
Verifiable Functional Encryption

Saikrishna Badrinarayanan?, Vipul Goyal ??,
Aayush Jain ? ? ?, and Amit Sahai †

Abstract. In light of security challenges that have emerged in a world
with complex networks and cloud computing, the notion of functional
encryption has recently emerged. In this work, we show that in several
applications of functional encryption (even those cited in the earliest
works on functional encryption), the formal notion of functional encryp-
tion is actually not sufficient to guarantee security. This is essentially
because the case of a malicious authority and/or encryptor is not con-
sidered. To address this concern, we put forth the concept of verifiable
functional encryption, which captures the basic requirement of output
correctness: even if the ciphertext is maliciously generated (and even if
the setup and key generation is malicious), the decryptor is still guar-
anteed a meaningful notion of correctness which we show is crucial in
several applications.
We formalize the notion of verifiable function encryption and, following
prior work in the area, put forth a simulation-based and an indistinguishability-
based notion of security. We show that simulation-based verifiable func-
tional encryption is unconditionally impossible even in the most basic
setting where there may only be a single key and a single ciphertext. We
then give general positive results for the indistinguishability setting: a
general compiler from any functional encryption scheme into a verifiable
functional encryption scheme with the only additional assumption being
the Decision Linear Assumption over Bilinear Groups (DLIN). We also
give a generic compiler in the secret-key setting for functional encryption
which maintains both message privacy and function privacy. Our posi-
tive results are general and also apply to other simpler settings such as
Identity-Based Encryption, Attribute-Based Encryption and Predicate
Encryption. We also give an application of verifiable functional encryp-
tion to the recently introduced primitive of functional commitments.

? University of California, Los Angeles and Center for Encrypted Functionalities.
Email: saikrishna@cs.ucla.edu

?? Microsoft Research, India. Email: vipul@microsoft.com
? ? ? University of California, Los Angeles and Center for Encrypted Functionalities.

Email: aayush@cs.ucla.edu
† University of California, Los Angeles and Center for Encrypted Functionalities.

Email: sahai@cs.ucla.edu. Research supported in part from a DARPA/ARL SAFE-
WARE award, NSF Frontier Award 1413955, NSF grants 1228984, 1136174, and
1065276, a Xerox Faculty Research Award, a Google Faculty Research Award, an
equipment grant from Intel, and an Okawa Foundation Research Grant. This ma-
terial is based upon work supported by the Defense Advanced Research Projects
Agency through the ARL under Contract W911NF-15-C-0205. The views expressed
are those of the author and do not reflect the official policy or position of the De-
partment of Defense, the National Science Foundation, or the U.S. Government

Finally, in the context of indistinguishability obfuscation, there is a fun-
damental question of whether the correct program was obfuscated. In
particular, the recipient of the obfuscated program needs a guarantee
that the program indeed does what it was intended to do. This question
turns out to be closely related to verifiable functional encryption. We
initiate the study of verifiable obfuscation with a formal definition and
construction of verifiable indistinguishability obfuscation.

1 Introduction

Encryption has traditionally been seen as a way to ensure confidentiality of a
communication channel between a unique sender and a unique receiver. How-
ever, with the emergence of complex networks and cloud computing, recently
the cryptographic community has been rethinking the notion of encryption to
address security concerns that arise in these more complex environments.

In particular, the notion of functional encryption (FE) was introduced [29,30],
with the first comprehensive formalizations of FE given in [13,26]. In FE, there is
an authority that sets up public parameters and a master secret key. Encryption
of a value x can be performed by any party that has the public parameters
and x. Crucially, however, the master secret key can be used to generate limited
“function keys.” More precisely, for a given allowable function f , using the master
secret key, it is possible to generate a function key SKf . Applying this function
key to an encryption of x yields only f(x). In particular, an adversarial entity
that holds an encryption of x and SKf learns nothing more about x than what
is learned by obtaining f(x). It is not difficult to imagine how useful such a
notion could be – the function f could enforce access control policies, or more
generally only allow highly processed forms of data to be learned by the function
key holder.

Our work: The case of dishonest authority and encryptor. However,
either implicitly or explicitly, almost1 all known prior work on FE has not con-
sidered the case where either the authority or the encryptor, or both, could
be dishonest. This makes sense historically, since for traditional encryption, for
example, there usually isn’t a whole lot to be concerned about if the receiver
that chooses the public/secret key pair is herself dishonest. However, as we now
illustrate with examples, there are simple and serious concerns that arise for
FE usage scenarios when the case of a dishonest authority and encryptor is
considered:

– Storing encrypted images: Let us start with a motivating example for
FE given in the paper of Boneh, Sahai, and Waters [13] that initiated the
systematic study of FE. Suppose that there is a cloud service on which

1 One of the few counter-examples to this that we are aware of is the following works
[19,20,28] on Accountable Authority IBE that dealt with the very different problem
of preventing a malicious authority that tries to sell decryption boxes.

2

customers store encrypted images. Law enforcement may require the cloud
to search for images containing a particular face. Thus, customers would be
required to provide to the cloud a restrictive decryption key which allows the
cloud to decrypt images containing the target face (but nothing else). Boneh
et al. argued that one could use functional encryption in such a setting to
provide these restricted decryption keys.

However, we observe that if we use functional encryption, then law enforce-
ment inherently has to trust the customer to be honest, because the customer
is acting as both the authority and the encryptor in this scenario. In partic-
ular, suppose that a malicious authority could create malformed ciphertexts
and “fake” decryption keys that in fact do not provide the functionality
guarantees required by law enforcement. Then, for example, law enforce-
ment could be made to believe that there are no matching images, when in
fact there might be several matching images.

A similar argument holds if the cloud is storing encrypted text or emails (and
law enforcement would like to search for the presence of certain keywords or
patterns).

– Audits: Next, we consider an even older example proposed in the pioneering
work of Goyal, Pandey, Sahai, and Waters [21] to motivate Attribute-Based
Encryption, a special case of FE. Suppose there is a bank that maintains large
encrypted databases of the transactions in each of its branches. An auditor
is required to perform a financial audit to certify compliance with various
financial regulations such as Sarbanes-Oxley. For this, the auditor would need
access to certain types of data (such as logs of certain transactions) stored
on the bank servers. However the bank does not wish to give the auditors
access to the entire data (which would leak customer personal information,
etc.). A natural solution is to have the bank use functional encryption. This
would enable it to release a key to the auditor which selectively gives him
access to only the required data.

However, note that the entire purpose of an audit is to provide assurances
even in the setting where the entity being audited is not trusted. What if
either the system setup, or the encryption, or the decryption key generation
is maliciously done? Again, with the standard notions of FE, all bets are off,
since these scenarios are simply not considered.

Surprisingly, to the best of our knowledge, this (very basic) requirement of
adversarial correctness has not been previously captured in the standard defi-
nitions of functional encryption. Indeed, it appears that many previous works
overlooked this correctness requirement while envisioning applications of (differ-
ent types of) functional encryption. The same issue also arises in the context
of simpler notions of functional encryption such as identity based encryption
(IBE), attribute based encryption (ABE), and predicate encryption (PE), which
have been studied extensively [11,32,29,21,23,17,18].

3

In order to solve this problem, we define the notion of Verifiable Functional
Encryption2 (VFE). Informally speaking, in a VFE scheme, regardless of how
the system setup is done, for each (possibly maliciously generated) ciphertext C
that passes a publicly known verification procedure, there must exist a unique
message m such that: for any allowed function description f and function key
SKf that pass another publicly known verification procedure, it must be that
the decryption algorithm given C, SKf , and f is guaranteed to output f(m). In
particular, this also implies that if two decryptions corresponding to functions
f1 and f2 of the same ciphertext yield y1 and y2 respectively, then there must
exist a single message m such that y1 = f1(m) and y2 = f2(m).

We stress that even the public parameter generation algorithm can be cor-
rupted. As illustrated above, this is critical for security in many applications.
The fact that the public parameters are corrupted means that we cannot rely
on the public parameters to contain an honestly generated Common Random
String or Common Reference String (CRS). This presents the main technical
challenge in our work, as we describe further below.

1.1 Our Contributions for Verifiable Functional Encryption

Our work makes the following contributions with regard to VFE:

– We formally define verifiable functional encryption and study both indis-
tinguishability and simulation-based security notions. Our definitions can
adapt to all major variants and predecessors of FE, including IBE, ABE,
and predicate encryption.

– We show that simulation based security is unconditionally impossible to
achieve by constructing a one-message zero knowledge proof system from
any simulation secure verifiable functional encryption scheme. Interestingly,
we show the impossibility holds even in the most basic setting where there
may only be a single key and a single ciphertext that is queried by the
adversary (in contrast to ordinary functional encryption where we know of
general positive results in such a setting from minimal assumptions [27]).
Thus, in the rest of our work, we focus on the indistinguishability-based
security notion.

– We give a generic compiler from any public-key functional encryption scheme
to a verifiable public-key functional encryption scheme, with the only addi-
tional assumption being Decision Linear Assumption over Bilinear Groups
(DLIN). Informally, we show the following theorem.

Theorem 1. (Informal) Assuming there exists a secure public key func-
tional encryption scheme for the class of functions F and DLIN is true,

2 A primitive with the same name was also defined in [8]. However, their setting is
entirely different to ours. They consider a scenario where the authority as well as
the encryptor are honest. Their goal is to convince a weak client that the decryption
(performed by a potentially malicious cloud service provider) was done correctly
using the actual ciphertext and function secret key.

4

there exists an explicit construction of a secure verifiable functional encryp-
tion scheme for the class of functions F .

In the above, the DLIN assumption is used only to construct non-interactive
witness indistinguishable (NIWI) proof systems. We show that NIWIs are
necessary by giving an explicit construction of a NIWI from any verifiable
functional encryption scheme. This compiler gives rise to various verifiable
functional encryption schemes under different assumptions. Some of them
have been summarized in the table below:

Table 1. Our Results for Verifiable FE

Verifiable Functionality Assumptions Needed

Verifiable IBE BDH+Random Oracle[11]
Verifiable IBE BDH+DLIN[32]

Verifiable ABE for NC1 DLIN[25,31]
Verifiable ABE for all Circuits LWE + DLIN[17,12]
Verifiable PE for all Circuits LWE + DLIN[18]
Verifiable FE for Inner Product Equality DLIN[25,31]
Verifiable FE for Inner Product DLIN[1]
Verifiable FE for Bounded Collusions DLIN[27,16]
Verifiable FE for Bounded Collusions LWE + DLIN[15]
Verifiable FE for all Circuits iO + Injective OWF[14]

IBE stands for identity-based encryption, ABE for attribute-based
encryption and PE for predicate encryption. The citation given in the
assumption column shows a relevant paper that builds ordinary FE
without verifiability for the stated function class.

