to leak) implementation.

We propose the code-hard hash function Whale as an alternative to XKEY2.
It can indeed be used to derive a key by hashing a nonce, a process which
cannot be approximated by an attacker unless they duplicate the entirety of
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the implementation of Whale. Whale is a simple sponge-based hash function
which uses the XOR of ⌈128/𝑡⌉ instances of BigLUT128

𝑡 as a plug. Different
choices of 𝑡 lead to different levels of code-hardness. It is only parametrized by
the input length of the tables 𝑡.

It is based on SHA-3-256: it uses the Keccak−𝑓 [1600] permutation, the same
padding scheme, the same rate 𝑟 = 1088, the same capacity 𝑐 = 512 and the
same digest size of 256 bits. There are only two differences:

– the permutation Keccak − 𝑓 [1600] is augmented with the code-hard plug
consisting in the XOR of ℓ = ⌈128/𝑡⌉ distinct instances of BigLUT128

𝑡 , and

– 𝑡 blank calls to the transformation are performed between absorption and
squeezing.

These parameters were chosen so as to prevent an adversary with access to at
most half of the implementation of Whale to compute the digest of a message
with probability higher than 2−128.

Claim 3 (Code-hardness of Whale) The Whale hash function using ta-
bles with 𝑡-bit inputs is (Code, 2𝑡+13/𝑡, 2−128)-hard against an adversary trying
to use only half of the code-space used to implement Whale.

Whale uses ⌈128/𝑡⌉ tables of 2𝑡 128-bit entries. Thus, about 2𝑡×128×⌈128/𝑡⌉ ≈
2𝑡+14/𝑡 bits are needed to store the implementation of its plug. An adversary
trying to compress it and divide its size by 2 therefore has access to 2𝑡+13/𝑡 bits.
Note however that, since the entries in each instance of BigLUT128

𝑡 have been
picked uniformly at random, it is impossible to actually compress them. The
best an attacker can do is therefore to store as many entries as they can.

When hashing a message, at least 𝑡 calls to the plug are performed during
the blank calls to the transformation between the absorption and the squeezing.
Therefore, the adversary needs to successfully compute 𝑡×⌈128/𝑡⌉ ≥ 128 entries
of the big tables. If they only have half of them stored, then they succeed in
computing the digest of a message with probability at most 2−128.

6 Conclusion

We have presented for the first time a unified framework to study all three forms
of hardness (time, memory and code) as well as their asymmetric variants. We
have proposed Diodon, the first asymmetrically memory-hard function. We have
also presented the first general approach for building a cryptographic primitive
with any type of hardness and illustrated it with two fully specified propos-
als. The first is the asymmetrically time-hard block cipher Skipper which can
be made arbitrarily slow for some users while retaining its efficiency for those
knowing a secret key. The second is the code-hard hash function Whale whose
implementation cannot be compressed.

27



7 Acknowledgements

We thank anonymous reviewers from S&P, USENIX and ASIACRYPT’17 for
their helpful comments. The work of Léo Perrin was supported by the CORE
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