A Tale of Two Shares:
Why Two-Share Threshold Implementation
Seems Worthwhile—and Why it is Not

Cong Chen, Mohammad Farmani, and Thomas Eisenbarth

Worcester Polytechnic Institute, Worcester, MA, USA
{cchen3,mfarmani,teisenbarth}@wpi.edu

Abstract. This work explores the possibilities for practical Thresh-
old Implementation (TI) with only two shares in order for a smaller
design that needs less randomness but is still first-order leakage resis-
tant. We present the first two-share Threshold Implementations of two
lightweight block ciphers—Simon and Present. The implementation re-
sults show that two-share TI improves the compactness but usually fur-
ther reduces the throughput when compared with first-order resistant
three-share schemes. Our leakage analysis shows that two-share TI can
retain perfect first-order resistance. However, the analysis also exposes a
strong second-order leakage. All results are backed up by simulation as
well as analysis of actual implementations.

Keywords: Threshold Implementation, Paired t-test, Lightweight Cryp-
tography, FPGA

1 Motivation

Protecting cryptographic hardware against side channel analysis is a difficult
task and usually incurs significant area overheads. Especially masking schemes
aimed at hardware have been found to be flawed or prone to implementation
errors that leave the countermeasure at least partially insecure [13, 20, 23].

Threshold Implementation (TI) has become a popular masking scheme for
hardware implementations in the recent years, due to several advantages over
competing schemes. Unlike secure logic styles [32, 20], it does not require a change
of the design flow. TI is fairly simple to apply to a wide range of ciphers, and its
implementation is not very error-prone, if a known set of requirements and best
practices is followed. Another advantage is that TI actually keeps the promise
of reliable first-order side-channel resistance. It also provides good protection
against higher-order attacks [24, 6].

However, like most other masking schemes, TI incurs large area and time
overheads, and often consumes huge amounts of randomness for remasking,
which can make practical application cumbersome. So far the best results have
an area overhead of approximately three while consuming at least two times the
combined plaintext and key size of randomness per encryption. Such overheads—
the significant increase in area as well as the need for a high-performance random



number generator—make TT an expensive choice, too expensive for a broad range
of practical applications. Reparaz et al. [27] generalized TI to provide protection
against higher-order attacks. The work mentioned the feasibility of reducing the
number of shares to d+1, where d is the desired protection order, suggesting that
two shares are sufficient for first-order side channel protection. A first evaluation
of using d + 1 shares for AES was performed by De Cnudde et al. in [15].

Our contribution In this work we explore the practical implications of reducing
the number of shares of threshold implementations to only two shares (2-TT).
Such a reduction of shares enables implementations that only incur an area over-
head of two and at the same time can also reduce the need of minimally required
randomness by a factor of two, making the incurred cost more bearable and thus
allowing side channel protection for a much wider range of applications. Reduc-
ing the number of shares is easily possible by applying the non-completeness
requirement of TT at the bit-level rather than the state-level, as done by prevail-
ing implementations.

While the feasibility of this approach has already been discussed in [27] and
recently been practically verified in [15], this work explores the practical as-
pects, the benefits—and ramifications—of applying threshold implementation
with only two shares to modern ciphers. Our case study focuses on applying
2-TT on two lightweight block ciphers, Present [7] and Simon [2]. Lightweight ci-
phers are usually a good target for TI, as the algebraic depth of their nonlinear
functions is usually low. Low algebraic depth allows for cheap and effective mask-
ing while keeping the need for additional randomness low. In fact, our designs do
not require remasking during the round functions, while a comparable masked
implementation of AES requires more than 8,000 fresh random bits during one
block encryption [15].

Our study shows that two-share TT is first order secure and also reduces the
size of the sequential logic in hardware implementations. The 2-TI-conversion
of nonlinear functions is more cumbersome and usually requires at least one
additional pipeline stage, with negative impact on implementation size and/or
performance. However, we also expose a strong second-order leakage in both of
the designs and argue that this is inherent to two-share TI implementations. We
show that these leakages exist both in the theoretical model and can also be
quickly exposed by leakage detection tests. We validate the exploitability of the
observed leakages by side channel key recovery attacks.

The remaining work is structured as follows: Relevant terminologies and
methods are explained in Section 2. The theoretical discussion of two-share TT is
given in Section 3 and two practical implementations of Simon and Present are
introduced in Section 4 and 5. Sections 6 and 7 present implementation results
and the outcome of the leakage analysis and we conclude at Section 8.



2 Preliminaries

2.1 Lightweight Cryptography

For many embedded applications, area and hence power or energy minimal imple-
mentations of cryptography are highly desirable. This has led to a rich literature
on hardware-minimal crypto cores, which often rely on the numerous proposed
“lightweight” block cipher designs, such as Present, Katan, or Simon and Speck.
These lightweight ciphers as well as the area-minimal implementations share one
common characteristic: Serialization.

Serialized implementations are very common for minimizing area of hardware
implementations at the expense of increased run time. Area-critical functions are
identified and broken into subfunctions that can be applied repeatedly, in an iter-
ative manner, to achieve the same outcome. A typical example for block ciphers
is the S-box layer, which due to its high nonlinearity usually is difficult to mini-
mize in hardware. A classical area-optimized implementation of an S-box based
cipher only features a single S-box, which is iteratively applied to different parts
of the intermediate state. All modern block ciphers support this vertical type of
serialization by using a single S-box (unlike DES which uses 8 different S-boxes).
Similar techniques are also applied to decrease the size of large S-boxes (or in
general functions of great algebraic complexity), by breaking them into subfunc-
tions that are concatenated. Examples include implementations that compute
the AES S-box by exploiting tower field representations by Canright [9] or the
Present S-box into mappings of algebraic degree 2, which eases side-channel pro-
tection and decreases the size, at the cost of doubling the computation time [26].
We will refer to this serialization as horizontal. While vertical serialization is
determined by the cipher at implementation time (usually determined by the
number of S-boxes), the exploitable horizontal serialization is determined by the
algebraic complexity of the nonlinear layer.

Typical vertical serialization parameters for hardware minimal implementa-
tions are ranging from data path sizes of 8 bit for AES, 4 bit for Present down
to 1 bit for e.g. Simon or Katan. That is, as little as one bit of the cipher state
are updated per cycle. Serial data paths increase the latency of the crypto core
significantly. However, they also allow to reduce the combinational logic of the
crypto core to low single-digit percentages of the entire design [29,14]. That
means, in applications where the latency is not critical, the area of a cipher
is almost entirely determined by the registers storing the key and state. As a
result, significant area-improvements can only be achieved by breaking the mem-
ory barrier, for example by externalizing key storage (cf. Ktantan [14]), or, for
FPGAs, hiding state and key in dedicated bulk memory such as block RAMs [19]
or shift registers [1]. Since the remainder of the work uses Present and Simon for
proof-of-concept implementations, we provide more details on these two ciphers
here.



2.2 Present

Present is a hardware-oriented block cipher proposed in 2007, optimized for
low area footprint [7]. It is a substitution-permutation network featuring a 4 x
4 bit S-box and a permutation layer consisting only of bit shifts, making it low
cost in hardware. It features a block size of 64 bits and a key size of 80 or
128 bits, and has 31 rounds.Present has been optimized for many application
scenarios, but the area-minimal implementations with a 4-bit data-path. It has
also been standardized as a lightweight cryptographic block cipher as ISO/IEC
29192-2:2012. Each round of Present cipher consists of three steps including a
key-addition layer, a substitution layer which is a non-linear function, and a
permutation layer. In the first step, the round key which is consisted of left most
significant 64 bits of the key is xored with the 64-bit current state. In the next
step, the Present S-box is used which is a non-linear 4-bit to 4-bit function shown
in the following table in hexadecimal notation.