– We next give a generic compiler for the secret-key setting. Namely, we con-
vert from any secret-key functional encryption scheme to a verifiable secret-
key functional encryption scheme with the only additional assumption being
DLIN. Informally, we show the following theorem :

Theorem 2. (Informal) Assuming there exists a message hiding and func-
tion hiding secret-key functional encryption scheme for the class of functions
F and DLIN is true, there exists an explicit construction of a message hid-
ing and function hiding verifiable secret-key functional encryption scheme
for the class of functions F .

An Application: Non-Interactive Functional Commitments: In a traditional non-
interactive commitment scheme, a committer commits to a message m which is
revealed entirely in the decommitment phase. Analogous to the evolution of
functional encryption from traditional encryption, we consider the notion of
functional commitments which were recently studied in [24] as a natural gener-
alization of non-interactive commitments. In a functional commitment scheme, a

5

committer commits to a message m using some randomness r. In the decommit-
ment phase, instead of revealing the entire message m, for any function f agreed
upon by both parties, the committer outputs a pair of values (a, b) such that
using b and the commitment, the receiver can verify that a = f(m) where m was
the committed value. Similar to a traditional commitment scheme, we require
the properties of hiding and binding. Roughly, hiding states that for any pair of
messages (m0,m1), a commitment of m0 is indistinguishable to a commitment
of m1 if f(m0) = f(m1) where f is the agreed upon function. Informally, bind-
ing states that for every commitment c, there is a unique message m committed
inside c.
We show that any verifiable functional encryption scheme directly gives rise to
a non-interactive functional commitment scheme with no further assumptions.

Verifiable iO: As shown recently[3,10,4], functional encryption for general func-
tions is closely tied to indistinguishability obfuscation [6,14]. In obfuscation, aside
from the security of the obfuscated program, there is a fundamental question of
whether the correct program was obfuscated. In particular, the recipient of the
obfuscated program needs a guarantee that the program indeed does what it
was intended to do.

Indeed, if someone hands you an obfuscated program, and asks you to run it,
your first response might be to run away. After all, you have no idea what the
obfuscated program does. Perhaps it contains backdoors or performs other prob-
lematic behavior. In general, before running an obfuscated program, it makes
sense for the recipient to wait to be convinced that the program behaves in an
appropriate way. More specifically, the recipient would want an assurance that
only certain specific secrets are kept hidden inside it, and that it uses these
secrets only in certain well-defined ways.

In traditional constructions of obfuscation, the obfuscator is assumed to be
honest and no correctness guarantees are given to an honest evaluator if the
obfuscator is dishonest. To solve this issue, we initiate a formal study of verifia-
bility in the context of indistinguishability obfuscation, and show how to convert
any iO scheme into a usefully verifiable iO scheme.

We note that verifiable iO presents some nontrivial modeling choices. For
instance, of course, it would be meaningless if a verifiable iO scheme proves that a
specific circuit C is being obfuscated – the obfuscation is supposed to hide exactly
which circuit is being obfuscated. At the same time, of course every obfuscated
program does correspond to some Boolean circuit, and so merely proving that
there exists a circuit underlying an obfuscated program would be trivial. To
resolve this modeling, we introduce a public predicate P , and our definition will
require that there is a public verification procedure that takes both P and any
maliciously generated obfuscated circuit C̃ as input. If this verification procedure
is satisfied, then we know that there exists a circuit C equivalent to C̃ such that
P (C) = 1. In particular, P could reveal almost everything about C, and only
leave certain specific secrets hidden. (We also note that our VFE schemes can
also be modified to also allow for such public predicates to be incorporated there,
as well.)

6

iO requires that given a pair (C0, C1) of equivalent circuits, the obfuscation
of C0 should be indistinguishable from the obfuscation of C1. However, in our
construction, we must restrict ourselves to pairs of circuits where this equivalence
can be proven with a short witness. In other words, there should be an NP
language L such that (C0, C1) ∈ L implies that C0 is equivalent to C1. We leave
removing this restriction as an important open problem. However, we note that,
to the best of our knowledge, all known applications of iO in fact only consider
pairs of circuits where proving equivalence is in fact easy given a short witness3.

1.2 Technical Overview

At first glance, constructing verifiable functional encryption may seem easy. One
naive approach would be to just compile any functional encryption (FE) system
with NIZKs to achieve verifiability. However, note that this doesn’t work, since
if the system setup is maliciously generated, then the CRS for the NIZK would
also be maliciously generated, and therefore soundness would not be guaranteed
to hold.

Thus, the starting point of our work is to use a relaxation of NIZK proofs
called non-interactive witness indistinguishable proof (NIWI) systems, that do
guarantee soundness even without a CRS. However, NIWIs only guarantee wit-
ness indistinguishability, not zero-knowledge. In particular, if there is only one
valid witness, then NIWIs do not promise any security at all. When using NI-
WIs, therefore, it is typically necessary to engineer the possibility of multiple
witnesses.

A failed first attempt and the mismatch problem: Two parallel FE
schemes. A natural initial idea would be to execute two FE systems in parallel
and prove using a NIWI that at least one of them is fully correct: that is, its setup
was generated correctly, the constituent ciphertext generated using this system
was computed correctly and the constituent function secret key generated using
this system was computed correctly. Note that the NIWI computed for proving
correctness of the ciphertext will have to be separately generated from the NIWI
computed for proving correctness of the function secret key.

This yields the mismatch problem: It is possible that in one of the FE systems,
the ciphertext is maliciously generated, while in the other, the function secret key
is! Then, during decryption, if either the function secret key or the ciphertext is
malicious, all bets are off. In fact, several known FE systems [15,14] specifically
provide for programming either the ciphertext or the function secret key to force
a particular output during decryption.

Could we avoid the mismatch problem by relying on majority-based decod-
ing? In particular, suppose we have three parallel FE systems instead of two.
Here, we run into the following problem: If we prove that at least two of the

3 For instance, suppose that C0 uses an ordinary GGM PRF key, but C1 uses a
punctured GGM PRF key. It is easy to verify that these two keys are equivalent by
simply verifying each node in the punctured PRF tree of keys by repeated application
of the underlying PRG.

7

three ciphertexts are honestly encrypting the same message, the NIWI may not
hide this message at all: informally speaking, the witness structure has too few
“moving parts”, and it is not known how to leverage NIWIs to argue indistin-
guishability. On the other hand, if we try to relax the NIWI and prove only
that at least two of the three ciphertexts are honestly encrypting some (possibly
different) message, each ciphertext can no longer be associated with a unique
message, and the mismatch problem returns, destroying verifiability.

Let’s take a look at this observation a bit more in detail in the context of
functional commitments, which is perhaps a simpler primitive. Consider a scheme
where the honest committer commits to the same message m thrice using a non-
interactive commitment scheme. Let Z1,Z2,Z3 be these commitments. Note that
in the case of a malicious committer, the messages being committed m0,m1,m2,
may all be potentially different. In the decommitment phase, the committer
outputs a and a NIWI proving that two out of the three committed values (say
mi and mj) are such that a = f(mi) = f(mj). With such a NIWI, it is possible
to give a hybrid argument that proves the hiding property (which corresponds to
indistinguishability in the FE setting). However, binding (which corresponds to
verifiability) is lost: One can maliciously commit to m0,m1,m2 such that they
satisfy the following property : there exists functions f, g, h for which it holds
that f(m0) = f(m1) 6= f(m2), g(m0) 6= g(m1) = g(m2) and h(m0) = h(m2) 6=
h(m1). Now, if the malicious committer runs the decommitment phase for these
functions separately, there is no fixed message bound by the commitment.

As mentioned earlier, one could also consider a scheme where in the decom-
mitment phase, the committer outputs f(m) and a NIWI proving that two out of
the three commitments correspond to the same message m (i.e. there exists i, j
such that mi = mj) and f(mi) = a. The scheme is binding but does not satisfy
hiding any more. This is because there is no way to move from a hybrid where
all three commitments correspond to message m∗0 to one where all three com-
mitments correspond to message m∗1, since at every step of the hybrid argument,
two messages out of three must be equal.

This brings out the reason why verifiability and security are two conflict-
ing requirements. Verifiability seems to demand a majority of some particular
message in the constituent ciphertexts whereas in the security proof, we have
to move from a hybrid where the majority changes (from that of m∗0 to that of
m∗1). Continuing this way it is perhaps not that hard to observe that having any
number of systems will not solve the problem. Hence, we have to develop some
new techniques to solve the problem motivated above. This is what we describe
next.

Our solution: Locked trapdoors. Let us start with a scheme with five parallel
FE schemes. Our initial idea will be to commit to the challenge constituent
ciphertexts as part of the public parameters, but we will need to introduce a
twist to make this work, that we will mention shortly. Before we get to the
twist, let’s first see why having a commitment to the challenge ciphertext doesn’t
immediately solve the problem. Let’s introduce a trapdoor statement for the
relation used by the NIWI corresponding to the VFE ciphertexts. This trapdoor

8

statement states that two of the constituent ciphertexts are encryptions of the
same message and all the constituent ciphertexts are committed in the public
parameters. Initially, the NIWI in the challenge ciphertext uses the fact that
the trapdoor statement is correct with the indices 1 and 2 encrypting the same
message m∗0. The NIWIs in the function secret keys use the fact that the first
four indices are secret keys for the same function. Therefore, this leaves the fifth
index free (not being part of the NIWI in any function secret key or challenge
ciphertext) and we can switch the fifth constituent challenge ciphertext to be an
encryption of m∗1. We can switch the indices used in the NIWI for the function
secret keys (one at a time) appropriately to leave some other index free and
transform the challenge ciphertext to encrypt m∗0 in the first two indices and m∗1
in the last three. We then switch the proof in the challenge ciphertext to use the
fact that the last two indices encrypt the same message m∗1. After this, in the
same manner as above, we can switch the first two indices (one by one) of the
challenge ciphertext to also encrypt m∗1. This strategy will allow us to complete
the proof of indistinguishability security.

