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Abstract. We study cryptosystems based on supersingular isogenies. This is an
active area of research in post-quantum cryptography. Our first contribution is
to give a very powerful active attack on the supersingular isogeny encryption
scheme. This attack can only be prevented by using a (relatively expensive) coun-
termeasure. Our second contribution is to show that the security of all schemes
of this type depends on the difficulty of computing the endomorphism ring of a
supersingular elliptic curve. This result gives significant insight into the difficulty
of the isogeny problem that underlies the security of these schemes. Our third
contribution is to give a reduction that uses partial knowledge of shared keys to
determine an entire shared key. This can be used to retrieve the secret key, given
information leaked from a side-channel attack on the key exchange protocol. A
corollary of this work is the first bit security result for the supersingular isogeny
key exchange: Computing any component of the j-invariant is as hard as com-
puting the whole j-invariant.
Our paper therefore provides an improved understanding of the security of these
cryptosystems. We stress that our work does not imply that these systems are
insecure, or that they should not be used. However, it highlights that implemen-
tations of these schemes will need to take account of the risks associated with
various active and side-channel attacks.
Keywords: Isogenies, supersingular elliptic curves.

1 Introduction

In 2011, Jao and De Feo [17] introduced the supersingular isogeny Diffie–Hellman key
exchange protocol as a candidate for a post-quantum key exchange. The security of this
scheme is based on so-called supersingular isogeny problems. Similar problems had
appeared in a previous hash function construction by Charles–Lauter–Goren [6], and
were subsequently used to build other cryptographic functions such as public-key en-
cryption, undeniable signatures and designated verifier signatures [13, 18, 34]. As with
classical Diffie–Hellman, the basic version of the key exchange protocol uses ephemeral
elements, but the encryption scheme and some of the more sophisticated applications
use static values for at least one element.

The idea behind the supersingular isogeny key exchange protocol is largely based
on the isogeny protocol for ordinary elliptic curves proposed in [29]. However, there is
a (subexponential) quantum algorithm [7] to break the system in the ordinary case (in
part since the ordinary case is based on commutative ring theory). In contrast, the case



of supersingular curves is non-commutative and seems to be a promising candidate for
a post-quantum-secure system [2].

One particular feature of Jao and De Feo’s protocols compared to other schemes
based on isogeny problems is the publication of auxiliary points, which are used to
get around the difficulties of non-commutativity. These auxiliary points open the door
to active attacks on the encryption scheme (or key exchange where one party uses a
static key). To be precise, one could try to perform some kind of “small subgroup”
or “invalid curve” attacks such as have been proposed for DLP cryptosystems in the
past [23, 8]. The possibility of active attacks has been mentioned by Kirkwood, Lackey,
McVey, Motley, Solinas and Tuller [20] and Costello, Longa and Naehrig [9]. Both
papers discuss “validation” techniques that are designed to prevent such attacks, but
neither paper demonstrates all the details of the attacks. Some of the validation methods
discussed in [9] use pairings, but we observe a stronger property of pairings that makes
detecting such attacks easier. Note that [9] is only concerned with ephemeral Diffie–
Hellman key exchange, and so their scheme is not subject to attacks on static keys.

The first contribution of our paper (Section 3) is to describe a general active attack
against the static-key variant of the protocol. Our attack allows to recover the whole
static key with the minimum number of queries and negligible computation. Our at-
tack is not prevented by any of the validation techniques introduced in [9], nor by our
stronger validation technique using pairings. Our attack is prevented by the method
in [20] (see Section 2.5), but this adds significant cost to the running time of the system.

The second contribution of our paper (Section 4) is to explore the security of the
schemes assuming there is an efficient algorithm to compute the endomorphism ring
of a supersingular elliptic curve. It is known that computing endomorphism rings of
supersingular curves is equivalent to computing isogenies between supersingular ellip-
tic curves, and it is believed that both these problems are hard [17, 6]. But previous
techniques were not sufficient to break the Jao–De Feo cryptosystems if the endomor-
phism ring was known (the resulting isogeny would have too high degree). We present
a new method to find an isogeny of the correct degree in the special case of the isogeny
problem arising in these cryptosystems. This shows that the hardness of computing en-
domorphism rings is necessary for the security of any cryptosystem based on the Jao
and De Feo concept (it is not restricted to ElGamal or key exchange, and requires no
interaction with a user). We give heuristic and experimental evidence that our algorithm
is practical.

Our third contribution (Section 5) is to define and analyse an isogeny analogue of
the hidden number problem. Our main result is an algorithm to compute the j-invariant
of a “hidden” elliptic curve given partial information of the j-invariants of “nearby”
curves. We believe that, as with the original hidden number problem in finite fields,
this result will have applications of two flavours. On the one hand, our theorem shows
how to mount a type of side-channel attack on the key exchange protocol: An attacker
can compute the shared secret with high probability if they can get partial information
of the shared key during “correlated” executions of the key exchange protocol. On the
other hand, the result gives the first bit security result for the supersingular isogeny key
exchange: Computing one component of the finite field representation of the j-invariant
is as hard as computing the whole j-invariant. A consequence of this result is that it is
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secure for an implementation to use only one component of the j-invariant of the shared
key.

The paper is organised as follows. Section 2 quickly reviews the Jao–De Feo cryp-
tosystem and other preliminaries. Our results and discussions are given in Sections 3, 4
and 5. In Section 6 we present our conclusions.

2 Preliminaries

2.1 Supersingular Elliptic Curves and Isogenies

Fix a prime p and a prime power q = pk and let E1 and E2 be elliptic curves defined
over Fq . An isogeny between E1 and E2 is a non-constant morphism defined over Fq
that sends the identity in E1 to the identity in E2. Then φ is a group homomorphism
from E1(Fq) to E2(Fq) [30, III.4.8]. The degree of φ as an isogeny is equal to the
degree of φ as a morphism. In addition, if φ is separable, then deg φ = # kerφ [30,
III.4.10]. In this case, we say that E1 and E2 are isogeneous.

The isogeny is defined by its kernel in the sense that for every finite subgroup G ⊂
E1, there is a unique E2 (up to isomorphism) and a separable isogeny φ : E1 →
E2 such that kerφ = G [30, III.4.12]. We sometimes write E1/G for E2. Vélu [32]
gave an algorithm to construct an isogeny given a finite subgroup. Notice that the total
number of distinct isogenies with degree `, which we now call `-isogenies, is equal to
the number of distinct subgroups of E1 of order `. For every prime ` not dividing p,
there are `+1 isogenies of degree ` since the group of `-torsion points form a subgroup
E[`] = Z/`Z⊕ Z/`Z [30, III.6.4].

If G = 〈P 〉 ⊂ E1 is a cyclic group of order `n then the isogeny with kernel G
factors as a chain of isogenies

E1 → E2 → · · · → E`+1

such that each φi : Ei → Ei+1 is an isogeny of degree ` with kernel in Ei[`]. We will
use the following notation

G1 = G, Gi+1 = φi(Gi) ,

P1 = P, Pi+1 = φi(Pi) .

Now, note that φi(Gi) = 〈φi(Pi)〉 ⊆ Ei+1[`n−i]. The kernel of φ1 is 〈[`n−1]P 〉 and
for i > 1 the kernel of φi is 〈[`n−i]φi−1(Pi−1)〉.

For every φ : E1 → E2, there exists an isogeny φ̂ : E2 → E1 such that

φ ◦ φ̂ = [deg φ] = φ̂ ◦ φ .

We call φ̂ the dual isogeny of φ. This allows us to define an equivalence relation on
elliptic curves that are isogenous.

If we have a pair of isogenies φ : E1 → E2 and ψ : E2 → E1 such that φ ◦ ψ and
ψ ◦φ are the identity, then we say that φ and ψ are isomorphisms. We also then say that
E1 and E2 are isomorphic curves. This naturally defines an equivalence relation and
the isomorphism classes can be represented by the j-invariants [30, III.1.4(b)].
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Isogenies that have the same domain and range are known as endomorphisms. For
an elliptic curve E, we write End(E) for the set of all endomorphisms φ : E → E
together with the zero morphism. In fact, we can define addition and multiplication on
endomorphisms by setting (φ + ψ)(P ) = φ(P ) + ψ(P ) and (φ · ψ)(P ) = φ(ψ(P ))
for all φ, ψ ∈ End(E) and P ∈ E. This gives it a ring structure. The multiplication-
by-n maps are examples of endomorphisms and so Z ↪→ End(E). In fact, over a finite
field, End(E) is isomorphic to either a maximal order in a quaternion algebra or to an
order in an imaginary quadratic field [30, III.9.3]. In the former case, we say that E is
supersingular, otherwise, we say that it is ordinary.

