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Abstract. In this paper, we bridge the gap between structure-
preserving signatures (SPSs) and fully structure-preserving signatures
(FSPSs). In SPSs, all the messages, signatures, and verification keys
consist only of group elements, while in FSPSs, even signing keys are
required to be a collection of group elements. To achieve our goal, we in-
troduce two new primitives called trapdoor signature and signature with
auxiliary key, both of which can be derived from SPSs. By carefully com-
bining both primitives, we obtain generic constructions of FSPSs from
SPSs. Upon instantiating the above two primitives, we get many instan-
tiations of FSPS with unilateral and bilateral message spaces. Different
from previously proposed FSPSs, many of our instantiations also have
the automorphic property, i.e., a signer can sign his own verification key.
As by-product results, one of our instantiations has the shortest veri-
fication key size, signature size, and lowest verification cost among all
previous constructions based on standard assumptions, and one of them
is the first FSPS scheme in the type I bilinear groups.
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1 Introduction

1.1 Background

Structure-preserving signatures (SPSs). In [3], Abe et al. initiated the study
of SPSs which denote pairing-based signatures where all the verification keys,
messages, and signatures consist only of group elements and the verification algo-
rithms only make use of pairing product equations (PPEs) to verify signatures.

SPSs are very useful since they can be combined with other structure-
preserving (SP) primitives, e.g., ElGamal encryption [19] and Groth-Sahai
proofs [29], to obtain efficient cryptographic protocols such as blind signa-
tures [3,25,24,23], group signatures [3,25,34], homomorphic signatures [33], dele-
gatable anonymous credentials [22], compact verifiable shuffles [17], network cod-
ing [6], oblivious transfer [37,14], tightly secure encryption [30,2], and e-cash [7].
Motivated by this, there have been a large deal of works focusing on SPSs (e.g.,
[3,1]) in the past few years, which provide us with various SPS schemes based
on different assumptions and with high efficiency.

Automorphic signatures. In [3], Abe et al. noted that for elaborate applications,
the SP property of a signature scheme is not sufficient. In addition, an SPS
scheme has to be able to sign its own verification keys, i.e., verification keys
have to lie in the message space. They called such kind of SPS automorphic
signature and gave an instantiation of it, and also provided a generic transfor-
mation that converts automorphic signatures for messages of fixed length into
ones for messages of arbitrary length.

As argued in [3], since automorphic signatures enable constructions of certi-
fication chains (i.e., sequences of verification keys linked by certificates from one
key on the next one), they are useful in constructing anonymous proxy signa-
tures and delegatable anonymous credentials. Abe et al. [3] also showed how to
combine automorphic signatures with the Groth-Sahai proof system to construct
a round-optimal blind signature scheme.

Fully structure-preserving signatures (FSPSs). In [5], Abe et al. introduced
FSPSs, where signing keys also consist only of group elements and the correctness
of signing keys with respect to verification keys can be verified by PPEs. Since
the fully structure-preserving (FSP) property enables efficient signing key ex-
traction, it could help us prevent rogue-key attacks in the public-key infrastruc-
tures (PKIs) [36], make anonymous credentials UC-secure [15], achieve privacy
in group and ring signatures [10,11,13] in the presence of adversarial keys, and
extend delegatable anonymous credentials [8,22,18] with all-or-nothing transfer-
ability [16], as noted in [5]. In this paper, we call an automorphic signature
scheme that is FSP a fully automorphic signature (FAS) scheme.

Abe et al. [5] gave two generic constructions by combining FSPSs unforgeable
(UF) against extended random message attacks (xRMA) [1] with other primi-
tives such as one-time SPSs, two-tier SPSs (also called partial one-time SPSs),
and trapdoor commitment schemes. Although these constructions are novel and
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neat, they suffer from three shortcomings due to the use of specific primitives,
which make them less generic.

1. As both constructions require a UF-xRMA secure FSPS scheme and one of
them also requires a γ-blinding trapdoor commitment scheme, the underlying
assumptions and bilinear map of their instantiations are limited. Concretely
speaking, all the signature schemes derived from their constructions have to
be based on at least the SXDH and XDLIN assumptions and be in the type
III bilinear group.

2. For the same reason, the efficiency of their instantiations is also potentially
limited by the underlying UF-xRMA secure FSPS scheme and the γ-blinding
trapdoor commitment scheme. For example, the verification keys and signa-
tures of their most efficient FSPS scheme consist of more than 10n group
elements in total if messages consist of n2 group elements.

3. Their instantiations are not automorphic. The reason is that verification
keys of the UF-xRMA secure FSPS scheme (which are also verification keys
of the resulting schemes) consist of elements in both source groups, while
the resulting signature schemes can only sign messages consisting only of
elements in one source group.

Note that Abe et al. [5] also gave a variant of their constructions by combining
a UF-xRMA secure signature scheme and a trapdoor commitment scheme with
SPSs, which can be treated as a generic transformation from SPSs to FSPSs. If
the instantiation of SPS is with a bilateral message space (i.e., messages consist
of elements in both source groups), then the resulting signature scheme could
be automorphic. However, as far as we know, besides the aforementioned short-
comings, all the previously proposed SPS schemes with a bilateral message space
require verification keys to consist of elements in both source groups (except for
ones that sign messages of “DDH form” [27,26]), which result in very inefficient
FSPS schemes, as noted in [5]. The verification keys and signatures (respectively,
the verification algorithm) of the most efficient automorphic instantiation that
can be derived from their generic construction consist of more than 12n group
elements in total (respectively, more than 3n PPEs) if the messages consist of
2n2 group elements.

Following the work of Abe et al. [5], Groth [28] gave an elegant construction
of FSPS, which has the shortest verification keys and signatures, and needs the
fewest PPEs for verification. Although this FSPS scheme is the most efficient
one as far as we know, it is only known to be secure in the generic group model
and is not automorphic.

Up until now, a lot of results are devoted to constructing efficient SPSs under
different assumptions, while there are very few FSPS schemes. If we can find a
generic method to transform existing SPSs into FSPSs or even FASs without
directly using specific primitives, it will greatly alleviate the efforts to construct
them from scratch.
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1.2 Our Results

Generic construction of FSPS. In this paper, we formalize two extensions to
ordinary signatures called trapdoor signatures (TSs) and signatures with auxil-
iary key (AKSs). We show that any well-formed4 SPS scheme can be converted
into a TS scheme satisfying the signing key structure-preserving (SKSP) prop-
erty, in which signing keys consist only of group elements and the correctness
with respect to verification keys can be verified by PPEs, while messages are not
necessarily group elements. Furthermore, it is relatively straightforward to show
that any SPS scheme with an algebraic key generation algorithm can be con-
verted into a structure-preserving signature with auxiliary keys (SP-AKS). By
combining SKSP-TS with SP-AKS, we obtain a generic construction of FSPS.5

Our construction implies that for any two SPS schemes, if verification keys of
one lie in the message space of the other (which is well-formed), then basically,
they can be used to construct an FSPS scheme, without using any other spe-
cific primitives or additional assumptions. It also implies that most well-formed
SPS schemes with a bilateral message space or unilateral verification key space
(i.e., the verification keys consist only of elements in one source group) can be
converted into an FSPS scheme.

This generic construction is proved to be secure based on building blocks
satisfying different security, which allows us to obtain various instantiations of
FSPS based on different assumptions.

Efficient instantiations of FSPSs. By extending the definition of AKSs to two-
tier signatures with auxiliary keys (TT-AKSs) and substituting AKSs with TT-
AKSs in the above generic construction, we obtain another generic construction,
which enables us to obtain more efficient instantiations of FSPS. For instance,
by using the TS scheme and TT-AKS scheme adapted from the SPS schemes
proposed by Kiltz et al. [31,32], we obtain instantiations of FSPS with unilateral
and bilateral message spaces. We give an efficiency comparison between our
instantiations and the ones proposed in [5] in Table 1.6 Note that like the FSPS
scheme proposed in [28], a signing key in our instantiations consists ofΩ(n) group
elements (concretely, 2n+1 in [28] and 4n+9 and 8n+13 in our results), while
that in “AKO+15” consists only of 4 elements. However, in many applications, the

4 We refer the reader to Definition 10 for details of well-formed SPSs. As far as we
know, all the existing SPS schemes are well-formed.

5 As in [5], we assume the underlying SKSP-TS scheme and SP-AKS scheme share
the common setup algorithm.

6 The second instantiation in Table 1 is derived from the generic construction described
in [5, Section 6.4], where the underlying SPS scheme is the one with bilateral message
space in [31] (based on the SXDH assumption). In this instantiation, we have to add
a group element denoting the sequence number to every message block. Furthermore,
the underlying two-tier signature schemes of the first and third instantiations have
the same efficiency, which makes sure that this comparison is fair. If we allow trusted
setup besides the bilinear map generation, the sizes of common parameters |par| in
these four schemes are 6, 6, 1, and 2 respectively.
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size of a signing key does not have to be “extremely short” since typically, a user
generates only one proof for knowing a signing key (e.g., in PKIs and group/ring
signatures), while proofs for knowing a signature or a verification key/signature
pair are required to be generated for multiple times.7

Security Assumption |m| |pk|+ |par| |σ| ♯ PPE

AKO+15 [5]
Full SXDH, XDLIN (n2, 0) 6n+ 17 4n+ 11 n+ 5
Full SXDH, XDLIN (n2, n2) 6n+ 47 13n+ 30 5n+ 6

Our results
Full SXDH (n2, 0) 2n+ 7 4n+ 8 n+ 3
Full SXDH (n2, n2) 4n+ 10 8n+ 12 2n+ 4

Table 1. Comparison between the most efficient instantiations of FSPS based on
standard assumptions derived from the main construction in [5] and the most efficient
ones derived from our constructions. Notation (x, y) denotes x elements in G1 and
y elements in G2. We do not count the two generators in the description of bilinear
groups when giving the parameters.

Our FSPS schemes in Table 1 can also be based on the Dk-matrix Diffie-
Hellman (MDDH) assumptions [20] (see the full paper for the definition),
while the parameters become (|m|, |pk| + |par|, |σ|, ♯PPE) = (n2, (2nk + 2k +
3 + RE(Dk))k + RE(Dk), (3k + 1)n + 4 + 3k + RE(Dk), kn + 2k + 1) and
(|m|, |pk|+ |par|, |σ|, ♯PPE) = (2n2, (4nk+3k+3+2RE(Dk))k+2RE(D)k, 2(3k+
1)n+5k+5+2RE(Dk), 2kn+3k+1), where RE(Dk) denotes the minimal number
of group elements needed to present a matrix sampled from Dk.