Indeed, such an idea of committing to challenge ciphertexts in the public
parameters has been used in the FE context before, for example in [14]. How-
ever, observe that if we do this, then verifiability is again lost, because recall
that even the public parameters of the system are under the adversary’s con-
trol! If a malicious authority generates a ciphertext using the correctness of the
trapdoor statement, he could encrypt the tuple (m,m,m1,m2,m3) as the set
of messages in the constituent ciphertexts and generate a valid NIWI. Now, for
some valid function secret key, decrypting this ciphertext may not give rise to
a valid function output. The inherent problem here is that any ciphertext for
which the NIWI is proved using the trapdoor statement and any honestly gener-
ated function secret key need not agree on a majority (three) of the underlying
systems.

To overcome this issue, we introduce the idea of a guided locking mechanism.
Intuitively, we require that the system cannot have both valid ciphertexts that
use the correctness of the trapdoor statement and valid function secret keys.
Therefore, we introduce a new “lock” in the public parameters. The statement
being proved in the function secret key will state that this lock is a commitment
of 1, while the trapdoor statement for the ciphertexts will state that the lock
is a commitment of 0. Thus, we cannot simultaneously have valid ciphertexts
that use the correctness of the trapdoor statement and valid function secret
keys. This ensures verifiability of the system. However, while playing this cat
and mouse game of ensuring security and verifiability, observe that we can no
longer prove that the system is secure! In our proof strategy, we wanted to switch
the challenge ciphertext to use the correctness of the trapdoor statement which
would mean that no valid function secret key can exist in the system. But, the
adversary can of course ask for some function secret keys and hence the security
proof wouldn’t go through.

We handle this scenario by introducing another trapdoor statement for the
relation corresponding to the function secret keys. This trapdoor statement is

9

similar to the honest one in the sense that it needs four of the five constituent
function secret keys to be secret keys for the same function. Crucially, how-
ever, additionally, it states that if you consider the five constituent ciphertexts
committed to in the public parameters, decrypting each of them with the cor-
responding constituent function secret key yields the same output. Notice that
for any function secret key that uses the correctness of the trapdoor statement
and any ciphertext generated using the correctness of its corresponding trapdoor
statement, verifiability is not lost. This is because of the condition that all corre-
sponding decryptions yield the same output. Indeed, for any function secret key
that uses the correctness of the trapdoor statement and any ciphertext generated
using the correctness of its non-trapdoor statement, verifiability is maintained.
Thus, this addition doesn’t impact the verifiability of the system.

Now, in order to prove security, we first switch every function secret key to
be generated using the correctness of the trapdoor statement. This is followed
by changing the lock in the public parameter to be a commitment of 1 and
then switching the NIWI in the ciphertexts to use their corresponding trapdoor
statement. The rest of the security proof unravels in the same way as before.
After the challenge ciphertext is transformed into an encryption of message m∗1,
we reverse the whole process to switch every function secret key to use the real
statement (and not the trapdoor one) and to switch the challenge ciphertext
to use the corresponding real statement. Notice that the lock essentially guides
the sequence of steps to be followed by the security proof as any other sequence
is not possible. In this way, the locks guide the hybrids that can be considered
in the security argument, hence the name “guided” locking mechanism for the
technique. In fact, using these ideas, it turns out that just having four parallel
systems suffices to construct verifiable functional encryption in the public key
setting.

In the secret key setting, to achieve verifiability, we also have to commit to
all the constituent master secret keys in the public parameters. However, we
need an additional system (bringing the total back to five) because in order to
switch a constituent challenge ciphertext from an encryption of m∗0 to that of
m∗1, we need to puncture out the corresponding master secret key committed in
the public parameters. We observe that in the secret key setting, ciphertexts and
function secret keys can be seen as duals of each other. Hence, to prove function
hiding, we introduce indistinguishable modes and a switching mechanism. At any
point in time, the system can either be in function hiding mode or in message
hiding mode but not both. At all stages, verifiability is maintained using similar
techniques.

Organisation: In section 2 we define the preliminaries used in the paper. In
section 3, we give the definition of a verifiable functional encryption scheme. This
is followed by the construction and proof of a verifiable functional encryption
scheme in 4. In section 5, we give the construction of a secret key verifiable
functional encryption scheme. Section 6 is devoted to the study of verifiable
obfuscation. An application of verifiable functional encryption is in achieving

10

functional commitments. Due to lack of space, this has been discussed in the full
version [5].

2 Preliminaries

Throughout the paper, let the security parameter be λ and let PPT denote a
probabilistic polynomial time algorithm. We assume that reader is familiar with
the concept of public key encryption and non-interactive commitment schemes.

2.1 One message WI Proofs

We will be extensively using one message witness indistinguishable proofs NIWI
as provided by [22].

Definition 1. A pair of PPT algorithms (P,V) is a NIWI for an NP relation
RL if it satisfies:

1. Completeness: for every (x,w) ∈ RL, Pr[V(x, π) = 1 : π ← P(x,w)] = 1.
2. (Perfect) Soundness: Proof system is said to be perfectly sound if there for

every x /∈ L and π ∈ {0, 1}∗
Pr[V(x, π) = 1] = 0.

3. Witness indistinguishability: for any sequence I = {(x,w1, w2) : w1, w2 ∈
RL(x)}
{π1 : π1 ← P(x,w1)}(x,w1,w2)∈I ≈c {π2 : π2 ← P(x,w2)}(x,w1,w2)∈I

[22] provides perfectly sound one message witness indistinguishable proofs based
on the decisional linear (DLIN) assumption. [7] also provides perfectly sound
proofs (although less efficient) under a complexity theoretic assumption, namely
that Hitting Set Generators against co-non deterministic circuits exist. [9] con-
struct NIWI from one-way permutations and indistinguishability obfuscation.

3 Verifiable Functional Encryption

In this section we give the definition of a (public-key) verifiable functional encryp-
tion scheme. Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N denote ensembles where each
Xλ and Yλ is a finite set. Let F = {Fλ}λ∈N denote an ensemble where each Fλ is
a finite collection of functions, and each function f ∈ Fλ takes as input a string
x ∈ Xλ and outputs f(x) ∈ Yλ. A verifiable functional encryption scheme is
similar to a regular functional encryption scheme with two additional algorithms
(VerifyCT,VerifyK). Formally, VFE = (Setup,Enc,KeyGen,Dec,VerifyCT,VerifyK)
consists of the following polynomial time algorithms:

– Setup(1λ). The setup algorithm takes as input the security parameter λ and
outputs a master public key-secret key pair (MPK,MSK).

– Enc(MPK, x) → CT. The encryption algorithm takes as input a message
x ∈ Xλ and the master public key MPK. It outputs a ciphertext CT.

11

– KeyGen(MPK,MSK, f)→ SKf . The key generation algorithm takes as input
a function f ∈ Fλ, the master public key MPK and the master secret key
MSK. It outputs a function secret key SKf .

– Dec(MPK, f,SKf ,CT)→ y or⊥. The decryption algorithm takes as input the
master public key MPK, a function f , the corresponding function secret key
SKf and a ciphertext CT. It either outputs a string y ∈ Y or ⊥. Informally
speaking, MPK is given to the decryption algorithm for verification purpose.

– VerifyCT(MPK,CT)→ 1/0. Takes as input the master public key MPK and a
ciphertext CT. It outputs 0 or 1. Intuitively, it outputs 1 if CT was correctly
generated using the master public key MPK for some message x.

– VerifyK(MPK, f,SK) → 1/0. Takes as input the master public key MPK, a
function f and a function secret key SKf . It outputs either 0 or 1. Intuitively,
it outputs 1 if SKf was correctly generated as a function secret key for f .

The scheme has the following properties:

Definition 2. (Correctness) A verifiable functional encryption scheme VFE for
F is correct if for all f ∈ Fλ and all x ∈ Xλ

Pr

 (MPK,MSK)← Setup(1λ)
SKf ← KeyGen(MPK,MSK, f)

Dec(MPK, f,SKf ,Enc(MPK, x)) = f(x)

 = 1

Definition 3. (Verifiability) A verifiable functional encryption scheme VFE for
F is verifiable if, for all MPK ∈ {0, 1}∗, for all CT ∈ {0, 1}∗, there exists x ∈ X
such that for all f ∈ F and SK ∈ {0, 1}∗, if

VerifyCT(MPK,CT) = 1 and VerifyK(MPK, f,SK) = 1

then
Pr

[
Dec(MPK, f,SK,CT) = f(x)

]
= 1

Remark. Intuitively, verifiability states that each ciphertext (possibly associ-
ated with a maliciously generated public key) should be associated with a unique
message and decryption for a function f using any possibly maliciously gener-
ated key SK should result in f(x) for that unique message f(x) and nothing else
(if the ciphertext and keys are verified by the respective algorithms).
We also note that a verifiable functional encryption scheme should satisfy per-
fect correctness. Otherwise, a non-uniform malicious authority can sample ci-
phertexts/keys from the space where it fails to be correct. Thus, the primitives
that we will use in our constructions are assumed to have perfect correctness.
Such primitives have been constructed before in the literature.

3.1 Indistinguishability Based Security

The indistinguishability based security for verifiable functional encryption is sim-
ilar to the security notion of a functional encryption scheme. For completeness,

12

we define it below. We also consider a {full/selective} CCA secure variant where
the adversary, in addition to the security game described below, has access to a
decryption oracle which takes a ciphertext and a function as input and decrypts
the ciphertext with an honestly generated key for that function and returns the
output. The adversary is allowed to query this decryption oracle for all cipher-
texts of his choice except the challenge ciphertext itself.
We define the security notion for a verifiable functional encryption scheme using
the following game (Full− IND) between a challenger and an adversary.