An elliptic curve E/Fpk is supersingular if and only if |E(Fpk)| ≡ 1 (mod p).
It is known that there are approximately p/12 isomorphism classes of supersingular
elliptic curves E over Fp [30, V.4.1]. It is also known that every supersingular curve is
isomorphic to one defined over Fp2 [30, V.3.1(a)(iii)]. A theorem of Tate states that E1

and E2 are isogenous over Fpk if and only if |E1(Fpk)| = |E2(Fpk)| [31, §3].

2.2 Hard Problem Candidates Related to Isogenies

Starting from the work of Charles–Lauter–Goren [6] and later Jao–De Feo [17], several
recent cryptosystems have been based on the computational hardness of computing
isogenies between supersingular elliptic curves. The main problem in this area can be
described as follows:

Definition 1 (Supersingular isogeny problem). Given a finite field K and two su-
persingular elliptic curves E1, E2 defined over K such that |E1| = |E2|, compute an
isogeny ϕ : E1 → E2.

We stress that this isogeny is not unique (in fact there are infinitely many of them
without additional restrictions). Further, the most natural representations of an isogeny
are either as a pair of rational maps or as a kernel, and both these representations gen-
erally require exponential space. However, one can also represent an isogeny of smooth
degree as a composition of low degree isogenies, and this can be done in polynomial
space. Hence the computational problem makes sense.

This problem has been studied in a number of previous works. The cryptanalysis of
Charles–Lauter–Goren’s hash function requires to compute isogenies of degree `e for
some small, fixed prime `. Similarly, the Jao–De Feo schemes involve isogenies of the
same form with an additional condition on e.

Another important problem in this area is the problem of computing the endomor-
phism ring of a given elliptic curve.

Definition 2 (Endomorphism ring computation). Given an elliptic curve E defined
over a finite field K, compute its endomorphism ring.

This problem was studied by Kohel [21]. In the supersingular case Kohel described a
probabilistic algorithm running in time Õ(p), where p is the characteristic of the field.
This was later improved to Õ(

√
p) by Galbraith [15] using birthday paradox arguments.

We remark that for some supersingular elliptic curves the problem is easy (for example
when j = 0), but the problem is believed to be hard on average.
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Heuristically, one can turn an algorithm that computes isogenies into an algorithm
that computes the full endomorphism ring of an elliptic curve; the reduction actually
underlies Kohel’s algorithm.

It turns out that the converse is also true, at least heuristically. There is an equiv-
alence of categories between the set of supersingular curves and the set of maximal
orders of a quaternion algebra (see [12, 21, 22]). Given the endomorphism rings of the
two elliptic curves, one can identify the corresponding maximal orders in the quaternion
algebra, and then use techniques developed in [22] to compute paths between them in
the quaternion algebra and translate these paths into isogeny paths.

The algorithm in [22] solves the quaternion algebra analog of the supersingular
isogeny problem, which requires to compute an ideal with a smooth norm connecting
two given maximal orders. However, the degree of the ideal returned by this algorithm
is about p7 in general and p7/2 if one of the orders is special (a p-extremal order, as
defined in [22]), whereas a degree about p is expected to suffice in general, and a degree
about p1/2 would be needed to break the Jao–De Feo cryptosystems. Here p is the
characteristic of the field.

2.3 Jao–De Feo scheme

Key exchange protocol There are three steps in the key exchange protocol: The set-up,
the key exchange and the key derivation.

In the set-up, a prime of the form p = 2n · 3m · f − 1 is generated where f is small
and 2n ≈ 3m (more generally p = `nA`

m
B f ± 1 where `A, `B are small primes). A su-

persingular elliptic curve E over Fp2 is constructed, and linearly independent points
PA, QA ∈ E[2n] and PB , QB ∈ E[3m] are chosen. Here “linearly independent”
means that the group 〈PA, QA〉 generated by PA and QA has order 22n, and similarly,
|〈PB , QB〉| = 32m.

In the key exchange, Alice picks random integers 0 ≤ a1, a2 < 2n (not both divis-
ible by 2) and Bob picks random integers 0 ≤ b1, b2 < 3m (not both divisible by 3).
Alice and Bob compute

GA = 〈[a1]PA + [a2]QA〉 , GB = 〈[b1]PB + [b2]QB〉

respectively. Using Vélu’s formulas [32], they will then be able to compute the iso-
genies φA and φB with respective kernels GA and GB . They then compute EA =
φA(E) = E/GA, φA(PB), φA(QB) and EB = φB(E) = E/GB , φB(PA), φB(QA)
respectively. Their respective messages in the protocol will be

(EA, φA(PB), φA(QB)) , (EB , φB(PA), φB(QA)) .

Upon receipt of Bob’s message, to derive the shared key, Alice would compute

〈[a1]φB(PA) + [a2]φB(QA)〉 = 〈φB([a1]PA + [a2]QA)〉 = φB(GA) .

Alice then computes the isogeny from EB , with kernel equal to this subgroup. Bob will
perform a similar computation and the resulting isogeny will be generated by GA and
GB (since the subgroups have a trivial intersection). The shared secret will be

EAB := E/〈GA, GB〉 = EA/〈φA(GB)〉 = EB/〈φB(GA)〉 .

5



This can be summarised in the following diagram, where we use the notation from
above.

E

E/GA

E/GB

E/〈GA, GB〉

φA

φB

The Jao–De Feo key exchange scheme originates from a similar scheme for or-
dinary elliptic curves proposed by Rostovtsev and Stolbunov [29]. The ordinary case
is based on a commutative mathematical structure, however this structure enables a
subexponential-time quantum algorithm [7] to break the system. On the other hand, the
supersingular curves variant is based on a non-commutative structure and so it seems
to be a promising candidate for a post-quantum-secure system. The auxiliary points in-
cluded in the protocol messages allow Jao and De Feo to get around the difficulties of
non-commutativity.

We stress that the isogeny problem involved here differs from a general one in sev-
eral ways. On the one hand, the special primes used and the auxiliary points given to an
attacker may make the supersingular isogeny problem easier than the general isogeny
problem. On the other hand there is a very strong constraint imposed on the degree
of the isogeny, and this might a priori make the problem harder; we discuss this issue
in more detail in Section 4. We remark that our first and third results use the auxil-
iary points in essential ways. However the result of Section 4 does not use the auxiliary
points and only uses the fact that the required isogeny has a strongly constrained degree.

Encryption protocol The public-key encryption scheme is constructed from the key
exchange scheme with a few adaptations [13]. Namely, the shared secret would be used
as a key for a symmetric encryption scheme (below we use the one-time pad) to encrypt
the message. We will use the same notation as above and assume that Bob wants to
send a message to Alice. There are four steps to the encryption protocol: The set-up,
key generation, encryption and decryption.

The set-up is almost identical to the key exchange protocol, where the two parties
Alice and Bob agree on a prime of the form p = 2n · 3m · f − 1, a supersingular
elliptic curve over Fp2 , and linearly independent points PA, QA ∈ E[2n] and PB , QB ∈
E[3m]. In addition, they agree on a keyed hash function Hk that sends Fp2 to the set
{0, 1}w of w-bit strings.

In the key generation phase, Alice picks random integers 0 ≤ a1, a2 < 2n (not both
divisible by 2) and computes

EA, φA(PB), φA(QB)

as above. She also chooses a random ephemeral key, k, for the hash and publishes the
tuple

(EA, φA(PB), φA(PB), k)
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as her public key. She retains (a1, a2) as her private key.
Upon the receipt of Alice’s public keys, Bob selects a w-bit message m ∈ {0, 1}w

and chooses random integers 0 ≤ b1, b2 < 3m (not both divisible by 3) and computes

EB , φB(PA), φB(QA) .

Using his randomly generated keys b1 and b2, he can also compute EAB as in the key-
exchange protocol. He then computes

c = m⊕Hk(j(EAB))

and sends the tuple
(EB , φB(PA), φB(QA), c)

to Alice.
To decrypt Bob’s message, Alice computes EAB using EB , φB(PA), φB(QA) and

a1, a2 and recovers the message m by computing

m = c⊕Hk(j(EAB)) .