Since our constructions only require the underlying schemes to have prop-
erties naturally satisfied by SPSs, further improvement on SPS schemes may
contribute to the efficiency of FSPSs more via our constructions than the con-
structions in [5].

FASs. Since we can convert any (well-formed) SPS scheme into an SKSP-TS
scheme and an SP-AKS scheme, our generic constructions also derive many
instantiations of FAS from various combinations (including the ones in Table 1).
As long as verification keys of the underlying TS scheme consist of no more group
elements than messages of the underlying AKS scheme in both source groups,
the resulting scheme is fully automorphic.

We can instantiate our first generic construction with the TS scheme and
AKS scheme adapted from the SPS scheme proposed by Groth et al. [28] to
obtain our most efficient FAS scheme, while the most efficient one from the
generic construction in [5] can be obtained by letting the underlying SPS scheme

7 The argument that the signing key size is not as important as verification/signature
size does not spoil the motivation for FSPS. FSPS helps avoid extremely heavy key
extraction, i.e., extracting a signing key bit by bit (see Introduction in [8]). However,
this does not mean we have to make the extraction extremely light. Allowing checking
signing keys by using PPEs and keeping the key size linear with message size is
enough to achieve the goal.
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be the one in [4] and the underlying one-time SPS scheme the one in [26]. For
ease of understanding, we give an efficiency comparison in Table 2.

Security Assumption |m| |pk|+ |par| |σ| ♯ PPE

AKO+15 [5] Full Generic (n2, n2) 6n+ 23 6n+ 14 3n+ 6

Our result Full Generic (n2, 0) 2n+ 1 2n+ 5 n+ 3
Table 2. Comparison between the most efficient instantiation of FAS derived from
the main construction in [5] and the most efficient one derived from our constructions.
Both of them are secure in the generic group model.

FSPS (FAS) schemes in the symmetric (type I) bilinear map. We also instantiate
our generic constructions with the SPS scheme and the tag-based SPS scheme
proposed in [2] to obtain the first FSPS and FAS schemes in the type I bilinear
map, the most efficient one of which achieves (|m|, |pk| + |par|, |σ|, ♯PPE) =
(n2, 6n+ 30, 6n+ 12, 2n+ 7).

1.3 High-level Idea

Our generic construction can be treated as an extension of the well-known EGM
paradigm [21]. In this paradigm a signer uses two signature schemes Σ1 and Σ2

to sign a message m. It first signs m by using the signing key sk2 of Σ2 and
then signs the verfication key vk2 of Σ2 by using the signing key sk1 of Σ1. This
paradigm was used to obtain SPSs in [1] and a generic construction of FSPS
in [5]. To make sure that the resulting signature scheme is an FSPS scheme, it is
natural to require sk1 to consist only of group elements. This is the reason why
Abe et al. [5] instantiated Σ1 with the xRMA secure signature scheme proposed
in [1], which was the only proposed FSPS scheme until then. However, we observe
that it is possible to instantiate Σ1 with all the existing SPS schemes, which also
provides us with more options when selecting instantiations of Σ2 to match Σ1.

Next, we explain how to choose Σ1 and Σ2, and the high level idea of our
construction. Roughly speaking, starting from an SPS scheme with a signing
key x ∈ Zp, we can always derive a signature scheme in which the signing key
becomes a group element X = Gx ∈ G (where G denotes the generator of G).
It is obvious that in this case a message M ∈ G cannot be signed by using X
since we are not able to compute Mx from X and M . Supposing that M = Gm,
we can use X to sign m instead of M , i.e., compute Xm instead of Mx when
generating a signature. Furthermore, since signatures generated in this way are
the same as those generated by the real signing key, and the public key and
verification algorithm remain the same, one can verify the signature by using M .
We formalize such a signature scheme as a TS scheme. Although such a signature
scheme is only “semi”-structure-preserving, we use it to sign the exponent v ∈ Zp

of a verification key (called auxiliary keys) of another SPS scheme and use the
latter SPS scheme to sign a message M ′ ∈ G′. This enables us to obtain an FSPS
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scheme. We formalize the latter signature scheme which generates auxiliary keys
besides verification/signing key pairs as an AKS scheme.

To verify a signature, one only needs to know V = Gv and M ′, without
knowing v. Furthermore, the original signing key x (called trapdoor key) of the
TS scheme is never used in the signing process but is necessary as the reduc-
tion algorithm in the security proof signs verification keys without knowing the
exponent.

Our main contributions lie in two aspects. First, we formalize the notions
of TSs and AKSs in order to adapt the EGM paradigm to construct FSPSs.
Second, we show that most of existing SPS schemes can be cast as our extended
signatures, and consequently we can obtain a number of FSPSs and FASs based
on existing SPSs.

Perhaps interestingly, although most of the previously proposed SPS schemes
with a unilateral message space are not automorphic (since their verification
keys and messages usually consist of elements in different source groups), when
some of them are converted into FSPSs using our method, the resulting schemes
become automorphic.8

Paper organization. We recall several definitions in Section 2. Then we formalize
TSs and AKSs and show how to instantiate them from any (well-formed) SPS
scheme in Section 3 and Section 4 respectively, and give generic constructions of
FSPSs based on them in Section 5. Finally, we show instantiations of our generic
constructions in Section 6.

2 Preliminary

2.1 Notations

In this paper, we let negl be negligible functions, [n] the set {1, . . . , n},
N the set of natural numbers, |X| the number of elements in X (where

X could be a space, a vector, or a matrix), and Ã the 1 × mn vector
(a11, a12, . . . a1n, a21, a22, . . . a2n, . . . , am1, am2, . . . amn) whereA denotes them×
n matrix (aij)i∈[m],j∈[n]. If A ∈ Z(k+1)×k

p lies in the matrix distribution Dk, then

we use A to denote the upper square matrix of A. Furthermore, a⃗ ∈ Zn
p denotes

a column vector by default.

2.2 Pairing Group

In this paper, we let G be an algorithm that takes as input 1λ and outputs
gk = (p,G1,G2,GT , e, G1, G2) such that p is a prime satisfying p = Θ(2λ),
(G1,G2,GT ) are descriptions of groups of order p, G1 and G2 generate G1

8 When messages and verification keys of the underlying TS scheme consist of ele-
ments in G2 and G1 respectively and those of the underlying AKS scheme consist of
elements in G1 and G2 respectively, verification keys and messages of the resulting
FSPS scheme consist of elements only in G1.
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and G2 respectively, and e : G1 × G2 → GT is an efficiently computable (non-
degenerate) bilinear map. Following [31] and [28], we use the additive notation
in [20] such as e((a+ b)[x]1, [y]2) = a · e([x]1, [y]2)+ b · e([x]1, [y]2) where [x]1 and
[y]2 denote G

x
1 and Gy

2 respectively, and e([x]1, [y]2) can be written as [xy]T . Fur-

thermore, e([⃗a]⊤1 , [⃗b]2) denotes
∑n

i=1 e([ai]1, [bi]2) where [⃗a]1 = ([a1]1, . . . , [an]1)
⊤

and [⃗b]2 = ([b1]2, . . . , [bn]2)
⊤, and e([A]⊤1 , [B]2) denotes (e([⃗a

⊤
i ]1, [⃗bj ]2))i∈[n],j∈[n′]

where [A]1 = ([⃗a1]1, . . . , [⃗an]1) and [B]2 = ([⃗b1]2, . . . , [⃗bn′ ]2).

2.3 Signatures

Definition 1 (Signature) A signature scheme consists of four polynomial-
time algorithms Setup, Gen, Sign, and Verify. Setup takes as input a security pa-
rameter 1λ and generates a public parameter par, which determines the message
spaceM and the randomness space R for signing. Gen is a randomized algorithm
that takes as input a public parameter par and outputs a verification/signing key
pair (pk, sk). Sign is a randomized algorithm that takes as input a signing key sk
and a message m, and returns a signature σ. Verify is a deterministic algorithm
that takes as input a verification key pk, a message M , and a signature σ, and
returns 1 (accept) or 0 (reject).

The correctness is satisfied if we have Verify(pk,m, Sign(sk,m; r)) = 1 for all
λ ∈ N, par ← Setup(1λ), (pk, sk)← Gen(par), m ∈M, and r ∈ R.

In [3], Abe et al. firstly defined SPSs, in which verification keys, messages,
and signatures consist only of group elements in G1 and G2, and signatures are
verified by evaluating pairing product equations (PPEs), which are of the form∑

ij aije([xi]1, [yj ]2) = [0]T , where aij is an integer constant for all i and j.

Definition 2 (Structure-preserving signature (SPS)) A signature sch-
eme is said to be structure-preserving over a bilinear group generator G if we
have (a) a public parameter includes a group description gk generated by G, (b)
verification keys consist of group elements in G1 and G2, (c) messages consist of
group elements in G1 and G2, (d) signatures consist of group elements in G1 and
G2, and (e) the verification algorithm consists only of evaluating membership in
G1 and G2 and relations described by PPEs.

SPSs are versatile since they mix well with other pairing-based protocols.
Especially, they are compatible with the Groth-Sahai proof system [29]. However,
as argued by Abe et al. in [3], Groth-Sahai compatibility of a signature scheme
is not sufficient for elaborate applications such as anonymous signatures and
delegatable anonymous credentials, which require signatures on verification keys
to obtain anonymized certification chains. Abe et al. [3] called an SPS scheme
that is able to sign its own verification keys an automorphic signature scheme.

Definition 3 (Automorphic signature) A signature scheme is said to be an
automorphic signature scheme over a bilinear group generator G if it is structure-
preserving and the elements in G1 (respectively, G2) of every verification key are
not more than the group elements in G1 (respectively, G2) of every message.
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In [5], Abe et al. introduced FSPSs, which also require a signing key to
be group elements in G1 and G2 and the correctness of a signing key with
respect to a verification key can be verified by PPEs. Such signatures allow
efficient key extraction when combined with non-interactive proofs (e.g., the
Groth-Sahai proofs), which may help prevent rogue-key attacks [36], build UC-
secure privacy preserving protocols [15], strengthen privacy in group and ring
signatures [10,11,13] in the presence of adversarial keys, and extend delegatable
anonymous credential systems [8,22,18] with all-or-nothing transferability [16].