Setup Phase: The challenger (MPK,MSK)← vFE.Setup(1λ) and then hands
over the master public key MPK to the adversary.
Key Query Phase 1: The adversary makes function secret key queries by sub-
mitting functions f ∈ Fλ. The challenger responds by giving the adversary the
corresponding function secret key SKf ← vFE.KeyGen(MPK,MSK, f).
Challenge Phase: The adversary chooses two messages (m0,m1) of the same
size (each in Xλ)) such that for all queried functions f in the key query phase,
it holds that f(m0) = f(m1). The challenger selects a random bit b ∈ {0, 1} and
sends a ciphertext CT← vFE.Enc(MPK,mb) to the adversary.
Key Query Phase 2: The adversary may submit additional key queries f ∈Fλ
as long as they do not violate the constraint described above. That is, for all
queries f , it must hold that f(m0) = f(m1).
Guess: The adversary submits a guess b

′
and wins if b

′
= b. The adversary’s

advantage in this game is defined to be 2 ∗ |Pr[b = b
′
]− 1/2|.

We also define the selective security game, which we call (sel− IND) where the
adversary outputs the challenge message pair even before seeing the master pub-
lic key.

Definition 4. A verifiable functional encryption scheme VFE is { selective, fully
} secure if all polynomial time adversaries have at most a negligible advantage
in the {Sel− IND,Full− IND} security game.

Functional Encryption: In our construction, we will use functional encryption
as an underlying primitive. Syntax of a functional encryption scheme is defined in
[14]. It is similar to the syntax of a verifiable functional encryption scheme except
that it doesn’t have the VerifyCT and VerifyK algorithms, the KeyGen algorithm
does not take as input the master public key and the decryption algorithm does
not take as input the master public key and the function. Other than that, the
security notions and correctness are the same. However, in general any functional
encryption scheme is not required to satisfy the verifiability property.

3.2 Simulation Based Security

Many variants of simulation based security definitions have been proposed for
functional encryption. In general, simulation security (where the adversary can
request for keys arbitrarily) is shown to be impossible [2]. We show that even the

13

weakest form of simulation based security is impossible to achieve for verifiable
functional encryption.

Theorem 3. There exists a family of functions, each of which can be represented
as a polynomial sized circuit, for which there does not exist any simulation secure
verifiable functional encryption scheme.

Proof. Let L be a NP complete language. Let R be the relation for this language.
R : {0, 1}∗ × {0, 1}∗ → {0, 1}, takes as input a string x and a polynomial sized
(in the length of x) witness w and outputs 1 iff x ∈ L and w is a witness to this
fact. For any security parameter λ, let us define a family of functions Fλ as a
family indexed by strings y ∈ {0, 1}λ. Namely, Fλ = {R(y, ·) ∀y ∈ {0, 1}λ}.

Informally speaking, any verifiable functional encryption scheme that is also
simulation secure for this family implies the existence of one message zero knowl-
edge proofs for L. The proof system is described as follows: the prover, who has
the witness for any instance x of length λ, samples a master public key and mas-
ter secret key pair for a verifiable functional encryption scheme with security
parameter λ. Using the master public key, it encrypts the witness and samples
a function secret key for the function R(x, ·). The verifier is given the master
public key, the ciphertext and the function secret key. Informally, simulation
security of the verifiable functional encryption scheme provides computational
zero knowledge while perfect soundness and correctness follow from verifiability.
A formal proof is can be found in the fullversion [5].

In a similar manner, we can rule out even weaker simulation based definitions
in the literature where the simulator also gets to generate the function secret
keys and the master public key. Interestingly, IND secure VFE for the circuit
family described in the above proof implies one message witness indistinguishable
proofs(NIWI) for NP and hence it is intuitive that we will have to make use of
NIWI in our constructions.

Theorem 4. There exists a family of functions, each of which can be represented
as a polynomial sized circuit, for which (selective) IND secure verifiable func-
tional encryption implies the existence of one message witness indistinguishable
proofs for NP (NIWI).

We prove the theorem in the full version [5].

The definition for verifiable secret key functional encryption and verifiable
multi-input functional encryption can be found in the full version [5].

4 Construction of Verifiable Functional Encryption

In this section, we give a compiler from any Sel− IND secure public key func-
tional encryption scheme to a Sel− IND secure verifiable public key functional
encryption scheme. The techniques used in this construction have been elabo-
rated upon in section 1.2. The resulting verifiable functional encryption scheme

14

has the same security properties as the underlying one - that is, the resulting
scheme is q-query secure if the original scheme that we started out with was
q-query secure and so on, where q refers to the number of function secret key
queries that the adversary is allowed to make. We prove the following theorem :

Theorem 5. Let F = {Fλ}λ∈N be a parameterized collection of functions. Then,
assuming there exists a Sel− IND secure public key functional encryption scheme
FE for the class of functions F , a non-interactive witness indistinguishable proof
system, a non-interactive perfectly binding and computationally hiding commit-
ment scheme, the proposed scheme VFE is a Sel− IND secure verifiable functional
encryption scheme for the class of functions F according to definition 3.1.

Notation : Without loss of generality, let’s assume that every plaintext mes-
sage is of length λ where λ denotes the security parameter of our scheme. Let
(Prove,Verify) be a non-interactive witness-indistinguishable (NIWI) proof sys-
tem for NP, FE = (FE.Setup,FE.Enc,FE.KeyGen,FE.Dec) be a Sel− IND secure
public key functional encryption scheme, Com be a statistically binding and
computationally hiding commitment scheme. Without loss of generality, let’s
say Com commits to a string bit-by-bit and uses randomness of length λ to com-
mit to a single bit. We denote the length of ciphertexts in FE by c-len = c-len(λ).
Let len = 4 · c-len.
Our scheme VFE = (VFE.Setup,VFE.Enc,VFE.KeyGen,VFE.Dec,VFE.VerifyCT,
VFE.VerifyK) is as follows:

– Setup VFE.Setup(1λ) :
The setup algorithm does the following:
1. For all i ∈ [4], compute (MPKi,MSKi)← FE.Setup(1λ; si) using random-

ness si.
2. Set Z = Com(0len;u) and Z1 = Com(1;u1) where u,u1 represent the

randomness used in the commitment.
The master public key is MPK = ({MPKi}i∈[4],Z,Z1).
The master secret key is MSK = ({MSKi}i∈[4], {si}i∈[4], u, u1).

– Encryption VFE.Enc(MPK,m) :
To encrypt a message m, the encryption algorithm does the following:
1. For all i ∈ [4], compute CTi = FE.Enc(MPKi,m; ri).
2. Compute a proof π ← Prove(y, w) for the statement that y ∈ L using

witness w where :
y = ({CTi}i∈[4], {MPKi}i∈[4],Z,Z1),

w = (m, {ri}i∈[4], 0, 0, 0|u|, 0|u1|).
L is defined corresponding to the relation R defined below.

Relation R :
Instance : y = ({CTi}i∈[4], {MPKi}i∈[4],Z,Z1)
Witness : w = (m, {ri}i∈[4], i1, i2, u, u1)
R1(y, w) = 1 if and only if either of the following conditions hold :
1. All 4 constituent ciphertexts encrypt the same message. That is,
∀i ∈ [4], CTi = FE.Enc(MPKi,m; ri)
(OR)

15

2. 2 constituent ciphertexts (corresponding to indices i1, i2) encrypt the
same message, Z is a commitment to all the constituent ciphertexts and
Z1 is a commitment to 0. That is,
(a) ∀i ∈ {ı1, i2}, CTi = FE.Enc(MPKi,m; ri).
(b) Z = Com({CTi}i∈[4];u).
(c) Z1 = Com(0;u1).

The output of the algorithm is the ciphertext CT = ({CTi}i∈[4], π).
π is computed for statement 1 of relation R.

– Key Generation VFE.KeyGen(MPK,MSK, f) :
To generate the function secret key Kf for a function f , the key generation
algorithm does the following:
1. ∀i ∈ [4], compute Kfi = FE.KeyGen(MSKi, f ; ri).
2. Compute a proof γ ← Prove(y, w) for the statement that y ∈ L1 using

witness w where:
y = ({Kfi }i∈[4], {MPKi}i∈[4],Z,Z1),

w = (f, {MSKi}i∈[4], {si}i∈[4], {ri}i∈[4], 03, 0|u|, u1).
L1 is defined corresponding to the relation R1 defined below.

Relation R1 :
Instance : y = (f, {Kfi }i∈[4], {MPKi}i∈[4],Z,Z1).
Witness : w = ({MSKi}i∈[4], {si}i∈[4], {ri}i∈[4], i1, i2, i3, u, u1)
R1(y, w) = 1 if and only if either of the following conditions hold :
1. Z1 is a commitment to 1, all 4 constituent function secret keys are secret

keys for the same function and are constructed using honestly generated
public key-secret key pairs.
(a) ∀i ∈ [4], Kfi = FE.KeyGen(MSKi, f ; ri).
(b) ∀i ∈ [4], (MPKi,MSKi)← FE.Setup(1λ; si).
(c) Z1 = Com(1;u1).
(OR)

2. 3 of the constituent function secret keys (corresponding to indices i1, i2, i3)
are keys for the same function and are constructed using honestly gener-
ated public key-secret key pairs, Z is a commitment to a set of ciphertexts
CT such that each constituent ciphertext in CT when decrypted with the
corresponding function secret key gives the same output. That is,
(a) ∀i ∈ {i1, i2, i3}, Kfi = FE.KeyGen(MSKi, f ; ri).
(b) ∀i ∈ {i1, i2, i3}, (MPKi,MSKi)← FE.Setup(1λ; si).
(c) Z = Com({CTi}i∈[4];u).

(d) ∃x ∈ Xλ such that ∀i ∈ [4], FE.Dec(CTi,K
f
i) = x

The output of the algorithm is the function secret key Kf = ({Kfi }i∈[4], γ).
γ is computed for statement 1 of relation R1.

– Decryption VFE.Dec(MPK, f,Kf ,CT) :
This algorithm decrypts the ciphertext CT = ({CTi}i∈[4], π) using function

secret key Kf = ({Kfi }i∈[4], γ) in the following way:
1. Let y = ({CTi}i∈[4], {MPKi}i∈[4],Z,Z1) be the statement corresponding

to proof π. If Verify(y, π) = 0, then stop and output ⊥. Else, continue to
the next step.

16

2. Let y1 = (f, {Kfi }i∈[4], {MPKi}i∈[4],Z,Z1) be the statement correspond-
ing to proof γ. If Verify(y1, γ) = 0, then stop and output ⊥. Else, continue
to the next step.