We stress that encryption is just one possible application where a static key may be
used for at least one element in the protocol. We anticipate that as the subject develops
further there will be more protocols of this type.

Equivalent keys and Normalisation The Vélu formulas tell us that the isogeny is
determined solely by its kernel. In Alice’s case, there are 3 · 2n−1 choices of kernels,
and the total number of choices for (a1, a2) is about 22n, so there will be private keys
that correspond to the same public keys.

We define an equivalence relation on the private keys, by saying (a1, a2) ∼ (a′1, a
′
2)

if the two keys lead to the same subgroup for all possible input points. The relation
is satisfied by (a′1, a

′
2) = (θa1, θa2) for any θ ∈ Z∗2n , and so the equivalence class

is a point in projective space over a ring. We may define a unique equivalence class
representative by “normalising” as explained in the following lemma (this fact is also
used by [9]).

Lemma 1. Let P,Q ∈ E[2n] be linearly independent generators of E[2n]. Then for
some (a1, a2) ∈ Z2 (not simultaneously even), we have that (a1, a2) ∼ (1, α) or
(a1, a2) ∼ (α, 1) for some α ∈ Z (using the equivalence relation defined above).

Proof. If a1 is odd, then it is invertible modulo the order of the group, so let θ ≡ a−11

(mod 2n), then θ must be odd, hence

〈[a1]PA + [a2]QA〉 = 〈[θa1]PA + [θa2]QA〉 = 〈PA + [α]QA〉 ,

where the first equality stems from the fact that θ is co-prime to the order of the gener-
ator, and the last equality is obtained by setting α = θa2.

If a1 is even, then a2 must be odd, and repeating the procedure gives (α, 1). ut
This result tells us that there is no loss of generality for Alice to restrict her secret

key to be (1, α) or (α, 1). This was noted by [9]. However, even if Alice does not
employ such a simplification, the result also tells us that there is no loss of generality
for an attacker to assume the secret key is of one of these two forms. This observation
is used repeatedly in the adaptive attack presented in section 3.
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2.4 Active Attacks and Validation Methods

Active attacks are a standard type of attack on cryptosystems that use a static private
key. These first arose in the setting of protocols based on the discrete logarithm problem,
where a user can be treated as an oracle that takes as input a group element g and returns
ga for some long-term secret value a. A first kind of attack is the “small subgroup”
attack of Lim and Lee [23]. Here a group element g of small order ` is sent, so that on
receipt of the value ga one can do a search and learn a (mod `). Similar ideas have
been used based on “invalid curve” attacks, which involve providing a point that lies in
a different group altogether (see Ciet and Joye [8]).

In the context of the isogeny cryptosystem, if Alice has a fixed key (a1, a2) then a
dishonest Bob can send her (E,P,Q) and then Alice will compute an isogeny φ : E →
E′ with kernel 〈[a1]P + [a2]Q〉. The idea is to try to learn something about Alice’s
secret key (a1, a2) using knowledge of E′. The possibility of such attacks is mentioned
in [20] and [9], but neither paper presented full details of them.

The concept of “validation” is intended to prevent active attacks. In the case of
protocols based on the DLP, the typical countermeasures check that g does lie in the
correct group, and that the order of g is the correct value. In the context of supersin-
gular isogeny cryptosystems the validation of (E,P,Q) should test that E really is a
supersingular elliptic curve, that P and Q lie on the curve and have the correct order,
and that P and Q are independent. Methods to do this are given in [9].

In particular, Section 9 of [9] presented some explicit validation steps. Their two
requirements are: The points in the public key have full order and they are independent.
They use the Weil pairing of the two points to check independence. We remark that it
is not necessary to use the Weil pairing: Since the DLP is easy in a group of order 2n

one can just try to solve the DLP of Q to the base P , and if the algorithm fails then the
points are independent. In particular, to show that 〈P,Q〉 = E[2n] it suffices to compute
[2n−1]P and [2n−1]Q and verify that these points are both different, and neither is the
identity.

Remark 1. We now observe that the Weil pairing can be used to check a lot more than
just independence. A standard fact is that if φ : E → E′ is an isogeny and if P,Q ∈
E[N ] then

eN (φ(P ), φ(Q)) = eN (P,Q)deg(φ)

where the first Weil pairing is computed on E′ and the second on E (for details see [30,
III.8.2] or [4, IX.9]). This allows to validate not only that the points are independent but
also that they are consistent with being the image of the correct points under an isogeny
of the correct degree. Hence, a natural validation step for Alice to run in the Jao–De Feo
scheme is to check

e2n(φB(PA), φB(QA)) = e2n(PA, QA)3
m

.

This will give her some assurance that the points φB(PA), φB(QA) provided by Bob
are consistent with being the images of the correct points under an isogeny of the cor-
rect degree. However, as we will show, this validation step is not sufficient to prevent
all adaptive attacks. It will be necessary to use a much stronger protection, which we
describe in the next section.
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2.5 The Kirkwood et al. Validation Method

The Fujisaki-Okamoto transform [14] leads to a general method to secure any key ex-
change protocol of a certain type. This is explained in Section 5.2 of Peikert [28] and,
in the context of the isogeny cryptosystem, it is discussed by Kirkwood et al. [20].

The idea is to complete the key exchange protocol and then for each party to encrypt
to the other party the randomness used in the protocol so that they can check that the
protocol has been performed correctly. Note that [20] does not contain a formal analysis
of the security of the resulting protocol.

We now briefly describe the key exchange protocol that arises when this transform
is applied to the Jao–De Feo protocol. In the following description, we show what Bob
should do and how Alice can verify that Bob has followed the protocol correctly (this
is suited for the case where Alice is using a static key and where Bob is a potential
adversary).

(1) Bob obtains Alice’s static public key (EA, φA(PB), φA(QB)).
(2) Bob chooses a random seed rB and derives his private key using a pseudo-random

function PRF (Kirkwood et al. call this a key derivation function).

(b1, b2) = PRF(rB) .

He then computes his message (EB , φB(PA), φB(QA)) where φB is defined to
have kernel 〈[b1]PB + [b2]QB〉.

(3) Bob derives the shared secret valueEAB from (EA, φA(PB), φA(QB)) and (b1, b2)
and computes a session key (SK) and validation key (VK) via a key derivation
function (KDF)

SK | VK = KDF(j(EAB)) .

(4) Bob then sends (EB , φB(PA), φB(QA)) and cB = EncVK(rB ⊕ SK) to Alice.
(5) From (a1, a2) and (EB , φB(PA), φB(QA)), Alice derives E′AB , then SK ′ and

VK ′.
(6) Alice computes

r′B = DecVK′(cB)⊕ SK ′ .

She then computes PKDF(r′B) and recomputes Bob’s operations. If the resulting
message is equal to the value (EB , φB(PA), φB(QA)) originally sent by Bob then
Alice terminates the protocol correctly and uses SK ′ = SK for future communi-
cate with Bob. If not, the protocol terminates in a non-accepting state.

Notice that this protocol requires that Bob reveals his secret key to Alice, so it compels
him to change his secret key after each verification. This validation method can be used
for both the key-exchange and the encryption protocols.

3 Adaptive attack

In this section, we will assume that Alice is using a static key (a1, a2), and that a
dishonest user is playing the role of Bob and trying to learn her key. Our discussion
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is entirely about Alice’s key and points in E[2n], but it should be clear that the same
methods would work for points inE[`m] for any small prime ` (see Remark 2 for further
discussion).

There are two attack models that can be defined in terms of access to an oracle O:

1. O(E,R, S) = E/〈[a1]R+[a2]S〉. This corresponds to Alice taking Bob’s protocol
message, completing her side of the protocol, and outputting the shared key.

2. O(E,R, S,E′) which returns 1 if j(E′) = j(E/〈[a1]R+ [a2]S〉) and 0 otherwise.
This corresponds to Alice taking Bob’s protocol message, completing her side of
the protocol, and then performing some operations using the shared key that return
an error message if the shared key is not the same as the j-invariant provided (e.g.,
the protocol involves verifying a MAC corresponding to a key derived from the
session key).

Our attacks can be mounted in both models. To emphasise their power we explain them
in the context of the second, weaker, model.