Definition 4 (Fully structure-preserving signature (FSPS)) A struc-
ture-preserving signature scheme (Setup,Gen, Sign,Verify) with the message
space M and randomness space R for signing is said to be fully structure-
preserving if we have (a) signing keys consist only of group elements in G1 and
G2, and additionally, (b) there exists a polynomial-time deterministic algorithm
VerifySK that takes as input a verification/signing key pair and consists only of
evaluating membership in G1 and G2 and relations described by PPEs, and it is
required that for sufficiently large λ ∈ N, par ← Setup(1λ), the following holds:

– VerifySK(pk, sk) = 1 if and only if Verify(pk,m, Sign(sk,m; r)) = 1 holds for
all m ∈M and r ∈ R.

In this paper, we call an automorphic signature scheme which is also FSP a
fully automorphic signature (FAS) scheme.

Definition 5 (Fully automorphic signature (FAS)) An automorphic sig-
nature scheme is said to be fully automorphic if it is also fully structure-
preserving.

Due to space limitation, we recall the UF-CMA, UF-RMA, UF-otCMA, and
UF-otRMA security of a signature scheme in the full paper.

3 Trapdoor Signatures

3.1 Definition of Trapdoor Signatures

In this section, we formalize the notion of γ-trapdoor signature (γ-TS) scheme,
whose instantiations are used as building blocks to obtain FSPSs. Different from
standard signatures, a TS scheme verifies the correctness of a signature σ on a
message m ∈ M by taking as input (γ(m) ∈ Mγ , σ) where γ :M 7→ Mγ is an
efficiently computable bijection. Furthermore, there exists a trapdoor key with
which we can generate a signature on m if we have γ(m) but not m itself.

Definition 6 (γ-Trapdoor signature (γ-TS)) A γ-trapdoor signature
scheme consists of five polynomial-time algorithms Setup, Gen, Sign, Verify, and
TDSign. Setup takes as input a security parameter 1λ and generates a public
parameter par, which determines the message space M for the signing algo-
rithm, the message space Mγ for the verification algorithm, and an efficiently
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computable bijection γ :M 7→Mγ . Gen is a randomized algorithm that takes as
input par, and outputs a verification/signing key pair (pk, sk) and a trapdoor
key tk. Sign is a randomized algorithm that takes as input a signing key sk
and a message m ∈ M, and returns a signature σ, where the randomness
space is denoted by R. Verify is a deterministic algorithm that takes as input
a verification key pk, a message M ∈ Mγ , and a signature σ, and returns 1
(accept) or 0 (reject). TDSign takes as input a trapdoor key tk and a message
M ∈ Mγ , and returns a signature σ. The randomness space of TDSign is also
R.

The correctness is satisfied if for all λ ∈ N, par ← Setup(1λ), ((pk, sk), tk)←
Gen(par), and m ∈ M, we have (a) Verify(pk, γ(m), Sign(sk,m)) = 1, and (b)
Sign(sk,m; r) = TDSign(tk, γ(m); r) for all r ∈ R.

Key generation algorithm TGen. We use TGen to denote an algorithm that runs
Gen, which is the key generation algorithm of a TS scheme, in the following
way. Taking as input a public parameter par, TGen gives par to Gen and obtains
an output ((pk, sk), tk). Then TGen outputs (pk, tk) as a verification/signing key
pair.

For a TS scheme Σ = (Setup,Gen, Sign,Verify,TDSign), we denote (Setup,
TGen,TDSign,Verify) by TΣ . According to the syntax of TS, it is not hard to see
that TΣ forms a standard signature scheme whose message space isMγ .

Now we define SKSP-TSs, in which verification keys, signing keys, and sig-
natures (but not necessarily messages) consist only of group elements, and the
correctness of signing keys with respect to verifications keys can be verified by
PPEs.

Definition 7 (Signing key structure-preserving (SKSP)) A γ-TS sch-
eme Σ = (Setup,Gen, Sign,Verify,TDSign) with message space M is said to
be signing key structure-preserving over a bilinear group generator G if we
have (a) TΣ is an SPS scheme, (b) signing keys (rather than trapdoor keys)
consist only of group elements in G1 and G2, and (c) Σ satisfies the condi-
tion (b) in Definition 4, where Verify(pk,m, Sign(sk,m; r)) = 1 is replaced with
Verify(pk, γ(m), Sign(sk,m; r)) = 1.

Note that different from FSPSs, messages are not required to be group elements
in SKSP-TSs.

3.2 Security of Trapdoor Signatures

We now define the UF-CMA security of TSs.

Definition 8 (UF-CMA of TSs) A γ-TS scheme (Setup,Gen, Sign,Verify,
TDSign) is said to be unforgeable against chosen message attacks (UF-CMA)
if for every probabilistic polynomial time (PPT) adversary A, we have

Pr[par ← Setup(1λ), ((pk, sk), tk)← Gen(par), (M∗, σ∗)← ASignO(·)(par, pk) :

M∗ /∈ Qm ∧M∗ ∈Mγ ∧ Verify(pk,M∗, σ∗) = 1] ≤ negl(λ)
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where SignO(·) is the signing oracle that takes as input m ∈ M, runs σ ←
Sign(sk,m), adds γ(m) ∈Mγ to Qm, and returns σ.

Unlike the UF-CMA security of standard signatures, a query m made by an
adversary is inM, the signing oracle records γ(m) ∈Mγ , and the message M∗

output by the adversary is inMγ .
The UF-CMA security of TSs is similar to the F-unforgeability of standard

signatures defined by Belenkiy et al. [9]. Moreover, Libert et al. [35] gave an
instantiation of F-unforgeable signatures and combined it with a tagged one-
time signature scheme proposed by Abe et al. [2] to obtain a very efficient SPS
scheme. However, they neither provided generic constructions nor considered the
FSP property.

Now we show the relation between the UF-CMA security of (Setup,
Gen, Sign,Verify,TDSign) and that of (Setup, TGen,TDSign,Verify) in Theorem 1.
We refer the reader to the full paper for the proof.

Theorem 1 For a γ-TS scheme Σ = (Setup,Gen, Sign,Verify,TDSign), if TΣ =
(Setup, TGen,TDSign,Verify) is UF-CMA secure, then Σ is UF-CMA secure.

Now we give the definitions of unforgeability against random message at-
tacks (RMA), one-time chosen message attacks (otCMA), and one-time random
message attacks (otRMA) of TSs.

Definition 9 (UF-RMA, UF-otCMA, and UF-otRMA of TSs) The
UF-RMA security of TSs is the same as the UF-CMA security of TSs except
that to answer a signing query, SignO(·) randomly chooses m←M itself, runs
σ ← Sign(sk,m), adds γ(m) to Qm (initialized with ∅), and returns (m,σ).

The UF-otCMA (respectively, UF-otRMA) security is the same as the UF-
CMA (respectively, UF-RMA) security of TSs, except that A is only allowed to
make one query to the signing oracle SignO(·).

3.3 Converting Structure-Preserving Signatures into Signing Key
Structure-Preserving Trapdoor Signatures

Before showing our conversion, we define a class of SPSs called well-formed
SPSs. Roughly speaking, for a well-formed SPS scheme, it is required that the
spaces of randomness and exponents of messages are super-polynomially large
in the security parameter, and generating a signature element only involves the
group operation, while the scalars of group elements are computed as arithmetic
circuits of elements in the signing key and the randomness.

Definition 10 (Well-formed SPS) For an SPS scheme Σ, let M1 × M2 ×
. . . ×Mn be the space of exponents (with [1]1 and [1]2 for bases) of elements in
a message,9 and R1 ×R2 × . . .×Rn′ the randomness space (for signing), where

9 We do not count repeated message spaces, e.g., when messages are of the form
([m]1, [m]2) where m ∈ Zp, we have n = 1 and M1 = Zp.
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n, n′ ∈ N. Σ is said to be well-formed if (a) for all i, Mi,Ri ⊆ Zp and |Mi|
and |Ri| are super-polynomial in the security parameter,10 and (b) generating a
group element [B]b where b ∈ {1, 2} in a signature only involves computing

[B]b =
∑
i

(
∏
j

a
cij
ij )[Ai]b, (1)

where {[Ai]b}i denotes elements appearing in the public parameters, the message,
and the signing key, {aij}ij denotes elements (in Zp) appearing in the signing
key and the randomness for signing, and integer constants, and {cij}ij denotes
integer constants. Here, elements in {[Ai]b}i may represent the same variables,
and the same argument is made for {aij}ij.11

Note that there is no requirement on the distributions of the elements other
than the space sizes in the above definition, and as far as we know, all the existing
SPSs are well-formed. Now we show that any well-formed SPS scheme can be
converted into an SKSP-TS scheme.

Theorem 2 Any well-formed SPS scheme, the messages of which are supposed
to be of the form ([M⃗ ]1, [N⃗ ]2), can be converted into a γ-SKSP-TS scheme for

γ defined by γ(M⃗, N⃗) = ([M⃗ ]1, [N⃗ ]2).

Schwartz-Zippel Lemma. Now we introduce Schwartz-Zippel Lemma [38], based
on which we will give the proof of Theorem 2,

Lemma 1. ([38]) Let P ∈ F [x] be a non-zero polynomial of total degree d ≥ 0
over a field, S a finite subset of F , and r a randomness uniformly chosen from
S. Then, we have

Pr[P (r) = 0] ≤ d/|S|.

This lemma indicates that a polynomial of degree d over Zp has at most d roots.

Proof (of Theorem 2). We divide the proof of Theorem 2 into two parts. In
the first part, we show that any well-formed SPS scheme can be converted into
a γ-TS scheme satisfying the conditions (a) and (b) of the SKSP property in
Definition 7. In the second part, we prove that the converted TS scheme also
satisfies the condition (c).

10 It is not hard to see that an SPS scheme whose messages are of the form, e.g.,
([m1]1, [m2]2) where m1 = m2 + 1 and m1,m2 ∈ Zp, is not well-formed. However,
such a scheme can be easily converted to a well-formed one by letting messages be
of the form ([m1]1, [m1]2) and compute [m1 + 1]2 in signing and verification.

11 For ease of understanding, we give an example here. Supposing that an el-
ement in a signature is generated as (r1s1 + r22r1)[U ]1 + s−1

2 [M ]1 + [S]1,
where (r1, r2), (s1, s2, [S]1), [U ]1, and [M ]1 are respectively element(s)
in the randomness, signing key, verification key, and message, then we
express the formula as (ac11

11 ac12
12 )[A1]1 + (ac21

21 ac22
22 )[A2]1 + ac31

31 [A3]1 +
[A4]1, where ([A1]1, [A2]1, [A3]1, [A4]1, a11, a12, a21, a22, a31) represents
([U ]1, [U ]1, [M ]1, [S]1, r1, s1, r2, r1, s2) and (c11, c12, c21, c22, c31) = (1, 1, 2, 1,−1).