S(z)|C|5|6|B|9|0|A|D|3|E|F|8|4|7|1|2

The substitution layer can be performed with 16 parallel S-box or using only
one S-box 16 times which depends on the application requirement. In the last
step, the permutation is applied to all the 64-bit data which is just a rewiring.

At the same time, the key is updated in the key schedule part. The key can
be 80-bit or 120-bit; however we use 80-bit key in this paper. In each round the
64 left most bits of the current key, krokrskr7...k17k16, is used in addroundkey.
After using the round key, the 80-bit key register is updated by shifting, using
S-box, and xoring with round-counter. More details about the specification of
the Present is provided in [7].

2.3 Simon

Simon is a lightweight block cipher proposed by NSA in 2013 [2]. Simon imple-
ments a Feistel structure that accepts two n-bit words as input plaintext, with
n € {16,24,32,48,64}. For each input size 2n, Simon has a set of allowable key
sizes ranging from 64 bits to 256 bits. The number of rounds in Simon ranges
from 32 to 72 rounds. Simon128/128, which can be seen as a drop-in replacement
for AES-128, accepts 128 bits of plaintext at a word size of 64 bits and 128 bits of
key. It generates a ciphertext after 68 rounds. The Simon128/128 parameter set
will be used throughout this work, though the implementation strategies apply
to other parameter sets in a natural way..



We denote the input words of round i as I; and r;. Then the output words
are given as:

Tit1 =l;

2, 1,8 1)

li+1 :ri + ll + (ll * ll) + ki

The upper index in [; indicates left circular shift by s bits. The addition and

the multiplication are in GF(2) and equivalent to bitwise XOR and AND op-

erations, respectively. Given the initial key words ko and k; (and possibly ko

and ks, depending on the key size), which are also used as first round keys, the
subsequent round keys are computed as:

kito =k + k{fl + ki_+41 4+ ¢; Two and Three Words @)

kiva =ki + kiy1 + k:;rll + ki_f’?, + ki_fs +¢; Four Words

where ¢; is a round constant.

2.4 Masking

Masking is a common technique to prevent side channel leakage [10]. Sensitive
states of a cryptographic implementation are split into shares by adding random-
ness. In an additive masking scheme, a variable x is split into s shares x; with
i€{0,1,...,s — 1} by choosing z;~¢ uniformly at random and z¢ = Q:Jer:_ll x;.
These shares are then processed separately, ensuring that the sensitive state is
never presented in the system, and—more importantly—that processed states

are independent of the secret.

2.5 Threshold Implementation

Threshold Implementation (TI) was proposed by Nikova et al [25] as a side-
channel countermeasure to address the common problem of glitches that re-
sulted in leakage for many other theoretically sound countermeasure techniques
when applied to hardware. The original proposal only deals with protection
against first-order side-channel leakages. Threshold Implementation has found
widespread adoption in the academic community: several implementations of
symmetric [26,24,5,6,31] and even asymmetric crypto algorithms [11,28] have
been successfully protected with TI. Recently, TT has been expanded to protect
against higher-order attacks as well [4], though potential pitfalls of the scheme
in the multivariate setting have been pointed out and fixed in [27].

TI combines a set of three requirements with a constructive description of
how to convert an algorithm into a side-channel resistant implementation in the
presence of glitches. Sensitive states are converted into a shared representation
by applying an additive Boolean masking, i.e., adding randomness. Functions
F(-) are converted meeting the requirements of correctness, uniformity, and non-
completeness.



— Uniformity requires all intermediate states (shares) to be uniformly dis-
tributed. Uniformity is intended to ensures the mean leakages to be state-
independent, a key requirement to thwart first-order DPA. To ensure unifor-
mity in a circuit it suffices to ensure uniformity for the output share of each
function, as well as for the inputs of the circuit.

— Non-Completeness requires subfunctions f; of a shared function F' to be
independent of at least one input share for first-order SCA resistance. That
is, a function F'(x) shall be split into subfunctions f;(z;;). This requirement
was updated in [4] to require any d subfunctions to be independent of at
least one input share to achieve d-th order SCA resistance. Non-completeness
ensures that the final circuit is not affected by glitches. Since glitches can only
occur in subfunctions f;, and each subfunction has insufficient knowledge to
reconstruct a secret state (since it has no knowledge of at least one share
x;), no leakage can be caused by glitches.

— Correctness simply states that applying the subfunctions to a valid shared
input must always yield a valid sharing of the correct output.

In the classic approach, a function of algebraic degree ¢ can be implemented
using at least ¢ + 1 input shares for first order side-channel resistance, and td+ 1
for d-th order resistance [4,27]. In practice, virtually all implementations try to
keep the number of shares low, i.e. for first order-protected designs at or close to
3. As a consequence, implementations of algebraically more complex functions
need to be broken into algebraically simpler subfunctions. The described TI
conversion always ensures correctness and non-completeness. Uniformity can be
either achieved by using more input shares or by adding randomness during the
computation. As a result, many of the published implementations, in order to
reduce the size of the circuit, consume lots of randomness, up to thousands of
bits per encrypted block.

2.6 Leakage Detection

A side channel leakage detection method based on Welch’s t-test has been re-
cently gaining popularity due to its simplicity, efficiency and reliability. The test
procedures have been well studied in [12] and [30] and is often referred to as
Test Vector Leakage Assesment (TVLA) test. Unlike other attacks or leakage
models used for key recovery, TVLA only returns a confidence level to reject the
leakage-free hypothesis and fail the device under test. Essentially, a t-statistic is
calculated using two sets of leakage samples as:

t = HA — KB )

V(0%/Na) + (03/Np)
where A and B denote the two sets and N; denotes the number of traces in set
j € {A,B}. pj and o; are the sample mean and sample variance respectively.
The two sets of measurements are obtained with either fixed versus random
plaintext (in a non-specific t-test) or random versus random plaintext (in a
specific t-test). In our work we use the non-specific t-test since it does not depend




on any intermediate value and power model. When the value of ¢t exceeds a
certain threshold, the null hypothesis can be rejected with a small Type I error
probability p. In this paper, we follow the threshold of +4.5 used in [18] and [22].

An improved methodology based on paired t-test was suggested in [16]. The
test uses matched pairs from the two sets of measurements. The advantage of
this methodology is that common noise to both measurements can be rejected,
making the test much more robust to slow changes of operating points in long
measurement campaigns. When n such pairs of measurements are obtained, we
have n difference measurements D = L, — Lg where L4 is a random variable
representing samples from set A while Lg from set B. The paired difference
cancels the noise variation and makes it easier to detect nonzero population
difference. Now, the null hypothesis becomes mean difference yp = 0 instead of
pa = pp. Let D and s%, denote the sample mean and sample variances of the

paired differences D, ..., D,. The paired t-test statistic is calculated as:
D
tp = 2 ) (4)
5D

n

The null hypothesis of non-leakage is also rejected if |¢,| exceeds the threshold
of 4.5.

