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Abstract. We initiate the study of public-key encryption (PKE) se-
cure against selective-opening attacks (SOA) in the presence of random-
ness failures, i.e., when the sender may (inadvertently) use low-quality
randomness. In the SOA setting, an adversary can adaptively corrupt
senders; this notion is natural to consider in tandem with randomness
failures since an adversary may target senders by multiple means.

Concretely, we first treat SOA security of nonce-based PKE. After for-
mulating an appropriate definition of SOA-secure nonce-based PKE, we
provide efficient constructions in the non-programmable random-oracle
model, based on lossy trapdoor functions.

We then lift our notion of security to the setting of “hedged” PKE,
which ensures security as long as the sender’s seed, message, and nonce
jointly have high entropy. This unifies the notions and strengthens the
protection that nonce-based PKE provides against randomness failures
even in the non-SOA setting. We lift our definitions and constructions of
SOA-secure nonce-based PKE to the hedged setting as well.

1 Introduction

Imagine that an adversary wants to gain access to encrypted communication
that various senders are transmitting to a receiver. There are various ways to
go about doing this. One is to try to subvert the random-number generator
used by the senders. Another is to break-in to the senders’ machines, possibly in
an adaptive fashion. Encryption schemes resisting the first sort of attack have
been studied in the context of security under randomness failures [18, 3, 23, 7,
10] while resistance to the second sort of attack corresponds to the notion of
security against selective-opening attacks (SOA) [9, 5, 15, 14, 11, 16].1 However,
as far as we are aware, these notions have so far only been considered separately.

1 There are two forms of SOA security, called coin-revealing (corresponding to sender
corruption) and key-revealing (corresponding to receiver corruption). This paper
concerns the first one.
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We initiate the study of SOA-secure encryption in the presence of randomness
failures, providing new definitions and constructions achieving these definitions
in the public-key setting.

There are currently three main approaches in the literature to dealing with
randomness failures for PKE: (1) deterministic PKE [2], which does not use
randomness at all but guarantees security only if plaintexts have high entropy, (2)
hedged PKE, which is randomized and guarantees security as long as plaintexts
and the randomness jointly have high entropy, and (3) the recently introduced
notion of nonce-based PKE by Bellare and Tackmann (BT) [10], where each
sender uses a uniform seed2 in addition to a nonce, and security is guaranteed if
either the seed is secret and the nonces are unique, or the seed is revealed and the
nonces have high entropy. Hedged PKE and nonce-based PKE are incomparable
and are useful in different scenarios, and part of our contribution is to unify
them into a single primitive. We start by adding consideration of SOA security
to nonce-based PKE. We then lift the resulting notions to the setting of hedged
PKE (which subsumes deterministic PKE) as well, thereby adding consideration
of SOA to a unified primitive with the guarantees of both nonce-based and
hedged PKE.

1.1 Our Results

Selective-opening security for nonce-based PKE. As explained above,
the first notion we consider for protecting against randomness failures is nonce-
based PKE, recently introduced by Bellare and Tackmann [10]. For consistency
with the definitions of SOA security we introduce for later notions (where new
technical challenges arise), we formulate an indistinguishability-based (rather
than simulation-based) definition, which we call N-SO-CPA, along the lines of the
indistinguishability-based definition of SOA security for standard PKE [9]. Under
our definition, the adversary can (i) learn the seeds of some senders, (ii) choose
the nonces for all the other senders, as long as nonces of each individual sender
do not repeat. Then, after seeing the ciphertexts, the adversary can adaptively
corrupt some senders to learn their messages together with seeds and nonces. The
definition asks that the adversary cannot distinguish between the plaintexts of
the uncorrupted senders and a resampling of these plaintexts conditioned on the
revealed plaintexts.

The next question is whether N-SO-CPA security is achievable. Throughout
our work, we focus on constructions in the so-called non-programmable random-
oracle model (NPROM) [20]. Intuitively, this means that in a security proof, the
constructed adversary must honestly answer (i.e., cannot program) the random
oracle queries of the assumed adversary. The NPROM is arguably closer to the
standard (random oracle devoid) model than the programmable random oracle
model (PROM), since real-world hash functions are not programmable. In this

2 The idea is that because a seed is chosen infrequently, it can be generated using
high-quality randomness.
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model, we give an efficient construction of N-SO-CPA-secure3 nonce-based PKE
based on any lossy trapdoor function [21]. The idea is to modify the nonce-based
PKE scheme of Bellare and Tackmann, which encrypts a message m using public-
key pk, seed xk, and nonce N by encrypting m using any standard (randomized)
PKE scheme with public key pk and “synthetic” coins derived from a hash of
(xk,N,m). Here, we use a specific randomized encryption scheme based on any
lossy trapdoor function. The security proof of the resulting scheme, which we call
NE1, relies on switching to the lossy key-generation algorithm and then using the
random oracle to argue that the adversary’s choice of which senders to corrupt
must be independent of the plaintexts.

SOA+hedged security for nonce-based PKE. Unlike nonce-based PKE,
hedged PKE [3] guarantees security as long as the message and randomness used
by the sender jointly have high entropy. Indeed, viewing the sender’s seed and
nonce together as the sender’s randomness, nonce-based PKE as defined in [10]
lacks such a guarantee. To get the best of both worlds, we would like to add
such a guarantee to nonce-based PKE. This strengthens the protection provided
against randomness failures even in the absence of SOA; however, sticking with
the main theme of this work, we aim to achieve it in the SOA setting as well.
This leads to a definition that we call HN-SO-CPA, which incorporates both
hedged and SOA security into the existing notion of nonce-based PKE.

Modeling SOA in the hedged setting is technically challenging. Indeed, Bel-
lare et al. [4] recently showed that a simulation-based notion of SOA security
for deterministic PKE (which is a special case of hedged PKE) is impossible to
achieve. They also noted that a natural indistinguishability-based definition is
(for different reasons) trivially impossible to achieve, and left open the prob-
lem of defining a meaningful (yet achievable) definition. To that end, we in-
troduce a novel “comparison-based” definition of SOA for nonce-based PKE,
inspired by the comparison-based definition of SOA for deterministic PKE [2,
6] combined with the indistinguishability-based definition of SOA for standard
PKE [9]. Roughly, the definition requires that the adversary cannot predict any
function of all the plaintexts (i.e., including those of the uncorrupted senders)
with much better probability than by computing the same function on a resam-
pling of all the plaintexts conditioned on the revealed plaintexts. For technical
reasons, HN-SO-CPA does not protect partial information about the messages
depending on the public key, so we still require N-SO-CPA to hold in addition.

We provide two approaches for achieving HN-SO-CPA + N-SO-CPA-secure
nonce-based PKE. The first is a generic transform inspired by the “randomized-
then-deterministic” transform of [3] in the setting of hedged security. Namely,
we propose a “Nonce-then-Deterministic” (NtD) transform in which one obtains
a new nonce-based PKE scheme by composing an underlying nonce-based PKE
scheme with a deterministic PKE scheme. We require that the underlying deter-
ministic PKE scheme meet a corresponding special case of the HN-SO-CPA def-
inition that we call D-SO-CPA, and achieve it via a scheme DE1 in the NPROM.

3 In the main body of the paper we treat both CPA and CCA security. For simplicity,
we do not discuss CCA here.
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Interestingly, the scheme DE1 is exactly the recent construction of Bellare and
Hoang [7], except that they assume the hash function is UCE-secure [8] and
achieve standard security (not SOA). Again, the analysis is quite involved and
deals with subtleties neither present in SOA for randomized PKE nor in prior
work on deterministic PKE. Alternatively, we show that the scheme NE1 directly
achieves both HN-SO-CPA and N-SO-CPA in the NPROM.

Separation results. Finally, to justify our developing new schemes in the
setting of selective-opening security in the presence of randomness failures rather
than using existing ones, we show that the N-SO-CPA and D-SO-CPA are not
implied by the standard notions (non-SOA) of nonce-based PKE [10] and D-
PKE [2], respectively. Our counter-examples rely on the recent result of Hofheinz,
Rao, and Wichs (HRW) [15] that separates IND-CCA security from SOA security
for randomized PKE. We also show that N-SO-CPA does not imply HN-SO-CPA
for nonce-based PKE, meaning the hedged security does strengthen the notion
considered for nonce-based PKE in [10].

Open question. We leave obtaining standard-model (versus NPROM) schemes
achieving our notions as an open question. Note that our NtD transform is in
the standard model, so if we had standard-model instantiations of the underly-
ing primitives we would get a standard-model HN-SO-CPA + N-SO-CPA-secure
nonce-based PKE as well.

1.2 Organization

In contrast to the order in which we explained the results above, in the main
body of the paper we first present our results on SOA security for deterministic
PKE, then move to our results on SOA security for nonce-based PKE, and then
finally present our results on hedged security for SOA-secure nonce-based PKE.
This is because the results for deterministic PKE constitute the technical core
of our work, and form a basis for the results that follow.

2 Preliminaries

Notation and conventions. An adversary is an algorithm or tuple of algo-
rithms. All algorithms may be randomized and are required to be efficient unless
otherwise indicated; we let PPT stand for “probabilistic, polynomial time.” For
an algorithm A we denote by x←$A(· · · ) the experiment that runs A on the
elided inputs with uniformly random coins and assigns the output to x, and
x←$A(· · · ; r) to denote the same experiment, but under the coins r instead of
randomly chosen ones. IfA is deterministic we denote this instead by x← A(· · · ).
We let [A(· · · )] denote the set of all possible outputs of A when run on the elided
arguments. If S is a finite set then s←$ S denotes choosing a uniformly random
element from S and assigning it to s. We denote by Pr[P (x) : . . .] the probability
that some predicate P is true of x after executing the elided experiment.

Let N denote the set of all non-negative integers. For any n ∈ N we denote
by [n] the set {1, . . . , n}. For a vector x, we denote by |x| its length (number of
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components) and by x[i] its i-th component. For a vector x of length n and any
I ⊆ [n], we denote by x[I] the vector of length |I| such that x[I] = (x[i])i∈I . For
a string X, we let |X| denote its length. For any integer 1 ≤ i ≤ j ≤ |X|, we
write X[i] to denote the ith bit of X, and X[i, j] the substring from the i-th to
the j-th bit (inclusive) of X.

