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Abstract. We propose a new random oracle-less NIZK shuffle argu-
ment. It has a simple structure, where the first verification equation as-
certains that the prover has committed to a permutation matrix, the sec-
ond verification equation ascertains that the same permutation was used
to permute the ciphertexts, and the third verification equation ascertains
that input ciphertexts were “correctly” formed. The new argument has
3.5 times more efficient verification than the up-to-now most efficient
shuffle argument by Fauzi and Lipmaa (CT-RSA 2016). Compared to
the Fauzi-Lipmaa shuffle argument, we (i) remove the use of knowledge
assumptions and prove our scheme is sound in the generic bilinear group
model, and (ii) prove standard soundness, instead of culpable soundness.

Keywords: Common reference string, bilinear pairings, generic bilinear group
model, mix-net, shuffle argument, zero knowledge.

1 Introduction

A typical application of mix-nets is in e-voting, where each voter (assume that
there are n of them) encrypts his ballot by using an additively homomorphic
public-key cryptosystem, and sends it to the bulletin board. After the vote cast-
ing period has ended, the bulletin board (considered to be the 0th, non-mixing,
mix-server) forwards all encrypted ballots to the first mix-server. A small num-
ber (say, M) of mix-servers are ordered sequentially. The kth mix-server obtains
a tuple v of input ciphertexts from the (k − 1)th mix-server, shuffles them, and
sends a tuple v′ of output ciphertexts to the (k + 1)th mix-server. Shuffling
means that the kth mix-server generates a random permutation σ ←r Sn and
a vector s of randomizers, and sets v′i = vσ(i) · encpk(0; si). The last mix-server
(the (M + 1)th one, usually implemented by using multi-party computation) is
again a non-mixing server, who instead decrypts the results.

A mix-net clearly preserves the anonymity of voters, if at least one of the
participating mix-servers is honest. To achieve security against an active attack
(where some of the shuffles were not done correctly) is more difficult. In a nut-
shell, each server should prove in zero knowledge [24] that her shuffle was done
correctly, i.e., prove that there exists a permutation σ and a vector s, such that
v′i = vσ(i) · encpk(0; si) for each i. The resulting zero-knowledge proof is usually
called a (zero-knowledge) shuffle argument.

Moreover, to obtain active security of the whole mix-net, it is important that
the outputs of incorrect shuffles are ignored. This means that each mix-server



(including the (M + 1)th one) has to verify the correctness of each previous
mix-server, and only apply her own shuffle to the output of the (multi-)shuffle
where each previous server has been correct. Intuitively, this means that the
verification time is the real bottleneck of mix-nets.

Substantial amount of work has been done on interactive zero-knowledge
shuffle arguments. Random oracle model shuffle arguments are already quite
efficient, see, e.g., [25]. However, an ever-growing amount of research [12, 23, 36,
6] has provided evidence that the random oracle model yields properties that
are impossible to achieve in the standard model. (See [14] for recent progress on
NIZK arguments in the random oracle model.)

Much less is known about shuffle arguments in the common reference string
(CRS, [7]) model, without using random oracles. Based on earlier work [28, 33],
Fauzi and Lipmaa recently proposed a shuffle argument in the CRS model [19].
Assuming that basic group operations are as efficient in both cases, and that a
pairing is about 8 times slower than a group exponentiation (both assumptions
should be taken with a caveat), the Fauzi-Lipmaa shuffle is about two times less
efficient for the prover than the most efficient known shuffle argument in the
random oracle model [25], while its verification is about 25 times less efficient.

The security of the Fauzi-Lipmaa shuffle argument is proven under a knowl-
edge assumption [15] (PKE, [26]) and three computational assumptions (PCDH,
TSDH, PSP). Knowledge assumptions are non-falsifiable [35], and their valid-
ity has to be very carefully checked in each application [5]. Moreover, the PSP
assumption of Fauzi and Lipmaa [19] is novel (albeit closely related to SP, an
earlier assumption of Groth and Lu [28]), and its security is proven in the generic
bilinear group model [38, 34, 8].

The Fauzi-Lipmaa shuffle differs from the shuffle of Lipmaa and Zhang [33]
in its security model. Briefly, in the security proof of the Lipmaa-Zhang shuf-
fle argument it is assumed that the adversary obtains — by using knowledge
assumptions — not only the secrets of the possibly malicious mix-server, but
also the plaintexts and randomizers computed by all voters. This model was
called white-box soundness by Fauzi and Lipmaa [19], where it was also criti-
cized. Moreover, in the Lipmaa-Zhang shuffle argument [32], the plaintexts have
to be small for the soundness proof to go through; for this, all voters should use
efficient CRS-model range proofs [13, 20, 31].

On the other hand, the Fauzi-Lipmaa shuffle is proven culpably sound [28]
though also under knowledge assumptions. Intuitively, culpable soundness means
that if a cheating adversary produces an invalid (yet acceptable) shuffle together
with the secret key, then one can break one of the underlying knowledge or
computational assumptions.

Our Contribution. In all three results mentioned above [28, 33, 19], the au-
thors based the soundness of their shuffle argument on some novel hardness
assumptions, and then proved that the assumptions are secure in the generic
bilinear group model (GBGM). It seems to be an obvious question whether one
can obtain some efficiency benefit by bypassing the intermediate assumption and
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proving the soundness of the shuffle argument directly in the GBGM. We show
this is indeed the case. We improve on the efficiency of the previous CRS-based
shuffle arguments by proving the security of our protocol in the GBGM and
without using knowledge assumptions. Due to the use of GBGM, we must first
define a sensible security model.

First, recall that in the GBGM, the adversary inputs some group elements
Gi = gχi , where g is a group generator and χi are various (not necessarily
independent) random values. One assumes that each group element Hj output
by the adversary is of the form Hj = g

Fj(χ)
z , where Fj(X) are known linear

polynomials and gz is a generator of the group Gz, z ∈ {1, 2}. (Within this
paper, χ is a concrete instantiation of the indeterminateX.) We call such values
admissible. (In addition, elements output from the target group can also use the
bilinear map, but in the current paper, we do not use this fact.)

One philosophical question when using the GBGM is what exactly is the
input of the adversary. In our intended usage cases, the shuffle argument is a
part of a mix-net. Clearly, the mix-net should remain secure against coalitions
between parties (in the case of e-voting, either voters, or some of the mix-servers
themselves) that create the input ciphertexts, and parties who perform the shuf-
fling. It is a common practice to model such coalitions as a single adversary.
In the GBGM, it is natural to model this single adversary — who may cor-
rupt everybody who has produced any part of the input to the verifier — as
a generic adversary. This means that an adversary, who has generated a (say,
ILin [18]) ciphertext vi = (vi1, vi2, vi3), knows polynomials Vij(X) and V ′ij(X),
such that log vij = Vij(χ) and log v′ij = V ′ij(χ). This is somewhat similar to
the approach taken in [33] who used knowledge assumptions to then obtain the
random variables — more precisely, plaintexts and randomizers — hidden in v.

We will assume that the mix-net is structured as follows. First, the encrypters
(e.g., voters) prove that their ciphertexts (e.g., encrypted ballots) are admissible.
More precisely, by using a validity argument, a voter proves that each component
(e.g., an ILin [18] ciphertext consists of three group elements) of her ciphertext
is equal to g

F (χ)
1 , where the polynomial F (X) has specific form. The validity

argument guarantees that the input ciphertexts to the first mix-server have been
computed only from certain, “allowed”, elements of the CRS.

Each mix-server first verifies the validity of original (unshuffled) ciphertexts
and the soundness of each previous shuffle argument. After that the mix-server
produces her shuffle (v′i)

n
i=1 together with her shuffle argument πsh. This means

that we consider shuffling a part of the shuffle argument.
Our generic approach in the shuffle argument is as follows. We first let the

prover (a mix-server) choose a permutation matrix and then commit separately
to its every row. The prover then proves that the committed matrix is a per-
mutation matrix, by proving that each row is 1-sparse (i.e., it has at most one
non-zero element) as in [33], while computing the last row explicitly, see Sect. 5.
The 1-sparsity argument is based loosely on Square Span Programs [16]. Ba-
sically, to show that a vector a is 1-sparse, we construct n + 1 polynomials
(Pi(X))ni=0 that interpolate a certain matrix (and a certain vector) connected
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to the definition of 1-sparsity, and then commit to a by using a “polynomial”
version of the extended Pedersen commitment scheme, c ← g

∑
aiPi(χ)+r%

2 , for
random secrets χ and %.

To obtain the full shuffle argument, we use the same underlying idea as [28,
33, 19]. Namely, we construct a specific consistency verification equation that
ensures that (vi)

n
i=1 is permuted to (v′i)

n
i=1 by using the same permutation ma-

trix that was used to permute (g
Pi(χ)
2 )ni=1 to (Ai2)ni=1. This is done by using a

pairing equation of type
∏
ê(v′i, g

Pi(χ)
2 )/

∏
ê(vi,Ai2) = R, where R is a value

that takes care of the rerandomization (i.e., it depends on the values s used to
rerandomize v, but not on σ).

Both [28] and [19] had an additional problem here, namely it can be
the case that a maliciously created v′i depends on Pj(X) (in [28], one
has Pj(X1, . . . , Xn) = Xj , where Xj are independent random variables) so
loggT ê(v

′
i, g

Pi(χ)
2 ) can depend on Pj(X)Pi(X), for arbitrary i and j. In this

case, this equation is not sufficient for soundness, since {Pi(X)Pj(X)}i,j∈[1 .. n]
is not linearly independent (e.g., an adversary can cancel out Pj(X)Pi(X) easily
with −Pi(X)Pj(X)). Therefore, they had to go through additional complicated
steps — that reduced the efficiency of their arguments — to achieve (culpable)
soundness even in this case.

In our case, such complications are not needed, due to the validity argument.
Since the validity argument guarantees that vi and v′i do not depend on Pi(X),
it means that the values loggT ê(v

′
i, g

Pi(χ)
2 ) and loggT ê(vi,Ai2) do not depend

on Pi(X)Pj(X), which removes the problem evident in both [28] and [19]. On
the other hand, [28, 19] solved this problem by proving culpable soundness only,
while we prove that the new argument satisfies the standard soundness property.

We emphasize that the full GBGM soundness proof of the new shuffle argu-
ment is quite intricate. In particular, the verification of the permutation matrix
argument results in a system of more than 20 polynomial equations. As some
other recent papers like [3, 1], we use computer-based tools to solve the latter
system. More precisely, we use a computer algebra system to find its Gröbner
basis [11], and then continue to find solutions from there on. It is interesting that
a simple shuffle argument has such a complicated security proof. On the other
hand, both researchers and practitioners can write their own computer algebra
code to verify the security proof; this is not possible in many other arguments.

We further optimize the verification by the use of batching techniques [4],
thus replacing many pairings with less costly exponentiations. Batching has not
been used before in the context of pairing-based shuffle arguments.