12



Part I. Let a group element in a signature be generated as Equation (1). For
all i such that {aij}j contains a set of variables in the signing key, denoted by
{sij}j , we use c′ij to denote the exponent of sij in Equation (1), and do the
following conversion.

– If [Ai]b is in the message, then we add [(
∏

j s
c′ij
ij )]b to the signing key.

– Otherwise (i.e., if [Ai]b is in the signing key or the verification key), then we

add [(
∏

j s
c′ij
ij )Ai]b to the signing key,

For all other group elements in the signature, we execute the same conversions.
Then we remove all elements in Zp, all repeated elements, and elements never
used in signing procedures from the original signing key, and set the original
signing key as the trapdoor key.

By using the new signing key, we can generate a signature consisting of group
elements in the forms of Equation (1) when taking as input a message consisting
ofM1,M2, . . . , N1, N2, . . . ∈ Zp, which forms the signing algorithm for the result-
ing γ-TS scheme. Furthermore, taking as input [M1]1, [M2]1, . . . , [N1]2, [N2]2, . . .
and the trapdoor key, we can generate the same signature if the randomness is
the same, by using the original signing algorithm. As a result, we have obtained
a γ-TS scheme for γ(M⃗, N⃗) = ([M⃗ ]1, [N⃗ ]2).

It is straightforward to see that in this γ-TS scheme, the verification keys,
signing keys, and signatures consist only of group elements in G1 and G2 and
the verification consists only of evaluating membership in G1 and G2 and rela-
tions described by PPEs. This completes the first part of the proof. Here, the
verification key size, signature size, and number of PPEs do not change during
the conversion, while the signing key size changes depending on the concrete
construction of the SPS scheme.12

Part II. Next we prove that for the above γ-TS scheme, there exists an algorithm
that can check the correctness of signing keys with respect to verification keys
by using only PPEs.

Since a group element in the signature is computed as Equation (1), and a
group element in the message [M ]1 or [N ]2 can be treated as M [1]1 or N [1]2, a
PPE in the verification algorithm can be written as∑

i

(∏
j

xij
dij

)
[Xi]T = [0]T , (2)

where {xij}ij denotes elements in the randomness, exponents of the message,
and integer constants, {dij}ij denotes integer constants, and {[Xi]T }i denotes
pairings between elements in the verification key and the signing key. Here,
elements in {xij}ij may represent the same variables, and the same argument is
made for {[Xi]T }i.
12 In the worst case, the resulting signing key size is the total number of elements in

all {[Ai]b}i.
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We now show how to obtain PPEs that check the correctness of signing keys
with respect to verification keys as follows. Let E be the set of all the distinct
variables in {xij}ij (not including constants). Then for any x ∈ E , we rewrite
Equation (2) as ∑

i

xdi [Yi]T = [0]T , (3)

where {di}i denotes integer constants and {[Yi]T }i denotes elements in GT . Since
the SPS scheme is well-formed, the left hand side of Equation (3) can be treated
as a polynomial in x by fixing all [Yi]T . We rewrite Equation (3) as

[P0]T + x1[P1]T + . . .+ xn[Pn]T = [0]T , (4)

for some fixed polynomial n, where [Pk]T denotes the sum of coefficients of
xk. According to the definition of well-formed SPSs, since the space of x is
super-polynomial (in the security parameter) and n is a polynomial (in the
security parameter), the number of possible values of x must be larger than
n for sufficiently large security parameters. As a result, if Equation (4) holds for
all possible value of x, we have

[P0]T = [0]T , [P1]T = [0]T , . . . , [Pn]T = [0]T , (5)

or the number of roots of Equation (4) could be larger than n, which is against
Schwartz-Zippel Lemma. On the other hand, it is obvious that if PPEs in (5)
hold, Equation (4) holds for any x. For each [Pi]T = 0, we cancel another variable
in E in the same way. Recursively, all the variables in PPEs in the verification
algorithm can be cancelled, and we finally obtain a sequence of PPEs of the form∑

i

c′i[X
′
i]T = [0]T ,

where {c′i}i denotes integer constants, and {[X ′
i]T }i denotes pairings between

elements in the verification key and the signing key, and elements in {[X ′
i]T }i

may represent the same variables. Since such collection of PPEs hold if and
only if PPEs in the verification algorithm holds for all possible randomness and
messages, we obtain an algorithm that takes as input verification/signing key
pairs and check their correctness using this collection of PPEs.13

In conclusion, any well-formed SPS scheme can be converted into an SKSP-
TS scheme, completing the proof of Theorem 2. ⊓⊔

Remark. It is not hard to see that the latter half of the proof can also be adopted
to show that for a well-formed SPS scheme, if signing keys consist only of group
elements, then it is an FSPS scheme.

13 The number of PPEs we finally obtain is smaller than number of elements in {[Xi]T }i
in PPEs of the form Equation (2).
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3.4 Instantiations of Trapdoor Signature

UF-CMA secure TS scheme. Using the conversion described in the proof of
Theorem 2, we can convert well-formed SPSs into SKSP-TSs. For ease of under-
standing, we give an instantiation of γ-TS Σ = (Setup,Gen, Sign,Verify,TDSign)
in Fig. 1, which is converted from the SPS scheme (denoted by TΣ =
(Setup, TGen,TDSign,Verify)) proposed by Kiltz et al. [31]. Here, TΣ is UF-CMA
secure under the Dk-MDDH assumptions and γ : Zn

p 7→ Gn
1 is defined by

γ(x1, . . . , xn) = ([x1]1, . . . , [xn]1), where n denotes the number of group elements
in a message.

To generate a signature of TΣ , σ1 = [(1, m⃗⊤)]1K+ r⃗⊤[P0+ τP1]1 is the only

part that needs to be operated by using “Zp-elements” K ∈ Z(n+1)×(k+1)
p of the

signing key. Following our conversion, we replace K with [K]1 in the signing key,
and keep the original signing key as the trapdoor key. By using [K]1, we can
compute σ1 as (1, m⃗⊤)[K]1+ r⃗⊤[P0+ τP1]1. Furthermore, we obtain PPEs that
check the correctness of signing keys as follows.

e(σ1, [A]2) = e([(1, m⃗⊤)]1, [C]2) + e(σ2, [C0]2) + e(σ3, [C1]2),

⇒e((1, m⃗⊤)[K]1 + r⃗⊤[P0 + τP1]1, [A]2) = e([(1, m⃗⊤)]1, [C]2) + e(r⃗⊤[B⊤]1, [C0]2)

+ e(r⃗⊤[B⊤τ ]1, [C1]2), (Rewrite first equation in Verify)

⇒

{
e((1, m⃗⊤)[K]1 + r⃗⊤[P0]1, [A]2) = e([(1, m⃗⊤)]1, [C]2) + e(r⃗⊤[B⊤]1, [C0]2),

e(r⃗⊤[P1]1, [A]2) = e(r⃗⊤[B⊤]1, [C1]2), (Cancelling τ)

⇒


e((1, m⃗⊤)[K]1, [A]2) = e([(1, m⃗⊤)]1, [C]2),

e([P0]1, [A]2) = e([B⊤]1, [C0]2),

e([P1]1, [A]2) = e([B⊤]1, [C1]2),

(Cancelling r⃗)

∗⇒


e([K]1, [A]2) = e([1]1, [C]2)),

e([P0]1, [A]2) = e([B⊤]1, [C0]2),

e([P1]1, [A]2) = e([B⊤]1, [C1]2).

(Cancelling m)

Then we rewrite the second equation e(σ2, σ4) = e(σ3, [1]2) as e(r⃗
⊤[B⊤]1, [τ ]2) =

e(r⃗⊤[B⊤τ ]1, [1]2). By cancelling r⃗ and τ , we obtain e([B⊤]1, [1]2) =
e([B⊤]1, [1]2), which is trivial.14

Finally, we obtain the algorithm VerifySK checking correctness of signing keys
with respect to verification keys via the above three PPEs (derived from

∗⇒).

Theorem 3 The instantiation described in Fig. 1 is a UF-CMA secure γ-SKSP-
TS scheme under the Dk-MDDH assumptions.

The SKSP property of this instantiation is implied by Theorem 2 and the
UF-CMA security is implied by Theorem 1. We refer the reader to the full paper
for the proof of Theorem 3.

14 Note that for simplicity, we sometimes directly canceled vectors in the above con-
version, instead of following the proof of Theorem 2 to cancel elements one by one.
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Setup(1λ):
par = (p,G1,G2,GT , e, [1]1, [1]2)← G(1λ).
For preliminary-fixed n ∈ N,
defineM = Zn

p andMγ = Gn
1 .

Define γ by γ(m1, . . . ,mn) = ([m1]1, . . . [mn]1).
Return par.

Gen(par):

A,B← Dk, K← Z(n+1)×(k+1)
p , K0,K1 ← Z(k+1)×(k+1)

p ,

C = KA ∈ Z(n+1)×k
p ,

C0 = K0A ∈ Z(k+1)×k
p , C1 = K1A ∈ Z(k+1)×k

p ,

P0 = B⊤K0 ∈ Zk×(k+1)
p , P1 = B⊤K1 ∈ Zk×(k+1)

p .
pk = ([C0]2, [C1]2, [C]2, [A]2),

sk = ( [K]1 , [P0]1, [P1]1, [B]1),

tk = (K, [P0]1, [P1]1, [B]1) .

Return (pk, sk) and tk.

VerifySK(pk, sk):
Return 1 if e([K]1, [A]2) = e([1]1, [C]2),

e([P0]1, [A]2) = e([B⊤]1, [C0]2),

and e([P1]1, [A]2) = e([B⊤]1, [C1]2).
Return 0 otherwise.

Sign(sk, m⃗):

r⃗ ← Zk
p, τ ← Zp,

σ1 = (1, m⃗⊤)[K]1 +r⃗⊤[P0 + τP1]1,

σ2 = r⃗⊤[B⊤]1, σ3 = r⃗⊤[B⊤τ ]1,
σ4 = [τ ]2 ∈ G2.

Return (σ1, σ2, σ3, σ4) ∈ G1×(k+1)
1 ×G1×(k+1)

1 ×G1×(k+1)
1 ×G2.