Public-key encryption. A public-key encryption scheme PKE with message
space Msg is a tuple of algorithms (Kg,Enc,Dec). The key-generation algorithm
Kg on input 1k outputs a public key pk and secret key sk . The encryption
algorithm Enc on inputs a public key pk and message m ∈ Msg(k) outputs a
ciphertext c. The deterministic decryption algorithm Dec on inputs a secret key
sk and ciphertext c outputs a message m or ⊥. We require that for all (pk , sk) ∈
[Kg(1k)] and all m ∈ Msg(1k), the probability that Dec(sk , (Enc(pk ,m)) = m is
1. We say PKE is deterministic if Enc is deterministic.

Lossy trapdoor function. A lossy trapdoor function [21] with domain LDom
and range LRng is a tuple of algorithms LT = (LT.IKg, LT.LKg, LT.Eval, LT.Inv)
that work as follows. Algorithm LT.IKg on input a unary encoding of the security
parameter 1k outputs an “injective” evaluation key ek and matching trapdoor
td . Algorithm LT.LKg on input 1k outputs a “lossy” evaluation key lk. Algo-
rithm LT.Eval on inputs an (either injective or lossy) evaluation key ek and
x ∈ LDom(k) outputs y ∈ LRng(1k). Algorithm LT.Inv on inputs a trapdoor td
and a y′ ∈ LRng(k) outputs x′ ∈ LDom(k). We require the following properties.

Correctness: For all k ∈ N and any (ek , td) ∈ [LT.IKg(1k)], it holds that
Inv(td , LT.Eval(ek , x)) = x for every x ∈ LDom(k).

Key indistinguishability: For every distinguisherD, the advantage Advltdf
LT,D(k) =

Pr[D(ek)⇒ 1 : (ek , td)←$ LT.IKg(1k)]−
Pr[D(lk)⇒ 1 : lk←$ LT.LKg(1k)] is negligible.

Lossiness: The size of the co-domain of LT.Eval(lk, ·) is at most |LRng(k)|/2τ(k)
for all k ∈ N and all lk ∈ [LT.LKg(1k)]. We call τ the lossiness of LT.

If the function LT.Eval(ek , ·) is a permutation for any k ∈ N and any (ek , td) ∈
[LT.IKg(1k)] then we call LT a lossy trapdoor permutation. Both RSA and Rabin
are lossy trapdoor permutations under appropriate assumptions [19, 22].

Message samplers. A message sampler M is a PPT algorithm that takes as
input 1k and a string param ∈ {0, 1}∗, and outputs a vector m of messages and
a vector a of the same length. Each a[i] is the auxiliary information that an
adversary gains in addition to m[i], if it breaks into the machine of the sender
of m[i]. For example, if each m[i] is a signature of some string x[i], then the
adversary may be able to obtain even x[i] in its break-in. We require that M
be associated with functions v(·) and n(·) such that for any param ∈ {0, 1}∗, for
any k ∈ N, and any m ∈ [M(1k,param)], we have |m| = v(k) and |m[i]| = n(k),
for every i ≤ |m|.
A message sampler M is (µ, d)-entropic if

– For any k ∈ N, any I ⊆ {1, . . . , v(k)} such that |I| ≤ d, any param ∈
{0, 1}∗, and (m,a)←$M(1k,param), conditioning on messages m[I] and
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their auxiliary information a[I] and param, each other message m[j] (with
j ∈ {1, . . . , v(k)}\I) must have conditional min-entropy at least µ. Note that
here (m,a) is sampled independent of the set I.

– Messages m[1], . . . ,m[|m|] must be distinct, for any param ∈ {0, 1}∗ and
any m ∈ [M(1k,param)].

In this definition d can be ∞, which corresponds to a message sampler in which
the conditional distribution of each message, given param and all other messages
and their corresponding auxiliary information, has at least µ bits of min-entropy.

Resampling. Following [9], let Coins[k] be the set of coins for M(1k, ·), and
Coins[k,m∗,a∗, I,param] = {ω ∈ Coins[k] | m′[I] = m∗ and a′[I] = a∗,where
(m′,a′) ← M(1k,param;ω)}. Let ResampM(1k, I,m∗,a∗,param) be the algo-
rithm that first samples r←$ Coins[k,m∗,a∗, I, param], then runs (m′,a′) ←
M(1k,param; r), and then returns m′. (Note that ResampM may run in expo-
nential time.) A resampling algorithm of M is an algorithm Rsmp such that
Rsmp(1k, I,m∗,a∗,param) and ResampM(1k, I,m∗,a∗,param) are identically
distributed.4 A message sampler M is fully resamplable if it admits a PPT
resampling algorithm.

Partial resampling. We also introduce a new notion of “partial resampling.”
Let δ be a function and let ResampM,δ(1

k, I,m∗,a∗,param) be the algorithm

that samples r←$ Coins[k,m∗,a∗, I, param], runs (m′,a′) ← M(1k,param; r),
and then returns δ(m′,param). We say thatM is δ-partially resamplable if there
is a PT algorithm Rsmp such that Rsmp(1k, I,m∗,a∗,param) is identically dis-
tributed as ResampM,δ(1

k, I,m∗,a∗,param). Such an algorithm Rsmp is called
a δ-partial resampling algorithm of M. If a message sampler is already fully
resamplable then it’s δ-partially resamplable for any PT function δ.

3 Selective-Opening Security for D-PKE

3.1 Security Notions

Bellare, Dowsley, and Keelveedhi [4] were the first to consider selective-opening
security of deterministic PKE (D-PKE). They propose a “simulation-based” se-
mantic security notion, but then show that this definition is unachievable in both
the standard model and the non-programmable random-oracle model (NPROM),
even if the messages are uniform and independent. To address this, we introduce
an alternative, “comparison-based” semantic-security notion that generalizes the
original PRIV definition for D-PKE of Bellare, Boldyreva, and O’Neill [2]. In
particular, our notion follows the IND-SO-CPA notion of Bellare, Hofheinz, and

4 Here for simplicity, we only consider M and Rsmp such that the distributions of
Rsmp(1k, I,m∗,a∗,param) and ResampM(1k, I,m∗,a∗, param) are identical. Follow-
ing [9], one might also consider M and Rsmp such that the two distributions above
are statistically close.
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Yilek (BHY) [9] in the sense that we compare what partial information the ad-
versary learns from the unopened messages, versus messages resampled from the
same conditional distribution.

D-SO-CPA1 security. Let PKE = (Kg,Enc,Dec) be a D-PKE scheme. To a
message sampler M and an adversary A = (A.pg, A.cor, A.g, A.f), we associate
the experiment in Fig. 1 for every k ∈ N. We say that DE is D-SO-CPA1 secure
for a class M of resamplable message samplers and a class A of adversaries if
for every M∈M and any A ∈ A ,

Advd-so-cpa1
DE,A,M (·)

= Pr
[

D-CPA1-REALA,MDE (·)⇒ 1
]
− Pr

[
D-CPA1-IDEALA,MDE (·)⇒ 1

]
is negligible. In these games, the adversary A.pg first creates some parameter
param to feed the message sampler M. Note that A.pg is not given the public
key, and thus messages m1 created by M are independent of the public key, a
necessary restriction of D-PKE pointed out by Bellare et al. [2]. Next, adversary
A.cor will be given both the public key and the ciphertexts c, and decides which
set I of indices that it’d like to open c[I]. It then passes its state to adversary A.g.
The latter is also given (m1[I],a[I]) and has to output some partial information
ω of the message vector m1.
Game D-CPA1-REALA,MDE returns 1 if the string ω above matches the output
of A.f(m1,param) which is the partial information of interest to the adver-

sary. On the other hand, game D-CPA1-IDEALA,MDE returns 1 if ω is matches
the output of A.f(m0,param), where m0 is the resampled message vector by
ResampM(1k,m1[I],a[I], I, param). Note that in both games, A.f is not given
the public key pk , otherwise it can encrypt the messages it receives and output
the resulting ciphertexts, while A.g outputs c. Again, this issue is pointed out
in [2]: since encryption is deterministic, the ciphertexts themselves are some par-
tial information about the messages. D-PKE can only hope to protect partial
information of m that is independent of pk , and A.f is therefore stripped of
access to pk .

Discussion. For selective-opening attacks against a D-PKE scheme in which
an adversary can open d messages, it is clear that the message sampler must
be (µ, d)-entropic, where 2−µ(·) is a negligible function, for any meaningful pri-
vacy to be achievable. For convenience of discussion, let’s say that a scheme
is D-SO-CPA1[d] secure if it’s D-SO-CPA1 secure for all (µ, d)-entropic, fully
resamplable message samplers and all PT adversaries that open at most d ci-
phertexts, for any µ such that 2−µ(·) is a negligible function. (The resamplability
restriction is dropped for d = 0.) The D-SO-CPA1[0] security corresponds to the
PRIV notion of Bellare et al. [2].5

5 A technical difference is that, to be consistent with [4], we require the “partial infor-
mation” to be an efficiently computable function of the messages. This formulation
can be shown equivalent to a definition in the style of [2] up to a difference of one
in the size of the message vectors output by M, following [6, Appendix A].
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Game D-CPA1-REALA,MDE (k)
param←$A.pg(1k)
(pk , sk)←$ Kg(1k)
(m1,a)←$M(1k,param)
For i = 1 to |m| do

c[i]← Enc(pk ,m1[i])
(state, I)←$A.cor(pk , c,param)
ω←$A.g(state,m1[I],a[I])
Return (ω = A.f(m1,param))

Game D-CPA1-IDEALA,MDE (k)
param←$A.pg(1k) ; (pk , sk)←$ Kg(1k)
(m1,a)←$M(1k,param)
For i = 1 to |m| do

c[i]← Enc(pk ,m1[i])
(state, I)←$A.cor(pk , c,param)
m0←$ ResampM(1k,m1[I],a[I], I, param)
ω←$A.g(state,m1[I],a[I])
Return (ω = A.f(m0,param))

Fig. 1: Games to define D-SO-CPA1 security.