Tbl. 1 compares our work and known NIZK shuffle arguments in the CRS
model. However, differently from other papers, [28] uses symmetric pairings, and
thus its computational and communication complexity is not directly compara-
ble. The prover’s computational complexity and the communication includes the
computation and sending of the ciphertexts themselves. (This is fair, since differ-
ent shuffle arguments use different public-key cryptosystems that incur different
overhead to these complexity measures.) The highlighted cells in each row are the
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Table 1. A comparison of different NIZK shuffle arguments. We always consider shuf-
fling to be a part of the communication and prover’s computation. Units (the main
parameter, a weighted sum of other parameters) are defined in Sect. 9

.
Groth-Lu Lipmaa-Zhang Fauzi-Lipmaa Current Work

Type of pairings Symmetric Asymmetric

|CRS| in (G1,G2,GT ) 2n+ 8 (2n+ 2, 5n+ 4, 0) (6n+ 8, 2n+ 8, 1) (2n+ 6, n+ 7, 1)
Communication 18n+ 120 (8n+ 6, 4n+ 5, 0) (7n+ 2, 2n, 0) (4n+ 1, 3n+ 2, 0)

Prover’s computation

Exp. in (G1,G2) 54n+ 246 (16n+ 6, 12n+ 5) (14n+ 3, 4n) (9n+ 2, 9n+ 3)
Units 36 19.8 24.3

Verifier’s computation

Exp. in (G1,G2,GT ) — — — (11n+ 5, 3n+ 6, 1)
Pairings 75n+ 282 28n+ 18 18n+ 6 3n+ 6
Units 196 126 36.3

Knowl. assumpt-s No Yes Yes No
Relying on GBGM PP, SP Knowledge Knowl., PSP Complete
Random oracle No
Soundness Culpable Full Culpable Full

values with best efficiency, or best security properties. A more precise efficiency
comparison is given in Sect. 9.

Finally, each of the CRS-model shuffle arguments relies substantially on the
GBGM. The Groth-Lu and Fauzi-Lipmaa shuffles rely on the GBGM to prove
security of complicated computational assumptions. The Lipmaa-Zhang shuffle
relies on the GBGM to prove security of non-falsifiable knowledge assumptions.
The current paper gives the full shuffle soundness proof in the GBGM. See
Sect. 10 for a more thorough discussion of the GBGM security proof versus
using knowledge assumptions.

2 Preliminaries

Let Sn be the symmetric group on n elements. For a (Laurent) polynomial or a
rational function f and its monomial µ, denote by coeffµ(f) the coefficient of µ
in f . We write f(κ) ≈κ g(κ), if f(κ)− g(κ) is negligible as a function of κ.

Bilinear Maps. Let κ be the security parameter. Let q be a prime of length
O(κ) bits. Assume we use a secure bilinear group generator genbp(1κ) that re-
turns gk = (q,G1,G2,GT , ê), where G1, G2, and GT are three multiplicative
groups of order q, and ê : G1 × G2 → GT . Within this paper, we denote the
elements of G1, G2, and GT as in g1 (i.e., by using the Fraktur typeface). It is re-
quired that ê is bilinear (i.e., ê(ga1 , gb2) = ê(g1, g2)ab), efficiently computable, and
non-degenerate. We define ê((A1,A2,A3),B) = (ê(A1,B), ê(A2,B), ê(A3,B))
and ê(B, (A1,A2,A3)) = (ê(B,A1), ê(B,A2), ê(B,A3)). Assume that gi is a gen-
erator of Gi for i ∈ {1, 2}, and set gT ← ê(g1, g2).
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For κ = 128, the current recommendation is to use an optimal (asymmetric)
Ate pairing over a subclass of Barreto-Naehrig curves. In that case, at security
level of κ = 128, an element of G1/G2/GT can be represented in respectively
256/512/3072 bits.

Zero Knowledge. A NIZK argument for a group-dependent language L con-
sists of four algorithms, setup, gencrs, pro and ver. The setup algorithm setup
takes as input 1κ and n (the input length), and outputs the group description
gk. The CRS generation algorithm gencrs takes as input gk and outputs the
prover’s CRS crsp, the verifier’s CRS crsv, and a trapdoor td. The distinction
between crsp and crsv is only important for efficiency. The prover pro takes as
input gk and crsp, a statement u, and a witness w, and outputs an argument π.
The verifier ver takes as input gk and crsv, a statement u, and an argument π,
and either accepts or rejects.

Some of the properties of an argument are: (i) perfect completeness (hon-
est verifier always accepts honest prover’s argument), (ii) perfect zero knowledge
(there exists an efficient simulator that can, given u, (crsp, crsv) and td, output an
argument that comes from the same distribution as the argument produced by
the prover), (iii) adaptive computational soundness (if u 6∈ L, then an arbitrary
non-uniform probabilistic polynomial time prover has negligible probability of
success in creating a satisfying argument), and (iv) adaptive computational culpa-
ble soundness [28, 29] (if u 6∈ L, then an arbitrary NUPPT prover has negligible
success in creating a satisfying argument together with a witness that u 6∈ L).
An argument is an argument of knowledge, if from an accepting argument it
follows that the prover knows the witness. See App. A for formal definitions.

Generic Bilinear Group Model. We will prove the soundness of the new
shuffle argument in the generic bilinear group model (GBGM, [38, 34, 8]). Our
description of the GBGM is based on [34].

We start by picking a random asymmetric bilinear group gk :=
(q,G1,G2,GT , ê) ← genbp(1κ). Consider a black box B that can store val-
ues from groups G1,G2,GT in internal state variables cell1, cell2, . . . , where
for simplicitly we allow the storage space to be infinite (this only increases
the power of a generic adversary). The initial state consists of some values
(cell1, cell2, . . . , cell|inp|), which are set according to some probability distribu-
tion. Each state variable celli has an accompanying type typei ∈ {1, 2, T,⊥}.
We assume initially typei = ⊥ for i > |inp|. The black box allows computation
operations on internal state variables and queries about the internal state. No
other interaction with B is possible.

Let Π be the allowed set of computation operations. A computation oper-
ation consists of selecting a (say, t-ary) operation f ∈ Π together with t + 1
indices i1, i2, . . . , it+1. Assuming inputs have the correct type, B computes
f(celli1 , . . . , cellit) and stores the result in cellit+1

. For a set Σ of relations, a
query consists of selecting a (say, t-ary) relation % ∈ Σ together with t indices

6



i1, i2, . . . , it. Assuming inputs have the correct type, B replies to the query with
%(celli1 , . . . , cellit).

In the GBGM, we define Π = {·, ê} and Σ = {=}, where
1. On input (·, i1, i2, i3): if typei1 = typei2 6= ⊥ then set celli3 ← celli1 · celli2

and typei3 ← typei1 .
2. On input (ê, i1, i2, i3): if typei1 = 1 and typei2 = 2 then set celli3 ←
ê(celli1 , celli2) and typei3 ← T .

3. On input (=, i1, i2): if typei1 = typei2 6= ⊥ and celli1 = celli2 then return 1.
Otherwise return 0.

Since we are proving lower bounds, we will give a generic adversary adv additional
power. We assume that all relation queries are for free. We also assume that adv
is successful if after τ operation queries, he makes an equality query (=, i1, i2),
i1 6= i2, that returns 1; at this point adv quits. Thus, if typei 6= ⊥, then celli =
F1(cell1, . . . , cell|inp|) for a polynomial Fi known to adv.

The GBGM has proved itself to be very fruitful since its introduction, [8].
In particular, the generic (bilinear) group model is amenable to computerized
analysis, and as such, has proven itself to be very useful say in the area of
structure-preserving signature schemes [3]; see also [1].

Finally, Fischlin [21] and Dent [17] have pointed out that there exist con-
structions that are secure in (Shoup’s version of) the generic group model but
cannot be instantiated given any efficient instantiation of the group encoding.
However, their constructions are utterly artificial; e.g., Dent constructed a sig-
nature scheme that under certain conditions outputs the signing key as a part
of the signature.

Cryptosystems. A public-key cryptosystem Π is a triple (genpkc, enc, dec) of
efficient algorithms. The key generation algorithm genpkc(1κ) returns a fresh
public and secret key pair (pk, sk). The encryption algorithm encpk(m; r), given
a public key pk, a message m, and a randomizer r (from some randomizer space
R), returns a ciphertext. The decryption algorithm decsk(c), given a secret key
sk and a ciphertext c, returns a plaintextm. It is required that for each (pk, sk) ∈
genpkc(1κ) and each m, r, it holds that decsk(encpk(m; r)) = m. Informally, Π
is IND-CPA secure, if the distributions of ciphertexts corresponding to any two
plaintexts are computationally indistinguishable.

We will use the ILin cryptosystem from [18]; it is distinguished from other
well-known cryptosystems like the BBS cryptosystem [9] by having shorter secret
and public keys. Consider group Gk, k ∈ {1, 2}. In this cryptosytem, where the
secret key is sk = γ ←r Zq \ {0,−1}, the public key is pkk ← (gk, hk) = (gk, g

γ
k),

and the encryption of a small m ∈ Zq is

encpkk(m; s) := (hs1k , (gkhk)s2 , gmk gs1+s2k )

for s ←r Z1×2
q . Denote Pk1 := (hk, 1k, gk) and Pk2 := (1k, gkhk, gk), thus

encpkk(m; s) = (1k, 1k, g
m
k ) ·Ps1

k1P
s2
k2
. Given v ∈ G3

k, the decryption sets

decsk(v) := loggk
(v3v

−1/(γ+1)
2 v

−1/γ
1 ) ,
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Decryption succeeds since v3v
−1/(γ+1)
2 v

−1/γ
1 = gmk gs1+s2k · (gkhk)−s2/(γ+1) ·

h
−s1/γ
k = gmk gs1+s2k · g−s2/(γ+1)

k g
−s2·γ/(γ+1)
k · g−s1k = gmk . This cryptosystem is

CPA-secure under the 2-Incremental Linear (2-ILin) assumption, see [18]. The
ILin cryptosystem is blindable, encpkk(m; s) · encpkk(0; s′) = encpk(m; s+ s′).

We use a variant of the ILin cryptosystem where each plaintext is encrypted
twice, in group G1 and in G2 (but by using the same secret key an the same
randomizer s in both). For technical reasons (relevant to the shuffle argument
but not to the ILin cryptosystem), in group G1 we will use an auxiliary gen-
erator ĝ1 = g

%/β
1 instead of g1, for (%, β) ←r (Zq \ {0})2; both encryption and

decryption are done as before but just using the secret key sk = (%, β, γ) and the
public key pk1 = (ĝ1, h1 = ĝγ1); this also redefines Pk1. That is, encpk(m; s) =
(encpk1(m; s), encpk2(m; s)), where pk1 = (ĝ1, h1 = ĝγ1), and pk2 = (g2, h2 = gγ2),
and decsk(v) := logĝ1

(v3v
−1/(γ+1)
2 v

−1/γ
1 ) = logg1

(v3v
−1/(γ+1)
2 v

−1/γ
1 )/(%/β) for

v ∈ G3
1. We call this the validity-enhanced ILin cryptosystem.