3. For i ∈ [4], compute mi = FE.Dec(CTi,K
f
i). If at least 3 of the mi’s are

equal (let’s say that value is m), output m. Else, output ⊥.
– VerifyCT VFE.VerifyCT(MPK,CT) :

Given a ciphertext CT = ({CTi}i∈[4], π), this algorithm checks whether the
ciphertext was generated correctly using master public key MPK. Let y =
({CTi}i∈[4], {MPKi}i∈[4],Z,Z1) be the statement corresponding to proof π.
If Verify(y, π) = 1, it outputs 1. Else, it outputs 0.

– VerifyK VFE.VerifyK(MPK, f,K) :
Given a function f and a function secret key K = ({Ki}i∈[4], γ), this al-
gorithm checks whether the key was generated correctly for function f us-
ing the master secret key corresponding to master public key MPK. Let
y = (f, {Ki}i∈[4], {MPKi}i∈[4],Z,Z1) be the statement corresponding to proof
γ. If Verify(y, γ) = 1, it outputs 1. Else, it outputs 0.

Correctness :
Correctness follows directly from the correctness of the underlying FE scheme,
correctness of the commitment scheme and the completeness of the NIWI proof
system.

4.1 Verifiability

Consider any master public key MPK and any ciphertext CT = ({CTi}i∈[4], π)
such that
VFE.VerifyCT(MPK,CT) = 1. Now, there are two cases possible for the proof π.

1. Statement 1 of relation R is correct :
Therefore, there existsm ∈ Xλ such that ∀i ∈ [4], CTi = FE.Enc(MPKi,m; ri)
where ri is a random string. Consider any function f and function secret key
K = ({Ki}i∈[4], γ) such that VFE.VerifyK(MPK, f,K) = 1. There are two
cases possible for the proof γ.
(a) Statement 1 of relation R1 is correct :

Therefore, ∀i ∈ [4], Ki is a function secret key for the same func-
tion - f . That is, ∀i ∈ [4], Ki = FE.KeyGen(MSKi, f ; r′i) where r′i is a
random string. Thus, for all i ∈ [4], FE.Dec(CTi,Ki) = f(m). Hence,
VFE.Dec(MPK, f,K,CT) = f(m).

(b) Statement 2 of relation R1 is correct :
Therefore, there exists 3 indices i1, i2, i3 such that Ki1 ,Ki2 ,Ki3 are func-
tion secret keys for the same function - f . That is, ∀i ∈ {i1, i2, i3},
Ki = FE.KeyGen(MSKi, f ; r′i) where r′i is a random string Thus, for all i ∈
{i1, i2, i3}, FE.Dec(CTi,Ki) = f(m). Hence, VFE.Dec(MPK, f,K,CT) =
f(m).

2. Statement 2 of relation R is correct:
Therefore, Z1 = Com(0;u1) and Z = Com({CTi}i∈[4];u) for some random

17

strings u, u1. Also, there exists 2 indices i1, i2 and a message m ∈ Xλ such
that for i ∈ {i1, i2}, CTi = FE.Enc(MPKi,m; ri) where ri is a random string.
Consider any function f and function secret key K = ({Ki}i∈[4], γ) such that
VFE.VerifyK(MPK, f,K) = 1. There are two cases possible for the proof γ.
(a) Statement 1 of relation R1 is correct :

Then, it must be the case that Z1 = Com(1;u′1) for some random string
u′1. However, we already know that Z1 = Com(0;u1) and Com is a per-
fectly binding commitment scheme. Thus, this scenario isn’t possible.
That is, both VFE.VerifyCT(MPK,CT) and VFE.VerifyK(MPK, f,K) can’t
be equal to 1.

(b) Statement 2 of relation R1 is correct :
Therefore, there exists 3 indices i′1, i

′
2, i
′
3 such that Ki′1 ,Ki′2 ,Ki′3 are func-

tion secret keys for the same function - f . That is, ∀i ∈ {i′1, i′2, i′3}, Ki =
FE.KeyGen(MSKi, f ; r′i) where r′i is a random string. Thus, by pigeon-
hole principle, there exists i∗ ∈ {i′1, i′2, i′3} such that i∗ ∈ {i1, i2} as well.
Also, Z = Com({CTi}i∈[4];u) and ∀i ∈ [4], FE.Dec(CTi,Ki) is the same.
Therefore, for the index i∗, FE.Dec(CTi∗ ,Ki∗) = f(m). Hence, ∀i ∈ [4],
FE.Dec(CTi,Ki) = f(m). Therefore, VFE.Dec(MPK, f,K,CT) = f(m).

4.2 Security Proof

We now prove that the proposed scheme VFE is Sel− IND secure. We will prove
this via a series of hybrid experiments H1, . . . ,H16 where H1 corresponds to the
real world experiment with challenge bit b = 0 and H16 corresponds to the real
world experiment with challenge bit b = 1. The hybrids are summarized below
in Table 4.2.

We briefly describe the hybrids below. A more detailed description can be
found in the full version [5].

– Hybrid H1: This is the real experiment with challenge bit b = 0. The master
public key is MPK = ({MPKi}i∈[4],Z,Z1) such that Z = Com(0len;u) and
Z1 = Com(1;u1) for random strings u, u1. The challenge ciphertext is CT∗ =
({CT∗i }i∈[4], π∗), where for all i ∈ [4], CT∗i = FE.Enc(MPKi,m0; ri) for some
random string ri. π

∗ is computed for statement 1 of relation R.
– Hybrid H2: This hybrid is identical to the previous hybrid except that Z is

computed differently. Z = Com({CT∗i }i∈[4];u).
– Hybrid H3: This hybrid is identical to the previous hybrid except that for

every function secret key Kf , the proof γ is now computed for statement 2
of relation R1 using indices {1, 2, 3} as the set of 3 indices {i1, i2, i3} in the
witness. That is, the witness is w = (MSK1,MSK2,MSK3, 0

|MSK4|, s1, s2, s3,
0|s4|, r1, r2, r3, 0

|r4|, 1, 2, 3, u, 0|u1|).
– Hybrid H4: This hybrid is identical to the previous hybrid except that Z1

is computed differently. Z1 = Com(0;u1).
– Hybrid H5: This hybrid is identical to the previous hybrid except that the

proof π∗ in the challenge ciphertext is now computed for statement 2 of
relation R using indices {1, 2} as the 2 indices {i1, i2} in the witness. That
is, the witness is w = (m, r1, r2, 0

|r3|, 0|r4|, 1, 2, u, u1).

18

Hybrid ({CT∗i }i∈[4]) π∗ {Kfi }i∈[4] γ Z Z1 Security
H1 (m0,m0,m0,m0) 1 (f, f, f, f) 1 Com(0) Com(1) -
H2 (m0,m0,m0,m0) 1 (f, f, f, f) 1 Com({CT∗i }i∈[4]) Com(1) Com-Hiding
H3 (m0,m0,m0,m0) 1 (f, f, f , f) 2 Com({CT∗i }i∈[4]) Com(1) NIWI
H4 (m0,m0,m0,m0) 1 (f, f, f , f) 2 Com({CT∗i }i∈[4]) Com(0) Com-Hiding
H5 (m0,m0,m0,m0) 2 (f, f, f , f) 2 Com({CT∗i }i∈[4]) Com(0) NIWI
H6 (m0,m0,m0,m1) 2 (f, f, f , f) 2 Com({CT∗i }i∈[4]) Com(0) IND-secure FE
H7 (m0,m0,m0,m1) 2 (f, f, f, f) 2 Com({CT∗i }i∈[4]) Com(0) NIWI
H8 (m0,m0,m1,m1) 2 (f, f, f, f) 2 Com({CT∗i }i∈[4]) Com(0) IND-secure FE
H9 (m0,m0,m1,m1) 2 (f, f, f, f) 2 Com({CT∗i }i∈[4]) Com(0) NIWI
H10 (m0,m1,m1,m1) 2 (f, f, f, f) 2 Com({CT∗i }i∈[4]) Com(0) IND-secure FE
H11 (m0,m1,m1,m1) 2 (f, f, f, f) 2 Com({CT∗i }i∈[4]) Com(0) NIWI
H12 (m1,m1,m1,m1) 2 (f, f, f, f) 2 Com({CT∗i }i∈[4]) Com(0) IND-secure FE
H13 (m1,m1,m1,m1) 1 (f, f, f, f) 2 Com({CT∗i }i∈[4]) Com(0) NIWI
H14 (m1,m1,m1,m1) 1 (f, f, f, f) 2 Com({CT∗i }i∈[4]) Com(1) Com-Hiding
H15 (m1,m1,m1,m1) 1 (f, f, f, f) 1 Com({CT∗i }i∈[4]) Com(1) NIWI
H16 (m1,m1,m1,m1) 1 (f, f, f, f) 1 Com(0) Com(1) Com-Hiding

Table 5.2 : Here, (m0,m0,m0,m0) indicates the messages that are encrypted to

form the challenge ciphertext {CT∗i }i∈[4]. Similarly for the column {Kfi }i∈[4]. The
column π∗ (and γ) denote the statement proved by the proof in relation R (and
R1). The text in red indicates the difference from the previous hybrid. The text in
blue denotes the indices used in the proofs π∗ and γ. That is, the text in blue in the
column ({CT∗i }i∈[4]) denotes the indices used in the proof π∗ and the text in blue

in the column ({Kfi }i∈[4]) denotes the indices used in the proof γ for every function

secret key Kf corresponding to function f . In some cases, the difference is only in
the indices used in the proofs π∗ or γ and these are not reflected using red.

– Hybrid H6: This hybrid is identical to the previous hybrid except that
we change the fourth component CT∗4 of the challenge ciphertext to be an
encryption of the challenge message m1 (as opposed to m0). That is, CT∗4 =
FE.Enc(MPK4,m1; r4) for some random string r4. Note that the proof π∗ is
unchanged and is still proven for statement 2 of relation R.

– Hybrid H7: This hybrid is identical to the previous hybrid except that for
every function secret key Kf , the proof γ is now computed for statement 2
of relation R1 using indices {1, 2, 4} as the set of 3 indices {i1, i2, i3} in the
witness. That is, the witness is w = (MSK1,MSK2, 0

|MSK3|,MSK4, s1, s2, 0
|s3|,

s4, r1, r2, 0
|r3|, r4, 1, 2, 4, u, 0

|u1|).