We note that it is unclear if D-SO-CPA1[∞] security implies the classic PRIV
security: the latter doesn’t allow opening, but it can handle a broader class of
message samplers. Our goal is to find D-PKE schemes that offer D-SO-CPA1[d]
security for any value of d, including the important special cases d = 0 (PRIV
security) and d =∞ (unbounded opening).

Separation. In the full version, we show that the standard PRIV notion of
D-PKE doesn’t imply D-SO-CPA1. Our construction relies on the recent result
of Hofheinz, Rao, and Wichs [15] that separates the standard IND-CPA notion
and IND-SO-CPA of randomized PKE. Specifically, we build a contrived D-PKE
scheme that is PRIV-secure in the standard model, but subject to the following
D-SO-CPA1 attack. The message sampler picks a string s←$ {0, 1}`(k) and then
secret-share it to v(k) shares x[1], . . . ,x[v(k)] such that any t(k) shares reveal no
information about the secret s. Let m[i]← x[i] ‖u[i] for every i ∈ {1, . . . , v(k)},
where u[i]←$ {0, 1}2`(k). Since s is uniform, any t + 1 shares x[i] are uniform
and independent. Thus, this message sampler is (3`, t)-entropic. We show that it
is also efficiently resamplable. Surprisingly, there is an efficient SOA adversary
(A.cor, A.g) that opens just t ciphertexts and can recover all strings x[i]. Next,
A.g outputs x[1]⊕ · · ·⊕x[v(k)], and A.f outputs the checksum of the first ` bits
of the given messages. The adversary A thus wins with advantage 1− 2`(k).

D-SO-CPA2 security. The D-SO-CPA1 security notion only guarantees to
protect messages that are fully resamplable. The D-SO-CPA2 notion strength-
ens that protection, requiring privacy of δ(m,param) for any entropic message
samplerM and any δ such thatM is δ-partially resamplable. In Section 5, we’ll
see a concrete use of this extra protection, where (i) we have a sampler M that
is not fully resamplable, but (ii) each message itself is a ciphertext, and there’s
a function δ such that the plaintexts underneath m are δ(m,param) and M is
δ-partially resamplable. Formally, let

Advd-so-cpa2
DE,A,M,δ(·)

= Pr
[

D-CPA2-REALA,M,δ
DE (·)⇒ 1

]
− Pr

[
D-CPA2-IDEALA,M,δ

DE (·)⇒ 1
]
,
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Game D-CPA2-REALA,M,δ
DE (k)

param←$A.pg(1k)
(pk , sk)←$ Kg(1k)
(m,a)←$M(1k,param)
For i = 1 to |m| do

c[i]← Enc(pk ,m[i])
(state, I)←$A.cor(pk , c,param)
ω←$A.g(state,m[I],a[I])
Return (ω = A.f(δ(m),param))

Game D-CPA2-IDEALA,M,δ
DE (k)

param←$A.pg(1k) ; (pk , sk)←$ Kg(1k)
(m,a)←$M(1k,param)
For i = 1 to |m| do

c[i]← Enc(pk ,m[i])
(state, I)←$A.cor(pk , c,param)
z←$ ResampM,δ(1

k,m[I],a[I], I, param)
ω←$A.g(state,m[I],a[I])
Return (ω = A.f(z,param))

Fig. 2: Games to define D-SO-CPA2 security.

where games D-CPA2-REALA,M,δ
DE and D-CPA2-IDEALA,M,δ

DE are defined in
Fig. 2. In these games, adversary A.f is given either δ(m1) in the real game,
or the output of ResampM,δ(1

k,m1[I],a[I], I, param) in the ideal game. We say

that DE is D-SO-CPA2 secure if Advd-so-cpa2
DE,A,M,δ(·) is negligible for any (µ, d)-

entropic message sampler M such that 2−µ is a negligible function, any PT
adversary A that opens at most d ciphertexts, and any PT functions δ such that
M is δ-partially resamplable.

Weak equivalence. Clearly, the D-SO-CPA2 notion implies D-SO-CPA1: the
latter is the special case of the former for fully resamplable samplers, and for a
specific function δ(m,param) that simply returns m. Below, we’ll show that if
we just restrict to fully resamplable samplers, the D-SO-CPA1 notion actually
implies D-SO-CPA2. This is expected, because on an entropic, fully resamplable
M, both notions promise to protect any partial information of m that is inde-
pendent of the public key.

Proposition 1. Let M be a fully resamplable sampler, and let δ be a PT
function. Then for any adversary A, there is an adversary B such that

Advd-so-cpa2
DE,A,M,δ(·) ≤ Advd-so-cpa1

DE,B,M (·) .

The adversary B opens as many ciphertexts as A, and its running time is about
that of A plus the time to run δ.

Proof. Let B be the adversary that is identical to A, but B.f behaves as follows.
When it’s given a vector m and parameter param, it’ll run z ← δ(m,param)

and then outputs A.f(z,param). Then Advd-so-cpa1
DE,B,M (·) = Advd-so-cpa2

DE,A,M,δ(·). ut

In the remainder of the paper, we’ll have 6 other notions. Any notion xxx consid-
ers an arbitrary message samplerM with a function δ such thatM is δ-partially
resamplable. One can consider a variant xxx1 of xxx, in which the message sam-
pler is fully resamplable and only the specific function δ(m,param) = m is con-
sidered, and then establish a weak equivalence between xxx1 and xxx. However,
it will lead to a proliferation of 12 definitions. We therefore choose to present
just the stronger notion xxx.
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DE.Kg(1k)

(ek , td)←$ LT.IKg(1k)

hk←$ {0, 1}k

Return ((hk, ek), (hk, td))

DE.Enc(pk ,m)

(hk, ek)← pk

r ← H(hk ‖ 0 ‖m, LT.il(k))

trap ← LT.Eval(ek , r)

y ← H(hk ‖ 1 ‖ r, |m|)⊕m
Return (trap, y)

DE.Dec(sk , c)

(hk, td)← sk

(trap, y)← c

r ← LT.Inv(td , trap)

Return H(hk ‖ 1 ‖ r, |y|)⊕y

Fig. 3: D-PKE scheme DE1[H, LT].

CCA extension. To add a CCA flavor to D-SO-CPA2, a notion which we
call D-SO-CCA, one would allow adversaries A.cor and A.g oracle access to
Dec(sk , ·) with the restriction that they are forbidden from querying a ciphertext
in the given c to this oracle. Let D-CCA-REAL and D-CCA-IDEAL be the
corresponding experiments, and define

Advd-so-cca
DE,A,M,δ(·)

= Pr
[

D-CCA-REALA,M,δ
DE (·)⇒ 1

]
− Pr

[
D-CCA-IDEALA,M,δ

DE (·)⇒ 1
]
.

We say that DE is D-SO-CCA secure if Advd-so-cca
DE,A,M,δ(·) is negligible for any

(µ, d)-entropic message sampler M such that 2−µ is a negligible function, any
PT adversary A that opens at most d ciphertexts, and any PT functions δ such
that M is δ-partially resamplable.

3.2 Achieving D-SO-CPA2 Security

While the simulation-based definition of Bellare et al. [4] is impossible to achieve
even in the non-programmable random-oracle model (NPROM), we show that it
is possible to build a D-SO-CPA2 secure scheme in the NPROM. A close variant
of our scheme is shown to be PRIV-secure in the standard model [7]. Our scheme
can handle messages of any length, and is highly efficient: the asymmetric cost is
fixed and thus the amortized cost is about as cheap as a symmetric encryption.
It’s also highly practical on short messages. The only public-key primitive that
it uses is a lossy trapdoor function [21], which has practical instantiations, e.g.,
both Rabin and RSA are lossy [19, 22].

Achieving D-SO-CPA2 security. To handle arbitrary-length messages, we
use a hash function H of arbitrary input and output length. On input (x, `) ∈
{0, 1}∗ × N, the hash returns y = H(x, `) ∈ {0, 1}`. Our scheme DE1[H, LT] is
shown in Fig. 3, where LT is a lossy trapdoor function with domain {0, 1}LT.il.
Theorem 2 below shows that DE1 is D-SO-CPA2 secure in the NPROM. The
proof is in the full version. We stress that for (µ,∞)-entropic message samplers,
our scheme allows the adversary to open as many ciphertexts as it wishes.

Theorem 2. Let LT be a lossy trapdoor function with lossiness τ . Let M be
a (µ, d)-entropic message sampler, and let δ be a function such that M is δ-
partially resamplable. Let DE1[H, LT] be as above. In the NPROM, for any
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adversary A opening at most d ciphertexts, there is an adversary D such that

Advd-so-cpa2
DE1[H,LT],A,M,δ(k) ≤ 4q(k)

2k
+

4q(k)v(k)

2µ(k)
+
v(k)(v(k) + 4q(k))

2τ(k)
+2Advltdf

LT,D(k),

where q(k) is the total number of random-oracle queries of A and M, and v(k)
is the number of messages that M produces. The running time of D is about
that of A plus the time to run δ and an efficient δ-partial resampling algorithm
of M plus the time to run DE1[H, LT] to encrypt M’s messages. Adversary D
makes at most q random-oracle queries.

Proof ideas. Let RO1,RO2,RO3, and RO4 denote the oracle interface of
(A.pg,M), A.cor, A.g, and A.f respectively. Initially, each interface simply calls
RO. In game-based proofs of ROM-based D-PKE constructions, one often con-
siders the event that A.pg or M queries (hk ‖x, `) to RO1, and then let the
interface lies, instead of calling RO(hk ‖x, `). This allows the coins r[i] ←
RO(hk ‖ 0 ‖m[i], LT.il(k)) to be independent of the messages m. The discrep-
ancy due to the lying is tiny, since the chance that A.pg or M can make such a
query is at most q(k)/2k. However, in the SOA setting, this strategy creates the
following subtlety. For the resampling algorithm to behave correctly, one has to
give it access to RO1. Yet the adversary A.cor can embed some information of
hk in I, and therefore it’s well possible that the resampling algorithm queries
RO1(hk ‖ ·, ·). This issue is unique to SOA security of D-PKE: prior papers of
SOA security for randomized PKE never have to deal with this. While getting
around the subtlety above is not too difficult, it shows that a rigorous proof for
Theorem 2 is not as simple as one might expect.