With respect to higher order leakage detection, the original traces should
be preprocessed as explained in [30]. For example in a second order t-test, the
traces - at each sample points independently - are mean free squared beforehand.
Usually, the global mean of all samples at each time point is used. However, as
suggested in [16], a moving average which is the average of neighboring traces
around each trace is used instead to mitigate the environmental effects. In our
experiments, we apply both tests, the classic TVLA test as well as the paired
T-test, the latter one with moving averages for higher-order analysis.

3 Threshold Implementation with Two Shares

While the constructive approach by Nikova et al. allows to implement any d-th
order algebraic functions in a straightforward way, actual implementations re-
quiring to share functions of degree greater than 2 have put significant effort
into keeping the number of shares as close as possible to three, which is per-
ceived as the minimum possible to implement nonlinear functions, until [27]. *
In particular, [21] discussed the efficient implementation of 4-bit S-boxes with
three shares. Similarly, the current TTs of AES utilize the algebraic structure of
the AES S-box and four [24] or variable with up to five shares [6] to implement
the S-box on a small area.

A natural question is: Why to stop at three shares? If small area is desirable,
using similar techniques as the ones used by the above papers could enable TIs

1 Tt should be noted that [31] also proposed a two-share T1I version of Simon, with the
requirement of manually preventing glitches for two parts of the equation.



with just two shares, further reducing the area footprint as well as the need
for randomness. This approach was already discussed in [27]. The approach is
straightforward for the linear operations of an implementation, and has already
been widely used in several TTs for those parts [6, 11, 3]. The simplest nonlinear
operation is a simple two-input and: ¢ = ab which can be processed with two
shares as

Co — aobo C1 = a1b1 Cy = a0b1 C3 = a1b0 (5)

This equation is in violation of the common interpretation of the non-completeness
requirement, since ¢ and c¢3 mix inputs from shares with different indices. How-
ever, non-completeness is not violated as long as a and b are statistically inde-
pendent.

Equation (5) suggests a 4-share output, which is undesirable for a minimal
implementation. To keep the number of shares low, the four shares ¢; can be
recombined in the next cycle, e.g. ¢, = ¢o + ¢z and ¢ = ¢; + ¢3. However,
since the recombination would violate non-completeness, it must happen after a
register-stage in the next clock cycle. In other words, a pipelining stage becomes
necessary, increasing the register count and the delay of the output. The share
proliferation gets worse for higher-degree algebraic functions, as stated in [27].
However, hardware-minimal implementations break higher-order algebraic func-
tions into degree-minimal building blocks anyway, making share proliferation a
theoretical concern only.

To also ensure uniformity and thus gain an implementable basic nonlinear
building block, we implement z = ab + ¢ in two pipeline stages as

Z(/) = aobo + co Zi = a1b1 +c zZ0 = 2’6 + CL()bl zZ1 = Zi + a1b0 (6)

Note that z; and z; are computed in separate cycles. Conveniently, the 2z and z;
are uniform. Furthermore, this computation order only needs to store 2 interme-
diate states (unlike eq. (5)). However, this assumes that the inputs are available
in two subsequent clock cycles, which is a valid assumption in many serialized
implementations. Either way, the resulting pipelining of the nonlinear function
increases area overhead of that function, and also introduces a latency according
to the number of pipeline stages needed. Most of this latency can be hidden if
the data path of the implementation is small enough.

3.1 Potential Pitfalls

Share rotation In [26] it was suggested to rotate the shares in every step to
achieve increased side channel resistance. With two shares, this is highly dan-
gerous: if sy overwrites sp, the resulting leakage is likely to depend on both
shares, hence has a direct dependence on the secret itself. In general, any regis-
ter updates must be handled with great care.

Increased Higher-order leakage The observed higher order leakage can be ex-
plained by the significant dependende of the variance on the value of the share



Table 1. Comparison of leakage for a 2-sharing (S2) and 3-sharing (S3) of a bit z in
a Hamming weight model. The 2-sharing (S2) shows a leakage in the variance o(.S2).

z  Sa(z) S3(z) wt(S2)  wt(9s)  p(S2) w(Ss) o(S2) o(S3)
0 {00,11} {000,011,101,110} {0,2} {0,2,2,2} 1 3 2 1
1 {01,10} {001,010,100,111} {1,1} {1,1,1,3} 1 3 0 1

x. For a simple example we compare a 2-sharing S; and a 3-sharing S3 of a bit x
into Sa(z) = (xo, 1) and S3(z) = (xg, 21, r2) respectively. We further assume a
Hamming weight (wt(-)) leakage on the shares. Table 1 lists the possible states
and the resulting means and variances for both sharings.

As proper TT sharings of z, the mean leakage u(S;) is independent of the
value of x. However, the variance of Sy depends on z, in particular var(Ss(z =
0)) = 2 # 0 = var(Sa(x = 1)). This is not true for the 3-sharing S3, where
the variances in both cases are identical as well. This is a strong indication why
2-sharings may have a strong second-order leakage. This was also observed for
partial 2-share implementations in [3] and will be demonstrated for full 2-share
implementations in the analysis of our reference implementations in Section 7.

4 Application to Simon

Threshold Implementations of Simon with three shares have been proposed in
[31] to counteract first-order side channel attacks. Moreover, their bit-serialized
implementation only consumes 87 slices on Spartan-3 xc3s50 FPGA which ren-
ders it the smallest threshold implementation of a block cipher. The authors also
discussed how the requirement of non-completeness shuts the door on a two-share
hardware implementation of Simon but not on software implementations.

In this section, we at first apply serialization technique in order to realize a
two-share TI Simon on hardware. The leakage detection analysis and implemen-
tation results will be presented in Sections 6 and 7.

4.1 Simon with Two Shares

We follow the notation used in [31] to describe the cipher. The input plaintext
is initially split into two shares as:

rlalo =mlpl[1]
llalo =m[p)(2]

r[8lo =mipl1] + ro @
Ublo =mlp)[2] + 1o

Where r and [ represents the two input words, a and b denote two shares of the
variables and subscript ¢ indicates the round of encryption. m[p|[1] and mp][2]



are two fresh random values that mask the plaintext in the very beginning of
the algorithm and no more random numbers are needed for the rest operations.
Then, the round function is denoted as:

(®)

Where the superscripts 1,2, 8 on [[x]; represent left circular shift by correspond-
ing numbers of bits. (Notice that both addition and multiplication are in GF(2)).
Obviously, the computations of I[a];11 and I[b]; 11, if directly mapped into com-
binational circuits, are not non-complete since the two shares [[a]? and [[b]$ are
present in the same circuit and glitches may still cause leakage. We can serialize
the above equations by enforcing them being executed in two steps rather than
one. That is, we first compute the intermediate values I[a]it+1,int and 1[b]i+1,int
using only half of the terms in the equations as follows:
lali+1,ine =rlal; + U[al} +a]} *U[a]} )
[ C

U[bli1,ime =7[bs + UB]F + 1[B]} * 1[b]}
Then, the round outputs can be further calculated as:

lalivr =lalisrine + Ual; * Ub]F + Kla];

(10)

UBlisr =UBi,ime + 1[b); + U[al} + K[b];
The serialization not only retains both correctness and uniformity but achieves
non-completeness as well. In Equation (9), the inputs r[al;, l[a]?, r[b]; and I[b]?
are all uniform and therefore the output intermediates are also uniform. Each
function is independent of one share of every input and hence is non-complete.
Similarly, Equation (10) also satisfies the three requirements. Correctness can
be easily proved by substituting ![a]i+1,int and I[b];11 int with Equation (9). The
uniformity of inputs k[a]; and k[b]; makes the outputs uniform too. Moreover,
each function is independent of one share of every input and thus the functions
are non-complete as well. One may argue that [[a]} and I[b]$ (or I[b]} and [[a]}) are
two shares of [; with different rotations and may leak information of /;. However,
the multiplication between them is in GF(2) and is equivalent with bitwise AND
operation. Further, in order to ensure the non-completeness, ”Keep Hierarchy”
property of synthesize tool (ISE with XST) is enabled to separate the LUTs for
AND.