3.1 First Step of the Attack

From Lemma 1, we may assume that the private key is normalised. In the following
exposition, we will assume that the normalisation is (1, α). The case where we have
(α′, 1) where α′ is even is performed in exactly the same way with some tweaks. Note
that if α′ is odd then it can be converted to the (1, α) case, so we may assume α′ is even
in the second case.

To differentiate between (1, α) and (α′, 1) an attacker honestly generates Bob’s
ephemeral values (EB , R = φB(PA), S = φB(QA)) and follows the protocol to com-
pute the resulting keyEAB . Then the attacker sends (EB , R, S+[2n−1]R) to Alice and
tests the resulting j-invariant. Expressing this in terms of the oracle access: The attacker
queries an oracle of the second type on (EB , R, S + [2n−1]R,EAB). If the oracle re-
turns 1 then the curve EB/〈[a1]R + [a2](S + [2n−1]R)〉 is isomorphic to EAB and so
〈[a1]R + [a2](S + [2n−1]R)〉 = 〈[a1]R + [a2]S〉. Hence, by the following Lemma, a2
is even and we are in the first case. If the oracle returns 0 then a2 is odd.

Lemma 2. LetR,S ∈ E[2n] be linearly independent points of order 2n and let a1, a2 ∈
Z. Then

〈[a1]R+ [a2](S + [2n−1]R)〉 = 〈[a1]R+ [a2]S〉

if and only if a2 is even.

Proof. If a2 is even then [a2][2n−1]R = 0 and so the result follows. Conversely, if the
two groups are equal then there is some λ ∈ Z∗2n such that

λ([a1]R+ [a2](S + [2n−1]R)) = [a1]R+ [a2]S .

Since the points are independent we have λa2 = a2 and so λ = 1. Hence, since S has
order 2n, we have a22n−1 ≡ 0 (mod 2n) and a2 is even. ut
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Note that the Weil pairing

e2n(R,S + [2n−1]R) = e2n(R,S) = e2n(PA, QA)3
m

and so the attack is not detectable using pairings.
Similarly one can call the oracle on (EB , R+ [2n−1]S, S,EAB). The oracle returns

1 if and only if a1 is even. Hence, we can determine which of the two cases we are
in and determine if α is even or odd. Having recovered a single bit of α, we will now
explain how to use similar ideas to recover the rest of the bits of α.

3.2 Continuing the Attack

We now assume that Alice’s static key is of the form (1, α) and we write

α = α0 + 21α1 + 22α2 + · · ·+ 2n−1αn−1 .

The attacker will learn one bit of α for each query of the oracle. Algorithm 1 gives
pseudo-code for the attack.

We now give some explanation and present the derivation of the algorithm. Suppose
an attacker has recovered the first i bits of α, so that

α = Ki + 2iαi + 2i+1α′ ,

where Ki is known but αi ∈ {0, 1} and α′ ∈ Z are not known.
The attacker generates EB , R = φB(PA), S = φB(QA) and EAB as in the pro-

tocol. To recover αi, the attacker will choose suitable integers a, b, c, d and query the
oracle on

(EB , [a]R+ [b]S, [c]R+ [d]S,EAB) .

The integers a, b, c, and d will be chosen to satisfy the following conditions:

1. If αi = 0, then 〈[a+ αc]R+ [b+ αd]S〉 = 〈R+ [α]S〉.
2. If αi = 1, then 〈[a+ αc]R+ [b+ αd]S〉 6= 〈R+ [α]S〉.
3. [a]R+ [b]S and [c]R+ [d]S both have order 2n.
4. The Weil pairing e2n([a]R+ [b]S, [c]R+ [d]S) must be equal to

e2n(φB(PA), φB(QA)) = e2n(PA, QA)deg φB = e2n(PA, QA)3
m

.

The first two conditions help us distinguish the bit αi and the latter two prevent the
attack from being detected via order checking and Weil pairing validation checks re-
spectively.

Consider the following integers:

ai = 1 , bi = −2n−i−1Ki ,

ci = 0 , di = 1 + 2n−i−1 .

One can verify that they satisfy the third condition. To satisfy the fourth condition
we need to use a scaling by θ that we will discuss later.

11



To show that the first two conditions are satisfied, note that 〈[a]R+[b]S+[α]([c]R+
[d]S)〉 is equal to

〈R− [2n−i−1Ki]S + [α][1 + 2n−i−1]S〉
= 〈R+ [α]S + [−2n−i−1Ki + 2n−i−1(Ki + 2iαi + 2i+1α′)]S〉
= 〈R+ [α]S + [αi2

n−1]S〉

=

{
〈R+ [α]S〉 if αi = 0 ,

〈R+ [α]S + [2n−1]S〉 if αi = 1 .

By the following Lemma, these two subgroups are different. Hence the response of the
oracle tells us αi.

Lemma 3. Let R and S be linearly independent elements of the group E[2n] with full
order, then the subgroups

〈R+ [α]S + [2n−1]S〉 and 〈R+ [α]S〉

are different.

Proof. The proof is very similar to the proof of Lemma 2. The subgroups have order
2n, since R has order 2n, and R and S are linearly independent. Then if the subgroups
are the same, we must have some λ such that

[λ]R+ [λα]S = R+ [α]S + [2n−1]S .

By the linear independence of R and S, we can compare coefficients and conclude that
λ = 1, and that [2n−1]S = O, which implies that S has order a factor of 2n−1, which
is a contradiction. ut

Finally, we address the fourth condition. We need that

e2n([a]R+ [b]S, [c]R+ [d]S) = e2n(R,S)ad−bc = e2n(PA, QA)3
m

.

The idea is that we can mask the points chosen from the attack above to satisfy the
fourth condition. Recall that the points we wish to send to Alice are

(R′, S′) = (R− [2n−i−1Ki]S, [1 + 2n−i−1]S) .

Computing the Weil pairing of the two points, we have

e2n(R′, S′)

= e2n(R− [Ki2
n−i−1]S, [1 + 2n−i−1]S)

= e2n(R, [1 + 2n−i−1]S) · e2n(−[Ki2
n−i−1]S, [1 + 2n−i−1]S)

= e2n(R,S)1+2n−i−1

,

which is not the correct value. So we choose θ such that

e2n(θR′, θS′) = e2n(R,S)θ
2(1+2n−i−1) = e2n(PA, QA)3

m

= e2n(R,S) .

12



Algorithm 1: Adaptive attack using oracle O(E,R, S,E′).
Data: n, E, PA, QA, PB , QB , EA, φA(PB), φA(QB)
Result: α

1 Set K0 ← 0;
2 for i← 0 to n− 3 do
3 Set αi ← 0;
4 Choose random (b1, b2);
5 Set GB ← 〈[b1]PB + [b2]QB〉;
6 Set EB ← E/GB and let φB : E → EB be the isogeny with kernel GB ;
7 Set (R,S)← (φB(PA), φB(QA));
8 Set EAB ← EA/〈[b1]φA(PB) + [b2]φA(QB)〉;
9 Set θ ←

√
(1 + 2n−i−1)−1 (mod 2n);

10 Query the oracle on
(
EB , [θ](R− [2n−i−1Ki]S), [θ][1 + 2n−i−1]S,EAB

)
;

11 if Response is false then αi = 1;
12 Set Ki+1 ← Ki + 2iαi;
13 end
14 Brute force αn−2, αn−1 using E and EA and Kn−2 = α (mod 2n−2) to find α (this

requires no oracle calls);
15 Return α;

Note that 〈[θ]R′+[α][θ]S′〉 = 〈[θ](R′+[α]S′)〉 = 〈R′+[α]S′〉 as long as θ is coprime
to the order 2n. Hence we need θ to be the square root of 1 + 2n−i−1 modulo 2n. The
following lemma shows that such a square root exists as long as n − i − 1 ≥ 3. Note
that θ will be odd, as required.

Lemma 4. If a is an odd number and m = 8, 16, or some higher power of 2, then a is
a quadratic residue modulo m if and only if a ≡ 1 (mod 8).

The condition n − i − 1 ≥ 3 means we may not be able to launch the attack in
an undetected way for the last two bits. This is why we use a brute force method to
determine these bits.

The attack in the case (α′, 1) follows by swapping the roles of R and S.

3.3 Analysis and Complexity of the Attack

The attack requires fewer than n ≈ 1
2 log2(p) interactions with Alice. This seems close

to optimal for attack model 2, where the attacker only gets one bit of information at each
query. We can reduce the number of queries by doing more computation (increasing the
range of the brute-force search).