Suppose that A.pg and M never query RO1(hk ‖ ·, ·). The first step in the
proof is to move from an injective key ek of LT to a lossy key lk. Next, re-
call that the adversary A.cor is given LT.Eval(lk, r[i]). Since each synthetic coin
r[i] is uniformly random and LT has lossiness τ , in the view of A.cor, each r[i]
has min-entropy at least τ(k). Suppose that A.cor doesn’t make any query in
{hk ‖ 0 ‖m[i],hk ‖ 1 ‖ r[i] | 1 ≤ i ≤ |m|}; this happens with probability at least
1 − q(k)v(k)/2µ(k) − q(k)v(k)/2τ(k). Then A.cor knows nothing about m, and
thus I is conditionally independent of m, given param. Hence in the view of A.g,
each m[i] (for i 6∈ I) still has min-entropy µ, and thus the chance that A.g can
make a query in {hk ‖ 0 ‖m[i] | i 6∈ I} is at most v(k)q(k)/2µ(k).

The core of the proof is to bound the probability that the adversary A.g can make
a query in {hk ‖ 1 ‖ r[i] | i 6∈ I}. Let Xi be the random variable for the number
of pre-images of LT.Eval(lk, r[i]). Although in the view of A.cor, the average
conditional min-entropy of each r[i] is τ(k), the same claim may not hold in the
view of A.g. For example, the adversary A.cor may choose to open all but the
ciphertext of m[j], where j is chosen so that Xj = min{X1, . . . , Xv(k)}: while

E(1/Xi) ≤ 2−τ(k) for each fixed i ∈ {1, . . . , v(k)}, the same bound doesn’t work
for E(1/min{X1, . . . , Xv(k)}). To get around this, note that the chance that A.g
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can make a query in {hk ‖ 1 ‖ r[i] | i 6∈ I} is at most

q(k) ·E
(∑
i/∈I

1

Xi

)
≤ q(k) ·E

(v(k)∑
i=1

1

Xi

)
≤ q(k) ·

v(k)∑
i=1

E
( 1

Xi

)
≤ q(k)v(k)

2τ(k)
.

Finally, if I is conditionally independent of m given param, then the re-sampled
string z is identically distributed as δ(m,param), even conditioning on hk, I, and
param.6 Hence A.f can query RO4(hk ‖ ·, ·) with probability at most q(k)/2k. If
all bad events above don’t happen then (i) in the joint view of A.g and A.f, the
strings δ(m,param) and z are identically distributed, and (ii) the output of A.f
will be conditionally independent of the ciphertexts and the public key, given
param. This means the d-so-cpa2 advantage of A is 0.

3.3 Achieving D-SO-CCA Security

To achieve D-SO-CCA security, we modify DE1 construction as follows: In the
decryption, once we recover the message m, we’ll re-encrypt it and return ⊥ if
the resulting ciphertext doesn’t match the given one, or the hash image of the
message doesn’t match the string obtained via inverting the trapdoor function.
The resulting construction DE2 is shown in Fig. 4. The scheme DE = DE2[H, LT]
is unique-ciphertext, as formalized by Bellare and Hoang [7]: for every k ∈ N,
every (pk , sk) ∈ [DE.Kg(1k)], and every m ∈ {0, 1}∗, there is at most a string c
such that DE.Dec(sk , c) = m. Theorem 3 below shows that DE2 is D-SO-CCA
secure in the NPROM. The re-encrypting trick for lifting CPA to CCA security
in the random-oracle model dates back to a paper of Fujisaki and Okamoto [13],
but that work only considers randomized PKE and there’s no opening. Still, the
proof ideas are quite similar.

Theorem 3. Let LT be a lossy trapdoor function with lossiness τ . Let M be a
(µ, d)-entropic message sampler and let δ be a function such thatM is δ-partially
resamplable. Let DE2[H, LT] be as above. In the NPROM, for any adversary A
opening at most d ciphertexts, there is an adversary D such that

Advd-so-cca
DE2[H,LT],A,M,δ(k) ≤ 2p(k)

2LT.il(k)
+

10q(k)

2k
+

4q(k)v(k)

2µ(k)

+
v(k)(v(k) + 8q(k))

2τ(k)
+ 2Advltdf

LT,D(k).

where p(k) is the number of decryption-oracle queries of A, q(k) is the total
number of random-oracle queries of A andM, and v(k) is the number of messages

6 Even for the simple case that M is fully resamplable and outputs empty auxiliary
information, and δ(m, param) = m, note that if I is correlated to m then m and the
re-sampled m′ may have completely different distributions. For example, consider
M that outputs (m1,m2), with m1←$ {00, 01} and m2←$ {10, 11}. Since m1 and
m2 are independent, M is fully resamplable. Let I = {1} if m1 = 00, and I = {2}
otherwise. Then Pr[m′ = (00, 11)] = 3/8, whereas Pr[m = (00, 11)] = 1/4.
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DE.Kg(1k)

(ek , td)←$ LT.IKg(1k)

hk←$ {0, 1}k

pk ← (hk, ek)

sk ← (hk, ek , td)

Return (pk , sk)

DE.Enc(pk ,m)

(hk, ek)← pk

r ← H(hk ‖ 0 ‖m, LT.il(k))

trap ← LT.Eval(ek , r)

y ← H(hk ‖ 1 ‖ r, |m|)⊕m
Return (trap, y)

DE.Dec(sk , c)

(hk, ek , td)← sk

(trap, y)← c

r ← LT.Inv(td , trap)

trap′ ← LT.Eval(ek , r)

m← H(hk ‖ 1 ‖ r, |y|)⊕y
r′ ← H(hk ‖ 0 ‖m, LT.il(k))

If r′ 6= r or trap′ 6= trap then

Return ⊥
Return m

Fig. 4: D-PKE scheme DE = DE2[H, LT]. If LT is a lossy trapdoor permutation
then in the decryption algorithm, the computation of trap′ and the check trap′ 6=
trap can be omitted.

that M produces. The running time of D is about that of A plus the time to
run δ and an efficient δ-partial resampling algorithm of M, plus the time to
run DE2[H, LT] to encrypt M’s messages and decrypt A’s decryption queries.
Adversary D makes at most 2q random-oracle queries.

Proof. Let Rsmp be an efficient δ-partial resampling algorithm forM. Consider
games G1 and G2 in Fig. 5. Then

Advd-so-cca
DE2[H,LT],A,M(·) = 2 Pr[G1(·)⇒ 1]− 1 .

Game G2 is identical to game G1, except for the following. In procedure Dec(c),
instead of using the decryption of DE2 to decrypt c, we maintain the set Dom
of the suffixes of random-oracle queries (x, `) that A.cor and A.g make such
that x[1, k + 1] = hk ‖ 0 and ` = LT.il(k). If there’s m ∈ Dom such that the
corresponding ciphertext of m is c then we return m; otherwise return ⊥. Wlog,
assume that A.cor stores all random-oracle queries/answers in its state; that
is, both A.cor and A.g also can track Dom and implement the Dec procedure
of game G2 on their own, without calling the decryption oracle.7 Let Range =
{DE2.Enc(pk ,m) | m ∈ Dom}. On a query c ∈ Range, the procedures Dec of
both games have the same behavior, due to the correctness of the decryption
of DE2. Wlog, assume that both A.cor and A.g never query c ∈ Range to the
decryption oracle. (Adversaries A.cor and A.g are thus assumed to maintain the
corresponding ciphertexts of messages in Dom. But this needs additional queries
to the random oracle, so the total random-oracle queries of these two adversaries
is now at most 2q.)

7 This assumption crucially relies on our use of a domain separation in hashing the
coins r and the messages m: we employ H(hk ‖ 0 ‖ ·, ·) for m, but H(hk ‖ 1 ‖ ·, ·)
for r. In contrast, BH’s variant [7] doesn’t use domain separation, and one can’t
make this assumption anymore: building the corresponding ciphertexts may create
additional queries to H(hk ‖ 0 ‖ ·, LT.il(k)), leading to a possible exponential blowup
on the number of random-oracle queries.
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Games G1(k), G2(k)

param←$A.pgRO(1k) ; (m,a)←$MRO(1k, param) ; z1 ← δ(m, param)

hk←$ {0, 1}k ; (ek , td)←$ LT.IKg(1k)

For i = 1 to |m| do

r[i]← RO(hk ‖ 0 ‖m[i], LT.il(k)) ; trap ← LT.Eval(ek , r[i])

y ← RO1(hk ‖ 1 ‖ r[i], |m[i]|)⊕m[i] ; c[i]← (trap, y)

Dom← ∅ ; (state, I)←$A.corDec,ROSim((hk, ek), c, param)

ω←$A.gDec,ROSim(state,m[I],a[I])

z0←$ RsmpRO(1k,m[I],a[I], I, param) ; b←$ {0, 1} ; t←$A.fRO(zb, param)

If (ω = t) then return b else return 1− b

Procedure ROSim(x, `)

If |x| > k + 1 and x[1, k + 1] = hk ‖ 0 then Dom← Dom ∪ {x[k + 2, |x|]}
Return RO(x, `)

Procedure Dec(c) // of game G1

sk ← (hk, td)

m← DE1[H, LT].Dec(sk , c)

Return m

Procedure Dec(c) // of game G2

For m ∈ Dom do

If c = DE1[H, LT].Enc(pk ,m) then

Return m

Return ⊥

Fig. 5: Games G1 and G2 of the proof of Theorem 3. Their procedures
Dec are in the bottom-left and bottom-right panels, respectively.