4.2 Round-based Implementation

Figure 1 depicts the structure of a FPGA implementation which contains two
copies of the same data-path which consists of two registers L; and R; and

10



la | | Ra | | RO | | b |

|

Fig. 1. Data-path of the Simon with Two Shares. Solid line: First clock cycle; Dashed
line: Second clock cycle

the combinational circuits for round functions. Specifically, two clock cycles are
taken to process each round operation. In the first clock cycle, the round inputs
are evaluated with Equation (9) and then the intermediates are overwritten
back into the registers as illustrated by the solid lines in the figure. Note that
rjli+1 = l[j]; is stored in R; while {[a];41,in¢ is in L;. Then, in the second clock
cycle, Equation (10) is evaluated as shown by the dashed line but remember that
since [[j]; is now stored in R; and hence no extra buffer is needed for it.

The sharing of key schedule is not presented here since it consists of linear
operations only and is trivial to implement.

4.3 Bit-serialized Implementation

In order to fairly compare with the bit-serialized 3-TT Simon introduced in [31]
and achieve a even smaller size of Simon implementation, a bit-serialized 2-T1
Simon is constructed as depicted in the Figure 2 (Only one share is shown).

Our design originates from the FIFO-based 3-TI bit-serialized in [31] but
introduces new features in order for a 2-TT architecture.

First of all, the round function is adjusted according to Equation 9 and 10.
(Note that both equations are evaluated in bits instead of the whole word in
this case.) Therefore, as shown in the LUT part of Figure 2, a one-bit register
is inserted to hold the intermediate value I[a]; {1 int SO that [[a]® and 1[b]3 will
not be combined to cause leakages mistakenly.

Second, due to the insertion of this register, it will take two clock cycles
for LUT to perform round operation for each bit. However, by using pipeline
technique, the overall throughput will not be scarified too much. In fact, the

11



FIFO_1 (55x1) FIFO_2 (64x1)

Initia

Input E

Fig. 2. Data-path of the bit-serialized 2-T1 Simon

2-TT architecture processes all 64 bits within 65 clock cycles which is only one
more than 3-TT in [31]. In order to achieve this, the FIFOs and shifted registers
are designed to work as following.

— Initially, the 128-bit block is stored in register #63, Shifted Registers Up
(SRU) #62 to #55, FIFO_1 and FIFO_2.

— Once Encryption started, the values are right shifted and in the mean time
bits in register #63, #62 and #56 as well as bit 0 in FIFO_2 are fed into
LUT for logic operation.

— The output will be written back to Shifted Registers Down (SRD). Note that
the valid outputs are generated since the second clock cycle. And then, after
64 clock cycles, the first 63 output bits are stored in Shifted Registers Down
(SRD) #62 to #55, FIFO_1 and FIFO_2. In the last (65th) clock cycle, the
final output bit will be written in register #63. Therefore, the whole round
operation is done within 65 clock cycles.

5 Application to Present

In this section, we apply two-share Threshold Implementation to the Present
cipher. In [21], the authors presented the 3-TI Present S-box. To achieve this,
they decomposed the non-linear S-box of degree 3 into the combination of two
quadratic functions—G function—plus some linear functions, and then imple-
ment them with three shares. We follow their idea to use the same decom-
position but then implement them with 2-TT while still retaining uniformity,
non-completeness, and correctness. According to [21], the S-box of Present can
be decomposed as:

S(X) = A(G(G(BX & ¢)) & d) (11)

Where G(.), A, B, and the constant vectors of ¢, d are given as follows:

12



G(%y,%w) :(93792791590) :
g3 =T + yz + yw

g2 =w + xy (12)
g1 =Y
go =2+ yw
1010 1100
0100 0110
A= ,B= ,c=[000d7d=[0101} (13)
1000 0010
1011 0101

5.1 Present with Two Shares

A 2-sharing scheme of G(.) can be expressed as follows:

Go(xo,Y0, 20, Wo, T1,Y1, 21, w1) =(go3, Go2, Jo1, Joo)
903 =Zo + Yozo + Yoz1 + YoWo + Yow1
go2 =wo + ToYo + T1Yo (14)
go1 =Yo
goo =20 + Yowo + Yowi

Gl(IO,y07ZO,w0,11791,Zhwl) :(91379127911,910)
13 =1 + Y120 + Y121 + Y1Wo + Y1w1
g12 =w1 + Toy1 + T1Y1 (15)
g11 =Y
gio =21 + Yy1wo + y1ws

The above sharing satisfies both correctness and uniformity when the input
shares are uniformly distributed. However, non-completeness is not fulfilled since
two shares of the same inputs are fed into the same functions in some of the above
equations.

As before, we serialize the computations into two steps in order to achieve
non-completeness as illustrated in the following equations.

G (w0, Y0, 20,w0) =(9o3» o2+ o1+ Yoo)
9o3 =To + Yozo + YoWo
9o2 =wo + ToYo (16)
961 =Yo

980 =70 + Yowo

13



G5 (1,90, 21, W1, Go3» 9oz 901> Yo0) =(93s 92 Gor» 9oo)
983 =903 + Yoz1 + Yowr
982 =902 + T1Y0 (17)
981 :9(1)1

980 =900 + Yow1

Gi(z1,y1, 21, w1) =(gi3, 912, 9115 9i0)
9%3 =T1 + Y121 + y1w1
9%2 =wi + T1Y1 (18)
911 =y

gip =71 + 1w

G%(%Jh,Zo7wo,g%379%2a9%179%o) :(9%3’9%279%17950)
935 =915 + Y120 + y1wo
9%2 :9%2 + Toy1 (19)
2 1
911 =911
2 _ 1
910 =910 T Y1Wo

The superscript indicates the level of the circuit. Until now, we achieved a cor-
rect, non-complete and uniform two-share implementation of G(.). the conversion
of the remaining linear operations is discussed next.

5.2 Hardware Implementation

As depicted in Figure 3, in order to provide the non-completeness to the design,
we use registers to separate the two parts of the G. The second part of the shares
(G2 and G%) use not only the outputs of the first part of the shares (G} and G})
but also some of their inputs as well (depicted in Figure 3). One 6-bit register
and two 4-bit registers are used before the second part of the G module, to store
the inputs zg, x1, 20, 21, W, and wy; and the outputs of the first part of the G
module, respectively.