Verify(pk, [m⃗]1, σ):
Parse σ = (σ1, σ2, σ3, σ4),
Return 1 if

e(σ1, [A]2) = e([(1, m⃗⊤)]1, [C]2) + e(σ2, [C0]2) + e(σ3, [C1]2)
and e(σ2, σ4) = e(σ3, [1]2).
Return 0 otherwise.

TDSign(tk, [m⃗]1):

r⃗ ← Zk
p, τ ← Zp.

σ1 = [(1, m⃗⊤)]1K +r⃗⊤[P0 + τP1]1

σ2 = r⃗⊤[B⊤]1, σ3 = r⃗⊤[B⊤τ ]1,
σ4 = [τ ]2 ∈ G2.

Return (σ1, σ2, σ3, σ4) ∈ G1×(k+1)
1 ×G1×(k+1)

1 ×G1×(k+1)
1 ×G2.

Fig. 1. A UF-CMA secure γ-TS scheme adapted from [31, Section 4.2]. The boxes
indicate the main differences from the original scheme in [31].

UF-otRMA secure TS scheme. In Fig. 2, we give another instantiation of TS
which satisfies the UF-otRMA security under the Dk-MDDH assumptions. This
scheme is converted from the UF-otRMA secure SPS scheme in [31]. The proof
of correctness is straightforward and the correctness of a signing key with respect
to a verification key can be verified by VerifySK via e([K]1, [A]2) = e([1]1, [C]2).

Unlike the UF-CMA security proved in Theorem 1, the UF-otRMA security
of Σ = (Setup,Gen,Sign,Verify,TDSign) is not automatically implied by the
UF-otRMA security of TΣ = (Setup, TGen,TDSign,Verify). However, according
to [31], the proof of the UF-otRMA security of TΣ remains valid even when
an adversary sees the exponents of the messages from the signing oracle, which
implies the UF-otRMA security of Σ. We refer the reader to [31] for details of
the proof.

4 (Two-tier) Signatures with Auxiliary Key(s)

In this section, we introduce AKSs which are used as building blocks to achieve
our generic construction of FSPS. In Section 4.1, we give the definition of AKSs,
define their properties, and give an instantiation of AKS. In Section 4.2, we
extend AKS to TT-AKS and give an instantiation of TT-AKS.

4.1 Signature with Auxiliary Key

Definition. Roughly speaking, a γ-AKS scheme is a signature scheme in which
the key generation algorithm additionally generates auxiliary keys, and the ver-
ification key space and the auxiliary key space have a special (but natural)
structure related with γ.
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Setup(1λ):
par = (p,G1,G2,GT , e, [1]1, [1]2)← G(1λ).
M = Zn

p ,Mγ = Gn
1 .

For preliminary-fixed n ∈ N,
define γ by γ(m1, . . . ,mn) = ([m1]1, . . . [mn]1).

Return par.

Gen(par):

A← Dk, K← Z(n+1)×k
p , C = KA ∈ Z(n+1)×k

p ,

pk = ([C]2, [A]2), sk = [K]1 , tk = K .

Return (pk, sk) and tk.

VerifySK(pk, sk):

Return 1 if e([K]1, [A]2) = e([1]1, [C]2).
Return 0 otherwise.

Sign(sk, m⃗):

σ = (1, m⃗⊤)[K]1 .

Return σ ∈ G1×k
1 .

Verify(pk, [m⃗]1, σ):

Return 1 if e(σ, [A]2) = e([(1, m⃗⊤)]1, [C]2).
Return 0 otherwise.

TDSign(tk, [m⃗]1):

σ = [(1, m⃗⊤)]1K .

Return σ ∈ G1×k
1 .

Fig. 2. A UF-otRMA secure γ-SKSP-TS scheme adapted from [31, Section 5.2]. The
boxes indicate the main differences from the original scheme in [31].

Definition 11 (γ-signature with auxiliary key (γ-AKS)) A signature
scheme Σ = (Setup,Gen,Sign,Verify) with verification key space Pγ is said
to be a γ-AKS scheme for an efficiently computable bijection γ : P 7→ Pγ if
in addition to the verification/signing key pair (pk, sk), Gen also outputs an
auxiliary key ak ∈ P such that pk = γ(ak).

Security. The UF-(ot)CMA security and UF-(ot)RMA security of γ-AKSs are
exactly the same as those of standard signatures except that Gen addtionally
generates ak.

Key generation algorithm UGen. Similarly to TGen defined in Section 3.1, we use
UGen to denote an algorithm that runs Gen, which is the key generation algorithm
of a γ-AKS scheme, in the following way.

Taking as input a public parameter par, UGen gives par to Gen and obtains
an output ((pk, sk), ak). Then UGen outputs (pk, sk) as a verification/signing key
pair, without outputting ak. We use UΣ to denote (Setup,UGen,Sign,Verify) when
Σ = (Setup,Gen,Sign,Verify).

Just like SPSs, we consider γ-AKSs with the SP property.

Definition 12 (γ-SP-AKS) A γ-AKS scheme Σ is said to be a γ-SP-AKS
scheme if UΣ is an SPS scheme.

Converting SPSs into SP-AKSs. It is straightforward to see that any SPS scheme
with an algebraic key generation algorithm, public keys of which are supposed
to be of the form ([u⃗]1, [v⃗]2), can be converted into a γ-SP-AKS scheme, where
γ is defined by γ(u⃗, v⃗) = ([u⃗]1, [v⃗]2), since we can force the setup of any SPS to
output no common parameter except for the bilinear map description and let
the key generation algorithm additionally output (u⃗1, v⃗2).

We now define the random auxiliary key property for AKSs.
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Definition 13 (Random auxiliary key property) A γ-AKS scheme
(Setup,Gen, Sign,Verify) with an auxiliary key space P is said to satisfy the
random auxiliary key property if there exists an additional algorithm AKGen
such that AKGen takes as input par and an auxiliary key ak, and outputs a
verification/signing key pair (pk, sk) where γ(ak) = pk. Furthermore, for any
PPT adversary A and all λ ∈ N, we have

|Pr[par ← Setup(1λ) : AGenO(par) = 1]−
Pr[par ← Setup(1λ) : AAKGenO(par) = 1]| ≤ negl(λ),

where GenO runs ((pk, sk), ak) ← Gen(par), and returns (pk, sk, ak), and
AKGenO uniformly chooses ak from P, runs (pk, sk) ← AKGen(par, ak), and
returns (pk, sk, ak).

Instantiation of AKS. Now we give an instantiation of AKS satisfying UF-
otCMA security under the Dk-MDDH assumptions in Fig. 3. This signature
scheme is actually the same as the UF-otCMA secure signature scheme in [31]
except that Gen additionally generates exponents of a verification key as an
auxiliary key. For this instantiation, the bijection γ is defined by γ(X) = [X]2 ∈
G(n+1)×k

2 ×G(k+1)×k
2 for n which denotes the length of a message.

We refer the reader to [31] for the proof of the UF-otCMA security of this
instantiation.

Setup(1λ):
par = (p,G1,G2,GT , e, [1]1, [1]2)← G(1λ).
For preliminary-fixed n ∈ N, defineM = Zn

p ,Mγ = Gn
1 ,

P = Z(n+1)×k
p × Z(k+1)×k

p , and Pλ = G(n+1)×k
2 ×G(k+1)×k

2 .

Define γ by γ(X) = [X]2 ∈ G(n+1)×k
2 ×G(k+1)×k

2 .
Return par.

Gen(par):

A← Dk, K← Z(n+1)×(k+1)
p , C = KA ∈ Z(n+1)×k

p .
pk = ([C]2, [A]2), sk = K, and ak = (C,A).
Return (pk, sk) and ak.

AKGen(par, ak):
Parse ak = (C,A).

Let A =

(
A

a⃗⊤

)
,

k⃗ ← Zn+1
p , K = (C− k⃗a⃗⊤)A

−1
, K = (K, k⃗).

pk = ([C]2, [A]2), sk = K, ak = (C,A).
Return (pk, sk) and ak.

Sign(sk, [m⃗]1):

σ = [(1, m⃗⊤)]1K ∈ G1×(k+1)
1 .

Verify(pk, [m⃗]1, σ):

Return 1 if e(σ, [A]2) = e([(1, m⃗⊤)]1, [C]2).
Return 0 otherwise.

Fig. 3. A UF-otCMA secure γ-SP-AKS scheme adapted from [31, Section 3].

Theorem 4 The instantiation described in Fig. 3 satisfies the random auxiliary
key property.

This proof follows from the fact that when the distribution of C is uniform, the

distribution of K = (C − k⃗a⃗⊤)A
−1

is uniform as well. We give the proof of
Theorem 4 in the full paper due to page limitation.
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4.2 Two-tier Signature with Auxiliary Keys

Definition. Besides AKS, we also give the definition of (γp, γs)-TT-AKSs, which
is the same as that of two-tier signatures [12,1,32] except that the key gener-
ation algorithms additionally generate primary/secondary auxiliary keys. The
primary/secondary verification key space and the primary/secondary auxiliary
key space have a special (but natural) structure related with γp/γs. Combining
SP-TT-AKSs with SKSP-TSs enables us to obtain more efficient instantiations
of FSPS and FAS.

Definition 14 ((γp, γs)-TT-AKS) A (γp, γs)-TT-AKS scheme consists of five
polynomial-time algorithms Setup, PGen, SGen, TTSign, and TTVerify. Setup is
a randomized algorithm that takes as input 1λ, and outputs a public parameter
par, which determines the message space M, the primary/secondary verifica-
tion key spaces Pγ/Sγ , the primary/secondary auxiliary key spaces P/S, and
the efficiently computable bijections γp : P 7→ Pγ and γs : S 7→ Sγ . PGen is
a randomized algorithm that takes as input par, and outputs a primary verifi-
cation/signing key pair (Ppk, Psk) where Ppk ∈ Pγ and a primary auxiliary
key Pak ∈ P. SGen is a randomized algorithm that takes as input a primary
verification/signing key pair (Ppk, Psk) and a primary auxiliary key Pak, and
outputs a secondary verification/signing key pair (opk, osk) where opk ∈ Sγ and
a secondary auxiliary key oak ∈ S. TTSign is a randomized algorithm that takes
as input a primary signing key Psk, a secondary signing key osk, and a mes-
sage m, and returns a signature σ. TTVerify is a deterministic algorithm that
takes as input a primary verification key Ppk, a secondary verification key opk,
a message m, and a signature σ, and returns 1 (accept) or 0 (reject).