We now consider the attack in the context of [20] and [9]. Due to our third and
fourth conditions, the attack passes the validation steps in [9], and even the stronger
check of taking the degree of the isogeny into account as mentioned in Remark 1.

The approach in [20] would be able to detect the attack. This is because the auxil-
iary points sent to Alice in the attack are not the correct values generated in an honest
protocol run.
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Remark 2. We now say a few words about attacking odd prime power isogenies. Let
` be an odd prime such that `n | (p + 1) and E[`n] ⊂ E(Fp2). Let PA, QA be gen-
erators of E[`n]. Alice would compute an `n-isogeny with kernel 〈[a1]PA + [a2]QA〉
and a dishonest user Bob is trying to learn her key a1, a2, where a1 and a2 are not
simultaneously divisible by `. As above, we take Alice’s secret key to be (1, α).

The obvious generalisation for this attack is to set R = φB(PA) and S = φB(QA)
and to send Alice points

(R− [x`n−i−1]S, [1 + `n−i−1]S) .

In her computation for the subgroup, Alice would compute

〈R+ [α]S + [`n−i−1][α− x]S〉 .

Since we want to compare this subgroup against 〈R+ [α]S〉, we need

(`n−i−1)(α− x) ≡ 0 (mod `n)

to ensure the subgroups computed are the same. Hence for each coefficient of a power
of ` in the `-expansion of α, we will need at most `− 1 queries to recover it.

For ` = 3 this is as good as one would expect (at most two queries), but for primes
` ≥ 5 this seems not optimal since one would hope that given an oracle that returns one
bit of information one could learn the value with only dlog2(`)e queries. In Appendix B
we specify a simple attack, that is easily detectable and uses a stronger oracle, but can
be used to efficiently handle the case ` > 3.

4 Solving the Isogeny Problem when the Endomorphism Ring is
Known

Let p = `nA`
m
B f − 1 as in the Jao–De Feo cryptosystems, and let E and EA be two

supersingular elliptic curves such that there exists an isogeny φA : E → EA of de-
gree `nA between them. In this section we additionally suppose that we know (or can
compute) the endomorphism rings End(E) and End(EA), and we provide an efficient
algorithm to recover φA assuming a certain natural heuristic holds. A formal statement
of our reduction is below and we will prove this in Section 4.2.

Theorem 1. LetE andEA be supersingular elliptic curves over Fp2 such thatE[`nA] ⊆
E(Fp2) and there is an isogeny φA : E → EA of degree `nA from E to EA. Suppose
there is no isogeny φ : E → EA of degree < `nA. Then, given an explicit description of
End(E) and End(EA), there is an efficient algorithm to compute φA.

As recalled in Section 2.2, computing the endomorphism ring of a supersingular
elliptic curve is a problem essentially equivalent to computing an arbitrary isogeny be-
tween two supersingular elliptic curves. However, the the algorithm of [22] does not
produce an isogeny that satisfies the additional constraint that it must be of small de-
gree, as is required in the Jao–De Feo cryptosystems (`nA ≈ p1/2). Hence the current
state of knowledge does not give a reduction of the form we require. The aim of this
section is to present an alternative method to [22] in this context. We use the notation
of [22].
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4.1 The Importance of the Correct Isogeny

We first explain that to break the Jao–De Feo protocol it is not sufficient to compute any
isogeny from E to EA. There are infinitely many such isogenies, but to break the Jao
and De Feo cryptosystems it is necessary to find the right sort of isogeny, as we now
explain.

Suppose there are curves E and isogenies φA : E → EA, φB : E → EB with
ker(φA) = GA, ker(φB) = GB satisfying the usual isogeny diagram from Section 2.3:

E

EA = E
GA

EB = E
GB

EAB = E
〈GA,GB〉

φA

φB

The correctness of the protocol follows from the fact thatE/〈GA, GB〉 = EA/〈φA(GB)〉 =
EB/〈φB(GA)〉 and that φA(GB) and φB(GA) can be computed by the honest parties.

Suppose an attacker given E,EA, EB can compute an isogeny φ′ : E → EA. So
the picture now looks like:

E

EA = E
GA

EB = E
GB

EAB = E
〈GA,GB〉

φA

φ′

φB

The natural approach for an attacker to try to compute EAB is to compute φB(ker(φ′))
and hence an isogeny from EB with this kernel. However, the attacker only has the
points φB(PA), φB(QA) to work with, and so can only compute φB(ker(φ′)) if ker(φ′) ⊆
〈PA, QA〉 (in which case φ′ is an isogeny of degree dividing 2n). A random isogeny φ′

is unlikely to have this property. Indeed, φA is likely to be the only isogeny from E to
EA with kernel in 〈PA, QA〉 (apart from composing with an automorphism, which is of
no consequence).

This is the crux of the difficulty in giving a reduction from computing endomor-
phism rings to computing the secret key in the Jao–De Feo cryptosystem: Known al-
gorithms to compute an isogeny from E to EA, given End(E) and End(EA), are not
likely to give an isogeny of the correct degree. However, as we now explain, the par-
ticularly small degree of the secret key gives the reduction an advantage that does not
arise in the general case.

4.2 Reduction of Problem to Computation of Endomorphism Ring

We show how the existence of a small degree isogeny actually helps the cryptanalysis
of Jao–De Feo’s cryptosystems, assuming we know (or we are able to compute) the
endomorphism rings of the curves in play.
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We write Bp,∞ for the quaternion algebra ramified at p and∞ and use the standard
notions of reduced trace and reduced norm (see Vigneras [33] for background). One
extends the reduced norm to ideals in Bp,∞.

Given two maximal ordersO andOA, one can compute in polynomial time an ideal
I that connects them (see [22, Lemma 8]). Computing an isogeny of the correct degree
corresponds to computing an equivalent ideal of the correct norm. In order to find such
an equivalent ideal we use the following lemma.

Lemma 5. [22, Lemma 5] Let I be a leftO-ideal of reduced normN and α an element
in I . Then Iγ, where γ = ᾱ/N , is a left O-ideal of norm n(α).

We observe that in the context of Jao–De Feo cryptosystems, there exists by construc-
tion an element α of small norm N`nA in I , corresponding via this lemma to an ideal
of norm `nA. Moreover as Minkowski bases can be computed in polynomial time for
lattices of dimension up to 4 [27], this element α can be efficiently recovered as long
as it is in fact the smallest element in I . These observations lead to the following first
simple algorithm:

Algorithm 2: Computing small degree isogenies in Jao–De Feo cryptosystems
given an algorithm to compute the endomorphism ring of a random supersingular
elliptic curve.

Data: `A, n, E, EA, O = End(E), OA = End(EA) such that E and EA are
connected by an isogeny of degree `nA

Result: Isogeny ϕA : E → EA of small degree `nA, or failure
1 Compute an ideal I connecting O and OA as in [22, Lemma 8];
2 Compute a Minkowski-reduced basis of I;
3 Let α be the non-zero element in I of minimal norm;
4 if n(α) 6= n(I)`nA then return failure;
5 Compute an ideal I ′ = Iᾱ/n(I) ;
6 Compute the isogeny ϕA that corresponds to I ′ using Vélu’s formulae;
7 Return ϕA;

All the steps in this algorithm can be performed in polynomial time. The above
discussion forms the proof of Theorem 1.

Proof (Theorem 1). Given an explicit representation of the endomorphism rings, we
can translate the endomorphism rings into maximal orders of quaternion algebras. One
can then find, in polynomial time, an ideal I connecting them by [22, Lemma 8].

By Lemma 5, it is sufficient to find an element of I of the correct norm. But given
that the norm we seek is the smallest norm in the ideal, we can use lattice reduction
methods to recover the smallest norm in polynomial time. Then using methods in [22],
we can recover the isogeny we seek. ut

In the remainder of this section, we study the success probability of this algorithm
on average, and show how to use it to achieve a very large success probability.