In this case we denote the ciphertext in group k by vk, and its jth component
by vkj . In the case when we have many ciphertexts, we denote the ith ciphertext
by vi and the jth component of the ith ciphertext in group k by vikj .

3 Shuffle Argument

In the current section, we will give a full description of the new shuffle argument,
followed by its efficiency analysis. Intuition behind its soundness will be given
in Sect. 4. The full soundness proof is long, and postponed to Sect. 5, 6, and 7.
Its zero knowledge property will be proven in Sect. 8.

Let Π = (genpkc, enc, dec) be an additively homomorphic cryptosystem with
randomizer space R; we assume henceworth that one uses the validity-enhanced
ILin cryptosystem. Assume that vi and v′i are valid ciphertexts of Π. In a shuffle
argument, the prover aims to convince the verifier in zero-knowledge that given
(pk, (vi,v

′
i)
n
i=1), he knows a permutation σ ∈ Sn and randomizers sij , i ∈ [1 .. n]

and j ∈ [1 .. 2], such that v′i = vσ(i) · encpk(0; si) for i ∈ [1 .. n]. More precisely,
we define the group-specific binary relation Rsh,n exactly as in [28, 33]:

Rsh,n :=

(
(gk, (pk,vi,v

′
i)
n
i=1), (σ, s)) :

σ ∈ Sn ∧ s ∈ Rn×2 ∧
(
∀i : v′i = vσ(i) · encpk(0; si)

)) .

See Prot. 1 for the full description of the new shuffle argument.
We note that in the real mix-net, (γ, %, β) is handled differently (in particular,

γ — and possibly %/β — will be known to the decrypting party while (%, β) does
not have to be known to anybody) than the real trapdoor (χ, α) that enables
one to simulate the argument and thus cannot be known to anybody. Moreover,
(g1, g2)

∑
Pi(χ) is in the CRS only to optimize computation. A precise efficiency

analysis of this argument is given in Sect. 9.
In the rest of this section, we will explain the notion of batching and define

non-batched versions (that are easier to read and analyse in the soundness proof)
of the verification equations. We then state the main security theorem.

8



gencrs(1κ, n ∈ poly(κ)): Call gk = (q,G1,G2,GT , ê) ← genbp(1κ). Let Pi(X)
for i ∈ [0 .. n] be polynomials, chosen in Sect. 5. Set χ = (χ, α, %, β, γ) ←r

Z2
q × (Zq \ {0})2 × (Zq \ {0,−1}). Let enc be the ILin cryptosystem with the

secret key γ, and let (pk1, pk2) be its public key. Set

crs←


gk, (g

Pi(χ)
1 )ni=1, g

%
1, g

α+P0(χ)
1 , g

P0(χ)
1 , (g

((Pi(χ)+P0(χ))
2−1)/%

1 )ni=1,

pk1 = (ĝ1 = g
%/β
1 , h1 = ĝγ1),

(g
Pi(χ)
2 )ni=1, g

%
2, g
−α+P0(χ)
2 , pk2 = (g2, h2 = gγ2), gβ2 ,

ê(g1, g2)1−α
2

, (g1, g2)
∑n
i=1 Pi(χ)

 .

and td← (χ, %). Return (crs, td).
pro(crs;v ∈ (G1 ×G2)3n;σ ∈ Sn, s ∈ Zn×2q ):

1. For i = 1 to n− 1:
(a) Set ri ←r Zq. Set (Ai1,Ai2)← (g1, g2)Pσ−1(i)(χ)+ri%.

2. Set rn ← −
∑n−1
i=1 ri.

3. Set (An1,An2)← (g1, g2)
∑n
i=1 Pi(χ)/

∏n−1
i=1 (Ai1,Ai2).

4. For i = 1 to n: /* Sparsity, for permutation matrix: */

(a) Set π1sp:i ← (Ai1g
P0(χ)
1 )2ri(g%1)−r

2
i g

((Pσ−1(i)(χ)+P0(χ))
2−1)/%

1 .
5. For i = 1 to n: /* Shuffling itself */

(a) Set (v′i1,v
′
i2)← (vσ(i)1,vσ(i)2) · (encpk1(0; si), encpk2(0; si)).

6. Set /* Consistency */

(a) For k = 1 to 2: Set rs:k ←r Zq. Set πc1:k ← g
∑n
i=1 sikPi(χ)+rs:k%

2 .

(b) (πc2:1,πc2:2)←
n∏
i=1

(vi1,vi2)ri · (encpk1(0; rs), encpk2(0; rs)).

7. Return πsh ← (v′, (Ai1,Ai2)n−1i=1 , (π1sp:i)
n
i=1, πc1:1, πc1:2,πc2:1,πc2:2).

ver(crs;v;v′, (Ai1,Ai2)n−1i=1 , (π1sp:i)
n
i=1, πc1:1, πc1:2,πc2:1,πc2:2):

1. Set (An1,An2)← (g1, g2)
∑n
i=1 Pi(χ)/

∏n−1
i=1 (Ai1,Ai2).

2. Set (p1i, p2j , p3ij , p4j)i∈[1 .. n],j∈[1 .. 3] ←r Z4n+6
q .

3. Check that /* Permutation matrix: */∏n
i=1 ê

(
(Ai1g

α+P0(χ)
1 )p1i ,Ai2g

−α+P0(χ)
2

)
=

ê
(∏n

i=1 π
p1i
1sp:i, g

%
2

)
· ê(g1, g2)(1−α

2)
∑n
i=1 p1i .

4. Check that /* Validity: */

ê
(
g%1,
∏3
j=1 π

p2j
c2:2j ·

∏n
i=1

∏3
j=1(v′i2j)

p3ij
)

=

ê
(∏3

j=1 π
p2j
c2:1j ·

∏n
i=1

∏3
j=1(v′i1j)

p3ij , gβ2

)
.

5. Set R← ê (ĝ1, π
p42
c1:2(πc1:1πc1:2)p43) · ê (h1, π

p41
c1:1π

p42
c1:2) /ê

(∏3
j=1 π

p4j
c2:1j , g

%
2

)
.

6. Check that /* Consistency: */∏n
i=1 ê

(∏3
j=1(v′i1j)

p4j , g
Pi(χ)
2

)
/
∏n
i=1 ê

(∏3
j=1 v

p4j
i1j ,Ai2

)
= R.

Protocol 1: The new shuffle argument
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3.1 Batching

We assume that verifier checks that the batched version [4] of the equations
(given in Prot. 1) hold. However, for soundness we need that the individual (non-
batched) verification equations hold. We will show that we still have soundness
even if the verifier checks batched versions of the equations.

We first prove the following lemma. We state it in the case where fi(X) are
polynomials, but one can obviously transform it to the case where fi(X) are
Laurent polynomials or even rational functions.

Lemma 1. Assume (pi)i∈[1 .. k] are values chosen uniformly random from Zkq .
Assume χ are values chosen uniformly at random from Zq. Assume fi are some
polynomials of degree poly(κ). If the equation

∏k
i=1 ê(g1, g2)fi(χ)pi = 1T holds,

then with probability ≥ 1 − 1/q the k pairing equations ê(g1, g2)fi(χ) = 1T ,
i ∈ [1 .. k] also hold.

Proof. As the pairing is non-degenerate,
∏k
i=1 ê(g1, g2)fi(χ)pi = 1T iff∑k

i=1 fi(χ)pi = 0. By the Schwartz-Zippel lemma [37, 39], with probability
≥ 1 − 1/q this means

∑k
i=1 fi(χ)Yi = 0 as a polynomial, where (Yi)i∈[1 .. k]

are random variables corresponding to pi. Hence all individual coefficients of Yi
must be zero, i.e., fi(χ) = 0 for i ∈ [1 .. k]. But then we have for i ∈ [1 .. k] that
ê(g1, g2)fi(χ) = ê(g1, g2)0 = 1T , as desired. ut

The following corollary follows immediately from Lem. 1.

Corollary 1. Assume χ = (χ, α, %, β, γ) is chosen uniformly random from Z2
q×

(Zq \ {0})2 × (Zq \ {0,−1}). Assume (p1i, p2j , p3ij , p4j)i∈[1 .. n],j∈[1 .. 3] are values
chosen uniformly random from Z4n+6

q . Consider the verification steps in Prot. 1.
– If the verification on Step 3 accepts, then (with probability ≥ 1 − 1/q) for
i ∈ [1 .. n],

ê
(
Ai1g

α+P0(χ)
1 ,Ai2g

−α+P0(χ)
2

)
= ê (π1sp:i, g

%
2) ê(g1, g2)1−α

2

. (1)

– If the verification on Step 4 accepts, then with probability ≥ 1− 1/q,

ê(g%1, πc2:2i) =ê(πc2:1i, g
β
2 ) , i ∈ [1 .. 3] , (2)

ê
(
g%1, v

′
i2j

)
=ê(v′i1j , g

β
2 ) , i ∈ [1 .. n], j ∈ [1 .. 3] . (3)

– If the verification on Step 6 accepts, then with probability ≥ 1− 1/q,
n∏
i=1

ê
(
v′i1, g

Pi(χ)
2

)
/

n∏
i=1

ê (vi1,Ai2) = ê (P11, πc1:1) ê (P12, πc1:2) /ê (πc2:1, g
%
2) . (4)

Proof. If the verification on Step 3 accepts, then we get that

n∏
i=1

(
ê
(
Ai1g

α+P0(χ)
1 ,Ai2g

−α+P0(χ)
2

)
/
(
ê(π1sp:i, g

%
2)ê(g1, g2)1−α

2
))p1i

10



=

n∏
i=1

ê
(

(Ai1g
α+P0(χ)
1 )p1i ,Ai2g

−α+P0(χ)
2

)
/

n∏
i=1

(
ê(π1sp:i, g

%
2)ê(g1, g2)1−α

2
)p1i

= 1T .

By Lem. 1, with probability ≥ 1− 1/q we get

ê
(
Ai1g

α+P0(χ)
1 ,Ai2g

−α+P0(χ)
2

)
/
(
ê(π1sp:i, g

%
2)ê(g1, g2)1−α

2
)

= 1T ,

for i ∈ [1 .. n]. Simplifying, this is precisely Eq. (1). The other cases are similar.
ut

This means that with probability ≥ 1 − 3/q, checking the batched version of
verification equations (as in Prot. 1) is equivalent to the checking of individual
verification equations (as in Cor. 1).

We note that Cor. 1 also holds when χ is chosen according to the distribution,
stipulated in Prot. 1.

3.2 Statement of Security

Theorem 1 (Shuffle Security). The shuffle argument from Prot. 1 is perfectly
complete, computationally sound in the GBGM, and perfectly zero knowledge.
More precisely, any generic adversary attacking the soundness of the new shuffle
argument requires Ω(

√
q/n) computation.