Assume that A.pg andM never make a random-oracle query (x, `) such that the
k-bit suffix of x is hk. This happens with probability at least 1 − q(k)/2k. The
adversaries can distinguish the games if and only if they can trigger Dec of game
G1 to produce non-⊥ output. Let c = (trap, y) be a decryption-oracle query. Let
r = LT.Inv(td , trap) and m = RO(hk ‖ 1 ‖ r)⊕y. Due to the unique-ciphertext
property of DE2, if this can trigger the Dec procedure of game G1 to return a
non-⊥ answer, we must have m 6∈ {m[1], . . . ,m[|m|]} ∪ Dom. Then there is no
prior random-oracle query (x, LT.il(k)) such that x = hk ‖ 0 ‖m. Hence procedure
Dec of game G1 will return a non-⊥ answer only if r = RO(hk ‖ 0 ‖m, LT.il(k)),
which happens with probability 2−LT.il(k). Multiplying for p(k) decryption-oracle
queries,

Pr[G1(k)⇒ 1]− Pr[G2(k)⇒ 1] ≤ q(k)/2k + p(k)/2LT.il(k) .

Now in game G2, the decryption oracle always return ⊥, and thus wlog, assume
that the adversaries never make a decryption query, meaning that they only
launch a D-SO-CPA2 attack. Hence

2 Pr[G2(·)⇒ 1] = Advd-so-cpa2
DE2[H,LT],A,M(·) .

But DE2 and DE1 only differ in the decryption algorithms, which doesn’t af-
fect the D-SO-CPA security. Hence from Theorem 2, we can construct a distin-
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guisher D of the claimed running time such that

Advd-so-cpa2
DE2[H,LT],A,M,δ(k) ≤ 8q(k)

2k
+

8q(k)v(k)

2µ(k)
+
v(k)(v(k) + 8q(k))

2τ(k)

+2Advltdf
LT,D(k) .

(Note that the bound above is for adversaries who make at most 2q random-
oracle queries.) Summing up,

Advd-so-cca
DE2[H,LT],A,M,δ(k) ≤ 2p(k)

2LT.il(k)
+

10q(k)

2k
+

4q(k)v(k)

2µ(k)

+
v(k)(v(k) + 8q(k))

2τ(k)
+ 2Advltdf

LT,D(k) .

ut

4 Selective-Opening Security for Nonce-based PKE

Recall that D-PKE protects only unpredictable messages, but in practice, mes-
sages often have very limited entropy [12]. Hedge PKE tries to improve this
situation by adding the unpredictability of coins. However, the coins generated
by Dual EC are completely determined by Big Brother, and those by the buggy
Debian RNG have only about 15 bits of min-entropy. In a recent work, Bellare
and Tackmann (BT) [10] propose the notion of nonce-based PKE to address this
limitation, supporting arbitrary messages. In this section, we extend the notion
of nonce-based PKE for SOA setting, and then show how to achieve this.

4.1 Security Notions

Nonce generators. A nonce generator NG with nonce spaceN is an algorithm
that takes as input the unary encoding 1k of the security parameter, a current
state St , and a nonce selector σ. It then probabilistically produces a nonce
N ∈ N together with an updated state St . That is, (N,St)←$ NG(1k,St , σ). A
good nonce generator needs to satisfy the following properties: (i) nonces should
never repeat, and (ii) each nonce is unpredictable, even if all nonce selectors are
adversarially chosen. Formally, let Advrp

NG,A(k) = Pr[RPANG(k)], where game RP
is defined in Fig. 6. We say that NG is RP-secure if for any PT adversary A,
Advrp

NG,A(·) is a negligible function.

Nonce-based PKE. A nonce-based PKE with nonce space N is a tuple NE =
(NE.Kg,NE.Sg,NE.Enc,NE.Dec). The key generator NE.Kg(1k) generates a pub-
lic key pk and an associated secret key sk . The seed generator NE.Sg(1k) pro-
duces a sender seed xk . The encryption algorithm NE.Enc takes as input a public
key pk , a sender seed xk , a nonce N ∈ N , and a message m, and then deter-
ministically returns a ciphertext c. The decryption algorithm NE.Dec(sk , ·) plays
the same role as in traditional randomized PKE; it’s not given the nonce or the
sender seed.
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Game RPANG(k)

St ← ε ; coll ← false

Dom← ∅ ; N ←$AGen(1k)

Return (N ∈ Dom) ∨ coll

Procedure Gen(σ)

(N,St)←$ NG(1k,St , σ)

If N ∈ Dom then coll ← true

Dom← Dom ∪ {N} ; Return N

Fig. 6: Game to define security of a nonce generator NG.

Nonce-based PKE can be viewed as a way to harden the randomness at the
sender side; the receiver is oblivious to this change. Security of nonce-based PKE
should hold when either (i) the seed xk is secret and the nonces are unique, or
(ii) the seed is leaked to the adversary, but the nonces are unpredictable to the
adversary.8

Discussion. To formalize security of nonce-based PKE, BT define two notions,
NBP1 and NBP2. Both notions are in the single-sender setting and use nonces
generated from a nonce generator NG. The former notion considers the situation
when the seed xk is secret, and there’s no security requirement from NG, except
the uniqueness of nonces. The latter notion considers the case when the seed
xk is given to the adversary; now nonces generated from NG have to satisfy RP
security.

When we bring SOA extension to nonce-based PKE below, there will be many
changes. First, since there are multiple senders and only some of them can keep
their seeds secret, one has to merge the SOA variants of NBP1 and NBP2 into a
single definition. Next, because the adversary learns the seeds of some senders,
the nonce generator NG must be RP-secure. If we let senders whose seeds are
secret use unpredictable nonces from NG then our notion will fail to model the
possibility that the adversary can corrupt the nonce generator. Therefore, in
our notion, for senders whose seeds are secret, we’ll let the adversary specify
their nonces. We require the adversary to be nonce-respecting, meaning that the
nonces of every single sender must be distinct.

N-SO-CPA. Let NE be a nonce-based PKE scheme and NG be a nonce generator
of the same nonce space N . Let M be a message sampler, but the generated
messages don’t have to be distinct or unpredictable. Let δ be a function such
thatM is δ-partially resamplable. The game N-SO-CPA defining the N-SO-CPA
security is specified in Fig. 7.

Initially, the game picks seed xk[j]←$ NE.Sg(1k) and sets state st[j] ← ε for
sender j, with j = 1, 2, . . .. The adversary is then given the public key pk and
has to specify the list J of senders that it wishes to get the seeds. It’s then

8 The definition of BT [10] requires that if the seed xk is secret then security should
hold as long as the message/nonce pairs are unique. If one directly extends this
to the SOA setting, there will be some pesky issue, as the adversary can detect
equality within the message vectors by repeating the nonces. Here for simplicity,
we only demand that nonces should be unique, which is analogous to nonce-based
symmetric encryption. Nevertheless, our constructions are specific instantiations of
BT construction, and thus meet their requirement.
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Game N-SO-CPAA,M,δ
NE,NG (k)

For j = 1, 2, . . . do xk[j]←$ NE.Sg(1k) ; st[j]← ε

(pk , sk)←$ NE.Kg(1k) ; (J, state)←$A(1k, pk)

(param,N , U,σ, state)←$A(state,xk[J ])

(m,a)←$M(1k,param) ; z1 ← δ(m, param)

For i = 1 to |m| do

j ← U [i]

If j ∈ J then (N, st[j])←$ NG(1k, st[j],σ[i]) ; N [i]← N

c[i]← NE.Enc(pk ,xk[j],N [i],m[i])

(I, state)←$A(state, c) ; b←$ {0, 1}
For i ∈ I, j = 1 to |m| do

If U [i] = U [j] then I ← I ∪ {j}
z0←$ ResampM,δ(1

k,m[I],a[I],param)

b′←$A(state,m[I],a[I],N [I],xk[U [I]], zb) ; Return (b = b′)

Fig. 7: Game defining N-SO-CPA security.

granted xk[J ] and then has to provide some parameter param for generating
(m,a)←$M(1k,param), together with a vector N of nonces, a map U that
specifies message m[i] belongs to sender U [i], and a vector σ of nonce selectors for
NG. Note that the messages m here can depend on the public key. We require that
the adversary be nonce-respecting, meaning that (N [1], U [1]), (N [2], U [2]), . . .
are distinct.
The game then iterates over i = 1, . . . , |m| to encrypt each message m[i]. If i ∈ J
then N [i] is overwritten by a nonce N generated by NG as follows. Let j ← U [i].
The nonce generator NG will read the current state st[j] of sender j and the nonce
selector σ[i] for the message m[i], to generate a nonce N and update st[j]. The
adversary then is given the ciphertexts and has to output a set I to indicate which
ciphertexts it wants to open. Note that opening c[i] returns not only (m[i],a[i])
but also the associated nonce and sender seed. Moreover, if the adversary opens
a message belonging to sender j, then any other messages of this sender are
considered open. Finally, the game resamples z0, and let z1 ← δ(m,param).
It picks b←$ {0, 1}, and gives the adversary zb and (m[I],a[I],xk[U [I]],N [I]).
The adversary has to guess the challenge bit b. Define

Advn-so-cpa
NE,NG,A,M,δ(k) = 2 Pr[N-SO-CPAA,M,δ

NE,NG (k)]− 1 .

We say that NE is N-SO-CPA secure, with respect to NG, if for any message
sampler M and any PT adversary A, and any PT function δ such that M is
δ-partially resamplable, Advn-so-cpa

NE,NG,A,M,δ(·) is a negligible function.

N-SO-CCA. To add a CCA flavor to N-SO-CPA, one would give the adversary
oracle access to Dec(sk , ·). Once it’s given the ciphertexts c, it’s not allowed to
query any c[i] to the decryption oracle. Let N-SO-CCA be the corresponding

game, and define Advn-so-cca
NE,NG,A,M,δ(k) = 2 Pr[N-SO-CCAA,M,δ

NE,NG (k)]− 1.



18 Viet Tung Hoang, Jonathan Katz, Adam O’Neill, and Mohammad Zaheri

Simulation-based security. One could also define an appropriate simulation-
based notion of SOA security for nonce-based PKE, which unlike N-SO-CPA
would not require the unrevealed messages to be efficiently resampleable, analo-
gously to the SIM-SOA definition for randomized PKE in [9]. However, we con-
jecture that such a definition is impossible to achieve. We leave this as an open
question. In any case, a simulation-based definition of SOA security for nonce-
based PKE will indeed be impossible to achieve later when we lift the primitive
to the hedged setting, where an existing impossibility result for a simulation-
based notion of SOA security for deterministic PKE [4] applies (because hedged
PKE generalizes deterministic PKE).