16



Heuristically, we can approximate the probability that E and EA are connected by
an isogeny of degree ` by estimating the probability that two randomly chosen super-
singular elliptic curves are connected by an isogeny of the same degree. 3

Random pairs of elliptic curves over Fp2 are unlikely to be connected by isogenies
of degrees significantly smaller than

√
p. Indeed, when ` =

∏
i p
ei
i , there are exactly

a(`) :=
∏
i

(pi + 1)pei−1i

isogenies of degree ` from any curve E, hence any curve E is connected to at most∑
`≤D a(`) curves EA by an isogeny of degree at most D. A calculation given in Ap-

pendix A shows that this sum converges to

15

2π2
D2

as D tends to infinity. As there are roughly p/12 supersingular invariants over Fp2 we
can evaluate the success probability of the above algorithm as

SR ≈ max

(
0, 1− 90

π2

`2nA
p

)
.

For the parameters used in Jao–De Feo’s cryptosystems we expect this basic attack to
succeed with a probability larger than 50% as soon as f > 180

π2 ≈ 18.23, where f is the
cofactor in p = `nA`

m
B f ± 1.

The success rate of our attack can be easily improved in two ways. First, we can
apply the algorithm separately on all curves that are at distance `eA of EA for some
small constant e, until it succeeds for one of them. Clearly one of these curves will
be connected to E by an isogeny of degree `n−eA , and as a result the success rate will
increase to

SR ≈ max

(
0, 1− 90

π2

`
2(n−e)
A

p

)
.

With `A = 2 and e = 10 this method will lead to a success rate above 99%, even when
f = 1. Second, we can try to use the Minkowski-reduced basis computed in Step 3
of the algorithm to find an element α of the appropriate norm, even when it is not the
smallest element. We explore two heuristic methods in that direction in our experiments
below.

4.3 Experimental Results

We tested our algorithm in Magma with `A = 2 and with a λ-bit prime p, a randomly
selected maximal order, another random maximal order connected to the first by a path

3 The argument is not totally accurate as E and EA are slightly closer in the `A-isogeny graph
than random pair of curves would be. This may a priori impact the probabilities, however a
significant distortion of these probabilities would reveal some unexpected properties of the
graph, such as the existence of more or fewer loops of certain degrees than expected.

17



of length dlog`A(p)e + δ, with δ ∈ {−5, . . . , 5}. One can traverse from the first order
to the second via dlog`A(p)e+ δ steps in the `A-isogeny tree.

The first three columns of Table 1 (“First basis element”) correspond to the attack
described in the previous section. The next three columns (“All basis elements”) corre-
spond to a variant where instead of considering only the smallest element in Step 4 of
the algorithm, we try all elements in the Minkowski-reduced basis. Finally, the last three
columns (“Linear combinations”) correspond to a variant where we search for α of the
right norm amongst all elements of the form

∑4
i=1 ciβi, where ci ∈ {−4, . . . , 4} and

βi are the Minkowski-reduced basis elements. Each percentage in the table corresponds
to a success rate over 100 experiments.

First basis element All basis elements Linear combinations
λ λ λ

100 150 200 100 150 200 100 150 200

δ

−5 100% 99% 99% 100% 100% 99% 100% 100% 100%
−4 93% 99% 94% 98% 99% 100% 100% 100% 100%
−3 83% 84% 88% 92% 95% 99% 100% 100% 100%
−2 40% 43% 45% 81% 74% 76% 100% 100% 100%
−1 0% 2% 0% 35% 42% 35% 100% 100% 99%
0 0% 0% 0% 3% 4% 3% 100% 100% 100%
1 0% 0% 0% 1% 0% 0% 97% 99% 98%
2 0% 0% 0% 0% 0% 0% 95% 94% 91%
3 0% 0% 0% 0% 0% 0% 57% 68% 70%
4 0% 0% 0% 0% 0% 0% 25% 28% 18%
5 0% 0% 0% 0% 0% 0% 0% 3% 1%

Table 1. Experimental results for δ values. ` = 2.

The experimental results are entirely convincing, so we leave better strategies to
identify α from the Minkowski-reduced basis to further work.

5 Isogeny Hidden Number Problem

In this section we present an algorithm that takes partial information about the shared j-
invariant j(EAB) of Alice and Bob, and recovers the entire j-invariant, i.e. their shared
key. This algorithm can therefore be used as a tool to obtain the shared key from a
side-channel attack and to prove a bit security result.

Influenced by work on Diffie–Hellman key exchange in Z∗p, we propose the isogeny
hidden number problem as a useful abstraction for analysing different cases where par-
tial information is provided.

Hidden number problems have been used in other research. For example, [5] proved
that some bits are hardcore for Diffie–Hellman shared keys in Z∗p, [16, 25, 26] studied
partial leakage of nonces in DSA and EC-DSA signatures, and [1, 24] discussed side-
channel attacks in the context of signatures.
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Definition 3 (Isogeny hidden number problem). Let Es be an unknown supersin-
gular elliptic curve over Fp2 . The isogeny hidden number problem is to compute the
j-invariant j(Es) given an oracle O such that O(r) outputs partial information on
j(E′) for some curve E′ which is r-isogenous to Es.

We now explain how the oracle O in this problem can be realized in the context of
the supersingular isogeny Diffie–Hellman key exchange. We use the same notation as
earlier in the paper, so that PA, QA, PB , QB ∈ E are known, and so are Alice and Bob’s
session values: EA, EB , φA(PB), φA(QB), φB(PA), φB(QA). We set Es := EAB to
be the unknown elliptic curve. We suppose we have another oracle O′ that takes these
values and produces some partial information on j(EAB), which we interpret as the
oracle query O(1).

As a second stage, the adversary chooses a small integer r (coprime to Alice’s prime
`) and a point R ∈ EB [r] of full order. Let φBC : EB → EC be an isogeny of degree
r with kernel 〈R〉, that is EC = EB/〈R〉. Note that there is a curve E′ := EAC and
an r-isogeny EAB → EAC corresponding to the image of R under the isogeny from
EB to EAB . We also have that EAC = EC/φC(GA) where GA is the kernel of φA and
φC = φBC ◦ φB . This situation is pictured below.

E

EA

EB

EAB

φA

φB
EAC

ECφBC

The curvesEA,EC and the corresponding values φA(PB), φA(QB), φC(PA) = φBC(φB(PA)),
φC(QA) = φBC(φB(QA)) can be used to perform a key exchange, which will consti-
tute the curve EAC (this is the dotted arrow in the figure).

Querying the oracleO′ on these values results in some partial information on j(EAC).
We interpret this as the oracle query O(r).

We give a full solution to the isogeny hidden number problem in the case where
the oracle outputs an entire component of the j-invariant, and propose an attack where
the oracle outputs some most significant bits of both components. This leads to a bit
security result and to an active attack, which can be realized by a side-channel attack,
when Alice uses a static key.

5.1 Algorithms for the Isogeny Hidden Number Problem

We recall that each j-invariant is an element in Fp2 . Let Fp2 = Fp(θ), where θ2 +Aθ+
B = 0, with A,B ∈ Fp. We write j = j1 + j2θ. For simplicity we only consider two
cases of partial knowledge:

1. Oracle returns an entire component ji of each j-invariant.
2. Oracle returns the most significant bits of both components.
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Other models of partial information could be considered as well.
We first remark that, since there are only around p/12 supersingular j-invariants,

one might expect that knowledge of one component ji uniquely determines the entire
j-invariant. This is not true in general, and it seems to be the case that there is no bound
independent of p on the number of supersingular j-invariants in Fp2 with a fixed value
for ji (one exception is the rare class of j-invariants that actually lie in Fp and so are
uniquely determined by their first component; the number of such j-invariants grows
proportional to

√
p). Furthermore, there seems to be no known efficient algorithm that

computes the other component j3−i given the value ji together with the fact that the
curve is supersingular. Hence, even the first case is not trivial.

Our result is based on the modular polynomials Φr(x, y), which have the prop-
erty that there is an isogeny φ : E → E′ of degree r with cyclic kernel if and only
if Φr(j(E), j(E′)) = 0. We refer to [10, Section 11.C], [3, Section III.8] for back-
ground. These polynomials give a way to relate the known information on the different
j-invariants. The degree of Φr(x, y), as well as their number of monomials, grow with
r. Since the degree of these polynomials influences the complexity of the computation,
it is desirable to work with the smallest possible r (in practice we can take either r = 2
or r = 3). For r = 2 we have

Φ2(x, y) = x3 + y3 − x2y2 + 1488x2y + 1488xy2

− 162000x2 − 162000y2 + 40773375xy

+ 8748000000x+ 8748000000y − 157464000000000 .