Proof. Completeness: we deal with other verifications in later sections. Cur-
rently we only show that if the prover and the verifier are honest, then Eq. (4)
(and thus also, the verification on step 6 in Prot. 1) accepts. Really, let
v′ik = vσ(i)k · encpkk(0; si) and pk1 = (ĝ1, h1) for some si ∈ Z1×2

q . Then,

n∏
i=1

ê
(
v′i1, g

Pi(χ)
2

)
=

n∏
i=1

ê
(
vσ(i)1 · encpk1(0; si), g

Pi(χ)
2

)
=

n∏
i=1

ê
(
vσ(i)1, g

Pi(χ)
2

)
·
n∏
i=1

ê
(
encpk1(0; si), g

Pi(χ)
2

)
=

n∏
i=1

ê
(
vi1, g

Pσ−1(i)(χ)

2

)
·
n∏
i=1

ê
(
Ps1

11P
s2
12, g

Pi(χ)
2

)
=

n∏
i=1

ê
(
vi1, g

Pσ−1(i)(χ)

2

)
· ê
(
P11, g

∑n
i=1 si1Pi(χ)

2

)
· ê
(
P12, g

∑n
i=1 si2Pi(χ)

2

)
and

n∏
i=1

ê (vi1,Ai2) =

n∏
i=1

ê
(
vi1, g

Pσ−1(i)(χ)+ri%

2

)
=

n∏
i=1

ê
(
vi1, g

Pσ−1(i)(χ)

2

)
· ê

(
n∏
i=1

vrii1, g
%
2

)
.
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Hence, as needed,

n∏
i=1

ê
(
v′i1, g

Pi(χ)
2

)
/

n∏
i=1

ê(vi1,Ai2)

=ê
(
P11, g

∑n
i=1 si1Pi(χ)

2

)
· ê
(
P12, g

∑n
i=1 si2Pi(χ)

2

)
/ê

(
n∏
i=1

vrii1, g
%
2

)
=ê
(
P11, g

∑n
i=1 si1Pi(χ)+rs:1%

2

)
·

ê
(
P12, g

∑n
i=1 si2Pi(χ)+rs:2%

2

)
/ê

(
Prs:1

11 Prs:2
12 ·

n∏
i=1

vrii1, g
%
2

)
=ê (P11, πc1:1) ê (P12, πc1:2) /ê (πc2:1, g

%
2) .

Soundness. Intuition behind soundness will be given in Sect. 4. Soundness
of this argument will be proven in Sect. 5, 6, and 7.

Zero-knowledge: The zero-knowledge property will be proven in Sect. 8.
ut

Since we work in the GBGM, where the adversary knows how all values were
computed, Prot. 1 is actually an argument of knowledge.

4 Intuition Behind Soundness

Throughout this paper, we use a variation of the polynomial commitment scheme
of type comj(a; r) := h

∑n
i=1 aiPi(χ)+r%, where h is a generator of Gj , χ and % are

random values from Zq, and Pi(X) are well-chosen polynomials. (The choice of
Pi(X) is fixed by the 1-sparsity argument, see Sect. 5.1.) Several variants of this
commitment scheme are well-known to be perfectly hiding and computationally
binding (under a suitable computational assumption, security of which is usually
proved in the GBGM, [26, 30]). However, since we only rely on the security of
this commitment scheme within the GBGM soundness proof of the shuffle, we
will state neither the concrete assumption nor the security requirements (like
hiding and binding) of a commitment scheme.

On the last three steps, see Prot. 1, the verifier executes four different verifi-
cations, restated in an easier to read format in Cor. 1. Each of these verifications
has an intuitive meaning, resulting in a different subargument. However, since
all of them have to use the same CRS and the soundness proof is in the GBGM,
the subarguments interact strongly.

Our soundness proof in the GBGM uses the following idea. An adversary can
only produce group elements from G1 or G2 that are products of the elements
of the same group given in the CRS; elements of GT can also be output by the
pairing operation. Let χ = (χ, α, %, β, γ) be concrete (randomly chosen) values
from Zq and X = (X,Xα, X%, Xβ , Xγ) be the corresponding random variables.
E.g., if F(X) = {Fi(X)} is the set of all rational functions such that g

F(χ)
1 =

12



{gFi(χ)1 } is equal to the set of all CRS values in G1, then any value that the
adversary creates in G1 must be of the form g

A(χ)
1 , where A(X) ∈ spanF(X).

In this way, after taking a discrete logarithm, each verification equation
can be written in the form V(χ) = 0 for some polynomial V(X) known to
the adversary. However, since the values in χ were chosen uniformly random,
from the Schwartz-Zippel lemma [37, 39] we can conclude that V(X) = 0 as a
polynomial (or a rational function), except with negligible probability O(n)/q.
From V(X) = 0, we deduce that all the coefficients of terms Xi1

α X
i2
% X

i3
β X

i4
γ

in V(X) · V∗(X) (where V∗(X) is the denominator of V(X)) are zero, giving
us several equations related to the adversary’s chosen values. From these equa-
tions and the linear independence of polynomials Pi(X), we can deduce that
the adversary’s chosen values must be of a certain form, except with negligible
probability O(n)/q.

More precisely, for symbolic values T and t, define (by following the definition
of the CRS in Prot. 1)

crs1(X, T, t) =t(X) + T%X% + Tα · (Xα + P0(X)) + T0P0(X) +
t†(X)Z(X)

X%
+

T%βX%

Xβ
+
TγX%Xγ

Xβ
,

crs2(X, T, t) =t(X) + T%X% + Tα · (−Xα + P0(X)) + T1 + TγXγ + TβXβ ,

where t†(X) is in the span of {((Pi(X) + P0(X)) − 1)2/Z(X)}ni=1 and t(X) is
in the span of {Pi(X)}ni=1. We will follow the same notation in the rest of the
paper. In particular, all “daggered” polynomials (e.g., b†(X)) are in the span
of {((Pi(X) + P0(X)) − 1)2/Z(X)}ni=1. Since degZ(X) = n + 1, deg t†(X) ≤
n − 1, and deg t(X) ≤ n, then deg(crs1(X, T, t) ·X%Xβ) ≤ (n − 1) + (n + 1) −
1 + 2 = 2n + 1. (Multiplication with X%Xβ is needed to make crs1(X, T, t)
a polynomial.) Analogously, deg crs2(X, T, t) ≤ n. Importantly, {Pi(X)}ni=0 is
linearly independent. In particular, P0(X) is linearly independent to all other
polynomials present in crs1(X) and crs2(X), except the “daggered” polynomial
t†(X).

Since the shuffle argument adversary is a GBGM adversary (and one uses ILin
encryption), she knows the following polynomials (in the case of crs2-functions),
Laurent polynomials (in the case of crs1-functions) or rational functions (in the
case of Mij(X), M ′ij(X), and ME:j(X)), where ĝ2 = g2:

A(X) =crs1(X, A, a) s.t. A1 = g
A(χ)
1 ,

B(X) =crs2(X, B, b) s.t. A2 = g
B(χ)
2 ,

C(X) =crs1(X, C, c) s.t. π1sp = g
C(χ)
1 ,

Dj(X) =crs2(X, Dj , dj) s.t. πc1:j = g
Dj(χ)
2 ,

Ekj(X) =crsk(X, Ekj , ekj) s.t. πc2:kj = g
Ekj(χ)
k ,

Vikj(X) =crsk(X, Vikj , vikj) s.t. vikj = ĝ
Vikj(χ)
k ,
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V ′ikj(X) =crsk(X, V ′ikj , v
′
ikj) s.t. v′ikj = ĝ

V ′ikj(χ)

k ,

Mij(X) =Vij3(X)− Vij2(X)/(Xγ + 1)− Vij1/Xγ s.t. decsk(vij) = Mij(χ) ,

M ′ij(X) =V ′ij3(X)− V ′ij2(X)/(Xγ + 1)− V ′ij1/Xγ s.t. decsk(v′ij) = M ′ij(χ) ,

ME:j(X) =Ej3(X)− Ej2(X)/(Xγ + 1)− Ej1/Xγ s.t. decsk(πc2:j) = ME:j(χ) .
(5)

We are now almost ready to explain the meaning of each individual verifica-
tion equation. Before doing so, we emphasize that a major obstacle in proving
soundness in the GBGM is that all subarguments must use the same CRS. In
particular, a subargument that is sound by itself might stop being sound due to
the elements in the CRS that are added because of other subarguments. Intu-
itively, we tackle this problem by introducing random variables α (that is only
needed in Eq. (1)) and β (that is needed in Eq. (2) and Eq. (3)).

Briefly, the verifier makes three checks. Eq. (1), the “permutation matrix ar-
gument”, guarantees that the prover has committed to a permutation matrix
corresponding to some permutation σ. Eq. (3) and Eq. (2), the “validity argu-
ment”, guarantee that the ciphertexts have not been formed in a devious way
that would make the consistency argument to be unsound. Eq. (4), the “consis-
tency argument”, guarantees that the prover has used the same permutation σ
to shuffle the ciphertexts.

Permutation Matrix Argument. Consider the subargument of Prot. 1,
where the verifier just computes (An1,An2) and then performs the verification
Eq. (1) for each i = 1 to n. We will call it the permutation matrix argument. In
Sect. 5 we motivate this name, by showing that after the permutation matrix
argument only, the verifier is convinced that (A11, . . . ,An1) commits to a per-
mutation matrix. For this, we first prove the security of its subargument — the
1-sparsity argument [33] — where the verifier performs the verification Eq. (1)
for exactly one i.

To prove the security of permutation matrix argument, we have to solve a
quite complicated system of polynomial equations. We do it by using a computer
algebra system, see Sect. 5 for more details.

Validity Argument. As a subroutine in our argument, we make the veri-
fier check the validity of all ciphertexts. This is done by checking Eq. (3) (and
Eq. (2)). The main goal of the validity check is to show that the prover did not use
“forbidden” terms gPi(χ)k and g%i when computing the ciphertexts v′ik and πc2:k.
In the case of the Elgamal cryptosystem, the validity argument provides a proof
that both v′i1 and v′i2 decrypt to a plaintext of form Mi(X) =

∑
Mijfij(X),

for known coefficients Mij and polynomials fij(X), where none of the rational
functions fij depends on either X or X%. (See Eq. (12).) Similar assurance is
provided about the plaintext hidden in πc2:k. Employing validity subarguments
allows the consistency subargument to be more efficient than in [28, 19].
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Consistency Argument. Finally, we show that performing all checks guar-
antees that decsk(v

′
i) = decsk(vσ(i)) 6= ⊥ for some permutation σ ∈ Sn.