In Figure 4, the S-box architecture is depicted which includes two G modules,
and functions BX +cg and AX +d, for the first share as well as functions BX +c¢;
and AX +d; for second share in which ¢y +¢; = ¢ and dy +d; = d. Furthermore,
due to non-completeness, we use another row of registers in between two G(.)
functions in the S-box. One may argue that registers should also be inserted
between non-linear functions (e.g. G(.)) and linear functions (e.g. AX + dp),
since when they are merged the two shares of certain variables may be combined
again which fails the non-completeness requirement. While this is true in general

14



...
=]
~

2] [wo=] [=

[=

; z :
by G, G, i ‘ E ‘

Fig. 3. Hardware architecture of the 2- Fig.4. Hardware architecture of the 2-
share G module share S-box module

cases, our design avoids this problem as G3 and G% are both independent of
one share of the inputs and hence any linear combination of ¢35, g%, g3, g3, or
983, 982, 921, 98 still satisfies non-completeness.

Figure 5 shows the whole Present cipher with two shares. The design includes
two control inputs namely key_load and data_load. If key_load is high, at the
rising edge of the clock signal, the 80-bit input key shares-Key A and Key B-
are copied to the registers Key A and Key B respectively. When the data_load
signal is high, at the rising edge of the clock signal, 64 right-most significant bits
of the input shares (data_in A[63:0], data_in B[63:0]) are copied to state
registers. It is worth mentioning that when the data_load is set, i.e. loading
new two shares of plaintext into the state registers results in a reset of the state
machine. That why this design does not have a reset signal. When the two-
share keys and two-share plaintexts are loaded, both key_load and data_load
must be set to zero. After that, it takes 31 rounds in order to Data_out A and
Data_out B have a valid ciphertexts. In each round, the S-box and permutation
operations respectively operate the inputs to update the state registers for the
next round. Considering the hardware design, each G(.) function needs one cycle
and then every S-box needs four clock cycles to compute table lookup. According
to the Figure 5, each 64-bit input stored in the State register needs to use S-box
16 times. Hence, it needs 4 clock cycles for the first S-box due to its latency,
plus 15 clock cycles for other 15 S-boxes in pipeline, also one more clock cycle
for the permutation operation. Therefore, we need 20 cycles for each round of
the Present cipher. Hence, we define another control signal, ’counter’, in which
it updates the state registers and Key registers after each 20 cycles. After each
cycle of these 20 cycles, the state registers are shifted to the right by 4 bits
and the four most significant bits of the state registers are replaced by the
outputs of substitution and permutation network. The Present cipher has 31
rounds, hence a full encryption of a 64-bit input takes 620 clock cycles. We also
design an unprotected Present cipher to show the area overhead of the protected
Present versus unprotected one as well as its impact on maximum frequency and
throughput. The comparison results are shown in Table 2.

15



Data_ load
Counter
6

Permutation
g e State A %
; . .
Data_ load 4 4 | S-box 4
i~ Counter 5
o 4 e | Permutation
—Data_in A— 64 State B B W
64
8 Data_out A
Key_load 1 E & Data_out B>
7N a * |1 T odate_Key A
ate_Ke
—Data_in B— N Key A 50 P W
- 80,
Key_load 64
80, 4
80 Key B - Update_Key B W
soF

Fig. 5. Hardware architectures of the 2-shares Present Cipher.

6 Implementation Results

Table 2 summarizes the overhead and performance of two-share implementations
of both ciphers. Note that we only implement Simon128/128 and Present64/80
as an example to show the advantage of two-share scheme. All the designs are
implemented in Verilog and synthesized for Virtex-5 (xc5vI1x50) or Spartan-3
(xc3s50) using XST.

For round-based Simon, we have three different implementations: unpro-
tected, 2-TT and 3-TI. In terms of slice registers used, two-share TI implemen-
tation costs twice as much as the unprotected one and one third less than the
3-TT implementation. This is not surprising since increasing by one share will
consume one more copy of registers to store the new share. Similarly, number of
LUTs also increases. However, each round operation in 2-TT costs double clock
cycles and therefore the throughput is greatly reduced compared with the other
two designs.

We also implement bit-serialized 2-TT Simon to compare with the currently
smallest block cipher designs for FPGAs, as given in [1], as well as its first-order
protected 3-T1T version from [31]. As shown in Table 2, our 2-TT design reduces the
area overhead when compared to the 3-TT by about 13%, i.e., cannot quite reach
the optimal reduction of 33% due to the pipelining overhead and the unaffected
control logic. Nevertheless, this yields the smallest first-order protected block
cipher design for FPGAs with the same parameters as AES-128.

16



Table 2. Implementation results of two-share Simon and Present.

Slice Slice  Max. Frequency Throughput
(Regs) (LUTs) (MHz) (Mbps)

Design

Present on Virtex 5

3-TT Present 466 (3.0x) 715 (3.1x) 397.289 45.567
2-TI Present 370 (2.4x) 742 (3.2x) 490.252 50.61
Present 154 (1x) 234 (1x) 394.563 40.73

Round-based Simon on Virtex 5

3-TI Simon 777 (2.8x) 1302 (2.8x) 414 779
2-TI Simon 520 (1.9x) 1169 (2.5x) 382 360
Simon 272 (1x) 473 (1x) 421 792

Bit-serialized Simon on Spartan 3

3-TT Simon [31] 61 (2.0x) 160 (2.2x) 109.4 3.21
2-TT Simon 55 (1.8x) 135 (1.9x) 91.1 2.64
Simon [1] 30 (1x) 72 (1x) 91.4 2.69

With respect to Present, we have three implementations: Unprotected, Reg-
ular 3-TI, and the new 2-TI Present. In terms of slice registers used, regular
3-TT implementation used more than three times of the unprotected one. This
is because we should use extra registers to guarantee the non-completeness of
first-order resistant three-share Present cipher. Also, two-share implementation
costs more than two times of unprotected Present because of the same reason
mentioned before. Moreover, it is worth mentioning that the 2-TT first order
resistant implementation uses less registers than 3-TI. For example, we use ex-
tra registers in G(.) function as explained in Section 5. These registers help
reducing the critical path, which explains the speed-up and resulting increase in
throughput for 2-TT Present.

7 Leakage Analysis
In this section, we extend the discussion of a strong second-order leakage of two-

share TT scheme, which was already described in Section 3.1, using simulation
based leakage and the measurements from our reference implementations.

7.1 Theoretical Analysis

First we discuss the strong second-order leakage of two-share TI scheme using
two-share Present S-box look-up as a target, namely the key-dependent inter-

17



mediate value y = S(z @ k) where z,y, k are 4-bit input plaintext, S-box output
and sub-key receptively.

Maximum abosolute correlation

1““
ffin

PN -
N\

\[V\/ <
[ s oL Wy e
200k 400k 600k 80Ok ™ 1i2M 14M 16M 18M 2m 100k 200k 300k 400k 500k 600k 700k 800k 900k ™M
Number of Traces Number of Traces
(a) 1st order t-test (b) 1st order CPA

Fig. 6. First-order leakage analysis of synthetic data. Left: first-order paired t-test.
Right: first-order CPA; Red line corresponds to the correct key guess

7
6 /7/\/\_/7
5 \,\A//
E
£l Vo
. /ﬂ
//
M
| s
40 80 120 160 200 240 280 320 360 400 20 40 60 80 100 120 140 160 180 200
Number of Traces Number of Traces
(a) 2nd order t-test (b) 2nd order CPA

Fig. 7. Second-order leakage analysis of synthetic data. Left: second-order paired t-test.
Right: second-order CPA; Red line corresponds to the correct key guess

Synthetic samples and leakage model First, we generate noise free synthetic leak-
age samples of the 2-TT Present S-box based on Hamming weight model. As
shown in Section 5, a 2-TI S-box processes two shares (4 bits for each share)
in parallel and hence we use the Hamming weight of both output shares (8 bits
in total) as the synthetic leakage samples. Further, in order for a second order
analysis, the synthetic data should be center-and-then-squared. With respect
to the leakage model, we use the Hamming weight of the regular S-box output
which equals the bitwise XOR between the two output shares in the 2-TT S-box.