The framework is the following. Let x = x1 + x2θ, y = y1 + y2θ. We call x1 a
“coefficient of 1” and x2 a “coefficient of θ”. Then Φ2(x, y) = F1(x1, x2, y1, y2) +
F2(x1, x2, y1, y2)θ for F1, F2 ∈ Fp[x1, x2, y1, y2], of total degree 4. Let j = j(E) =
j1 + j2θ and j′ = j(E′) = j′1 + j′2θ, then if Φ2(j, j′) ≡ 0 (mod p) it holds that
F1(j1, j2, j

′
1, j
′
2) = F2(j1, j2, j

′
1, j
′
2) ≡ 0 (mod p).

Given some most significant bits of x, a common approach is to write

h := MSBk(x) = x− e, for |e| < p

2k+1
,

so e is a relatively small integer. If all the bits are given, then e = 0. Substituting the
known values that the oracle provides into each Fi, one constructs new polynomials Gi
whose roots can be used to fully recover the j-invariant j(E). The problem reduces to
the problem of recovering desired roots of Gi.

Complete component In this case we assume the attacker has a whole component
for each j-invariant. We show that two samples are sufficient to recover the secret j-
invariant j(Es). That is, we need one component of j(Es) and one component of an-
other j(E′). Moreover, we can work with any pair of components (the components do
not have to be in the same position).

Theorem 2. Let the oracle O in the isogeny hidden number problem output one com-
ponent of the finite field representation of j(E′) ∈ Fp2 . Then there is an algorithm to
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solve the isogeny hidden number problem that makes two queries to O and succeeds
with probability at least 1/18 if both components are coefficients of 1, with probability
at least 1/12 if both components are coefficients of θ, and with probability at least 1/15
otherwise.

Proof. Let Es be the desired elliptic curve. The query O(1) gives one component of
j(Es) and the query O(2) gives one component of j(E′) where Φ2(j(Es), j(E

′)) = 0.
Writing j(Es) = j1 + j2θ and j(E′) = j′1 + j′2θ then, as explained, Φ2(j, j′) = 0

can be expressed as F1(j1, j2, j
′
1, j
′
2) = F2(j1, j2, j

′
1, j
′
2) = 0 for two polynomials

F1, F2.
The oracle queries provide values x3−k = j3−k, y3−l = j′3−l for k, l ∈ {1, 2}.

Plugging these values into the polynomials Fi, we construct two bivariate polynomials
Gi in variables xk, yl where the highest degree of each variable is at most 3. By taking
the resultant of these polynomials with respect to yl we get a univariate polynomial in
xk of degree at most 18. We show in Appendix C that the resultant is not the constant
zero. One can then factor this polynomial to get at most 18 roots over Fp, where one
of the roots is jk. As we have jk and j3−k, we can construct j(Es). Hence, taking one
of these solutions at random, we have determined the unknown j-invariant of Es with
probability at least 1/18.

Note that if the oracle queries yield j2, j′2, thenG2 is of degree 2, and so the resultant
is of degree at most 12 (see Appendix C). Therefore, there are at most 12 possibilities of
Fp-solutions to the remaining unknown, which bound the success probability by 1/12.
Similarly, if only one of the components is a coefficient of θ, then the degree of the
variable associated to this component in G2 is 2, and so the resultant is of degree at
most 15. ut

Remark 3. The solution given in Theorem 2 applies directly to any degree r. Note that
the degree of Φr(x, y) increases with r, so we get more candidates for jk. The proof
holds with non-negligible probability for any low degree r. Notice that one can run
the algorithm for several different degrees r and test if there is only one root which is
common to all lists of candidates, this will be jk.

This solution assumes the oracle always gives the correct answer. An oracle that
gives correct answers with some probability can be treated using the ideas in the next
partial information model.

Theorem 2 provides the following bit security result for the supersingular isogeny
key-exchange in a manner analogous to how the hidden number problem is used to give
bit security results for Diffie–Hellman key exchange in Z∗p [5].

Theorem 3. Computing any component of the shared j-invariant j(EAB) in the super-
singular isogeny key exchange is as hard as computing the entire j-invariant j(EAB).

Indeed, the isogeny hidden number problem in this case can be derived from the
oracle O′ described above, that takes the public parameters as well as the values EA,
EC , φA(PB), φA(QB), φC(PA), φC(QA) and outputs a component of j(EAC) (if
Alice’s prime ` is 2, one can take r = 3 or work with Bob’s values and EBC). We have
just shown that, given an algorithm that computes a component of the shared j-invariant
from the public keys, there is an algorithm that computes the entire j-invariant.
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Partial components In this case we assume the attacker has most significant bits of
both component for each j-invariant. Therefore, we write ji = hi + ei and j′i = h′i + e′i
for i = 1, 2 and for a pair of j-invariants j, j′. Substituting these values to the equations
of Fi, we construct two new polynomials G1, G2 ∈ Fp[u1, u2, v1, v2] of degree 4, such
that

G1(e1, e2, e
′
1, e
′
2) = G2(e1, e2, e

′
1, e
′
2) ≡ 0 (mod p) .

The problem of computing the hidden j-invariant can therefore be expressed in
terms of finding a small solution to a system of multivariate polynomial equations mod-
ulo p. One can then solve the problem by applying the well-known lattice-based tech-
niques due to Coppersmith and Howgrave-Graham. We refer to [19] for a survey of
these methods, where multivariate polynomials are considered.

These lattice methods require several relations, so we expect to need more than the
six relations that are coming from the three 2-isogenous curves to Es. To get more
relations one can take isogenies of higher degrees, but we suggest working with degree
2 to get a stronger attack. That is, instead of fixing Es and taking several r-isogenous
curves E′ for increasing r, we suggest following a (short) path in the 2-isogeny graph
rooted atEs. This ensures that the only polynomial being used isΦ2, which has minimal
degree and the minimal number of monomials.

The main idea is to consider a part of the 2-isogeny graph close to Es (typically it
will be a tree rooted atEs). For every edge in the graph we obtain partial information on
a j-invariant, which gives rise to two polynomials, namely G1, G2, which are satisfied
by a simultaneous “small” solution.

Once enough polynomials are gathered, one can apply the techniques mentioned
above to get a solution to the entire system where some of the roots are small (coming
from the coordinates of a short vector in a corresponding lattice). Given these roots, one
can recover the j-invariant for a curve Ed in this path. Using the modular polynomials,
we can “travel back” to find the j-invariant of the root Es. Indeed, suppose our path
is E0 = Es, E1, . . . , Ek. Then as we know j(Ed) for some d ≤ k, we can use Φ2 to
compute j(Ed−1) by solving Φ2(j(Ed), y) ≡ 0 (mod p). We get at most 3 candidates
for j(Ed−1), and we proceed recursively to find candidates for j(Ed−2), . . . , j(E0).
Since the distance fromEd to the rootEs is short, this results in a small list of candidates
for j(Es).

We remark that in practice the polynomialsG1, G2 consist of many monomials, and
therefore this approach would require knowledge of many bits. However, Coopersmith’s
method shows how to generate more relations, which help to reduce the number of bits,
and as an attack one can also rely on lattice algorithms working better in practice than
theoretically guaranteed.

5.2 Active Attack When Alice Uses a Static Key

We assume that Alice uses a static key for encryption or key exchange. A legitimate key
exchange protocol takes place between Alice and Bob, and an adversary Eve who sees
the protocol messages wishes to obtain the resulting shared j-invariant jAB . Hence Eve
knows (E,EA, EB) and the corresponding points.
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We further assume that Eve can (adaptively) engage in protocol sessions with Alice
(who always uses the same static secret key) and that, through some side-channel or
other means, Eve is able to obtain partial information on the shared key computed by
Alice on each protocol session.

Here, Alice acts as the oracle O that provides the partial information. Eve first ob-
serves a protocol exchange between Alice and Bob, and so sees (EB , φB(PA), φB(QA)).
She learns some partial information on j(EAB).

Eve then chooses a small integer r coprime to Alice’s prime `, and as described
above computes an isogeny φC , the curve EC and the corresponding points φC(PA),
φC(QA). She sends (EC , φC(PA), φC(QA)) to Alice as part of a key exchange session.
Alice then computes EAC = EC/φC(GA) and some partial information about this j-
invariant j(EAC) is leaked. This leads to the scenario described in the isogeny hidden
number problem, and using one of the solutions to this problem yields the desired j-
invariant j(EAB).