– Hybrid H8: This hybrid is identical to the previous hybrid except that
we change the third component CT∗3 of the challenge ciphertext to be an
encryption of the challenge message m1 (as opposed to m0). That is, CT∗3 =
FE.Enc(MPK3,m1; r3) for some random string r3.
Note that the proof π∗ is unchanged and is still proven for statement 2 of
relation R.

19

– Hybrid H9: This hybrid is identical to the previous hybrid except that the
proof π∗ in the challenge ciphertext is now computed for statement 2 of re-
lation R using message m1 and indices {3, 4} as the 2 indices {i1, i2} in the
witness. That is, the witness is w = (m1, 0

|r1|, 0|r2|, r3, r4, 3, 4, u, u1).
Also, for every function secret key Kf , the proof γ is now computed for state-
ment 2 of relation R1 using indices {1, 3, 4} as the set of 3 indices {i1, i2, i3}
in the witness. That is, the witness is w = (MSK1, 0

|MSK2|,MSK3,MSK4, s1,
0|s2|, s3, s4, r1, 0

|r2|, r3, r4, 1, 3, 4, u, 0
|u1|).

– Hybrid H10: This hybrid is identical to the previous hybrid except that
we change the second component CT∗2 of the challenge ciphertext to be an
encryption of the challenge message m1 (as opposed to m0). That is, CT∗2 =
FE.Enc(MPK2,m1; r2) for some random string r2.
Note that the proof π∗ is unchanged and is still proven for statement 2 of
relation R.

– Hybrid H11: This hybrid is identical to the previous hybrid except that for
every function secret key Kf , the proof γ is now computed for statement 2
of relation R1 using indices {2, 3, 4} as the set of 3 indices {i1, i2, i3} in the
witness. That is, the witness is w = (0|MSK1|,MSK2,MSK3,MSK4, 0

|s1|, s2, s3,
s4, 0

|r1|, r2, r3, r4, 2, 3, 4, u, 0
|u1|).

– Hybrid H12: This hybrid is identical to the previous hybrid except that
we change the first component CT∗1 of the challenge ciphertext to be an
encryption of the challenge message m1 (as opposed to m0). That is, CT∗1 =
FE.Enc(MPK1,m1; r1) for some random string r1. Note that the proof π∗ is
unchanged and is still proven for statement 2 of relation R.

– Hybrid H13: This hybrid is identical to the previous hybrid except that
the proof π∗ in the challenge ciphertext is now computed for statement 1 of
relation R. The witness is w = (m1, {ri}i∈[4], 0, 0, 0|u|, 0|u1|).

– Hybrid H14: This hybrid is identical to the previous hybrid except that Z1

is computed differently. Z1 = Com(1;u1).
– Hybrid H15: This hybrid is identical to the previous hybrid except that for

every function secret key Kf , the proof γ is now computed for statement 1 of
relation R1. The witness is w = ({MSKi}i∈[4], {si}i∈[4], {ri}i∈[4], 03, 0|u|, u1).

– Hybrid H16: This hybrid is identical to the previous hybrid except that Z
is computed differently. Z = Com(0len;u). This hybrid is identical to the real
experiment with challenge bit b = 1.

Below we will prove that (H1 ≈c H2) and (H5 ≈c H6). The indistinguishability
of other hybrids will follow along the same lines and is described in the full version
[5].

Lemma 1. (H1 ≈c H2). Assuming that Com is a (computationally) hiding com-
mitment scheme, the outputs of experiments H1 and H2 are computationally
indistinguishable.

Proof. The only difference between the two hybrids is the manner in which the
commitment Z is computed. Let’s consider the following adversary ACom that
interacts with a challenger C to break the hiding of the commitment scheme. Also,

20

internally, it acts as the challenger in the security game with an adversary A
that tries to distinguish between H1 and H2. ACom executes the hybrid H1 except
that it does not generate the commitment Z on it’s own. Instead, after receiving
the challenge messages (m0,m1) from A, it computes CT∗ = ({CT∗i }i∈[4], π∗) as
an encryption of message m0 by following the honest encryption algorithm as
in H1 and H2. Then, it sends two strings, namely (0len) and ({CT∗i }i∈[4]) to the
outside challenger C. In return, ACom receives a commitment Z corresponding to
either the first or the second string. It then gives this to A. Now, whatever bit
b A guesses, ACom forwards the same guess to the outside challenger C. Clearly,
ACom is a polynomial time algorithm and breaks the hiding property of Com
unless H1 ≈c H2.

Lemma 2. (H5 ≈c H6). Assuming that FE is a Sel− IND secure functional
encryption scheme, the outputs of experiments H5 and H6 are computationally
indistinguishable.

Proof. The only difference between the two hybrids is the manner in which the
challenge ciphertext is created. More specifically, in H5, the fourth component
of the challenge ciphertext CT∗4 is computed as an encryption of message m0,
while in H6, CT∗4 is computed as an encryption of message m1. Note that the
proof π∗ remains same in both the hybrids.

Let’s consider the following adversary AFE that interacts with a challenger
C to break the security of the underlying FE scheme. Also, internally, it acts as
the challenger in the security game with an adversary A that tries to distinguish
between H5 and H6. AFE executes the hybrid H5 except that it does not generate
the parameters (MPK4,MSK4) itself. It sets (MPK4) to be the public key given
by the challenger C. After receiving the challenge messages (m0,m1) from A,
it forwards the pair (m0,m1) to the challenger C and receives a ciphertext CT
which is either an encryption of m0 or m1 using public key MPK4. AFE sets
CT∗4 = CT and computes CT∗ = ({CT∗i }i∈[4], π∗) as the challenge ciphertext as
in H5. Note that proof π∗ is proved for statement 2 of relation R. It then sets
the public parameter Z = Com({CT∗i }i∈[4];u) and sends the master public key
MPK and the challenge ciphertext CT∗ to A.

Now, whatever bit b A guesses, AFE forwards the same guess to the outside
challenger C. Clearly, AFE is a polynomial time algorithm and breaks the security
of the functional encryption scheme FE unless H5 ≈c H6.

5 Construction of Verifiable Secret Key Functional
Encryption

In this section, we give a compiler from any Sel− IND secure message hiding and
function hiding secret key functional encryption scheme to a Sel− IND secure
message hiding and function hiding verifiable secret key functional encryption

21

scheme. The resulting verifiable functional encryption scheme has the same se-
curity properties as the underlying one - that is, the resulting scheme is q-query
secure if the original scheme that we started out with was q-query secure and so
on, where q refers to the number of function secret key queries (or encryption
queries) that the adversary is allowed to make. We prove the following theorem.

Theorem 6. Let F = {Fλ}λ∈N be a parameterized collection of functions. Then,
assuming there exists a Sel− IND secure message hiding and function hiding se-
cret key functional encryption scheme FE for the class of functions F , a non-
interactive witness indistinguishable proof system, a non-interactive perfectly
binding and computationally hiding commitment scheme, the proposed scheme
VFE is a Sel− IND secure message hiding and function hiding verifiable secret
key functional encryption scheme for the class of functions F according to defi-
nition ??.

Notation : Without loss of generality, let’s assume that every plaintext mes-
sage is of length λ where λ denotes the security parameter of our scheme and
that the length of every function in Fλ is the same. Let (Prove,Verify) be a
non-interactive witness-indistinguishable (NIWI) proof system for NP, FE =
(FE.Setup,FE.Enc,FE.KeyGen,FE.Dec) be a Sel− IND secure message hiding and
function hiding secret key functional encryption scheme, Com be a statistically
binding and computationally hiding commitment scheme. Without loss of gen-
erality, let’s say Com commits to a string bit-by-bit and uses randomness of
length λ to commit to a single bit. We denote the length of ciphertexts in
FE by c-len = c-len(λ). Let the length of every function secret key in FE be
k-len = k-len(λ). Let lenCT = 5 · c-len and lenf = 5 · k-len.
Our scheme VFE = (VFE.Setup,VFE.Enc,VFE.KeyGen,VFE.Dec,VFE.VerifyCT,
VFE.VerifyK) is as follows:

– Setup VFE.Setup(1λ) :
The setup algorithm does the following:
1. For all i ∈ [5], compute (MSKi)← FE.Setup(1λ; pi) and Si = Com(MSKi; si)

using randomness si.
2. Set ZCT = Com(0lenCT ; a) and Zf = Com(0lenf ; b) where a, b represents the

randomness used in the commitments.
3. For all i ∈ [3], set Zi = Com(1;ui) where ui represents the randomness

used in the commitment. Let’s denote u-len = |u1|+ |u2|+ |u3|.
The public parameters are PP = ({Si}i∈[5],ZCT,Zf , {Zi}i∈[3]).
The master secret key is MSK = ({MSKi}i∈[5], {pi}i∈[5], {si}i∈[5], a, b, {ui}i∈[3]).

– Encryption VFE.Enc(PP,MSK,m) :
To encrypt a message m, the encryption algorithm does the following:
1. For all i ∈ [5], compute CTi = FE.Enc(MSKi,m; ri).
2. Compute a proof π ← Prove(y, w) for the statement that y ∈ L using

witness w where :
y = ({CTi}i∈[5],PP),
w = (m,MSK, {ri}i∈[5], 02, 5, 0).
L is defined corresponding to the relation R defined below.