18



First-order analysis We perform first-order non-specific paired t-test on the syn-
thetic data and attempt to exploit any leakage using classic CPA as well. For
this purpose, 1 million synthetic leakage samples for random input plaintext are
generated as well as another 1 million for fixed inputs. The result of t-test using
the 2 million samples is shown in Figure 6(a) where the t value is less than 2 as
the number of traces (synthetic samples) increases to 2 million. Then, a classic
first-order CPA is performed on the 1 million samples associated with the ran-
dom inputs using the above-mentioned leakage model. The results in Figure 6(b)
shows the correct key cannot be distinguished from the wrong key hypotheses
with as much as 1 million samples and the attacks fail.

Second-order analysis Then, we proceed with second-order non-specific paired t-
test and CPA. For this purpose, 200 synthetic leakage samples for random input
plaintext are generated as well as another 200 for fixed inputs.Figure 7(a) shows
that t value exceed 4.5 with only a couple of hundreds of samples while classic
CPA can recover the correct key with less than a hundred samples as shown in
Figure 7(b).

In summary, the theoretical analyses also show the first-order resistance of
2-TT scheme but reveals a strong second-order leakage. This strong second-order
leakage is caused by the differing variances, as pointed out in Section 3.1. Note
that we use perfect Hamming weight model for synthetic data without adding
any noise. Hence, the CPA with a Hamming weight model can efficiently recover
the key because it captures the leakage well. In fact, CPA on a perfect Hamming
weight leakage is comparable to a profiled attack, in the absence of noise. But in
the real world, actual leakages are more complex and CPA with Hamming weight
model will not be as efficient as in this synthetic scenario. In the following we
will conduct analysis on practical implementations to show this.

7.2 Practical Analysis

Next, we discuss the leakage analysis results for the two-share implementations
of round-based Simon and Present. First, we apply the non-specific paired t-
test method from [16] to detect any data-dependent leakage. Fixed (F) and
random (R) measurements are interleaved using the FRRF pattern. Also, leakage
detection tests are performed on round-based 3-TT Simon in order to compare
with 2-TT and show the first-order leakage resistance of two-share scheme. Then,
classic CPA is performed in order to exploit the second-order leakage detected
by t-test and the results comply with the simulations in Section 7.1.

The analyzed implementations are ported into a Virtex-5 xc5vlx50 FPGA on
the SASEBO-GII board clocked at 3 MHz. Measurements are taken using a Tek-
tronix DPO-5104 oscilloscope which collects measurements with sample rate of
100 MS/s. The oscilloscope features a FastFrame functionality that can capture
encryptions in bulk and thus 10 million measurements for each implementation
can be taken in several hours.

19



@

(=i ‘
Z 8 //
4 7
: A £
35 l N R 6 —
5 o Al ‘M " 5 e
: e o 1ol g v AV :
= afh /| W‘ A‘m rh"ww ’W‘ \1' \M L \MMWMJ ,/ = 5 B
TIVAR I
L N f o
25 \’ 1 af /
I /\/
20 1‘M Q‘M S‘M 4‘M 5‘M G‘M 7‘M E‘M Q‘M 10M 30 2[;0 4(;0 660 E(;O 10‘00 12‘00 1-’3‘00 16‘00 15‘00 2000
Number of Traces Number of Traces
(a) 1st order t-test (b) 2nd order t-test

Fig. 8. Leakage detection results for the two-share implementation of Simon for first
order (left) and second order (right) leakage over the number of traces. Note that the
dimensions change for both axes.

5 5
A — = —mm e m e mm e —m e —— — - -~
R 4 v
o
. 35 m‘.r"'
'% | ﬂ % ¢ e “»Jw “
Eas W w \(‘ W i it | E2s5 W2 k/\w,/f"w W
g | \ o il g "
g |7l A oI 3
2 le“ M W 'U \ MWM %WM. W | g o A
| | V 15 [
. | A
y JM"‘«“WF
%0 M v aM aM v ew M e ov iom % M M M am sw_ oM M e v tom
Number of Traces Number of Traces
(a) 1st order t-test (b) 2nd order t-test

Fig. 9. Leakage detection results for the three-share implementation of Simon for first
order (left) and second order (right) leakage over the number of traces.

Round-based 2-TI Simon For two-share Simon implementation, 10 million mea-
surements are collected, yielding 5 million fixed-random pairs. Each measure-
ment contains 5000 time samples, covering the 68 rounds of Simon. The first-
order paired t-test is performed using n = 5000, 10000, 15000, ... pairs. Figure
8(a) shows the first order t-test result on the two-share Simon. The maximum
absolute t value across the 5000 time samples remains below the threshold of 4.5
with 10 million traces. We conclude that the two-share Simon implementation
is resistant against first-order DPA and thus a validly implemented threshold
implementation.

The results of the second order paired t-test are shown in Figure 8(b). The
step size is reduced to n = 100, 200, ... to magnify the relevant area: The ¢ value
of the second order analysis grows beyond 4.5 with about 500 traces. That is, a
second order leakage is detectable with just hundreds of traces.

20



Round-based 3-TI Simon In order to practically compare the performance of 2-
TT and 3-TT in resisting first-order and second-order leakage, the paired t-test is
also applied to 10 million FRRF measurements from a round-based 3-T1 Simon.
Figure 9(a) shows similar result as in Figure 8(a) and the ¢ value is below the
threshold of 4.5. The comparison shows again that the first-order resistance of
2-TT is solid as a 3-TI. However, 3-T1 exhibits resistance against second-order
analysis as shown in Figure 9(b) and the ¢ value is still below 4.5 with 10 million
traces. That is, given more than 1000x as many measurements as for the 2-T1
case, the leakage is just barely detectable. The results comply with the simulation
analyses in Section 3.1 and Section 7.1 and validate the weakness of 2-TI.

2-TI Present As before, 10 million traces are captured for the two-share Present
implementation, and then analyzed using paired t-test. The first order t-statistic
is still below 4.5 with 10 million measurements, as shown in Figure 10(a). The
second order t-statistics exceeds the threshold with about 6000 traces as shown
in Figure 10(b). Again, the results suggest that two-share TI holds the promise
of first order resistance, but fares terribly on the second order resistance.

/w/ Y
45 P T e — - - - 1 T A / V
\‘ ‘{ - ’/\ W‘ /\N o w J/\N W
;§ 4 ‘ w M M ,1\,{;“«\;\ w y by | EE ‘Mﬂ/y v
AL TR AY AT B
Bafl VYU N
WW \ “ ol
¢ 3 \“"\st
"
250 im M 3‘M A‘M . S‘M' M ™ am 9M 10M 20 2‘k A‘k 5‘\( S‘k . 1‘0\; lék lllk 1E‘5k l‘Bk 20k
Number of Traces Number of Traces
(a) 1st order t-test (b) 2nd order t-test

Fig. 10. Leakage detection results for the two-share implementation of Present for first
order (left) and second order (right) leakage over the number of traces. Note that the
dimensions change for both axes.