The main observation is that a permutation of ciphertexts (without reran-
domization) is invariant under multiplication: without rerandomizing the ci-
phertexts, the (non-batched) verification Eq. (4) would just be the identity

ê(v′i1, g
Pi(χ)
2 ) = ê(vi1, g

Pσ−1(i)(χ)

2 ), for all i. However, this trivially leaks the
permutation σ, and hence is not secure. To ensure privacy, v′i1 must be reran-

domized, and g
Pσ−1(i)(χ)

2 must be replaced by a commitment to the unit vector
eσ−1(i). This makes the final verification slightly more complicated, as we need
extra terms to adjust it to the added random values.

A version of Eq. (4) was also used in [28, 33, 19]. However, the shuffle argu-
ments from [28, 19] need to execute two versions of Eq. (4), once with Pi(X) and
once with different carefully chosen polynomials P̂i(X) in G2. (See [28, 19] for an
explanation.) In addition, one must prove that those two versions are consistent
between each other (by providing a same-message argument, in the terminology
of [19]). This makes the arguments of [28, 19] quite complicated.

Similarly to [33], we avoid this complication by having a validity argument
on the ciphertexts. Since valid ciphertexts are not dependent of Pi(X), it suffices
for the verifier to execute just one version of Eq. (4).

5 Permutation Matrix Argument

In this section, we show that a subargument of Prot. 1, where the verifier only
computes An1 as shown and then executes verification at Eq. (1) (for each i ∈
[1 .. n]) gives us a permutation matrix argument. This argument will be by far
the most complex subargument that we use.

5.1 New 1-Sparsity Argument

In a 1-sparsity argument [33], the prover aims to convince the verifier that he
knows how to open a commitment A1 to (a, r), such that at most one coefficient
aI is non-zero. If, in addition, aI = 1, then we have a unit vector argument [19].
A 1-sparsity argument can be constructed by using square span programs [16],
an especially efficient variant of the quadratic span programs of [22]. We prove its
security in the GBGM and therefore use a technique similar to that of [27], and
this introduces some complications as we will demonstrate below. While we start
using ideas behind the unit vector argument of [19], we only obtain a 1-sparsity
argument. Then, in Sect. 5, we show how to obtain an efficient permutation
matrix argument from it.

Clearly, a ∈ Znq is a unit vector iff the following n+ 1 conditions hold [19]:
– ai ∈ {0, 1} for i ∈ [1 .. n] (i.e., a is Boolean), and
–
∑n
i=1 ai = 1.

Let {0, 2}n+1 denote the set of (n+1)-dimensional vectors where every coefficient
is from {0, 2}, let ◦ denote the Hadamard (entry-wise) product of two vectors,
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let V :=
(

2·In×n
1>n

)
∈ Z(n+1)×n

q and b :=
(
0n
1

)
∈ Zn+1

q . Clearly, the above n + 1

conditions hold iff V a+ b ∈ {0, 2}n+1, i.e.,

(V a+ b− 1n+1) ◦ (V a+ b− 1n+1) = 1n+1 . (6)

Let ωi, i ∈ [1 .. n+ 1] be n+ 1 different values. Let

Z(X) :=

n+1∏
i=1

(X − ωi)

be the unique degree n + 1 monic polynomial, such that Z(ωi) = 0 for all
i ∈ [1 .. n+ 1]. Let the ith Lagrange basis polynomial

`i(X) :=
∏

j∈[1 .. n+1],j 6=i

((X − ωj)/(ωi − ωj))

be the unique degree n polynomial, s.t. `i(ωi) = 1 and `i(ωj) = 0 for j 6= i.
For i ∈ [1 .. n], let Pi(X) be the polynomial that interpolates the ith column

of the matrix V . That is,

Pi(X) = 2`i(X) + `n+1(X)

for i ∈ [1 .. n]. Let
P0(X) = `n+1(X)− 1

be the polynomial that interpolates b− 1n+1. In the rest of this paper, we will
heavily use the following simple result.

Lemma 2. {Pi(X)}ni=0 is linearly independent.

Proof. Assume that
∑n
i=0 biPi(X) = 0 for some constants bi. Thus,∑n

i=0 biPi(ωk) = 0 for each k. Consider any k ∈ [1 .. n]. Then, 0 = b0P0(ωk) +∑n
i=1 biPi(ωk) = b0(`n+1(ωk) − 1) +

∑n
i=1 bi(2`i(ωk) + `n+1(ωk)) = −b0 + 2bk.

Thus, bk = b0/2 for k ∈ [1 .. n]. Consider now the case k = n + 1, then
0 = b0P0(ωn+1) +

∑n
i=1 biPi(ωn+1) = b0(`n+1(ωn+1)− 1) +

∑n
i=1 bi(2`i(ωn+1) +

`n+1(ωn+1)) =
∑n
i=1 bi = n/2 · b0. Thus bk = 0 for k ∈ [0 .. n]. ut

We arrive at the polynomial Q(X) = (
∑n
i=1 aiPi(X) + P0(X))2 − 1 =

(PI(X) + P0(X))
2 − 1 (here, we used the fact that a = eI for some I ∈ [1 .. n]),

such that a is a unit vector iff Z(X) | Q(X). As in [27], to obtain privacy, we
now add randomness A%X% to Q(X), arriving at the degree 2n polynomial

Qwi(X,X%) = (PI(X) + P0(X) +A%X%)
2 − 1 . (7)

Here, X% is a special independent random variable, and A% ←r Zq. This means
that we will use an instantiation of the polynomial commitment scheme (see
Sect. 4) with Pi(X) defined as in the current subsection.

The new 1-sparsity argument is the subargument of the shuffle argument on
Prot. 1, where the verifier only executes verification step Eq. (1) for one concrete
value of i.
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Theorem 2. Consider i ∈ [1 .. n]. The 1-sparsity argument is perfectly complete.
The following holds in the GBGM, given that the generic adversary works in
polynomial time. If the honest verifier accepts on Step 3 for this i, then there
exists I ∈ [1 .. n], such that

Ai1 = g
a(χ)+A%%+Aα(α+P0(χ))
1 , (8)

where a(X) = (1 +Aα)PI(X) for some constant Aα.

Proof. Completeness: For an honest prover, Ai1 = g
A(χ)
1 , Ai2 = g

B(χ)
2 , and

π1sp:i = g
C(χ)
1 , where A(X) = B(X) = PI(X) + A%X% and C(X) = 2A% ·

(A(X) + P0(X))−A2
%X% +Qwi(X,X%)/X%. Write

V1sp(X) := (A(X)+Xα+P0(X)) ·(B(X)−Xα+P0(X))−C(X) ·X%−(1−X2
α) . (9)

The verification equation Eq. (1) assesses that V1sp(χ) = 0. This simplifies to
V1sp(X) = (A%X% + PI(X) + P0(X))2 − 1 − Qwi(X,X%). Hence for an honest
prover, it follows from Eq. (7) that V1sp(χ) = 0.

Soundness: Assume that the verifier has accepted inputs celli1 = A(X),
celli2 = B(X), and celli3 = C(X), for some polynomials A(X), B(X), and
C(X). In the GBGM, the adversary knows all coefficients. (This corresponds
to Ai1 = g

A(χ)
1 ,Ai2 = g

B(χ)
2 , π1sp:i = g

C(χ)
1 .) Let V1sp(X) then be as in Eq. (9)

with A(X), B(X), and C(X) as in Eq. (5). Let V∗1sp(X)) := X%Xβ . Clearly,
V1sp(X) · V∗1sp(X) is a polynomial, with deg(V1sp(X) · V∗1sp(X)) ≤ 3n+ 1. Since
the verifier accepts, V1sp(X) = 0 as a polynomial.

In Tbl. 2, we enlist all the coefficients of µ(i) = Xi1
α X

i2
% X

i3
β X

i4
γ in V1sp(X) ·

V∗1sp(X). We remark that we found those polynomials by using a computer
algebra system1, but they can be verified manually.

Consider now each monomial of coeffµ(i)(V1sp(X) · V∗1sp(X)) = 0 as a poly-
nomial F ∗i (Y ) of formal variables Y := (a(X), A%, Aα, . . . , Cγ) (i.e., in all co-
efficients of A(X), B(X), and C(X)). We can now set F ∗i (Y ) = 0 for each
monomial, and the solution set of this system of polynomial equations gives
us all possible ways of “cheating” the adversary can do. However, the resulting
polynomial equation system is too complicated, and moreover, it contains some
formal variables that are not linearly independent, like a(X) and a†(X).

We hence execute two additional steps. First, we take into account (by us-
ing Lem. 2) that P0(X) is linearly independent of all other polynomials except
“daggered” polynomials a†(X) and c†(X). This allows us to simplify some of the
coefficients and gives some more polynomial equations. After that step, we get
a new polynomial equation system {Fi(Y ) = 0} for some polynomials Fi.

Second, we use a computer algebra system to derive a Gröbner basis [11] in
variables in Y for the system {Fi(Y ) = 0}. By using lexicographic order (more
precisely, we used the function GroebnerBasis of Mathematica, with parameters
1 In the concrete case, Mathematica 9.0, but any other reasonably powerful system
can be used. See [1] for references on the prior use of computer algebra systems to
prove security in the generic (bilinear) group model
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Table 2. coeffµ(i)(V1sp(X) · V∗1sp(X)), where µ(i) = Xi1
α X

i2
% X

i3
β X

i4
γ

{i1, . . . , i4} coeffµ(i)(V1sp(X) · V∗1sp(X))

{1, 2, 1, 0} −A%(Bα + 1) + (Aα + 1)B% − Cα
{1, 2, 0, 1} −Aγ(Bα + 1)
{1, 2, 0, 0} −A%β(Bα + 1)
{1, 1, 2, 0} (Aα + 1)Bβ
{1, 1, 1, 1} (Aα + 1)Bγ
{1, 1, 1, 0} −a(X)(Bα + 1) + (Aα + 1) (b(X) +B1)−A0(Bα + 1)P0(X)

{1, 0, 1, 0} −(Bα + 1)Z(X)a†(X)
{0, 3, 1, 0} A%B% − C%
{0, 3, 0, 1} AγB% − Cγ
{0, 3, 0, 0} A%βB% − C%β
{0, 2, 2, 0} A%Bβ
{0, 2, 1, 1} AγBβ +A%Bγ
{0, 2, 1, 0} a(X)B% +A% (b(X) +B1) +A%βBβ+

P0(X) (A%(Bα + 1) + (Aα +A0 + 1)B% − Cα − C0)− c(X)
{0, 2, 0, 2} AγBγ
{0, 2, 0, 1} Aγ (b(X) +B1) +A%βBγ +Aγ(Bα + 1)P0(X)
{0, 2, 0, 0} A%β (b(X) +B1) +A%β(Bα + 1)P0(X)
{0, 1, 2, 0} a(X)Bβ + (Aα +A0 + 1)BβP0(X)
{0, 1, 1, 1} a(X)Bγ + (Aα +A0 + 1)BγP0(X)

{0, 1, 1, 0} −Z(X)c†(X) + P0(X) (a(X)(Bα + 1) + (Aα +A0 + 1) (b(X) +B1)) +
a(X) (b(X) +B1) + (Aα +A0 + 1) (Bα + 1)P0(X)2 − 1+

B%Z(X)a†(X)

{0, 0, 2, 0} BβZ(X)a†(X)

{0, 0, 1, 1} BγZ(X)a†(X)

{0, 0, 1, 0} Z(X) (b(X) +B1) a†(X) + (Bα + 1)P0(X)Z(X)a†(X)

MonomialOrder -> Lexicographic and Method -> "Buchberger"), we get the
Gröbner basis {Bi(Y )} on Fig. 1.