4.2 Separation

We now show that the standard notions for nonce-based PKE of BT [10] do
not imply N-SO-CPA. Our separation is based on the recent result of Hofheinz,
Rao, and Wichs (HRW) [15] to show that IND-CCA doesn’t imply the notion
IND-SO-CPA for randomized PKE.

HRW construction. Our counterexample is based on the recent (contrived)
construction REbad = (REbad.Kg,REbad.Enc,REbad.Dec) of HRW. The scheme
REbad is IND-CCA secure, but is vulnerable to the following SOA attack. The
message sampler M(1k,param) ignores param, picks a secret s←$ {0, 1}` and
then secret-shares it to v(k) messages m[1], . . . ,m[v(k)] so that any t(k) shares
reveal no information of the secret s. In other words, it picks a0, a1, . . . , at uni-
formly from GF(2`), the finite field of size 2`, and computes m[i] ← f(i) for
every i ∈ {1, . . . , v(k)}, where f(x) = a0 + a1x+ · · ·+ atx

t is the corresponding
polynomial in GF(2`)[X]. Recall that any t + 1 shares will uniquely determine
the polynomial f (via polynomial interpolation), and thus any t + 1 shares are
uniformly and independently random. The auxiliary information is empty. Sur-
prisingly, there’s an efficient adversary that opens only t ciphertexts and can
recover all messages. We note that HRW’s counter-example is based on public-
coin differing-inputs obfuscation [17], which is a very strong assumption.

Results. Let H be a hash function. One can model it as a random oracle, or,
for a standard-model result, a primitive that BT call hedged extractor. BT show
that one can build a nonce-based PKE achieving their notions from an arbitrary
IND-CCA secure PKE RE as follows. Given seed xk , nonce N , and message m,
one uses H((xk , N,m)) to extract synthetic coins r, and then encrypt m via
RE under coins r. Now, use the scheme REbad above to instantiate RE, and let
NEbad[H,REbad] be the resulting nonce-based PKE. This NEbad[H,REbad] achieves
BT’s notions.

We now break the N-SO-CPA security of NEbad. The message sampler M is
as described in HRW attack, and let A be the adversary attacking REbad as
above. Note thatM is fully resamplable, and let δ(m,param) = m. Consider the
following adversary B attacking NEbad. It specifies J = ∅, meaning that it doesn’t
want to get any sender seed before the opening. It then lets N [i] = U [i] = i, for
every i. That is, each sender has only a single message. Then, when B gets the
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NE1.Kg(1k)

(ek , td)←$ LT.IKg(1k) ; hk←$ {0, 1}k

pk ← (hk, ek) ; sk ← (hk, td) ; Return (pk , sk)

NE1.Sg(1k)

xk ←$ {0, 1}k ; Return xk

NE1.Enc(pk , xk , N,m)

(hk, ek)← pk

r ← H(hk ‖ 0 ‖ (xk , N,m), LT.il(k))

trap ← LT.Eval(pk , r); y ← H(hk ‖ 1 ‖ r, |m|)⊕m
Return (trap, y)

NE1.Dec(sk , c)

(hk, td)← sk ; (trap, y)← c

r ← LT.Inv(sk , trap)

m← H(hk ‖ 1 ‖ r, |y|)⊕y
Return m

Fig. 8: Nonce-based PKE scheme NE1[H, LT].

ciphertexts c, it runs A on those c. Note that c are ciphertexts of REbad, although
the coins are only pseudorandom. Still, adversary A can recover all messages by
opening just t ciphertexts. When B is given the messages (real or resampled),
it compares that with what A recovers. Then Advn-so-cpa

NE,NG,B,M,δ(k) ≥ 1 − 2−`(k),
where ` is the length of each message.

4.3 Achieving N-SO-CPA Security

BT’s construction of nonce-based PKE is simple. To encrypt a message m under
a seed xk , a nonce N , and public key pk , we hash (xk , N,m) to derive a string r,
and then uses a traditional randomized PKE to encrypt m under the synthetic
coins r and public key pk . Here we’ll use BT’s construction, but the underlying
randomized PKE is a randomized counterpart of the D-PKE scheme DE1 in
Section 3.2.
Formally, let H be a hash of arbitrary input and output length, meaning that
H(x, `) returns an `-bit string. Let LT be a lossy trapdoor function. Our nonce-
based PKE NE1[H, LT] is described in Fig. 8; it has nonce space {0, 1}∗ and
message space {0, 1}∗. Theorem 4 below shows that NE1[H, LT] is N-SO-CPA
secure in the NPROM; the proof is in the full version.

Theorem 4. Let LT be a lossy trapdoor function with lossiness τ . Let M be a
message sampler and let δ be a function such thatM is δ-partially resamplable.
Let NE1[H, LT] be as above, and let NG be a nonce generator. In the NPROM,
for any adversary A, there are adversaries B and D such that

Advn-so-cpa
NE1[H,LT],NG,A,M,δ(k) ≤ 2Advltdf

LT,B(k) + 8q(k)v(k) ·Advrp
NG,D(k)

+
7v(k)(q(k) + v(k))

2k
+

12v(k)(q(k) + v(k))

2τ(k)
,

where v is the number of messages that M generates, and q bounds the total
number of random-oracle queries that A and M make. The running time of
B or D is about the time to run game N-SO-CPAA,M,δ

NE,NG , but using an efficient
δ-partial resampling algorithm of M instead of ResampM,δ. Each of B and D
makes at most q random-oracle queries.
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NE2.Kg(1k)

(ek , td)←$ LT.IKg(1k) ; hk←$ {0, 1}k

pk ← (hk, ek) ; sk ← (hk, ek , td)

Return (pk , sk)

NE2.Sg(1k)

xk ←$ {0, 1}k ; Return xk

NE2.Enc(pk , xk , N,m)

(hk, ek)← pk

r ← H(hk ‖ 00 ‖ (xk , N,m), LT.il(k))

y ← H(hk ‖ 01 ‖ r, |m|)⊕m
z ← H(hk ‖ 10 ‖ r ‖m, k)

trap ← LT.Eval(pk , r)

Return (trap, y)

NE2.Dec(sk , c)

(hk, ek , td)← sk ; (trap, y, z)← c

r ← LT.Inv(sk , trap)

trap′ ← LT.Eval(pk , r)

m← H(hk ‖ 01 ‖ r, |y|)⊕y
z′ ← H(hk ‖ 10 ‖ r ‖m, k)

If (z′ 6= z)∨ (trap′ 6= trap) then return ⊥
Return m

Fig. 9: Nonce-based PKE scheme NE2[H, LT].

4.4 Achieving N-SO-CCA Security

To strengthen NE1 with CCA capability, in the encryption, we append to the
ciphertext a hash image of r ‖m. When we decrypt a ciphertext, we’ll recover
both r and m, and check if the hash image of r ‖m matches with what’s given
in the ciphertext. The resulting scheme NE2[H, LT] is shown in Fig. 9. The
underlying randomized PKE of NE2 is a textbook IND-CCA construction in the
ROM (but LT just needs to be an ordinary trapdoor function). Theorem 5 below
shows that NE2[H, LT] is N-SO-CCA secure in the NPROM; the proof is in the
full version.

Theorem 5. Let LT be a lossy trapdoor function with lossiness τ . Let M be a
message sampler and let δ be a function such thatM is δ-partially resamplable.
Let NE2[H, LT] be as above, and let NG be a nonce generator. In the NPROM,
for any adversary A, there are adversaries B and D such that

Advn-so-cca
NE2[H,LT],NG,A,M,δ(k) ≤ 2Advltdf

LT,B(k) + 8v(k)Q(k) ·Advrp
NG,D(k)

+
2p(k)

2k
+

7v(k)Q(k)

2k
+

12v(k)Q(k)

2τ(k)
,

where v is the number of messages that M generates, p is the number of A’s
queries to the decryption oracle, q bounds the total number of random-oracle
queries that A and M make, and Q = q + 2p+ v. The running time of B or D
is about the time to run game N-SO-CCAA,M,δ

NE,NG , but using an efficient δ-partial
resampling algorithm of M instead of ResampM,δ. Each of B and D makes at
most q + 2p random-oracle queries.

5 Hedged Security for Nonce-based PKE

Recall that the security of nonce-based PKE relies on the assumption that the
adversary cannot obtain the secret seeds and corrupt the nonce generator si-
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multaneously. Still, this assumption may fail in practice, and it’s desirable to
retain some security guarantee when seeds and nonces are bad. We capture this
via the notion HN-SO-CPA that is a variant of the notion D-SO-CPA2, adapted
for the nonce-based setting. A good nonce-based PKE thus has to satisfy both
N-SO-CPA and HN-SO-CPA simultaneously. We then extend this treatment to
the CCA setting.

5.1 Security Notions

Unpredictable samplers. Let M be a message sampler. We say that M is
(µ, d)-unpredictable if for any param ∈ {0, 1}∗,

(i) For any (m,a) ∈ [M(1k,param)], each a[i] is a tuple (ai, xk i, Ni), where xk i
is a seed and Ni is a nonce. Moreover, (xk1, N1,m[1]), (xk2, N2,m[2]), . . .
must be distinct.

(ii) For any I ⊆ {1, . . . , v(k)} such that |I| ≤ d, and any i ∈ {1, . . . , v(k)}\I, for
(m,a)←$M(1k,param) the conditional min-entropy of (m[i], xk i, Ni) given
(m[I],a[I],param) is at least µ, where v(k) is the number of messages that
M produces and xk i and Ni are the seed and nonce specified by a[i].

Defining unpredictable samplers allows us to model the situation when the seeds,
nonces, and messages are related, and quantify security based on the combined
min-entropy of each message with its nonce and seed.

HN-SO-CPA security. Let NE be a nonce-based PKE scheme, and let M be
an unpredictable message sampler. Let δ be a function such thatM is δ-partially
resamplable. Let A = (A.pg, A.cor, A.g, A.f) be an adversary. Define

Advhn-so-cpa
NE,A,M,δ(·)

= Pr
[

HN-CPA-REALA,M,δ
NE (·)⇒ 1

]
− Pr

[
HN-CPA-IDEALA,M,δ

NE (·)⇒ 1
]
,

where the games are defined in Fig. 10.