22

Relation R :
Instance : y = ({CTi}i∈[5],PP)
Witness : w = (m,MSK, {ri}i∈[5], i1, i2, j, k)
R1(y, w) = 1 if and only if either of the following conditions hold :
1. 4 out of the 5 constituent ciphertexts (except index j) encrypt the same

message and are constructed using honestly generated secret keys. Also,
Z1 is a commitment to 1. That is,
(a) ∀i ∈ [5]/{j}, CTi = FE.Enc(MSKi,m; ri).
(b) ∀i ∈ [5]/{j}, Si = Com(MSKi; si) and MSKi ← FE.Setup(1λ; pi)
(c) Z1 = Com(1;u1)
(OR)

2. 2 constituent ciphertexts (corresponding to indices i1, i2) encrypt the
same message and are constructed using honestly generated secret keys.
ZCT is a commitment to all the constituent ciphertexts, Z2 is a commit-
ment to 0 and Z3 is a commitment to 1. That is,
(a) ∀i ∈ {ı1, i2}, CTi = FE.Enc(MSKi,m; ri).
(b) ∀i ∈ {ı1, i2}, Si = Com(MSKi; si) and MSKi ← FE.Setup(1λ; pi)
(c) ZCT = Com({CTi}i∈[5]; a).
(d) Z2 = Com(0;u2).
(e) Z3 = Com(1;u3).
(OR)

3. 4 out of 5 constituent ciphertexts (except for index k) encrypt the same
message and are constructed using honestly generated secret keys. Zf is
a commitment to a set of function secret keys K such that each con-
stituent function secret key in K when decrypted with the corresponding
ciphertext gives the same output . That is,
(a) ∀i ∈ [5]/{k}, CTi = FE.Enc(MSKi,m; ri).
(b) ∀i ∈ [5]/{k}, Si = Com(MSKi; si) and MSKi ← FE.Setup(1λ; pi)
(c) Zf = Com({Ki}i∈[5]; b).
(d) ∃x ∈ Xλ such that ∀i ∈ [5], FE.Dec(CTi,Ki) = x

The output of the algorithm is the ciphertext CT = ({CTi}i∈[5], π).
π is computed for statement 1 of relation R.

– Key Generation VFE.KeyGen(PP,MSK, f) :
To generate the function secret key Kf for a function f , the key generation
algorithm does the following:
1. ∀i ∈ [5], compute Kfi = FE.KeyGen(MSKi, f ; ri).
2. Compute a proof γ ← Prove(y, w) for the statement that y ∈ L1 using

witness w where:
y = ({Kfi }i∈[5],PP),
w = (f,MSK, {ri}i∈[5], 03, 5, 0).
L1 is defined corresponding to the relation R1 defined below.

Relation R1 :
Instance : y = ({Kfi }i∈[5],PP).
Witness : w = (f,MSK, {ri}i∈[5], i1, i2, j, k)
R1(y, w) = 1 if and only if either of the following conditions hold :

23

1. 4 out of 5 constituent function secret keys (except index j) are keys for
the same function and are constructed using honestly generated secret
keys. Also, Z2 is a commitment to 1. That is,
(a) ∀i ∈ [5]/{j}, Kfi = FE.KeyGen(MSKi, f ; ri).
(b) ∀i ∈ [5]/{j}, Si = Com(MSKi; si) and MSKi ← FE.Setup(1λ; pi)
(c) Z2 = Com(1;u1)
(OR)

2. 4 out of 5 constituent function secret keys (except index k) are keys for
the same function and are constructed using honestly generated secret
keys. ZCT is a commitment to a set of ciphertexts CT such that each
constituent ciphertext in CT when decrypted with the corresponding
function secret key gives the same output . That is,
(a) ∀i ∈ [5]/{k}, Kfi = FE.KeyGen(MSKi, f ; ri).
(b) ∀i ∈ [5]/{k}, Si = Com(MSKi; si) and MSKi ← FE.Setup(1λ; pi)
(c) ZCT = Com(CT; a).

(d) ∃x ∈ Xλ such that ∀i ∈ [5], FE.Dec(CTi,K
f
i) = x

(OR)
3. 2 constituent function secret keys (corresponding to indices i1, i2) are

keys for the same function and are constructed using honestly generated
secret keys. Zf is a commitment to all the constituent function secret
keys, Z1 is a commitment to 0 and Z3 is a commitment to 0. That is,
(a) ∀i ∈ {ı1, i2}, Kfi = FE.KeyGen(MSKi, f ; ri).
(b) ∀i ∈ {ı1, i2}, Si = Com(MSKi; si) and MSKi ← FE.Setup(1λ; pi)

(c) Zf = Com({Kfi }i∈[5]; b).
(d) Z1 = Com(0;u1).
(e) Z3 = Com(0;u3).

The output of the algorithm is the function secret key Kf = ({Kfi }i∈[5], γ).
γ is computed for statement 1 of relation R1.

– Decryption VFE.Dec(PP,Kf ,CT) :
This algorithm decrypts the ciphertext CT = ({CTi}i∈[5], π) using function

secret key Kf = ({Kfi }i∈[5], γ) in the following way:
1. Let y = ({CTi}i∈[5],PP) be the statement corresponding to proof π. If

Verify(y, π) = 0, then stop and output ⊥. Else, continue to the next step.

2. Let y1 = ({Kfi }i∈[5],PP) be the statement corresponding to proof γ. If
Verify(y1, γ) = 0, then stop and output ⊥. Else, continue to the next
step.

3. For i ∈ [5], compute mi = FE.Dec(CTi,K
f
i). If at least 3 of the mi’s are

equal (let’s say that value is m), output m. Else, output ⊥.
– VerifyCT VFE.VerifyCT(PP,CT) :

Given a ciphertext CT = ({CTi}i∈[5], π), this algorithm checks whether the
ciphertext was generated correctly using the master secret key corresponding
to the public parameters PP. Let y = ({CTi}i∈[5],PP) be the statement
corresponding to proof π. If Verify(y, π) = 1, it outputs 1. Else, it outputs 0.

– VerifyK VFE.VerifyK(PP,K) :
Given a function secret key K = ({Ki}i∈[5], γ), this algorithm checks whether

24

the key was generated correctly for some function using the master secret
key corresponding to public parameters PP. Let y = ({Ki}i∈[5],PP) be the
statement corresponding to proof γ. If Verify(y, γ) = 1, it outputs 1. Else, it
outputs 0.

Correctness :
Correctness follows directly from the correctness of the underlying FE scheme,
correctness of the commitment scheme and the completeness of the NIWI proof
system.

The proofs for verifiability and security can be found in the full version [5].

Verifiable Multi-Input Functional Encryption : We also study verifi-
ability in the case of multi-input functional encryption. The construction (and
proofs) of a verifiable multi-input functional encryption scheme are given in the
full version [5].

6 Verifiable Indistinguishability Obfuscation

In this section, we first we recall the notion of indistinguishability obfuscation
that was first proposed by [6] and then define the notion of verifiable indis-
tinguishability obfuscation. For indistinguishability obfuscation, intuitively, we
require that for any two circuits C0 and C1 that are “functionally equivalent”
(i.e for all inputs x in the domain, C0(x) = C1(x), the obfuscation of C0 must be
computationally indistinguishable from the obfuscation of C1. Below, we present
the formal definition following the syntax of [14].

Definition 5. (Indistinguishability Obfuscation) A uniform PPT machine iO is
called an indistinguishability obfuscator for a circuit class {Cλ}λ∈N if the follow-
ing conditions are satisfied:

– Functionality :
For every λ ∈ N, every C ∈ Cλ , every input x to C :

Pr[(iO(C))(x) 6= C(x)] <= negl(|C|),

where the probability is over the coins of iO.
– Polynomial Slowdown :

There exists a polynomial q such that for every λ ∈ N and every C ∈ Cλ, we
have that |iO(C)| <= q(|C|).

– Indistinguishability :
For all PPT distinguishers D, there exists a negligible function α such that
for every λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ, we have that if C0(x) =
C1(x) for all inputs x, then

|Pr[D(iO(C0))]− Pr[D(iO(C1))]| <= α(λ)

.

25

Definition 6. ((L, C)−Restricted Verifiable Indistinguishability Obfuscation) Let
C = {Cλ}λ∈N denote an ensemble where each Cλ is a finite collection of circuits.
Let L be any language in NP defined by a relation R satisfying the following two
properties:

1. For any two circuits C0, C1 ∈ C, if there exists a string w such that
R(C0, C1, w) = 1, then C0 is equivalent to C1.

2. For any circuit C ∈ C, R(C,C, 0) = 1.

Let Xλ be the ensemble of inputs to circuits in Cλ. Let P = {Pλ}λ∈N be an
ensemble where each Pλ is a collection of predicates and each predicate P ∈ Pλ
takes as input a circuit C ∈ Cλ and outputs a bit. A verifiable indistinguishability
obfuscation scheme consists of the following algorithms:

– viO(1λ, C, P ∈ Pλ) → Ĉ. viO is a PPT algorithm that takes as input a
security parameter λ, a circuit C ∈ Cλ and a predicate P in Pλ. It outputs
an obfuscated circuit Ĉ.

– Eval(Ĉ, x, P ∈ Pλ) → y. EvalP is a deterministic algorithm that takes as

input an obfuscation Ĉ, an input x and a predicate P in Pλ. It outputs a
string y.

The scheme must satisfy the following properties :

– Functionality :
For every λ ∈ N, every C ∈ Cλ, every P ∈ Pλ such that P(C) = 1 and every
input x to C :

Pr[Eval(viO(λ,C, P), x, P) 6= C(x)] = 0,

where the probability is over the coins of viO.
– Polynomial Slowdown :

There exists a polynomial q such that for every λ ∈ N, every C ∈ Cλ and
every P ∈ Pλ, we have that |viO(λ,C,P)| <= q(|C|+|P|+λ). We also require

that the running time of Eval on input (Ĉ, x,P) is polynomially bounded in

|P |+ λ+ |Ĉ|
– Indistinguishability :

We define indistinguishability with respect to two adversaries A = (A1,A2).
We place no restriction on the running time of A1. On input 1λ A1 outputs
two equivalent circuits (C0, C1) in Cλ, such that (C0, C1) ∈ L. For all PPT
distinguishers A2, there exists a negligible function α such that for every
λ ∈ N , for pairs of circuits (C0, C1) and for all predicates P ∈ Pλ, we have
that if C0(x) = C1(x) for all inputs x and P(C0) = P(C1), then

|Pr[A2(viO(λ,C0, P))]− Pr[A2(viO(λ,C1, P))]| ≤ negl(λ)

– Verifiability :
In addition to the above algorithms, there exists an additional deterministic
polynomial time algorithm VerifyO that takes as input a string in {0, 1}∗

26

and a predicate P ∈ Pλ. It outputs 1 or 0. We say that the obfuscator viO
is verifiable if : For any P ∈ Pλ and Ĉ ∈ {0, 1}∗ , if VerifyO(Ĉ,P) = 1,
then there exists a circuit C ∈ Cλ such that P (C) = 1 and for all x ∈ Xλ,

Eval(Ĉ, x,P) = C(x).