The correctness is satisfied if for all λ ∈ N, par ←
Setup(1λ), ((Ppk, Psk), Pak) ← PGen(par), and ((opk, osk),
oak) ← SGen(Ppk, Psk, Pak), we have (a) TTVerify(Ppk, opk,
m,TTSign(Psk, osk,m)) = 1 for all messages m ∈ M, and (b) γp(Pak) = Ppk
and γs(oak) = opk.

Unlike the definition of standard two-tier signatures, SGen takes as input
(Ppk, Psk, Pak) (instead of (Ppk, Psk)) in the above definition. However, the
interface of SGen is not essentially changed since Pak can be treated as part of
Psk.

Security. Now we give the definition of unforgeability against two-tier chosen
message attacks (UF-TT-CMA).

Definition 15 (UF-TT-CMA) A TT-AKS scheme (PGen, SGen,TTSign,
TTVerify) is said to be unforgeable against two-tier chosen message attacks if
for any PPT adversary A, we have

Pr[par ← Setup(1λ), ((Ppk, Psk), Pak)← PGen(par),

(i∗,m∗, σ∗)← ATTSignO(·)(Ppk) :

(i∗,m) ∈ T Qm ∧m∗ ̸= m ∧ TTVerify(Ppk, opki∗ ,m
∗, σ∗) = 1] ≤ negl(λ),
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where TTSignO(·) is the signing oracle that takes a message m ∈ M as input,
runs i = i+1 (initialized with 0), samples (opki, oski)← SGen(Ppk, Psk, Pak),
and computes σ ← TTSign(Psk, oski,m). Then it adds (i,m) to T Qm (initial-
ized with ∅) and returns (opki, σ).

Next we define the SP property of TT-AKS as follows.

Definition 16 (Structure-preserving TT-AKS (SP-TT-AKS)) A TT-
AKS scheme is said to be structure-preserving over a bilinear group generator
G if we have (a) a public parameter includes a group description gk generated
by G, (b) primary and secondary verification keys consist of group elements in
G1 and G2, (c) messages consist of group elements in G1 and G2, and (d) the
verification algorithm consists only of evaluating membership in G1 and G2 and
relations described by PPEs.

Converting SP two-tier signatures into SP-TT-AKSs. Like SP-AKSs, SP-TT
schemes, primary and secondary verification keys of which are supposed to be of
the form ([u⃗]1, [v⃗]2) and ([u⃗′]1, [v⃗

′]2) respectively, can be converted into a (γp, γs)-
SP-TT-AKS scheme, where γp and γs are defined as γp(u⃗, v⃗) = ([u⃗]1, [v⃗]2) and
γs(u⃗

′, v⃗′) = ([u⃗′]1, [v⃗
′]2) respectively, as long as the key generation algorithms

are algebraic and primary signing keys consist only of elements in Zp.
15

We define the random primary and secondary auxiliary key properties of
TT-AKSs as follows.

Definition 17 (Random primary/secondary auxiliary key properties)
A (γp, γs)-TT-AKS scheme (Setup,PGen, SGen,TTSign,TTVerify) is said to
satisfy the random primary auxiliary key property if there exists an additional
polynomial-time algorithm AKPGen that takes as input par and a primary aux-
iliary key Pak, and outputs a primary verification/signing key pair (Ppk, Psk)
where γp(Pak) = Ppk. Furthermore, for any PPT adversary A and all λ ∈ N,
we have

|Pr[par ← Setup(1λ) : APGenO(par) = 1]−
Pr[par ← Setup(1λ) : AAKPGenO(par) = 1]| ≤ negl(λ),

where PGenO runs ((Ppk, Psk), Pak) ← PGen(par) and returns
((Ppk, Psk), Pak), and AKPGenO uniformly chooses Pak from the pri-
mary auxiliary key space P, runs (Ppk, Psk) ← AKPGen(par, Pak), and
returns ((Ppk, Psk), Pak).

Furthermore, it is said to satisfy the random secondary auxiliary key property
if there exists another polynomial-time algorithm AKSGen that takes as input a
primary verification/signing key pair (Ppk, Psk), a primary auxiliary key Pak,
and a secondary auxiliary key oak, and outputs a secondary verification/signing

15 If a primary signing key consists of group elements, PGen may have trouble in out-
putting secondary auxiliary keys. However, this can be easily solved by forcing PGen
to output the exponents of those group elements as part of a primary signing key.
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key pair (opk, osk) where γs(oak) = opk. Furthermore, for any PPT adversary
A and all λ ∈ N, we have

|Pr[par ← Setup(1λ) : ASGenO(·)(par) = 1]−
Pr[par ← Setup(1λ) : AAKSGenO(·)(par) = 1]| ≤ negl(λ),

Here, on input a polynomial n = n(λ), SGenO(·) runs ((Ppk, Psk), Pak)
← PGen(par) and ((opki, oski), oaki) ← SGen(Ppk, Psk, Pak) for i =
1, . . . , n, and returns (Ppk, Psk, Pak, {(opki, oski, oaki)}ni=1). On input a poly-
nomial n = n(λ), AKSGenO(·) runs ((Ppk, Psk), Pak) ← PGen(par),
uniformly chooses oaki from the secondary auxiliary key space S, runs
(opki, oski) ← AKSGen(Ppk, Psk, Pak, oaki) for i = 1, . . . , n, and returns
(Ppk, Psk, Pak, {(opki, oski, oaki)}ni=1).

Instantiation of (γp, γs)-SP-TT-AKS. Now we give an instantiation of (γp, γs)-
SP-TT-AKS satisfying UF-TT-CMA security under the Dk-MDDH assump-
tions. This signature scheme is the same as the SP two-tier signature scheme
in [32] except that PGen and SGen additionally generate the auxiliary keys, and
SGen addtionally takes as input the primary auxiliary key. For this instantia-

tion, the bijections (γp, γs) are defined by γp(X) = [X]2 ∈ Gn×k
2 × G(k+1)×k

2

and γs(x⃗) = [x⃗]2 ∈ G1×k
2 respectively for some fixed integer n which denotes the

length of a message.

Setup(1λ):
par = (p,G1,G2,GT , e, [1]1, [1]2)← G(1λ).
For preliminary-fixed n ∈ N,
defineM = Zn

p ,Mγ = Gn
1 ,

P = Zn×k
p × Z(k+1)×k

p , Pγ = Gn×k
2 ×G(k+1)×k

2 ,

S = Z1×k
p , and Sγ = G1×k

2 .

Define γp by γp(X) = [X]2 ∈ Gn×k
2 ×G(k+1)×k

2

and γs by γs(x⃗) = [x⃗]2 ∈ G1×k
2 .

Return par.

PGen(par):

A← Dk, K
′ ← Zn×(k+1)

p , C′ = K′A ∈ Zn×k
p .

Ppk = ([C′]2, [A]2)), Psk = K′, Pak = (C′,A).
Return (Ppk, Psk) and Pak.

SGen(Ppk, Psk, Pak):

k⃗ ← Zk+1
p , c⃗ = k⃗⊤A ∈ Z1×k

p .

opk = [⃗c]2, osk = k⃗, oak = c⃗.
Return (opk, osk) and oak.

AKPGen(par, Pak):
Parse Pak = (C′,A).

Let A =

(
A

a⃗⊤

)
,

k⃗′ ← Zn
p , K

′ = (C′ − k⃗′a⃗⊤)A
−1 ∈ Zn×k

p ,

K′ = (K′, k⃗′) ∈ Zn×(k+1)
p .

Ppk = ([C′]2, [A]2), Psk = K′, Pak = (C′,A).
Return (Ppk, Psk) and Pak.

AKSGen(Ppk, Psk, Pak, oak):
Parse Ppk = ([C′]2, [A]2)), Psk = K′, Pak = (C′,A),
and oak = c⃗.

Let A =

(
A

a⃗⊤

)
, k ← Zp, k⃗

′⊤ = (c⃗− ka⃗⊤)A
−1

, k⃗⊤ = (k⃗′⊤, k).

opk = [⃗c]2, osk = k⃗, oak = c⃗.
Return (opk, osk) and oak.

TTSign(Psk, osk, [m⃗]1):

K = (k⃗,K′⊤)⊤.

Return σ = [(1, m⃗⊤)]1K ∈ G1×(k+1)
1 .

TTVerify(Ppk, opk, [m⃗]1, σ):

[C]2 = ([⃗c]⊤2 , [C
′]⊤2 )

⊤.

Return 1 if e(σ, [A]2) = e([(1, m⃗⊤)]1, [C]2).
Return 0 otherwise.

Fig. 4. A UF-TT-CMA secure (γp, γs)-SP-TT-AKS scheme adapted from [32, Section
6.1].

Theorem 5 The instantiation described in Fig. 4 satisfies the random primary
and secondary auxiliary key properties.
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This proof follows from the fact that when the distributions of C′ and c are

uniform, the distribution of K′ = (C′ − k⃗a⃗⊤)A
−1

and k⃗′ = (c⃗ − ka⃗⊤)A
−1

are
uniform as well. We give the proof of Theorem 5 in the full paper due to page
limitation.

5 Generic Construction of Fully Structure-Preserving
Signatures (and Fully Automorphic Signatures)

In this section, we give generic constructions of FSPSs and FASs from SKSP-TSs
and (TT-)AKSs. Such constructions can be derived from SPSs that are based
on various assumptions and with different efficiency performance. In Section 5.1,
Section 5.2, and Section 5.3, we give three generic constructions of UF-CMA
FSPS schemes respectively. The first two constructions are based on SKSP-TSs
and SP-AKSs, and the third one is based on SKSP-TSs and SP-TT-AKSs.

5.1 Generic Construction Sig1: Trapdoor Signature + Signature
with Auxiliary Key

We give a generic construction of FSPS (and FASs) based on a γ-SKSP-TS
scheme and a γ′-SP-AKS scheme, where γ and γ′ satisfy a suitable compatibility
that we explain shortly.

Let Σt = (Setup,Gen,Sign,Verify,TDSign,VerifySK) be a γ-SKSP-TS scheme
with message spaces M and Mγ , and Σs = (Setup,Gen′,Sign′,Verify′)16 a γ′-
SP-AKS scheme with verification key space Mγ , auxiliary key space M, and
message spaceM′, and we have γ′(x) = γ(x). Then the generic construction of

FSPS denoted by Sig1 = (Ŝetup, Ĝen, Ŝign, V̂erify, ̂VerifySK) with message space
M′ is described as in Fig. 5.

Next we give a theorem for this generic construction.