HN-SO-CCA security. To add a CCA flavor to HN-SO-CPA, one would give
A.cor and A.g oracle access to Dec(sk , ·). They are not allowed to query any
c[i] to the decryption oracle. Let HN-CCA-REAL and HN-CCA-IDEAL be the
corresponding games, and define

Advhn-so-cca
NE,A,M,δ(·)

= Pr
[

HN-CCA-REALA,M,δ
NE (·)⇒ 1

]
− Pr

[
HN-CCA-IDEALA,M,δ

NE (·)⇒ 1
]
.

Separation. We now show that N-SO-CCA doesn’t imply HN-SO-CPA, even if
M picks m[i]←$ {0, 1}k and a[i] = (i, i, i), and there’s no opening. Note thatM
is fully resamplable, and consider the function δ such that δ(m,param) = param.
Let H be a hash and LT be a lossy trapdoor function. Let NEbad[H, LT] be the
following variant of NE2[H, LT]. To encrypt message m under public key pk,
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Game HN-CPA-REALA,M,δ
NE (k)

param←$A.pg(1k) ; (pk , sk)←$ Kg(1k) ; (m,a)←$M(1k, param)

For i = 1 to |m| do (a, xk , N)← a[i] ; c[i]← Enc(pk , xk , N,m[i])

(state, I)←$A.cor(pk , c, param) ; ω←$A.g(state,m[I],a[I])

z1 ← δ(m, param)

Return (ω = A.f(z1, param))

Game HN-CPA-IDEALA,M,δ
NE (k)

param←$A.pg(1k) ; (pk , sk)←$ Kg(1k) ; (m,a)←$M(1k, param)

For i = 1 to |m| do (a, xk , N)← a[i] ; c[i]← Enc(pk , xk , N,m[i])

(state, I)←$A.cor(pk , c, param) ; ω←$A.g(state,m[I],a[I])

z0←$ ResampM,δ(1
k,m[I],a[I], I, param)

Return (ω = A.f(z0,param))

Fig. 10: Games to define HN-SO-CPA security.

seed xk and nonce N , instead of hashing (xk , N,m) to derive synthetic coins
r, we just hash (xk , N). The proof of Theorem 5 can be recast to justify the
N-SO-CCA security NEbad. However, without even opening, one can trivially
break HN-SO-CPA security of NEbad as follows. First, adversary A.pg outputs an
arbitrary param. Next, adversary A.cor stores the ciphertexts and the public key
in its state, and outputs I = ∅. Adversary A.g computes r ← H(hk ‖ 00 ‖ (1, 1)),
parses (trap, y, z) ← c[1], and outputs m[1] = y⊕H(hk ‖ 01 ‖ r, |y|). Finally,
adversary A.f(m∗,param) simply outputs m∗[1]. The adversaries win with ad-
vantage 1− 2−k.

5.2 Achieving HN-SO-CPA Security

NtD transform. We first give a transform Nonce-then-Deterministic (NtD). Let
DE be a D-SO-CPA2 secure D-PKE and NE be an N-SO-CPA secure nonce-based
PKE. Then NtD[NE,DE] achieves both HN-SO-CPA and N-SO-CPA security
simultaneously. The resulting nonce-based PKE NE is a double encryption: it
first encrypts via NE, and then uses DE to encrypt the resulting ciphertext.9

The transform NtD is shown in Fig. 11, and Theorem 6 below confirms that it
works as claimed.

Discussion. To explain why NtD works, note that using an outer D-PKE on
the ciphertext of NE doesn’t affect its N-SO-CPA security, and thus NE =
NtD[NE,DE] inherits the N-SO-CPA security of NE. For HN-SO-CPA security,
there are some subtle points as follows.

9 For simplicity, we assume that the ciphertext length of NE is the plaintext length of
DE. One may also consider a more generalized setting in which the ciphertext length
of NE is smaller than the plaintext length of DE. In this case one needs to pad 10∗

to the ciphertexts of NE before feeding them to DE.
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NE.Kg(1k)

(pkn, skn)←$ NE.Kg(1k)

(pkd, skd)←$ DE.Kg(1k)

pk ← (pkn, pkd) ; sk ← (skn, skd)

Return (pk , sk)

NE.Enc(pk , xk , N,m)

(pkn, pkd)← pk

m′ ← (m ‖ xk ‖N)

y ← NE.Enc(pkn, xk , N,m
′)

c← DE.Enc(pkd, y)

Return c

NE.Dec(sk , c)

(skn, skd)← sk

y ← DE.Dec(skd, c)

m′ ← NE.Dec(skn, y)

(m ‖ xk ‖N)← m′

Return (m ‖ xk ‖N)

Fig. 11: Nonce-based PKE scheme NE = NtD[NE,DE]. It uses the same seed-
generating algorithm as NE.

First, the “messages” for DE are the ciphertexts produced by NE. Now, the
D-SO-CPA2 security demands that those “messages” must have good min-
entropy, but we only know that the combined min-entropy of each message with
its nonce and seed is µ. We need a bound, call it NE.Guess(µ), to quantify the
min-entropy of the ciphertexts of NE. Therefore, let NE.Guess(µ(k)) be biggest
number that, for any seed xk , any nonce N , any message m, and any random
variable X such that the conditional min-entropy of (m, xk , N) given X is at
least µ(k), and (pk , sk)←$ NE.Kg(1k) independent of (m, xk , N,X), the condi-
tional min-entropy of NE.Enc(pk , xk , N,m) given X is at least NE.Guess(µ(k)).
We say that NE is entropy-preserving if for any µ such that 2−µ is negligible,
so is 2−NE.Guess(µ). For example, one can show that NE1[H, LT].Guess(µ(k)) ≥
min{k, µ(k)/2} − 1, by modeling hhk(·) = H(hk ‖ 0 ‖ ·, LT.il(k)) as a universal
hash function, and using the Generalized Leftover Hash Lemma [1, Lemma 3.4].
Hence NE1 is entropy-preserving.

Next, we need to build an adversary B attacking DE from an adversary A that
attacks NE. Then B.pg will run param←$A.pg(1k), pick (pk , sk)←$ NE.Kg(1k),
and outputs pars = (pk , sk ,param), asking its samplerM to runM and encrypt
the resulting messages, nonces, and seeds under pk . At some point, A.cor will
asks to open some ciphertexts c[I] to get the corresponding m[I],xk[I],N [I],
but the opened “messages” that B.g receives are NE.Enc(pk ,xk[i,N [i],m[i]).
Although B.g knows the secret key sk of NE, if we use NE1 to instantiate NE
then one can’t recover (N [i],xk[i]) from just ci = NE.Enc(pk ,xk[i],N [i],m[i])
and sk . Thanks to our explicit modeling of the auxiliary information, adversaryB
does get (xk[i],N [i]) when it opens c[i].

Finally, one has to reason about the resamplability of the constructed sampler
M. Had we restricted our notions to fully resamplable samplers and the function
δ(m,param) = m, we would have run into problem here. Why so? The resam-
pling algorithm Rsmp of M has to generate NE.Enc(pk ,xk′[i],N ′[i],m′[i]), but
it only knows pk and another algorithm Rsmp to generate m′. That is, it’s un-
clear how to resample the seeds xk′ and nonces N ′. Using partial resamplability
solves this issue. To justify this, suppose that we need to justify the HN-SO-CPA
security of NE with respect to function δ. Then, we’ll find another function δ such
that Advhn-so-cpa

NE,A,M,δ
(·) ≤ Advd-so-cpa2

DE,B,M,δ
(·), and at the same time,M is δ-partially
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Algorithm B(1k, pk)

Return A(1k, pk)

Algorithm B(state, c)

(pkd, skd)←$ DE.Kg(1k)

For i = 1 to |c| do c← DE.Enc(pkd, c[i])

Return A(state, c)

Algorithm B(state,xk∗)

Return A(state,xk∗)

Algorithm B(state,m∗,a∗,N∗,xk∗)

Return A(state,m∗,a∗,N∗,xk∗)

Fig. 12: N-SO-CPA adversary B in the proof of Theorem 6.

resamplable. The function δ(x,pars) works as follows. It first parses pars as
(pk , sk ,param), runs m[i]← NE.Dec(sk ,x[i]), and then outputs δ(m,param).

We stress that the NtD transform works in both the standard model and the
NPROM. (Of course, this assumes that there are standard-model D-SO-CPA2
secure D-PKE and N-SO-CPA secure entropy-preserving nonce-based PKE.)

Theorem 6. Let NE be a nonce-based PKE, and let DE be a D-PKE scheme
such that the ciphertext length of the former is a plaintext length of the latter.
Let NE = NtD[NE,DE].

N-SO-CPA security: For any adversary A, any message samplerM, any function
δ such that M is δ-partially resamplable, and any nonce generator NG, there is
an adversary B such that

Advn-so-cpa

NE,NG,A,M,δ
(·) ≤ Advn-so-cpa

NE,NG,B,M,δ(·) .

The running time of B is about that of A plus the running time of DE.Kg plus
the time to run DE.Enc on the messages that M produces.

HN-SO-CPA security: For any (µ, d)-unpredictable message sampler M, any
function δ such that M is δ-partially resamplable, and any adversary A, there
are an adversary B that opens the same number of ciphertexts, another func-
tion δ, and another (NE.Guess(µ), d)-entropic, δ-partially resamplable message
sampler M such that

Advhn-so-cpa

NE,A,M,δ
(·) ≤ Advd-so-cpa2

DE,B,M,δ
(·) .

The running time of B is about that of A plus the running time of NE.Kg plus
the time to run NE.Dec on v ciphertexts, where v is the number of messages
that M produces. The running time of M is about that of M plus the time to
run NE.Enc on v messages.

Proof. For the first part, consider an arbitrary adversary A. Consider the ad-
versary B in Fig. 12 attacking NE. Then game N-SO-CPAB,M,δ

NE,NG coincides with

game N-SO-CPAA,M,δ

NE,NG
, and thus Advn-so-cpa

NE,NG,A,M,δ
(·) = Advn-so-cpa

NE,NG,B,M,δ(·).