Note that this attack can be detected by the countermeasure of Kirkwood et al. [20],
since the query on EC is not on a correct execution of the protocol. However, the proto-
col still requires Alice to compute EAC and so in the context of a side-channel attack,
an attacker might already have received enough information to determine the desired
secret key j(EAB).

6 Conclusion

We have given several results on the security of cryptosystems based on the Jao–De Feo
concept. Our main conclusion is that it seems very hard to prevent all active attacks
using simple methods. Our first active attack seems to be undetectable using pairings
or any other tools, as the curves and points appear to be indistinguishable from correct
executions of the protocol. Similarly, our side-channel attack based on leakage of partial
knowledge of the key seems to be hard to detect (without storing all previous sessions
and each user checking that all curves EC sent to her are not related to previous curves
EB by an isogeny of small degree). However, both these active attacks are detected
by the heavy-duty countermeasure of Kirkwood et al. [20]. The latter attack comes
from a reduction that gives the first bit security result for the supersingular isogeny key
exchange.

Our paper therefore suggests that there is no way to avoid the use of such general
countermeasures. It also shows that there is a risk of side-channel and fault attacks on
these protocols, and these topics will no doubt generate a small following of literature
in the coming years.

We have also discussed the connection between the problem of computing endo-
morphism rings and computing isogenies. In general, knowledge of End(EA) does not
immediately lead to a 2-power isogeny of low degree from E to EA. But in the set-
ting of the Jao and De Feo scheme such an isogeny can be efficiently computed when
End(E) and End(EA) are known. This demonstrates that the isogenies considered in
these cryptosystems are special, which is natural to suspect since they are too short to
provide good mixing in the expander graph.
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A Number of Isogenies of Degree Smaller Than D

To the sum
∑D
n=2 a(n) with a(n) =

∏
pe|n(p + 1)pe−1 we can associate a Dirichlet

series d(s) =
∑
n≥1

a(n)
ns . This Dirichlet series is in fact equal to d(s) = ζ(s)ζ(s−1)

ζ(2s) by
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applying Euler’s product formula. The function has a pole at s = 2 with residue equal
to ζ(2)/ζ(4). Using Perron’s formula and Cauchy’s Residue theorem, we arrive at

∑
n≤D

a(n) ∼ c ·D2

where

c = Res(s = 2) =
1

2

ζ(2)

ζ(4)
=

15

2π2
.

B Low Order Adaptive Attack

In this appendix, we will discuss an adaptive attack that is easily detected but can be
more powerful than the attack in Section 3. This adaptive attack uses points of small
order; in particular, the attacker uses points

(
R, [`k]S

)
, where R,S ∈ E[`n]. We will

illustrate the attack using the first oracle model and when ` > 3.

As with the attack presented in Section 3, we will assume that Alice is using a static
key (1, α), and that a dishonest user is playing the role of Bob to learn her key. It will
be immediately clear that the attack will not stand up to the validations proposed by [9].

Let Alice be working in E[`n] ⊂ E(Fp2), where `n | (p + 1) and ` > 3. Suppose
that an attacker has recovered the first i bits of α, so that

α = Ki + `iαi + `i+1α′

where Ki is known but αi ∈ {0, 1, . . . , `− 1} and α′ are not known.

The attacker computes EB , R = φB(PA), S = φB(QA) and queries the oracle on
(EB , R, [`

n−i−1]S). The resulting elliptic curve that the oracle computes is

EB/〈R+ [α][`n−i−1]S〉 = EB/〈R+ [`n−i−1][Ki + `iαi + `i+1α′]S〉
= EB/〈R+ [`n−i−1][Ki]S + [`n−1αi]S〉.

Since the component R + [`n−i−1][Ki]S is known, the attacker can recover αi if he
knows the j-invariant by trying all of the ` different values of αi. For each `-ary bit,
we only need one oracle interaction. This therefore solves the problem mentioned in
Remark 2. The pseudo-code for this attack is presented in Algorithm 3.

Notice that with the second oracle model the attacker would need to make at most `
queries to the O(E,R, S,E′) oracle to recover αi.
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Algorithm 3: Low order adaptive attack using oracle O(E,R, S).
Data: n, E, PA, QA, PB , QB , EA, φA(PB), φA(QB)
Result: α

1 Set K0 ← 0;
2 for i← 0 to n− 1 do
3 Choose random (b1, b2);
4 Set GB ← 〈[b1]PB + [b2]QB〉;
5 Set EB ← E/GB and let φB : E → EB be the isogeny with kernel GB ;
6 Set (R,S)← (φB(PA), φB(QA));
7 Set ji ← Query the oracle on

(
EB , R, [`

n−i−1]S
)

;
8 for x← 0 to `− 1 do
9 Set jatt ← j(EB/〈R+ [Ki]S + [x]S〉) ;

10 if jatt = ji then αi ← x;
11 end
12 Set Ki+1 ← Ki + αi`

i;
13 end
14 Return Kn;

C The Resultant of G1(xk, yl) and G2(xk, yl)

Let p, q ∈ k[x, y] be two polynomials, and k some field. The resultant of p and q with
respect to y, denoted Res(p, q, y), is given by the determinant of the Sylvester matrix of
p and q as univariate polynomials in y, that is, we consider p, q ∈ k(x)[y]. The resultant
Res(p, q, y) is a univariate polynomial in x, so belongs to k[x]. For background on the
resultant we refer to Sections 5 and 6 of Chapter 3 in [11].

We show that the resultant Res(G1, G2, yl), considered in Section 5.1, is not iden-
tically zero. We will use the fact that the modular polynomial Φr(X,Y ) ∈ Fp[X,Y ]
is absolutely irreducible (irreducible over the algebraic closure). We therefore consider
Φr, as well as G1, G2, in Fp[X,Y ]. Recall that there are four cases depending on the
values of (k, l). For example when (k, l) = (1, 2) we haveG1(x1, y2)+G2(x1, y2)θ =
Φ2(x1 + j2θ, j

′
1 + y2θ).

Assume for contradiction that Res(G1, G2, yl) ≡ 0. By Proposition 1(ii) in [11,
Chapter 3, §6], Res(G1, G2, yl) ≡ 0 if and only if there exists a polynomial h ∈
Fp[xk, yl] with positive degree in yl such that h | G1 and h | G2.

Consider the following linear substitution of variables:

– If k = 1 then set x1 = X − j2θ and if k = 2 then set x2 = (X − j1)θ−1.
– If l = 1 then set y1 = Y − j′2θ and if l = 2 then set y2 = (Y − j′1)θ−1.

One can check that these substitutions give

G1(xk, yl) +G2(xk, yl)θ = Φr(X,Y ) .

Hence, letting h̄(X,Y ) be the polynomial obtained by evaluating h(xk, yl) with these
substitutions we have

h̄(X,Y ) | Φr(X,Y ) .
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From the facts that the degree of h̄ is equal to the degree of h, and that Φr is irreducible,
it follows that (since we assumed h is non-constant) that h is a constant multiple of both
G1 and G2. But by comparing the monomials in G1, G2, it is easy to see that they are
not constant multiples of each other. Hence we have a contradiction and the resultant is
non-zero.

We now explain the degrees arising in the proof of Theorem 2. Given the com-
ponents j3−k, j′3−l, consider Φ2(x, y) and the corresponding polynomials G1(xk, yl),
G2(xk, yl). We have

degxk
Res(G1, G2, yl) =

12 if k = l = 1,
18 if k = l = 2,
15 otherwise .

It follows from the following lemma, since degx1
F1 = degy1 F1 = 3, degx2

F1 =
degy2 F1 ≤ 3, degx1

F2 = degy1 F2 ≤ 2 and degx2
F2 = degy2 F2 ≤ 3.

Lemma 6. Let p, q ∈ k[x, y] be two polynomials with

degx p = nx , degy p = ny ,

degx q = mx , degy q = my .

Then degx Res(p, q, y) ≤ mynx + nymx.

Proof. The Sylvester matrix of p and q with respect to y is a (my + ny)× (my + ny)
matrix. The first my rows, coming from the coefficients of p, contain polynomials in x
of degree at most nx. Similarly, the last ny rows contain polynomials in x of degree at
most mx. The resultant Res(p, q, y) is given by the determinant of this matrix, which is
formed by summing products of an entry from each row. The first my rows contribute
at most mynx to the degree of x, and the last ny rows contribute at most nymx. ut
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