The system of polynomial equations {Bi(Y ) = 0} can be solved manually.
First, we simplify this system by setting Cγ = 0, C%β = 0, Bβ = 0, Bγ = 0,
Aγ = 0, A%β = 0, a†(X) = 0, A0 = 0, Bα = −Aα/(Aα + 1), C0 = 2A%/(Aα + 1),
b(X) = a(X)/(Aα + 1)2 − B1, C% = (Aα + 1)B% ((Aα + 1)B% − Cα). Then, we
get a new system of polynomial equations, with the Gröbner basis {B′i(Y ) = 0}
as given on Fig. 2.

We can further simplify this system by noting that Cα = (Aα + 1)B% −
A%/(Aα + 1) and thus c(X) = a(X)

(
A%/(Aα + 1)2 +B%

)
. By inserting those

two values to the Gröbner basis {B′i(Y )}, we get that the resulting system of
polynomial equations has the following simple Gröbner basis {B′′i (Y )}:(

(Aα + 1)2
(
−Z(X)c†(X) + P0(X)2 − 1

)
+ 2a(X)(Aα + 1)P0(X) + a(X)2

)
By solving B′′i (Y ) = 0, we get

c†(X) =

(
a(X)
Aα+1 + P0(X)

)2
− 1

Z(X)
,
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Cγ
C%β
4C% − C0 (C0 + 2Cα)

c(X)2 + 2 (C0 + Cα)P0(X)c(X) + (C0 + Cα)2
(
P0(X)2 − Z(X)c†(X)− 1

)
Bβ
Bγ
2B% − (Bα + 1) (C0 + 2Cα)
(b(X) +B1) (C0 + Cα)− c(X) (Bα + 1)
b(X)c(X) + (B1 + 2 (Bα + 1)P0(X)) c(X)+

(Bα + 1) (C0 + Cα)
(
P0(X)2 − Z(X)c†(X)− 1

)
− (Bα + 1)2 −Bα (Bα + 2)Z(X)c†(X)− Z(X)c†(X)+

(b(X) +B1 + (Bα + 1)P0(X))2

Aγ
A%β
Z(X)a†(X)
A0

Bα +Aα (Bα + 1)
2A% − (Aα + 1)C0

a(X)− (Aα + 1)2 (b(X) +B1)



Fig. 1. Gröbner basis {Bi(Y )}



− (Cα − 2(Aα + 1)B%)
2 (−Z(X)c†(X) + P0(X)2 − 1

)
+

2c(X)P0(X) (Cα − 2(Aα + 1)B%)− c(X)2

(Cα−2(Aα+1)B%)
2(−Z(X)c†(X)+P0(X)2−1)+2c(X)P0(X)(2(Aα+1)B%−Cα)+c(X)2

Aα+1

(Aα + 1) (Cα − (Aα + 1)B%) +A%

(Aα + 1)

(
2(Aα + 1)B%

(
−Z(X)c†(X) + P0(X)2 − 1

)
+

Cα
(
Z(X)c†(X)− P0(X)2 + 1

)
+ 2c(X)P0(X)

)
+ a(X)c(X)

−(Aα + 1) (c(X)− 2a(X)B%)− a(X)Cα

a(X)
(

Cα
Aα+1

− 2B%
)

+ c(X)

(Aα + 1)2
(
−Z(X)c†(X) + P0(X)2 − 1

)
+ 2a(X)(Aα + 1)P0(X) + a(X)2



.

Fig. 2. Gröbner basis {B′i(Y )}

which is a witness that a(X)/(Aα + 1) = PI(X) for some I.
Hence, if verification Step 3 in Prot. 1 succeeds for j = i, then, after replacing

all coefficients with values derived in this proof, we get

A(X) =a(X) +A%X% +Aα (Xα + P0(X)) ,

B(X) =
a(X)

(Aα + 1)2
+B%X% +

Aα(Xα − P0(X))

Aα + 1
.
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Hence, Eq. (8) holds. ut

5.2 Permutation Matrix Argument

Assume we explicitly compute An1 = g
∑n
i=1 Pi(χ)

1 /
∏n−1
j=1 Aj1 as in Prot. 1, and

then apply the 1-sparsity argument to each Ai1, i ∈ [1 .. n]. Then, as in [33],
we get that (A11, . . . ,An1) commits to a permutation matrix. More precisely,
according to Eq. (8), the ith commitment is represented by the polynomial

Ai(X) = ai(X) +A%iX% +Aαi · (Xα + P0(X)) ,

where ai(X)/(1 +Aαi) = Pf(i)(X) for some f . Since
∑
iAi(X) =

∑
i Pi(X), we

get in particular that
∑
i(Aαi + 1)Pf(i)(X) =

∑
i Pi(X). Since due to Lem. 2,

{Pi(X)}ni=0 is linearly independent, it means that Aαi = 0 for each i, and f =
σ−1 is a permutation.

Theorem 3. The described permutation matrix argument is perfectly complete.
The following holds in the GBGM, assuming that the generic adversary works
in polynomial time. If the honest verifier accepts Eq. (1) for all i ∈ [1 .. n], and
(An1,An2) is explicitly computed as in Prot. 1, then there exists a permutation
σ ∈ Sn and randomizers A%i, such that

Ai1 = g
Pσ−1(i)(χ)+A%i%

1 for all i ∈ [1 .. n] . (10)

6 Validity Argument

The shuffle argument employs validity arguments for (πc2:1,πc2:2) and for each
(v′i1,v

′
i2). We outline this argument for (πc2:1,πc2:2), the argument is the same

for (v′i1,v
′
i2). More precisely, in the validity argument for (πc2:1,πc2:2), the ver-

ifier checks that ê(g%1, πc2:2j) = ê(πc2:1j , g
β
2 ) for j ∈ [1 .. 3]. Thus, for

Vval:j(X) =E1j(X)Xβ −X%E2j(X) ,

this argument guarantees that in the GBGM, Vval:j(X) = 0 for j ∈ [1 .. 3].
In this case, it is much easier to solve the resulting polynomial system

of equations than it was in Sect. 5. First, we find the coefficients of µ(i) =
Xi1
α X

i2
% X

i3
β X

i4
γ in Vval:j(X) ·X%Xβ , see Tbl. 3. Taking into account (see Lem. 2)

that {Pi(X)}ni=0 are linearly independent and that 1 6∈ span{Pi(X)}ni=1, we get
from solving this polynomial system of equations that

E1j(X) =(E1j,%β + E2j,βXβ + E2j,γXγ)X%/Xβ ,

E2j(X) =E1j,%β + E2j,βXβ + E2j,γXγ , and thus
ME(X) =ME:1(X) = ME:2(X) = E23(X)− E22(X)/(Xγ + 1)− E21(X)/Xγ

= ME:1 +ME:2Xβ +ME:3Xγ +
ME:4

Xγ
+
ME:5Xβ

Xγ
+

ME:6

Xγ + 1
+
ME:7Xβ

Xγ + 1
(11)
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Table 3. coeffµ(i)(Vval:j(X) ·X%Xβ), where µ(i) = Xi1
α X

i2
% X

i3
β X

i4
γ

{i1, . . . , i4} coeffµ(i)(Vval:j(X) ·X%Xβ)

{1, 2, 1, 0} E2j,α

{1, 1, 2, 0} E1j,α

{0, 3, 1, 0} −E2j,%

{0, 2, 2, 0} E1j,% − E2j,β

{0, 2, 1, 1} E1j,γ − E2j,γ

{0, 2, 1, 0} E1j,%β − e2j(X)− E2j,αP0(X)− E2j,1

{0, 1, 2, 0} e1j(X) + (E1j,α + E1j,0)P0(X)

{0, 0, 2, 0} Z(X)e†1j(X)

for some coefficients ME:j known to the adversary. Here, say ME:2(X) =
E23(X) − E22(X)/(Xγ + 1) − E21(X)/Xγ ; we will call such an operation a
“generic decryption’ in group Gk.

Theorem 4. The validity argument for (πc2:1,πc2:2) is perfectly complete. The
following holds in the GBGM, assuming that the generic adversary works in
polynomial time. If the honest verifier accepts Eq. (2), then the generic adver-
sary knows coefficients ME:j, s.t. decsk(πc2) = ME(χ) where ME(X) is as in
Eq. (11).

Assuming similarly that also validity of Vi1j(X), Vi2j(X), V ′i1j(X), and
V ′i2j(X) is checked, we get that

Vi1j(X) = (Vi1j,%β + Vi2j,βXβ + Vi2j,γXγ)X%/Xβ ,

Vi2j(X) = Vi1j,%β + Vi2j,βXβ + Vi2j,γXγ ,

V ′i1j(X) = (V ′i1j,%β + V ′i2j,βXβ + V ′i2j,γXγ)X%/Xβ ,

V ′i2j(X) = V ′i1j,%β + V ′i2j,βXβ + V ′i2j,γXγ , and thus
Mi(X) =Mi1(X) = Mi2(X) = Vi23(X)− Vi22(X)/(Xγ + 1)− Vi21(X)/Xγ

=Mi1 +Mi2Xβ +Mi3Xγ +
Mi4

Xγ
+
Mi5Xβ
Xγ

+
Mi6

Xγ + 1
+
Mi7Xβ
Xγ + 1

M ′i(X) =M ′i1(X) = M ′i2(X) = V ′i23(X)− V ′i22(X)/(Xγ + 1)− V ′i21(X)/Xγ

=M ′i1 +M ′i2Xβ +M ′i3Xγ +
M ′i4
Xγ

+
M ′i5Xβ
Xγ

+
M ′i6

Xγ + 1
+
M ′i7Xβ
Xγ + 1

(12)

for some coefficients Mik, k ∈ [1 .. 3], known to the adversary.

Corollary 2. The validity argument for (v′i1, v
′
i2) is perfectly complete. The fol-

lowing holds in the GBGM, assuming that the generic adversary works in poly-
nomial time. If the honest verifier accepts Eq. (3) for some i ∈ [1 .. n], then the
generic adversary knows coefficients M ′ij, s.t. decsk(v′i) = M ′i(χ) where M ′i(X)
is as in Eq. (12).
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7 Consistency Argument

We call the subargument of Prot. 1, where the verifier only executes the last
verification (namely, Eq. (4)), the consistency argument. Intuitively, the consis-
tency argument guarantees that the ciphertexts have been permuted by using
the same permutation according to which the elements g

Pi(χ)
k were permuted

inside the commitments Ai1.
According to Sect. 5 and Sect. 6, the permutation matrix argument and

validity arguments are “sound”. In what follows, we show that if the verifier
executes all verification steps in Prot. 1, then this shuffle argument is sound in
the GBGM. Now, we are finally able to finish the soundness proof of Thm. 1.