Ezxploiting the Uncovered Leakages In order to practically exploit this strong
second-order leakage, a classic CPA [8, 10, 6] is performed on the measurements
(center-and-then-squared) associated with the 5 million random plaintexts.

For 2-TT1 Simon, the targeted operations occurred in the first clock cycle of the
third round of encryption where shared values in registers L, and L; overwrite R,
and Ry, respectively (see Figure 1). The leakage model used is Hamming distance
between registers L and R as in a plain or unprotected implementation. The
reason why third round is chosen is because of the weak non-linearity of single
Simon round operation (only one AN D) and attacking third round would relieve

21



the effect of ”ghost peaks” [8]. Moreover, in order to reduce the computational
complexity, we follow the divide-and-conquer approach and only attack the most
significant four bits in L and R which are dependent on 10 bits in kg and 4 bits
in ki. Therefore, 24 key hypotheses are required for the attack. To further
reduce the complexity, we assume the knowledge of the relevant 4 bits in %y is
known and only 10 bits in kg are aimed at to recover. Figure 11(a) shows the
max correlation for each key hypothesis over the number of traces. The practical
second-order attack successfully recovers the correct key with more than 3 million
measurements even though ghost keys still exist. Note that these results can be
significantly improved by using a profiled attack, predicting more bits, and by
using a pruning technique as e.g. done in [17], which is always an option for
ciphers with a low algebraic depth per round. Nevertheless, the results validate
the second-order leakage of two-share TI detected by the t-test and it can be
practically exploited.

Maximum correlation

<
=]
K|
E
5
g
g
=2
2
3
2
3
£
E
=

o

Y M 3m am 5M
Number of Traces Number of Traces

(a) 2nd-order CPA of two-share Simon  (b) 2nd-order CPA of two-share Present

Fig. 11. Second-order CPA. Max correlation for each key hypothesis over the number
of traces.

We also performed the same second-order CPA on 5 million random traces
(center-and-then-squared) on 2-TI Present, targeting at the S-box output to
exploit the leakage. Recall our 2-TT Present in which the 64-bit state registers
are right rotated by 4 bits per clock cycle so that the least significant nibble is
continuously fed into the S-box look-up and output is written back to the most
significant nibble after 4 clock cycles. Therefore, a Hamming distance leakage
occurs between consecutive output nibbles. In this attack, we use the Hamming
distance power model between the first two consecutive S-box outputs which
depends on the least significant key byte and thus 28 key hypotheses are required.
The max correlations per key hypothesis over number of traces are shown in
Figure 11(b) and the results show that correct key can be successfully recovered
with more than 1 million traces which demonstrates the practical exploitability
of detected leakage.

22



The results from both validate our simulation analyses for the idealized case
from Section 3.1 and Section 7.1, which suggests strong second-order leakage.
The difference in sensitivity for the two implementations stems from their dif-
fering design strategies: 2-T1 Simon is round based and does not use pipelining.
Hence, it maximizes the leakage for the fixed-vs-random test: the entire state
that is processed per cycle is constant in the fixed case and varies in the other
case. For 2-TT Present, the implementation is serialized, with a 4-bit datapath,
hence, a much smaller part of the implementation is updated per cycle, making
the leakage less pronounced.

Moreover, unlike the theoretical analysis results in Section 7.1 where the
number of traces needed for successful second-order t-test and CPA are of the
same order magnitude, a lot more traces are needed for practical second-order
CPA with Hamming distance model to exploit the leakage detected by t-test
with only hundreds to thousands of traces. This is mainly because: 1) Practi-
cal implementation don’t leak a perfect Hamming weight or Hamming distance
leakage; 2) Noises also render the practical attacks inefficient.

While two-share T1 shows potential in preventing first order leakage with less
overhead, its poor performance on second order leakage resistance compared with
three-sharing makes it less worthwhile.

8 Conclusion

This work presents the first practical threshold implementations using only two
shares. We showed that lightweight ciphers have several features making them
good targets for threshold implementations. Furthermore, we explain how using
two shares can actually yield smaller cipher implementations that need less ran-
domness and still show perfect first order resistance. While moving to two shares
makes implementing the nonlinear functions of a cipher more cumbersome, re-
sulting in either a loss in throughput, increase in circuit size, or even both, it
allows to reduce the overhead of the sequential part of the implementation by
only doubling the state and key size. Since the area of low-area crypto implemen-
tations usually depends mainly on the sequential part, significant improvements
are possible. In fact, the presented bit-serialized two-share implementation of Si-
mon is the smallest side-channel protected 128-bit block cipher implementation
for FPGAs. To this end, we presented the first two-share threshold implementa-
tions of Simon and Present, which feature perfect first-order resistance.

However, these findings are of limited practical impact, as two-share TI fea-
tures strong second-order leakage. Hence, on one hand, the results highlight that
provable resistance against a “low” order of attack might be meaningless in prac-
tice. On the other hand, the previously observed feature that three-share T1 not
only keeps the promised first-order resistance, but also fails gracefully for higher
order analysis, is undervalued and may deserve further analysis.

23



Acknowledgments. This work is supported by the National Science Foundation
under grant CNS-1261399 and grant CNS-1314770.

References

10.

11.

12.

Aysu, A., Gulcan, E., Schaumont, P.: SIMON Says: Break Area Records of Block
Ciphers on FPGAs. Embedded Systems Letters, IEEE 6(2), 37-40 (June 2014)
Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK Families of Lightweight Block Ciphers. ITACR, Cryptology
ePrint Archive 2013, 404 (2013)

Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Trade-Offs for Thresh-
old Implementations Illustrated on AES. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 34(7), 1188-1200 (July 2015)

Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-Order Thresh-
old Implementations. In: Sarkar, P., Iwata, T. (eds.) Advances in Cryptology —
ASTACRYPT 2014, Springer LNCS, vol. 8874, pp. 326-343 (2014)

Bilgin, B., Daemen, J., Nikov, V., Nikova, S., Rijmen, V., Van Assche, G.: Efficient
and First-Order DPA Resistant Implementations of Keccak. In: Francillon, A.,
Rohatgi, P. (eds.) Smart Card Research and Advanced Applications, pp. 187-199.
Springer LNCS (2014)

Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A More Efficient AES
Threshold Implementation. In: Pointcheval, D., Vergnaud, D. (eds.) Progress in
Cryptology —~AFRICACRYPT 2014, Springer LNCS, vol. 8469, pp. 267284 (2014)
Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) Cryptographic Hardware and Embedded
Systems - CHES 2007: 9th International Workshop, Vienna, Austria, September 10-
13, 2007. Proceedings. pp. 450-466. Springer Berlin Heidelberg, Berlin, Heidelberg
(2007), http://dx.doi.org/10.1007/978-3-540-74735-2_31

Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage
Model. In: Joye, M., Quisquater, J.J. (eds.) Cryptographic Hardware and Em-
bedded Systems — CHES 2004, Springer LNCS, vol. 3156, pp. 135-152 (2004)
Canright, D.: A Very Compact S-Box for AES. In: Rao, J.R., Sunar, B. (eds.)
Cryptographic Hardware and Embedded Systems — CHES 2005: 7th International
Workshop, Edinburgh, UK, August 29 — September 1, 2005. Proceedings, pp. 441—
455. Springer Berlin Heidelberg, Berlin, Heidelberg (2005), http://dx.doi.org/
10.1007/11545262_32

Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to Coun-
teract Power-Analysis Attacks. In: Advances in Cryptology — CRYPTO’99. pp.
398-412. Springer (1999)

Chen, C., Eisenbarth, T., von Maurich, I., Steinwandt, R.: Masking Large Keys in
Hardware: A Masked Implementation of McEliece. In: Selected Areas in Cryp-
tography — SAC 2015. Springer LNCS (August 2015), preprint available at
http://eprint.iacr.org/924

Cooper, J., DeMulder, E., Goodwill, G., Jaffe, J., Kenworthy, G., Rohatgi, P.:
Test Vector Leakage Assessment (TVLA) methodology in practice. In: Inter-
national Cryptographic Module Conference (2013), http://icmc-2013.org/wp/
wp-content/uploads/2013/09/goodwillkenworthtestvector.pdf

24



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Coron, J.S., Prouff, E., Rivain, M.: Side Channel Cryptanalysis of a Higher Order
Masking Scheme. In: Paillier, P., Verbauwhede, I. (eds.) Cryptographic Hardware
and Embedded Systems - CHES 2007: 9th International Workshop, Vienna, Aus-
tria, September 10-13, 2007. Proceedings. pp. 28—44. Springer Berlin Heidelberg,
Berlin, Heidelberg (2007), http://dx.doi.org/10.1007/978-3-540-74735-2_3
De Canniere, C., Dunkelman, O., Knezevi¢, M.: KATAN and KTANTAN-A Fam-
ily of Small and Efficient Hardware-Oriented Block Ciphers. In: Cryptographic
Hardware and Embedded Systems—CHES 2009, pp. 272-288. Springer (2009)

De Cnudde, T., Reparaz, O., Bilgin, B., Nikova, S., Nikov, V., Rijmen, V.: Masking
AES with d + 1 Shares in Hardware. In: Gierlichs, B., Poschmann, Y.A. (eds.)
Cryptographic Hardware and Embedded Systems — CHES 2016: 18th International
Conference. pp. 194-212. Springer Berlin Heidelberg (2016), http://dx.doi.org/
10.1007/978-3-662-53140-2_10

Ding, A.A., Chen, C., Eisenbarth, T.: Simpler, Faster, and More Robust T-test
Based Leakage Detection. In: Constructive Side-Channel Analysis and Secure
Design - 7th International Workshop, COSADE 2016, Graz, Austria, April 14-
15, 2016, Revised Selected Papers. pp. 163-183. http://dx.doi.org/10.1007/
978-3-319-43283-0_10

Eisenbarth, T., Kasper, T., Moradi, A., Paar, C., Salmasizadeh, M., Shalmani,
M.T.M.: On the Power of Power Analysis in the Real World: A Complete Break
of the Keeloq Code Hopping Scheme. In: Advances in Cryptology—CRYPTO 2008,
pp. 203-220. Springer (2008)

Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A Testing Methodol-
ogy for Sidechannel Resistance Validation. Non-Invasive Attack Test-
ing Workshop (2011), http://wuw.cryptography.com/public/pdf/
a-testing-methodology-for-side-channel-resistance-validation.pdf
Kavun, E.B., Yalcin, T.: RAM-Based Ultra-Lightweight FPGA Implementation of
PRESENT. In: Reconfigurable Computing and FPGAs (ReConFig), 2011 Interna-
tional Conference on. pp. 280-285. IEEE (2011)

Kirschbaum, M., Popp, T.: Evaluation of a DPA-Resistant Prototype Chip. In:
Computer Security Applications Conference, 2009. ACSAC ’09. Annual. pp. 43-50
(Dec 2009)

Kutzner, S., Nguyen, P., Poschmann, A., Wang, H.: On 3-Share Threshold Im-
plementations for 4-Bit S-boxes. In: Prouff, E. (ed.) Constructive Side-Channel
Analysis and Secure Design, Springer LNCS, vol. 7864, pp. 99-113 (2013)
Leiserson, A.J., Marson, M.E., Wachs, M.A.: Gate-Level Masking under a Path-
Based Leakage Metric. In: Batina, L., Robshaw, M. (eds.) Cryptographic Hardware
and Embedded Systems — CHES 2014, Springer LNCS, vol. 8731, pp. 580-597
2014

1(\/[0ra()ii, A., Mischke, O.: How Far Should Theory Be from Practice? In: Prouff,
E., Schaumont, P. (eds.) Cryptographic Hardware and Embedded Systems —
CHES 2012: 14th International Workshop, Leuven, Belgium, September 9-12, 2012.
Proceedings. pp. 92-106. Springer Berlin Heidelberg, Berlin, Heidelberg (2012),
http://dx.doi.org/10.1007/978-3-642-33027-8_6

Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the Limits: A
Very Compact and a Threshold Implementation of AES. In: Paterson, K.G. (ed.)
Advances in Cryptology — EUROCRYPT 2011, Springer LNCS, vol. 6632, pp.
69-88 (2011)

Nikova, S., Rechberger, C., Rijmen, V.: Threshold Implementations Against Side-
Channel Attacks and Glitches. In: Ning, P., Qing, S., Li, N. (eds.) Information and
Communications Security, Springer LNCS, vol. 4307, pp. 529-545 (2006)

25



26.

27.

28.

29.

30.

31.

32.

Poschmann, A., Moradi, A., Khoo, K., Lim, C.W., Wang, H., Ling, S.: Side-
Channel Resistant Crypto for less than 2,300 GE. Journal of Cryptology 24(2),
322-345 (2011)

Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidat-
ing Masking Schemes. In: Advances in Cryptology-CRYPTO 2015, pp. 764-783.
Springer LNCS (2015)

Reparaz, O., Roy, S.S., Vercauteren, F., Verbauwhede, I.: A Masked Ring-LWE Im-
plementation. In: Cryptographic Hardware and Embedded Systems—-CHES 2015,
pp. 683-702. Springer (2015)

Rolfes, C., Poschmann, A., Leander, G., Paar, C.: Ultra-Lightweight Implemen-
tations for Smart Devices—Security for 1000 Gate Equivalents. In: Smart Card
Research and Advanced Applications, pp. 89-103. Springer (2008)

Schneider, T., Moradi, A.: Leakage Assessment Methodology - A Clear Roadmap
for Side-Channel Evaluations. In: Giineysu, T., Handschuh, H. (eds.) CHES.
Lecture Notes in Computer Science, vol. 9293, pp. 495-513. Springer (2015),
http://dblp.uni-trier.de/db/conf/ches/ches2015.html#SchneiderM15
Shahverdi, A., Taha, M., Eisenbarth, T.: Silent Simon: A Threshold Implementa-
tion under 100 Slices. In: Hardware Oriented Security and Trust (HOST), 2015
IEEE International Symposium on. pp. 1-6 (May 2015)

Tiri, K., Verbauwhede, I.: A Logic Level Design Methodology for a Secure DPA
Resistant ASIC or FPGA Implementation. In: Proceedings of the Conference on
Design, Automation and Test in Europe - Volume 1. pp. 10246—-. DATE ’04, IEEE
Computer Society, Washington, DC, USA (2004), http://dl.acm.org/citation.
cfm?id=968878.969036

26