6.1 Construction

Let C = {C}λ be the set of all polynomial sized circuits and let Leq be an NP
language given by some relation Req.
Relation Req:
Instance: C ′, D′

Witness: γ
Req(C

′, D′, π) = 1 implies that :

1. C ′ = D′ ∈ Cλ for some λ ∈ N. That is, both circuits are equal. (OR)

2. C ′, D′ ∈ Cλ, and there exists a witness γ of size poly(|C ′|, |D′|) proving that
C ′ is functionally equivalent to D′.

We now construct an (Leq, C)−restricted verifiable indistinguishability obfusca-
tion scheme. Let iO be a perfectly correct indistinguishability obfuscator and
(Prove,Verify) be a NIWI for NP. Formally, we prove the following theorem:

Theorem 7. Assuming NIWI is a witness indistinguishable proof system and iO
is a secure indistinguishability obfuscator for Cλ, the proposed scheme viO is a
secure (Leq, C)−restricted verifiable indistinguishability obfuscator.

viO(1λ,C,P): The obfuscator does the following.

– Compute Ci = iO(C; ri) ∀i ∈ [3].

– Compute a NIWI proof π for the following statement (P, C1, C2, C3) ∈ L
using witness (1, 2, C, C, r1, r2, 0) where L is an NP language defined by the
following relation R1 where
Relation R1

Instance: y = (P, C1, C2, C3)
Witness: w = (i, j, Ci, Cj , ri, rj , γ)
R1(y, w) = 1 if and only if:

1. Ci = iO(Ci; ri) and Cj = iO(Cj ; rj) where i 6= j and i, j ∈ [3]. (AND)

2. P(Ci) = P(Cj) = 1 (AND)

3. Req(Ci, Cj , γ) = 1.

– Output (C1, C2, C3, π) as the obfuscation.

Eval(O = (C1,C2,C3, π),x,P) : To evaluate:

– Verify the proof π. Output ⊥ if the verification fails.

– Otherwise, output the majority of {Ci(x)}i∈[3].

27

We now investigate the properties of this scheme.

Correctness: By completeness of NIWI and correctness of the obfuscator iO it
is straightforward to see that our obfuscator is correct.

Verifiability: We now present the algorithm VerifyO. It takes as input an
obfuscation (C1, C2, C3, π) and a predicate P. It outputs 1 if π verifies and
0 otherwise. Note that if π verifies then there are two indices i, j ∈ [3] such
that Ci (Cj) is an iO obfuscation of some circuit Ci (Cj) and it holds that
P(Ci) = P(Cj) = 1. Also, either Ci = Cj or Ci is equivalent to Cj (due to the
soundness of NIWI). Hence, the evaluate algorithm always outputs Ci(x) on any
input x due to perfect correctness of iO.

Security Proof :
Let P be a predicate and (C0, C1) be any two equivalent circuits in Cλ such that
P (C0) = P (C1) = 1 and there exists a string γ1 such that Req(C0, C1, γ1) = 1.
Let (C1, C2, C3, π) be the challenge obfuscated circuit. We now define indistin-
guishable hybrids such that the first hybrid (Hybrid0) corresponds to the real
world security game where the challenger obfuscates C0 and the final hybrid
(Hybrid5) corresponds to the security game where the challenger obfuscates C1.

– Hybrid0 : In this hybrid, Ci = iO(C0; ri) ∀i ∈ [3] and (1, 2, C0, C0, r1, r2, 0)
is used as a witness to compute π.

– Hybrid1 : This hybrid is same as the previous hybrid except that C3 is
computed as C3 = iO(C1; r3).

– Hybrid2 : This hybrid is same as the previous hybrid except that the witness
used to compute π is(1, 3, C0, C1, r1, r2, γ1) where γ1 is the witness for the
statement (C0, C1) ∈ Leq.

– Hybrid3 : This hybrid is identical to the previous hybrid except that C2 is
computed as C2 = iO(C1; r2).

– Hybrid4 : This hybrid is same as the previous hybrid except that the witness
used to compute π is (2, 3, C1, C1, r1, r2, 0).

– Hybrid5 : This hybrid is identical to the previous hybrid except that C1 =
iO(C1; r1). This hybrid corresponds to the real world security game where
the challenger obfuscates C1.

Now, we prove indistinguishability of the hybrids.

Lemma 3. Assuming iO is a secure indistinguishability obfuscator for Cλ, Hybrid0
is computationally indistinguishable from Hybrid1.

Proof. Note that the only difference between Hybrid0 and Hybrid1 is the way C3

is generated. In Hybrid0, it is generated as an obfuscation of C0, while in Hybrid1
it is generated as an obfuscation of C1. Since C0 and C1 are equivalent the lemma
now follows from the security of iO.

Lemma 4. Assuming NIWI is a witness indistinguishable proof system, Hybrid1
is computationally indistinguishable from Hybrid2.

28

Proof. Note that the only difference between Hybrid1 and Hybrid2 is the way in
which π is generated. In Hybrid1 it uses (1, 2, C0, C0, r1, r2, 0) as its witness while
in Hybrid2 it uses (1, 3, C0, C1, r1, r2, γ1) as its witness where γ1 is the witness
for the instance (C0, C1) satisfying the relation Req. The lemma now follows due
to the witness indistinguishability of NIWI.

Lemma 5. Assuming iO is a secure indistinguishability obfuscator for Cλ, Hybrid2
is computationally indistinguishable from Hybrid3.

Proof. The only difference between the two hybrids is that C2 is generated as
an obfuscation of C0 in Hybrid2 and as an obfuscation of C1 in Hybrid3. Since C0

and C1 are equivalent the lemma now follows from the security of iO.

Lemma 6. Assuming NIWI is a witness indistinguishable proof system, Hybrid3
is computationally indistinguishable from Hybrid4.

Proof. Note that the only difference between Hybrid3 and Hybrid4 is the way
π is generated. In Hybrid3 it uses (1, 3, C0, C1, r1, r3, γ1) as its witness while in
Hybrid4 it uses (2, 3, C1, C1, r2, r3, 0) as its witness where γ1 is the witness for
the instance (C0, C1) satisfying the relation Req. The lemma now follows due to
the witness indistinguishability of NIWI.

Lemma 7. Assuming iO is a secure indistinguishability obfuscator for Cλ, Hybrid4
is computationally indistinguishable from Hybrid5.

Proof. The only difference between the two hybrids is that C1 is generated as
an obfuscation of C0 in Hybrid4 and as an obfuscation of C1 in Hybrid5. Since C0

and C1 are equivalent the lemma now follows from the security of iO.

References

1. Abdalla, M., Raykova, M., Wee, H.: Multi-input inner-product functional encryp-
tion from pairings. IACR Cryptology ePrint Archive 2016, 425 (2016), http:

//eprint.iacr.org/2016/425

2. Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption:
New perspectives and lower bounds. In: CRYPTO (2013)

3. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional en-
cryption. In: CRYPTO (2015)

4. Ananth, P., Jain, A., Sahai, A.: Achieving compactness generically: Indistinguisha-
bility obfuscation from non-compact functional encryption. IACR Cryptology
ePrint Archive 2015, 730 (2015), http://eprint.iacr.org/2015/730

5. Badrinarayanan, S., Goyal, V., Jain, A., Sahai, A.: Verifiable functional encryption.
IACR Cryptology ePrint Archive 2016, 629 (2016)

6. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: CRYPTO (2001)

7. Barak, B., Ong, S.J., Vadhan, S.P.: Derandomization in cryptography. SIAM J.
Comput. 37(2), 380–400 (2007), http://dx.doi.org/10.1137/050641958

8. Barbosa, M., Farshim, P.: Delegatable homomorphic encryption with applications
to secure outsourcing of computation. In: CT-RSA (2012)

29

http://eprint.iacr.org/2016/425
http://eprint.iacr.org/2016/425
http://eprint.iacr.org/2015/730
http://dx.doi.org/10.1137/050641958

9. Bitansky, N., Paneth, O.: Zaps and non-interactive witness indistinguishability
from indistinguishability obfuscation. In: TCC (2015)

10. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: FOCS (2015)

11. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. SIAM
J. Comput. 32(3), 586–615 (2003)

12. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikun-
tanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic
circuit ABE and compact garbled circuits. In: EUROCRYPT (2014)

13. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges.
In: TCC (2011)

14. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013)

15. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: STOC’13 (2013)

16. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: CRYPTO (2012)

17. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: STOC’13 (2013)

18. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from
LWE. In: CRYPTO (2015)

19. Goyal, V.: Reducing trust in the PKG in identity based cryptosystems. In:
CRYPTO (2007)

20. Goyal, V., Lu, S., Sahai, A., Waters, B.: Black-box accountable authority identity-
based encryption. In: CCS (2008)

21. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: CCS (2006)

22. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for
NIZK. In: CRYPTO (2006)

23. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: EUROCRYPT (2008)

24. Libert, B., Ramanna, S., Yung, M.: Functional commitment schemes: From poly-
nomial commitments to pairing-based accumulators from simple assumptions. In:
ICALP 2016 (2016)

25. Okamoto, T., Takashima, K.: Fully secure functional encryption with general re-
lations from the decisional linear assumption. In: CRYPTO (2010)

26. O’Neill, A.: Definitional issues in functional encryption. IACR Cryptology ePrint
Archive 2010, 556 (2010), http://eprint.iacr.org/2010/556

27. Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public
keys. In: CCS (2010)

28. Sahai, A., Seyalioglu, H.: Fully secure accountable-authority identity-based encryp-
tion. In: PKC (2011)

29. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: EUROCRYPT (2005)
30. Sahai, A., Waters, B.: Slides on functional encryption, powerpoint pre-

sentation (2008), http://www.cs.utexas.edu/~bwaters/presentations/files/

functional.ppt
31. Takashima, K.: Expressive attribute-based encryption with constant-size cipher-

texts from the decisional linear assumption. In: SCN (2014)
32. Waters, B.: Efficient identity-based encryption without random oracles. In: EU-

ROCRYPT (2005)

30

http://eprint.iacr.org/2010/556
http://www.cs.utexas.edu/~bwaters/presentations/files/functional.ppt
http://www.cs.utexas.edu/~bwaters/presentations/files/functional.ppt

	Verifiable Functional Encryption