Proof (Of Thm. 1). Since all the batch verifications in Prot. 1 accept, by Cor. 1
we have that with probability ≥ 1−3/q all individual equations also hold. Since
the permutation matrix argument and ciphertext validity are sound, Eq. (8) and
Eq. (12) hold with overwhelming probability for all i.

Since we have a generic adversary, from the verification equation Eq. (4) we
get that Vcons:j(X) = 0 for j ∈ [1 .. 3], where

Vcons:1(X) =
∑

(V ′i11(X)− Vσ(i)11(X))Pi(X)−
∑

Vi11(X)riX%

−D1(X)XγX%/Xβ + E11(X)X% ,

Vcons:2(X) =
∑

(V ′i12(X)− Vσ(i)12(X))Pi(X)−
∑

Vi12(X)riX%

−D2(X)(Xγ + 1)X%/Xβ + E12(X)X% ,

Vcons:3(X) =
∑

(V ′i13(X)− Vσ(i)13(X))Pi(X)−
∑

Vi13(X)riX%

−D1(X)X%/Xβ −D2(X)X%/Xβ + E13(X)X%

are rational functions. By doing a “generic decryption”, define Mi(X), M ′i(X),
and ME(X) as in Eq. (5). Then we get that Vcons(X) = 0, where

Vcons(X) =
Vcons:3(X)Xβ

X%
− Vcons:2(X)Xβ

X%(Xγ + 1)
− Vcons:1(X)Xβ

X%Xγ

=
∑
i

(
M ′i(X)−Mσ(i)(X)

)
Pi(X)−

(∑
i

Mi(X)ri −ME(X)

)
X% = 0

is again a “generic decryption”. Clearly, the last equality holds clearly indepen-
dently of the shape of Dj(X).

Now, since the validity argument is sound, ME(X) is as in Eq. (11) and
Mi(X) andM ′i(X) are as in Eq. (12). Denote V∗cons(X) := Xγ(Xγ+1). Inserting
the obtained representations of Mi(X), M ′i(X), and ME(X) to Vcons(X), we
find the coefficients of Vcons(X) · V∗cons(X), as given in Tbl. 4.

Since {Pi(X)} is linearly independent, this directly gives us Mσ(i)j = M ′ij ,
for each j ∈ [2 .. 5], and hence also for j = 7, as needed. In addition, we get that
Mσ(i)1 +Mσ(i)3 = M ′i1 +M ′i3 (and hence Mσ(i)1 = M ′i1) and Mσ(i)1 +Mσ(i)4 +
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Table 4. coeffµ(i)(Vcons(X) · V∗cons(X)) , where µ(i) = Xi1
α X

i2
% X

i3
β X

i4
γ

{i1, . . . , i4} coeffµ(i)(Vcons(X) · V∗cons(X))

{0, 1, 1, 2} ME:2 −
∑
Mi2ri

{0, 1, 0, 3} ME:3 −
∑
Mi3ri

{0, 1, 0, 0} ME:4 −
∑
Mi4ri

{0, 1, 1, 0} ME:5 −
∑
Mi5ri

{0, 1, 1, 1} ME:2 +ME:5 +ME:7 −
∑

(Mi2 +Mi5 +Mi7) ri
{0, 1, 0, 2} ME:1 +ME:3 −

∑
(Mi1 +Mi3) ri

{0, 1, 0, 1} ME:1 +ME:4 +ME:6 −
∑

(Mi1 +Mi4 +Mi6) ri
{0, 0, 1, 2}

∑
(M ′i2 −

∑
Mσ(i)2)Pi(X)

{0, 0, 0, 3}
∑

(M ′i3 −
∑
Mσ(i)3)Pi(X)

{0, 0, 0, 0}
∑

(M ′i4 −
∑
Mσ(i)4)Pi(X)

{0, 0, 1, 0}
∑

(M ′i5 −
∑
Mσ(i)5)Pi(X)

{0, 0, 0, 2}
∑(

(M ′i1 +M ′i3)−
(
Mσ(i)1 +Mσ(i)3

))
Pi(X)

{0, 0, 0, 1}
∑(

(M ′i1 +M ′i4 +M ′i6)−
(
Mσ(i)1 +Mσ(i)4 +Mσ(i)6

))
Pi(X)

{0, 0, 1, 1}
∑(

(M ′i2 +M ′i5 +M ′i7)−
(
Mσ(i)2 +Mσ(i)5 +Mσ(i)7

))
Pi(X)

Mσ(i)6 = M ′i1 + M ′i4 + M ′i6 (and hence Mσ(i)6 = M ′i6). Hence, we have proven
that Mσ(i)(X) = M ′i(X) as a polynomial, which gives us soundness of the new
shuffle argument in the GBGM.

Let us now compute a lower bound to the efficiency of a generic adversary.
Assume that after some τ steps, the adversary has made a successful equality
query (=, i1, i2), i.e., celli1 = celli2 for i1 6= i2. Hence, she has found a collision
B1(χ) = B2(χ) such that B1(X) 6= B2(X). If typei1 ∈ {1, T} (this is not
needed for group G2, since we do not have rational functions there), then redefine
Bj(X) := Bj(X) ·X%Xβ , this guarantees Bj(X) is a polynomial. Thus,

B1(χ)−B2(χ) ≡ 0 (mod q) . (13)

Note that
– If typei1 = 1, then degBj(X) ≤ 2n+ 1 =: d1,
– If typei1 = 2, then degBj(X) ≤ n =: d2, and thus
– If typei1 = T , then degBj(X) ≤ (2n+ 1) + n = 3n+ 1 =: dT .
Due to the Schwartz-Zippel lemma, since χ is chosen uniformly random from

Z2
q × (Zq \ {0})2 × (Zq \ {0,−1}), and since B1(X) 6= B2(X) as a polynomial,

Eq. (13) holds with probability at most degBj(X)/(q − 2) ≤ dtypei1/(q − 2).
Clearly, an adversary working in time τ can generate up to τ new group elements.
Then the probability that there exists a collision between any two of those group
elements is upper bounded by

(
τ
2

)
· degBj(X)/(q − 2) ≤

(
τ
2

)
· dtypei1 /(q − 2) ≤

τ2/2 · dtypei1 /(q − 2). Thus, a successful adversary on average requires time at
least

τ2 ≥ 2(q − 2)/dtypei1 ≥ 2(q − 2)/dT = 2(q − 2)/(3n+ 1)

to produce a collision. Simplifying, we get τ ∈ Ω(
√
q/n). ut
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8 Zero-Knowledge

Theorem 5. The new shuffle argument is perfectly zero knowledge.

Proof. Consider the simulator Sim that, given the CRS crs, the trapdoor td =
(χ, %), and input (v,v′), simulates the prover in the shuffle argument. If the
simulator can create an accepting argument with correct distribution for any
(v,v′), this means that an accepting argument provides no information on (v,v′)
or the relation between the two sets of ciphertext.

The complete simulator construction is as follows:

1. For i = 1 to n− 1:
(a) Set ri ←r Zq. Compute (Ai1,Ai2)← (g1, g2)Pi(χ)+ri%.

2. Set rn ← −
∑n−1
i=1 ri.

3. Set (An1,An2)← (g1, g2)
∑n
i=1 Pi(χ)/

∏n−1
i=1 (Ai1,Ai2).

4. For i = 1 to n: Compute

π1sp:i ←
(
Ai1g

P0(χ)
1

)2ri
(g%1)−r

2
i g

((Pi(X)+P0(X))2−1)/%
1 .

5. Set rs ←r Z2
q. Set πc1:1 ← grs:1%2 , πc1:2 ← grs:2%2 . (I.e., they commit to 0.)

6. Compute πc2:1 ←
∏n
i=1(v

ri+Pi(χ)/%
i1 /(v′i1)Pi(χ)/%) · encpk1(0; rs).

Compute πc2:2 ←
∏n
i=1(v

ri+Pi(χ)/%
i2 /(v′i2)Pi(χ)/%) · encpk2(0; rs).

7. Return πsh := (v′, (Ai1,Ai2)n−1i=1 , (π1sp:i)
n
i=1, πc1:1, πc1:2,πc2:1,πc2:2).

The simulator calculates all values (Ai1,Ai2)n−1i=1 , (π1sp:i)
n
i=1,πc1 exactly as

an honest prover would have when σ = Id, and hence these values will have the
same distribution as the same values computed by an honest prover. Since the
commitment scheme is obviously perfectly hiding, these values have the same
distribution independently of the choice of σ. Moreover, there is a unique pair
of values πc2:1,πc2:2 that satisfy Eq. (2) and Eq (4). (Computing πc2:1 and πc2:2

is the only place in the simulation where one needs the trapdoor td = (χ, %).)
Thus we are left to show that our chosen values satisfy these two equations.

But assuming the ciphertexts are valid, Eq. (2) trivially holds. We get
ê(Prs:1

11 , g%2) = ê(P11, πc1:1) and ê(Prs:2
12 , g%2) = ê(P12, πc1:2). Hence,

n∏
i=1

ê
(
v′i1, g

Pi(χ)
2

)
/

n∏
i=1

ê (vi1,Ai2)

=

n∏
i=1

ê
(

(v′i1)Pi(χ), g2

)
/

n∏
i=1

ê
(
v
Pi(χ)+ri%
i1 , g2

)
= ê

(
n∏
i=1

((v′i1)Pi(χ)/%/v
Pi(χ)/%+ri
i1 ), g%2

)
= ê (P11, πc1:1) ê (P12, πc1:2) /ê (πc2:1, g

%
2) ,

so the verifier will accept the shuffle argument. As the simulator did not know
anything about the honest prover’s permutation σ, the shuffle argument is thus
perfectly zero knowledge. ut
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9 Efficiency

We use exponentiation speed records from [10] and pairing speed records from [2]
for Barreto-Naehrig curves. According to Tbl. 4 in [10], a pairing, exponentia-
tion in G1, exponentiation in G2, and exponentiation in GT take respectively 7.0,
0.9, 1.8, and 3.1 million clock cycles on the Core i7-3520M CPU. This does not
take into account the possible speed-ups by employing fast fixed-based exponen-
tiation or multi-exponentiation algorithms. Thus, all following comparisons are
imprecise, and just to give a gut feeling about the difference. They also depend
on the known speed records on implementing pairings and exponentiations.

Prover’s computation:
– Step 1: n− 1 exponentiations in G1, n− 1 exponentiations in G2.
– Step 4: 2n exponentiations in G1.
– Step 5a: 3n exponentiations in G1, 3n exponentiations in G2.
– Step 6a: 2n+ 2 exponentiations in G2.
– Step 6b: 3n+ 3 exponentiations in G1, 3n+ 3 exponentiations in G2.