Theorem 6 If Σt is a UF-CMA secure SKSP-TS scheme, and Σs a UF-otCMA

secure SP-AKS scheme, then Sig1 = (Ŝetup, Ĝen, Ŝign, V̂erify, ̂VerifySK) is a UF-
CMA secure FSPS scheme.

Proof sketch. The proof of Theorem 6 follows from the fact that if there exists a
PPT adversaryA that outputs a successful forgery (σ∗

1 , σ
∗
2 , σ

∗
3), where σ

∗
2 was not

queried before (respectively, was queried before), with non-negligible probability,
then we can construct a PPT adversary B1 (respectively, B2) that breaks the
UF-CMA security of Σt (respectively, the UF-otCMA security of Σs). Note that
to answer a query from A, B2 may have to use the signing key of Σt to sign an
auxiliary key ak′ of Σs, while it only learns the corresponding verification key
pk′ from the challenger. In this case, it signs pk′ by using the trapdoor key of Σt

instead. According to the correctness of a TS scheme, A cannot distinguish such
a signature with an honestly generated one, which means that B2 can perfectly
simulate the signing oracle of A. We refer the reader to the full paper for the
proof.
16 As in [5], we assume that Σt and Σs share the common setup algorithm Setup.
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Ŝetup(1λ):
Run par ← Setup(1λ).
Determine the message spacesM andMγ for Σt.
Define γ :M 7→Mγ .
Determine the message spaceM′,
verification key spaceMγ ,
and auxiliary key spaceM for Σs.

Define γ′ :M 7→Mγ where γ′(x) = γ(x).
Return par.

Ĝen(par):
((pk, sk), tk)← Gen(par).
Return (pk, sk).
̂VerifySK(pk, sk):

Return 1 if VerifySK(pk, sk) = 1.
Return 0 otherwise.

Ŝign(sk,M):
((pk′, sk′), ak′)← Gen′(par).
σ1 ← Sign(sk, ak′).
σ2 = pk′.
σ3 ← Sign′(sk′,M).
Return σ = (σ1, σ2, σ3).

V̂erify(pk,M, σ):
Parse σ = (σ1, σ2, σ3) and σ2 = pk′.
Return 1 if Verify(pk, σ2, σ1) = 1
and Verify′(pk′,M, σ3) = 1.

Return 0 otherwise.

Fig. 5. Generic construction Sig1: TS + AKS (UF-otCMA).

UF-RMA secure TSs + UF-otCMA secure AKSs. Now we give another theorem
showing that for the generic construction in Fig. 5, the security of the TS scheme
can be weakened to the UF-RMA security if the AKS scheme satisfies the random
auxiliary key property.

Theorem 7 If Σt is a UF-RMA secure SKSP-TS scheme, and Σs a UF-otCMA
secure SP-AKS scheme satisfying the random auxiliary key property, then Sig1 =

(Ŝetup, Ĝen, Ŝign, V̂erify, ̂VerifySK) is a UF-CMA secure FSPS scheme.

Proof sketch. The proof sketch of Theorem 7 is the same as that of Theorem 6
except that B1 is against the UF-RMA security of Σt instead of the UF-CMA
security. To answer a query from A, B1 makes a query to the signing oracle of Σt

to obtain a randomly chosen auxiliary key ak′ and the corresponding signature
σ1. Then B1 runs the additional algorithm AKGen (defined in Definition 13)
on input (par, ak′) to generate a verification/signing key pair (pk′, sk′), which
is indistinguishable from an honestly generated one according to the random
auxiliary key property. Then it lets pk′ be σ2 and use sk′ to sign the message.
We refer the reader to the full paper for the proof of Theorem 7.

Instantiations of Sig1. By combining the UF-CMA (respectively, UF-otRMA)
secure TS scheme in Fig. 1 (respectively, Fig. 2) with the UF-otCMA secure AKS
scheme in Fig. 3 (where G1 and G2 are swapped), we obtain an FSPS scheme
satisfying UF-CMA (respectively, UF-otCMA) security. We refer the reader to
the full paper for the resulting signature schemes.

Furthermore, by converting other previously proposed SPSs into SKSP-TSs
and SP-AKSs, we obtain various FSPSs. We list some of them in Table 3 in
Section 6.
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5.2 Variation of Sig1: Trapdoor Signature + Signature with
Auxiliary Key (UF-CMA)

Now we give a variation of the generic construction in Fig. 6 by letting Σs be
a UF-CMA secure SP-AKS scheme and sign n message blocks with one signing
key. Each block is signed with an element indicating its number. This change
reduces the signature and verification key sizes from Ω(n2) to Ω(n) when signing
n2 group elements.

Let Σt = (Setup,Gen,Sign,Verify,TDSign,VerifySK) be a γ-SKSP-TS scheme
with message spaces M and Mγ , and Σs = (Setup,Gen′, Sign′,Verify′)17 a
γ-SP-AKS scheme with verification key space Mγ , auxiliary key space M,
and message space M′ × MI , where MI is the space for elements indi-
cating numbers of blocks. Then a generic construction of FSPS denoted by

Sig∗1 = (Ŝetup, Ĝen, Ŝign, V̂erify, ̂VerifySK) with message space M′n, where n is
some fixed integer, is described as in Fig. 6.

Ŝetup(1λ):
Run par ← Setup(1λ).
Determine the message spacesM andMγ for Σt.
Determine the message spaceM′ ×MI ,
verification key spaceMγ ,
and auxiliary key spaceM for Σs.

Define γ :M 7→Mγ .
Return par.

Ĝen(par):
((pk, sk), tk)← Gen(par).
Return (pk, sk).
̂VerifySK(pk, sk):

Return 1 if VerifySK(pk, sk) = 1.
Return 0 otherwise.

Ŝign(sk, M⃗):

Parse M⃗ = (M1, . . . ,Mn) ∈M′n.
((pk′, sk′), ak′)← Gen′(par).
σ1 ← Sign(sk, ak′). σ2 = pk′.
σ3i ← Sign′(sk′, (Mi, I(i)))
where I(i) ∈MI for i = 1, . . . , n.

σ3 = (σ31, . . . , σ3n).
Return σ = (σ1, σ2, σ3).

V̂erify(pk, M⃗, σ):

Parse M⃗ = (M1, . . . ,Mn) ∈M′n

and σ = (σ1, σ2, σ3).
Return 1 if Verify(pk, σ2, σ1) = 1
and Verify′(pk′, (Mi, I(i)), σ3i) = 1 for all i.

Return 0 otherwise.

Fig. 6. Generic construction Sig∗1: TS + AKS (UF-CMA).

For this generic construction, the following two theorems hold.

Theorem 8 If Σt is a UF-CMA secure SKSP-TS scheme, and Σs a UF-CMA

secure SP-AKS scheme, then Sig∗1 = (Ŝetup, Ĝen, Ŝign, V̂erify, ̂VerifySK) is a UF-
CMA secure FSPS scheme.

Theorem 9 If Σt is a UF-RMA secure SKSP-TS scheme, and Σs a UF-CMA
secure SP-AKS scheme satisfying the random auxiliary key property, then Sig∗1 =

(Ŝetup, Ĝen, Ŝign, V̂erify, ̂VerifySK) is a UF-CMA secure FSPS scheme.

We omit the proofs of Theorem 8 and Theorem 9 since they are similar to the
proofs of Theorem 6 and Theorem 7, respectively. We list several instantiations
of Sig∗ in Table 3 in Section 6. Most of them achieve better efficiency than
instantiations obtained from Sig1, and are automorphic.
17 As in [5], we assume that Σt and Σs share the common setup algorithm Setup.
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5.3 Generic Construction Sig2: Trapdoor Signature + Two-tier
Signature with Auxiliary Keys

In this section, we give another generic construction of FSPS which provides us
with FSPSs and FASs based on standard assumptions that have shorter verifi-
cation keys and signatures.

Let Σt = (Setup,Gen,Sign,Verify,TDSign,VerifySK) be a γ-TS scheme
with message spaces Mp × Mn

s and Mγp × Mn
γs, Σs = (Setup,PGen,

SGen,TTSign,TTVerify)18 a (γp, γs)-TT-AKS with primary/secondary verifi-
cation key spaces Mγp/Mγs, auxiliary key spaces Mp/Ms, and message
space M′, where n is some fixed integer and (γp(x1), γs(x2), . . . , γs(xn+1)) =
γ(x1, x2 . . . , xn+1). A generic construction of FSPS denoted by Sig2 =

(Ŝetup, Ĝen, Ŝign, V̂erify, ̂VerifySK) with message space M′n is as described as
in Fig. 7.

Ŝetup(1λ):
Run par ← Setup(1λ).
Determine the message spacesMp ×Mn

s

andMγp ×Mn
γs for Σt.

Define γ :Mp ×Mn
s 7→ Mγp ×Mn

γs.
Determine the message spacesM′n,
primary verification key spaceMγp,
secondary verification key spaceMγs,
primary auxiliary key spaceMp,
and secondary auxiliary key spaceMs for Σs.

Define γp :Mp 7→ Mγp and γs :Ms 7→ Mγs

where
(γp(x1), γs(x2), . . . , γs(xn+1)) = γ(x1, x2 . . . , xn+1).

Return public parameter par.

Ĝen(par):
((pk, sk), tk)← Gen(par).
Return (pk, sk).
̂VerifySK(pk, sk):

Return 1 if VerifySK(pk, sk) = 1.
Return 0 otherwise.

Ŝign(sk, M⃗):

Parse M⃗ = (M1, . . . ,Mn) ∈M′n.
((Ppk, Psk), Pak)← PGen(par).
((opki, oski), oaki)← SGen(Ppk, Psk, Pak)
for i = 1, . . . , n.

σ1 ← Sign(sk, (Pak, oak1, . . . , oakn)).
σ2 = (Ppk, opk1, . . . , opkn).
σ3i ← TTSign(Psk, oski,Mi) for i = 1, . . . , n.
σ3 = (σ31, . . . , σ3n).
Return σ = (σ1, σ2, σ3).

V̂erify(pk, M⃗, σ):

Parse M⃗ = (M1, . . . ,Mn) ∈M′n

and σ = (σ1, σ2, σ3).
Return 1
if Verify(pk, σ2, σ1) = 1
and TTVerify(Ppk, opki,Mi, σ3i) = 1 for all i.

Return 0 otherwise.

Fig. 7. Generic construction Sig2: TS + TT-AKS.

For this generic construction, the following two theorems hold.