For the second part, consider an arbitrary adversary A and a message sampler
M. Consider the following message sampler M(1k,pars). It parses param as a
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Algorithm B.pg(1k)

param←$A.pg(1k)

(pkn, skn)←$ NE.Kg(1k)

pars ← (pkn, skn, param)

Return pars

Algorithm B.cor(pkd, c, pars)

(pkn, skn,param)← pars

pk ← (pkd, pkn)

(state, I)←$A.cor(pk , c,param)

t← (state,pars) ; Return (t, I)

Algorithm B.g(t,y∗,a∗)

(state, pars)← t

(pkn, skn,param)← pars

For i← 1 to |y∗| do

m[i]← NE.Dec(skn,y[i])

ω←$A.g(state,m∗,a∗)

Return ω

Algorithm B.f(z, pars)

(pkn, skn,param)← pars

t←$A.f(z, param) ; Return t

AlgorithmM(1k, pars)

(pkn, skn, param)← pars

(m,a)←$M(1k,param)

For i = 1 to |m| do

(a, xk , N)← a[i]

y[i]← NE.Enc(pkn, xk , N,m[i])

Return (y,a)

Algorithm Rsmp(1k,y∗,a∗, I, pars)

(pkn, skn, param)← pars

For i = 1 to |y∗| do

m∗[i]← NE.Dec(skn,y
∗[i])

z←$ Rsmp(1k,m∗,a∗, I,param)

Return z

Fig. 13: D-SO-CPA2 adversary B, constructed sampler M, and its par-
tial resampling algorithm Rsmp in the proof of Theorem 6.

triple (pkn, skn,param), where pkn and skn are public and secret keys for NE.
It then runs M(1k,param) to generate (m,a). Since M is unpredictable, each
a[i] can be parsed as (ai, xk i, Ni). Now the “messages” of M is the vector y,
where each y[i] = NE.Enc(pkn, xk i, Ni,m[i]), and the corresponding auxiliary
information is still a[i]. The code of M is given in Fig. 13. Since M is (µ, d)-
unpredictable, M is (NE.Guess(µ), d)-entropic. Let δ be a function such that
M is δ-partially resamplable. Let δ(y,pars) be the following function. It parses
pars as (pkn, skn,param), decrypts m[i] ← NE.Dec(skn,y[i]), and then returns
δ(m,param). ThenM is δ-partially resamplable: given any δ-partial resampling
algorithm Rsmp forM, we can construct a δ-partial resampling algorithm Rsmp
for M as in Fig. 13.

Now, consider the adversary B attacking DE as given in Fig. 13. It targets mes-
sage sampler M, with respect to function δ. Initially, B.pg(1k) runs param ←
A(1k), and then generates public and secret keys pkn and skn for NE. It then
outputs pars ← (pkn, skn,param). When B.g receives its “messages” y∗, it ex-
tracts the secret key skn from its state and decrypts m∗[i]← NE.Dec(skn,y

∗[i]),
and then gives m∗ to A.g together with the auxiliary information a∗. Then

game HN-CPA-REALA,M,δ

NE
coincides with game D-CPA2-REALB,M,δ

DE . More-

over, game HN-CPA-IDEALA,M,δ

NE
coincides with D-CPA2-IDEALB,M,δ

DE . Hence

Advhn-so-cpa

NE,A,M,δ
(·) ≤ Advd-so-cpa2

DE,B,M,δ
(·). ut
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NE1 alone is enough. Constructions via NtD transform will be at least twice
slower than NE1, because we need to run public primitives twice. But in the
NPROM, NE1[H, LT] alone achieves both N-SO-CPA and HN-SO-CPA security
simultaneously. In Theorem 7 below, we’ll show that NE1 is HN-SO-CPA secure.
See the full version for the proof. We stress that for (µ,∞)-unpredictable message
samplers, NE1 allows the adversary to open as many ciphertexts as it wishes.

Theorem 7. Let LT be a lossy trapdoor function with lossiness τ . Let M be a
(µ, d)-unpredictable resamplable message sampler, and let δ be a function such
thatM is δ-partially resamplable. Let NE1[H, LT] be as above. In the NPROM,
for any adversary A opening at most d ciphertexts, there is an adversary D such
that

Advhn-so-cpa
NE1[H,LT],A,M,δ(k) ≤ 4q(k)

2k
+

4q(k)v(k)

2µ(k)
+
v(k)(v(k) + 4q(k))

2τ(k)
+2Advltdf

LT,D(k),

where q(k) is the total number of random-oracle queries of A and M, and v(k)
is the number of messages that M produces. The running time of D is about
that of A plus the time to run δ and an efficient δ-partial resampling algorithm
of M plus the time to run NE1[H, LT] to encrypt M’s messages. Adversary D
makes at most q random-oracle queries.

5.3 Achieving HN-SO-CCA Security

In proving that NtD[NE,DE] achieves HN-SO-CPA security, we don’t need any
property of the D-PKE scheme DE. This no longer holds for HN-SO-CCA. In-
deed, consider a scheme DEbad such that DEbad.Enc appends 0 to the ciphertexts,
and DEbad.Dec ignores the last bit of the ciphertexts. An adversary thus can ob-
tain the plaintexts by modifying the last bits of the ciphertexts, and querying
those to the decryption oracle. Hence to obtain HN-SO-CCA, one has to ex-
ploit some property of DE. We’ll need DE to be unique-ciphertext, a property
formalized by Bellare and Hoang [7].

Formally, a D-PKE scheme DE is unique-ciphertext if for every k ∈ N, every
(pk , sk) ∈ [DE.Kg(1k)], and every m ∈ {0, 1}∗, there is at most a string c
such that DE.Dec(sk , c) = m. The D-PKE scheme DEbad above is not unique-
ciphertext. The unique-ciphertext property of DE ensures that if one modifies a
ciphertext of NtD[NE,DE], the underneath ciphertext of NE will be changed.

Bellare and Hoang also show how to efficiently transform a D-PKE scheme DE
to a unique-ciphertext one UE: in the decryption, we first recover the message,
and then re-encrypt it and return ⊥ if the newly constructed ciphertext doesn’t
match the given one. The transform UniqueCtx is given in Fig. 14. Note that this
transform doesn’t affect the D-SO-CCA security of DE. Indeed, for any message
sampler M, any PT adversary A attacking UE = UniqueCtx[DE], it’s trivial to
construct another PT adversary B attacking DE such that Advd-so-cca

UE,B,M(·) ≤
Advd-so-cca

DE,A,M(·).
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UE.Kg(1k)

(pk , sk)←$ DE.Kg(1k)

Return (pk , (pk , sk))

UE.Enc(pk ,m)

c← DE.Enc(pk ,m)

Return c

UE.Dec((pk , sk), c)

m← DE.Dec(sk , c)

If m 6= ⊥ then

c′ ← DE.Enc(pk ,m)

If c′ 6= c then return ⊥
Return m

Fig. 14: Unique-ciphertext D-PKE scheme UE = UniqueCtx[DE] con-
structed from D-PKE scheme DE.

Let DE be unique-ciphertext and D-SO-CCA secure D-PKE and NE be an
N-SO-CCA secure, entropy-preserving nonce-based PKE. Then, Theorem 8 con-
firms NtD[NE,DE] achieves both HN-SO-CCA and N-SO-CCA security simulta-
neously; the proof is in the full version. To instantiate DE, one can either apply
the UniqueCtx transform on a D-SO-CCA secure D-PKE scheme, or directly use
our construction DE2 in Section 3.3.

Theorem 8. Let NE be a nonce-based PKE as above, and let DE be a unique-
ciphertext D-PKE scheme such that the ciphertext length of the former is a
plaintext length of the latter. Let NE = NtD[NE,DE].

N-SO-CCA security: For any adversary A, any message samplerM, any function
δ such that M is δ-partially resamplable, and any nonce generator NG, there is
an adversary B such that

Advn-so-cca
NE,NG,A,M,δ

(·) ≤ Advn-so-cca
NE,NG,B,M,δ(·) .

The running time of B is about that of A plus the running time of DE.Kg plus
the time to run DE.Enc on the messages that A produces, and the time to run
DE.Dec on the decryption queries of A. Adversary B makes as many decryption-
oracle queries as A.

HN-SO-CCA security: For any adversary A, any (µ, d)-unpredictable message
sampler M, and any function δ such that M is δ-partially resamplable, there
are an adversary B that opens the same number of ciphertexts, a function δ, and
an (NE.Guess(µ), d)-entropic, δ-partially resamplable message sampler M such
that

Advhn-so-cca
NE,A,M,δ

(·) ≤ Advd-so-cca
DE,B,M,δ

(·) .

The running time of B is about that of A plus the running time of NE.Kg
plus the time to run NE.Dec on v + p ciphertexts, where v is the number of
messages thatM produces and p is the number of A’s decryption-oracle queries.
Adversary B makes as many decryption-oracle queries as A. The running time
of M is about that of M plus the time to run NE.Enc on v messages.

Alternatively, we can use NE2 directly. In Theorem 9 below, we’ll show that NE2
is HN-SO-CCA secure. See the full version for the proof.
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Theorem 9. Let LT be a lossy trapdoor function with lossiness τ . Let M be
a (µ, d)-unpredictable message sampler, and let δ be a function such that M is
δ-partially resamplable. Let NE2[H, LT] be as above. In the NPROM, for any
adversary A opening at most d ciphertexts, there is an adversary D such that

Advhn-so-cca
NE2[H,LT],A,M,δ(k)

≤ 6Q(k)

2k
+

4Q(k)v(k)

2µ(k)
+
v(k)(v(k) + 4Q(k))

2τ(k)
+ 2Advltdf

LT,D(k),

where q(k) is the total number of random-oracle queries of A and M, v(k) is
the number of messages thatM produces, and p(k) is the number of decryption
queries of A, and Q(k) = q(k) + 2p(k). The running time of D is about that
of A plus the time to run δ and a δ-partial resampling algorithm of M plus the
time to run NE2[H, LT] to encrypt M’s messages. Adversary D makes at most
Q random-oracle queries.
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