Hence, the prover executes 9n + 2 exponentiations in G1 and 9n + 4 exponen-
tiations in G2. Here, all costly (i.e., at least n-wide) exponentiations can be
written as either multi-exponentiations or fixed-base exponentiations — e.g.,
Step 5a — and are hence relatively cheap. The only exception is the computa-
tion of general exponentiation in (Ai1g

P0(χ)
1 )2ri for i ∈ [1 .. n]. Taking n million

clock cycles as the basic unit (and not taking into account possible speed-ups by
employing fast multi-exponentiation and fixed-base exponentiation algorithms),
the prover’s computation is dominated by 9 · 0.9 + 9 · 1.8 = 24.3 units.

Verifier’s computation: by using batching techniques [4, 31], we reduced the
number of pairings by introducing a number of exponentiations either in G1, G2,
or GT . The verifier does:
– Step 3: 2n exponentiations in G1, 1 exponentiation in GT , and n+1 pairings.
– Step 4: 3n + 3 exponentiations in G1, 3n + 3 exponentiations in G2, and 2

pairings.
– Step 5: 2 exponentiations in G1, 3 exponentiations in G2 (πp42c1:2 is reused),

and 3 pairings.
– Step 6: 3n+ 3n = 6n exponentiations in G1, and n+ n = 2n pairings.

In total, the verifier has to do 11n + 5 exponentiations in G1, 3n + 6 expo-
nentiations in G2, 1 exponentiation in GT , and 3n + 6 pairings. Taking n mil-
lion clock cycles as the basic unit, the verifier’s computation is dominated by
11 · 0.9 + 3 · 1.8 + 3 · 7.0 = 36.3 units; around 58% (21 units) of this is the cost
of pairings. Also here, most of the exponentiations are multi-exponentiations or
fixed-base exponentiations.

Communication: 3n + (n − 1) + n + 3 = 5n + 2 elements from G1 and 3n +
(n− 1) + 2 + 3 = 4n+ 4 elements from G2, that is, 9n+ 6 group elements.
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CRS length (excluding gk): 2n + 6 elements from G1, n + 6 elements from
G2, and 1 element from GT , that is, 3n+ 13 group elements.

Comparison with prior work. To compare, the verifier’s computation in [33]
(resp., [19]) is dominated by 28 · 7.0 = 196 (resp., 18 · 7.0 = 126) units. Hence,
the verification of the new shuffle is effectively about 5.4 (resp., 3.5) times faster
than that of the Lipmaa-Zhang (resp., Fauzi-Lipmaa) shuffle. Since verification
is a bottleneck of mix-nets, this constitutes of a major improvement.

In [33], the prover’s computation is dominated by 28n+ 11 exponentiations,
16n + 6 in G1 and 12n + 5 in G2 (this also includes reshuffling) which yields
16 · 0.9 + 12 · 1.8 = 36 units. In [19], the prover’s computation is dominated
by 18n + 3 exponentiations, 14n + 3 in G1 and 4n in G2 (this also includes
reshuffling) which yields 14 ·0.9+4 ·1.8 = 19.8 units. Hence, in the new protocol,
the prover is about 1.5 times more efficient compared to [33], but about 1.2 times
less efficient compared to [19].

As mentioned above, the most efficient shuffle scheme up to now [25] works in
the random oracle model which allows to obtain better computational complexity
both for the prover (6 ·0.9 = 5.4 units) and verifier (6 ·0.9 = 5.4 units), assuming
that computation is done in G1. In reality, non pairing-friendly groups have
usually somewhat faster arithmetic than pairing-friendly groups. Hence, there is
still a significant gap.

10 On GBGM versus Knowledge Assumptions

A knowledge assumption guarantees that if an adversary, given an input (that in-
cludes the CRS and some auxiliary input), outputs some values then there exists
an extractor running on the same input that outputs the same values together
with some witness. Following [15], each input to the knowledge assumption has
a well-defined knowledge component. Apart from that, the precise definition of
a knowledge assumption is left to the imagination of its proposers. However, it
is known that knowledge assumptions are unacceptable if the auxiliary input is
not well chosen [5], and hence special care has to be taken when defining them.

In contrast, in the GBGM, the adversary can compute output values as a
product or pairing of given inputs (and other previously computed values), so
it is assumed that she knows a polynomial relationship between the discrete
logarithms of its outputs and inputs. There is little need for imagination of how
to define the GBGM, since this has been done before in sufficient detail [38, 34].
The known impossibility results about the generic (bilinear) group model [21,
17] use quite contrived constructions.

We think that GBGM is preferable to knowledge assumptions, hence Tbl. 1
has a highlighted cell for arguments that do not use knowledge assumptions.
The validity of knowledge assumptions can and should be proven in the GBGM
anyhow; indeed, one should be very suspicious of knowledge assumptions that
cannot be proven in the GBGM. However, this should be done very carefully,
taking into account the precise shape of the CRS and the adversary’s auxiliary

26



input. To guarantee correct use of a knowledge assumption, we think that it is
prudent that one proves in the GBGM the security of the knowledge assumption
given the auxiliary string the adversary gets in the concrete application. This
seems to hint that one should reprove in the GBGM the security of all used
knowledge assumptions in each individual paper.

Instead of proving the security of non-falsifiable knowledge assumptions (on
top of several novel computational assumptions like PP and SP [28] or PSP [19])
in the GBGM, and then using such assumptions in the security proof, we think
it is more reasonable to work directly in the GBGM. Moreover, GBGM model
arguments tend to be more efficient, in particular since there is a reduced need
to compute the knowledge components.

In fact, most of the known knowledge assumptions make a very specific
use of the power of the GBGM. E.g., reinterpreting the knowledge assump-
tions used in say [19] in the language of GBGM, one assumes for a specific
(unique!) random variable Xk the following holds: for any polynomial F , if
F (X1, . . . , Xk, . . . , Xm) = 0 and F (X1, . . . , Xk, . . . , Xm) has µk as a coefficient of
Xk then µk = 0. It is questionable why this concrete coefficient is handled differ-
ently from all other coefficients; in the GBGM, from F (X1, . . . , Xm) = 0 one can
derive that all coefficients µi1,...,im of F (X1, . . . , Xm) =

∑
µi1,...,imX

i1
1 . . . Xim

m

are equal to 0.
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A Preliminaries: Zero Knowledge

Let R = {(u,w)} be an efficiently computable binary relation with |w| =
poly(|u|). Here, u is a statement, and w is a witness. Let L = {u : ∃w, (u,w) ∈ R}
be an NP-language. Let n = |u| be the input length. For fixed n, we have a rela-
tionRn and a language Ln. Here, as in [28], since we argue about group elements,
both Ln and Rn are group-dependent and thus we add gk as an input to Ln and
Rn. Let Rn(gk) := {(u,w) : (gk, u, w) ∈ Rn}.

A non-interactive argument for a group-dependent relation family R consists
of four PPT algorithms: a setup algorithm setup, a common reference string
(CRS) generator gencrs, a prover pro, and a verifier ver. For gk ← setup(1κ, n)
(where n is the input length) and (crs = (crsp, crsv), td) ← gencrs(gk) (where
td is not accessible to anybody but the simulator), pro(crsp;u,w) produces an
argument π, and ver(crsv;u, π) outputs either 1 (accept) or 0 (reject). Here,
crsp (resp., crsv) is the part of the CRS given to the prover (resp., the verifier).
Distinction between crsp and crsv is not important from the security point of
view, but in many cases crsv is significantly shorter.
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A non-interactive argument Ψ is perfectly complete, if for all n = poly(κ),

Pr

[
gk← setup(1κ, n), ((crsp, crsv), td)← gencrs(gk), (u,w)← Rn(gk) :

ver(gk, crsv;u, pro(gk, crsp;u,w)) = 1

]
= 1 .

Ψ is adaptively computationally sound for L, if for all n = poly(κ) and non-
uniform probabilistic polynomial-time adv,

Pr

[
gk← setup(1κ, n), ((crsp, crsv), td)← gencrs(gk),

(u, π)← adv(gk, crsp, crsv) : (gk, u) 6∈ Ln ∧ ver(gk, crsv;u, π) = 1

]
≈κ 0 .

We recall that in situations where the inputs have been committed by using
a computationally binding trapdoor commitment scheme, the notion of com-
putational soundness does not make sense (since the commitments could be to
any input messages). Instead, one should either proof culpable soundness or the
argument of knowledge property.

Ψ is adaptively computationally culpably sound [28, 29] for L, if for all
n = poly(κ), for all polynomial-time decidable binary relations Rguilt = {Rguilt

n }
consisting of elements from L̄ and witnesses wguilt, and for all non-uniform prob-
abilistic polynomial-time adv,

Pr

 gk← setup(1κ, n), ((crsp, crsv), td)← gencrs(gk),

(u, π, wguilt)← adv(gk, crsp, crsv) :

(gk, u, wguilt) ∈ Rguilt
n ∧ ver(gk, crsv;u, π) = 1

 ≈κ 0 .

For algorithms adv and Xadv, we write (y; y′) ← (adv||Xadv)(χ) if adv on
input χ outputs y, and Xadv on the same input (including the random tape of
adv) outputs y′.

Ψ is an argument of knowledge, if for all n = poly(κ) and every non-
uniform probabilistic polynomial-time adv, there exists a non-uniform probabilis-
tic polynomial-time extractor X, s.t. for every auxiliary input aux ∈ {0, 1}poly(κ),

Pr

 gk← setup(1κ, n), ((crsp, crsv), td)← gencrs(gk),

((u, π);w)← (adv||Xadv)(crsp, crsv; aux) :

(u,w) 6∈ R ∧ ver(crsv;u, π) = 1

 ≈κ 0 .

Here, aux can be seen as the common auxiliary input to adv and Xadv that is
generated by using benign auxiliary input generation [5].

Ψ is perfectly zero-knowledge, if there exists a probabilistic polynomial-time
simulator Xγ , such that for all stateful non-uniform probabilistic polynomial-
time adversaries adv and n = poly(κ),

Pr


gk← setup(1κ, n),

((crsp, crsv), td)← gencrs(gk),

(u,w)← adv(gk, crsp, crsv),

π ← pro(gk, crsp;u,w) :

(gk, u, w) ∈ Rn ∧ adv(gk, π) = 1

 = Pr


gk← setup(1κ, n),

((crsp, crsv); td)← gencrs(gk),

(u,w)← adv(gk, crsp, crsv),

π ← Xγ(gk, crsp, crsv;u, td) :

(gk, u, w) ∈ Rn ∧ adv(gk, π) = 1
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Here, the prover and the simulator use the same CRS. That is, we have same-
string zero knowledge. A same-string statistical zero knowledge argument stay
secure even when using the CRS an unbounded number of times.
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