Theorem 10 If Σt is a UF-CMA secure SKSP-TS scheme, and Σs a UF-TT-

CMA secure SP-TT-AKS scheme, then Sig2 = (Ŝetup, Ĝen, Ŝign, V̂erify, ̂VerifySK)
is a UF-CMA secure FSPS scheme.

Theorem 11 If Σt is a UF-RMA secure SKSP-TS scheme, and Σs a UF-TT-
CMA secure SP-AKS scheme satisfying the random primary and secondary aux-

iliary key properties, then Sig2 = (Ŝetup, Ĝen, Ŝign, V̂erify, ̂VerifySK) is a UF-
CMA secure FSPS scheme.

18 As in [5], we assume that Σt and Σs share the common setup algorithm Setup.

25



The proofs of Theorem 10 and Theorem 11 are similar to the proofs of The-
orem 6 and Theorem 7, respectively. We give them in the full paper.

Instantiations of Sig2. By combining the UF-CMA (respectively, UF-otRMA)
secure TS scheme in Fig. 1 (respectively, Fig. 2) with the UF-TT-CMA secure
AKS scheme in Fig. 4 (where G1 and G2 are swapped), we obtain an FSPS
scheme satisfying UF-CMA (respectively, UF-otCMA) security. We refer the
reader to the full paper for the resulting signature schemes. Furthermore, we list
several instantiations of Sig2 in Table 3, Section 6.

6 Instantiations

In this section, we give several instantiations derived from our generic construc-
tions, which are summarized in Table 3. For notational convenience, we denote
these schemes as (A), (B), (C), (D), (E), (F), (G), (H), (I) (see the first col-
umn of Table 3) respectively. Many of these instantiations are FAS schemes.19

It is not hard to see that typically, when signing m2 group elements, Sig1 needs
O(n2) verification/signature key elements and O(1) PPEs,20 while Sig∗1 and Sig2
need O(n) verification/signature key elements and PPEs.

Besides the UF-CMA secure FSPS schemes in Table 3, we give several UF-
otCMA instantiations derived from our generic constructions, which have rela-
tively better efficiency. We refer the reader to the full paper for details.

In Section 6.1, Section 6.2, and Section 6.3, we give remarks on the instanti-
ations of Sig1, Sig

∗
1, and Sig2, respectively. Due to page limitation, we refer the

reader to the full paper for signing key sizes and numbers of pairings required
in verification.

6.1 Sig1: SKSP-TS + SP-AKS

We give parameters of three instantiations for Sig1, which are (A), (B), and (C).
Especially, (B) is an FSPS scheme in the type I bilinear map and (C) is an FSPS
scheme in the generic group model.

The verification key size |pk| of (C) is (n1, 0) ≤ (n2
1, 0), which makes it

automorphic, while its efficiency (considering public parameter size, signature
size, and verification cost) is very close to (G) (i.e., the FSPS scheme in [28]).
As far as we know, (C) is the most efficient FAS scheme by now. Note that if
we follow the definition of basic signatures in [3], which allows no trusted setup
except for bilinear group generation, then (C) is not automorphic, and the most
efficient FAS scheme becomes (F), in Table 3.

19 It is not hard to see that FAS schemes in Table 3 may lose the automorphic property
when n1 (or n2 or n) is an extremely small number. Furthermore, when k (which
is independent with the message size) is a large number, the message size has to be
made reasonably large to keep the automorphic property.

20 There may be exceptions, e.g., (C) in Table 3.
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Const. Auto. Assumption Parameter ♯ Group element (PPE)

AKO+15 [5] ×

|m| (n2
1, 0)

Generic SXDH |pk|+ |par| (n2
1 + 5, n2

1 + 11)
construction 1 XDLIN |σ| (7, 3n2

1 + 7)
♯ PPE 2n2

1 + 7

AKO+15 [5] ×

|m| (n2
1, 0)

Generic SXDH |pk|+ |par| (6n1 + 13, 4)
construction 2 XDLIN |σ| (2n1 + 4, 2n1 + 7)

♯ PPE n1 + 5

Gro15 [28] ×

|m| (n2
1, 0)

FSPS scheme Generic
|pk|+ |par| (2n1 − 1, 1)
|σ| (n1 + 1, n1)

♯ PPE n1 + 1

Sig1 ×

|m| (n2
1, 0)

(A): KPW15 [31] (CMA) Dk-MDDH |pk|+ |par|
(
(n2

1k + 3k + 3 + RE(Dk))k + RE(Dk), 0
)

+ KPW15 [31](otCMA) (G1,G2) |σ|
(
k + 2, (n2

1 + 4)k + 3 + RE(Dk)
)

♯ PPE 3k + 1

Sig1 × 2-Lin
|m| n2

(B): ADK+13 [2] (CMA) |pk|+ |par| 4n2 + 60
+ ADK+13 [2] (CMA) (G1 = G2) |σ| 2n2 + 48

♯ PPE 14

Sig1
√

Generic

|m| (n2
1, 0)

(C): Gro15 [28] (CMA) |pk|+ |par| (2n1, 1)
+ Gro15 [28] (CMA) |σ| (n1 + 2, n1 + 3)

♯ PPE n1 + 3

Sig∗1
√

|m| (n2
1, 0)

(D): KPW15 [31] (CMA) Dk-MDDH |pk|+ |par|
(
(n1k + 2k2 + 6k + 3 + RE(Dk))k + RE(Dk), 0

)
+ KPW15 [31](CMA) (G1,G2) |σ|

(
3n1k + 3n1 + 1, (n1 + 2k + 7)k + n1 + 3 + RE(Dk)

)
♯ PPE (2k + 1)(n1 + 1)

Sig∗1
√ 2-Lin

|m| n2

(E): ADK+13 [2] (CMA) |pk|+ |par| 4n+ 64
+ ADK+13 [2] (CMA) (G1 = G2) |σ| 16n+ 36

♯ PPE 7(n+ 1)

Sig2
√

|m| (n2
1, 0)

(F): KPW15 [31] (CMA) Dk-MDDH |pk|+ |par|
(
(2n1k + 2k + 3 + RE(Dk))k + RE(Dk), 0

)
+ KPW15 [32] (TT) (G1,G2) |σ|

(
(k + 1)n1 + 1, 2n1k + 3k + 3 + RE(Dk)

)
♯ PPE kn1 + 2k + 1

Sig2
√

|m| (n2
1, n

2
2)

|pk|+ |par|
(
(2n1k + 3k + 3 + RE(Dk))k + RE(Dk),

(G): KPW15 [31] (CMA) (2n2k + RE(Dk))k + RE(Dk)
)

(bilateral) Dk-MDDH |σ|
(
(k + 1)n1 + 2n2k + k + 2 + RE(Dk),

+ KPW15 [32] (TT) (G1,G2) (k + 1)n2 + 2n1k + 4k + 3 + RE(Dk)
)

♯ PPE k(n1 + n2) + 3k + 1

Sig2
√ 2-Lin

|m| n2

(H): ADK+13 [2] (CMA) |pk|+ |par| 6n+ 30
+ ADK+13 [2] (TT(TOS)) (G1 = G2) |σ| 6n+ 12

♯ PPE 2n+ 7

Sig2 ×

|m| (n2
1, 0)

(I) ACD+12 [1] (CMA) SXDH |pk|+ |par| (2n1 + 14, 7)
+ ACD+12 [1] (TT) XDLIN |σ| (2n1 + 4, 2n1 + 8)

♯ PPE n1 + 4

Table 3. Previously proposed FSPSs and FSPSs derived from our work. “Const.” is short for
“Construction” and “Auto.” is short for “Automorphic”. We use “(A): KPW15 [31] (CMA) + KPW15 [31]
(otCMA)” to denote that the underlying TS (respectively, AKS) scheme of (A) is adapted from the
UF-CMA secure (respectively, UF-otCMA secure) SPS scheme in [31]. We use the same argument for
others except that the three FSPSs in the top denote the ones proposed in [5] and [28]. Especially,
“ADK+13 [2] (TT(TOS))” denotes the tagged one-time signature scheme in [2]. Notation (x, y) denotes
x elements in G1 and y elements in G2. As noted in Introduction, we do not count the two generators
in the bilinear groups in the parameters.
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6.2 Sig∗
1: SKSP-TS + SP-AKS (UF-CMA)

We give parameters of two instantiations for Sig∗1, which are (D) and (E), while
(E) is in the type I bilinear map. Both of them are automorphic.

It is obvious that most instantiations derived from Sig1 have verification key
and signature sizes linear in the message size, which makes them less efficient
and not automorphic (since verification keys have larger size than messages).
However, as shown in Table 3, as a variation of Sig1, Sig

∗
1 allows us to obtain

FSPSs with shorter signatures and verification keys if the underlying SP-AKS
scheme is UF-CMA secure. This fact shows that many existing SPSs imply the
existence of a corresponding efficient FSPS scheme since any well-formed SPS
scheme (respectively, SPS scheme with an algebraic key generation algorithm)
can be converted into an SKSP-TS (respectively, SP-AKS) scheme.

6.3 Sig2: SKSP-TS + SP-TT-AKS

We give parameters of four instantiations for Sig2, which are (F), (G), (H), and
(I), while (H) is in the type I bilinear map. The only one that is not automorphic
among them is (I). Here, (G) is achieved by using a UF-CMA secure SKSP-TS
scheme to sign auxiliary keys of two SP-TT-AKS schemes with verification keys
consisting of elements in G1 and G2 respectively, and (H) is achieved by using
a SKSP-TS scheme to sign auxiliary keys of the tag based one-time signature
scheme in [2]. Tag based one-time signatures can be treated as a special case
of two-tier signatures where secondary signing keys are the same as secondary
verification keys.

For k = 1 (SXDH), we have (|m|, |pk+par|, |σ|, ♯PPEs) = (n2
1, 2n1+7, 4n1+

8, n1 + 3) in (F), while the most efficient instantiation given in [5] achieves
(|pk + par|, |σ|, ♯PPEs) = (6n1 + 17, 4n1 + 11, n1 + 5) and is not automorphic.
Furthermore, by sacrificing efficiency, (F) can be based on weaker assumptions.

(G) achieves (|m|, |pk|+ |par|, |σ|, ♯PPEs) = (n2
1, 2n1 +2n2 +10, 4n1 +4n2 +

12, n1 + n2 + 4) for k = 1 (SDXH), which has the shortest verification key size,
signature size, and lowest cost in verification among all FSPS and FAS schemes
with a bilateral message space based on standard assumptions by now, as far as
we know.

(H) is the most efficient FSPS and FAS scheme in the type I bilinear map,
as far as we know.
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