
Zero-Knowledge Accumulators and Set Algebra

Esha Ghosh1, Olga Ohrimenko2, Dimitrios Papadopoulos3, Roberto Tamassia1 and
Nikos Triandopoulos4

1 Dept. of Computer Science, Brown University
esha_ghosh@brown.edu, rt@cs.brown.edu

2 Microsoft Research
oohrim@microsoft.com

3 University of Maryland, College Park
dipapado@umd.edu

4 Stevens Institute of Technology
ntriando@stevens.edu

Abstract. Cryptographic accumulators allow to succinctly represent a set by an
accumulation value with respect to which short (non-)membership proofs about
the set can be efficiently constructed and verified. Traditionally, their security
captures soundness but offers no privacy: Convincing proofs reliably encode set
membership, but they may well leak information about the accumulated set.

In this paper we put forward a strong privacy-preserving enhancement by
introducing and devising zero-knowledge accumulators that additionally provide
hiding guarantees: Accumulation values and proofs leak nothing about a dynamic
set that evolves via element insertions/deletions. We formalize the new property
using the standard real-ideal paradigm, namely demanding that an adaptive ad-
versary with access to query/update oracles, cannot tell whether he interacts with
honest protocol executions or a simulator fully ignorant of the set (even of the
type of updates on it). We rigorously compare the new primitive to existing ones
for privacy-preserving verification of set membership (or other relations) and
derive interesting implications among related security definitions, showing that
zero-knowledge accumulators offer stronger privacy than recent related works by
Naor et al. [TCC 2015] and Derler et al. [CT-RSA 2015]. We construct the first
dynamic universal zero-knowledge accumulator that we show to be perfect zero-
knowledge and secure under the q-Strong Bilinear Diffie-Hellman assumption.

Finally, we extend our new privacy notion and our new construction to pro-
vide privacy-preserving proofs also for an authenticated dynamic set collection—
a primitive for efficiently verifying more elaborate set operations, beyond set-
membership. We introduce a primitive that supports a zero-knowledge verifiable
set algebra: Succinct proofs for union, intersection and set difference queries over
a dynamically evolving collection of sets can be efficiently constructed and opti-
mally verified, while—for the first time—they leak nothing about the collection
beyond the query result.

Keywords: zero-knowledge dynamic and universal accumulators, zero-knowledge up-
dates, zero-knowledge set algebra, outsourced computation, integrity, privacy, bilinear
accumulators, cloud privacy.

1 Introduction

A cryptographic accumulator is a primitive that offers a way to succinctly represent a set
of elements X by a single value acc referred to as the accumulation value. Moreover, it
provides a method to efficiently and succinctly prove (to a party that only holds acc) that
an element x belongs to X , by computing a constant-size proof w, referred to as witness.
The interaction is in a three-party model, where the trusted owner of the set runs the
initial key generation and setup process to publish the accumulation value. Later an
untrusted server handles queries on the set issued by clients, providing membership
answers with publicly verifiable witnesses.

Accumulators were originally introduced by Benaloh and del Mare in [4]. Nu-
merous constructions have been proposed since, operating in various models [54, 3,
7, 11, 9, 19, 10, 2, 44, 12, 23]5. Most notably, the primitive was extended to support non-
membership witnesses [41, 19, 2], and efficient updates [11, 2], introducing the notion
of universal and dynamic accumulators, respectively. At the same time, accumulators
found numerous other applications in the context of public-key infrastructure, certificate
management and revocation, time-stamping, authenticated dictionaries, set operations,
authenticated database queries, anonymous credentials, and more.

Traditionally in the literature, the security property associated with accumulators is
soundness (or collision-freeness), expressed as the inability to forge a witness for an
element, i.e., if x /∈ X , it should be hard to prove x ∈ X (and vice-versa for universal
accumulators). No notion of privacy was considered until recently ([20, 23]), e.g., “does
the accumulation reveal anything about the elements of X ” or “what can an adversarial
client, that asks queries and is presented with the accumulation and witnesses, learn
about the set X ”. It is clear that such a property would be attractive, if not—depending
on the application—crucial. For example, in the context of securing the Domain Name
System (DNS) protocol by accumulating the set of records in a zone, it is crucial to leak
no information about values in the accumulated set while responding to queries.6 As
additional examples, Miers et al. [49] developed a privacy enhancement for Bitcoin, that
utilizes the accumulator from [11], while Hanser and Slamanig [35] used accumulators
to build randomizable polynomial commitments for anonymous credentials. In such a
context, it is very important to minimize what is leaked by accumulation values and
witnesses in order to achieve anonymity (for individuals and transactions).

In this work, we propose the notion of zero-knowledge for cryptographic accumula-
tors. We define this property via an extensive real/ideal game, similar to that of standard
zero-knowledge [34]. In the real setting, an adversary is allowed to choose his challenge
set and to receive the corresponding accumulation. He is then given oracle access to the
querying algorithm as well as an update algorithm that allows him to request updates
in the set (receiving the updated accumulation value every time). In the ideal setting,
the adversary interacts with a simulator that does not know anything about the set or
the nature of the updates, other than the fact that an update occurred. Zero-knowledge
is then defined as the inability of the adversary to distinguish between the two settings.

5 We refer interested readers to [23] for a comprehensive review of existing schemes.
6 See for example, https://tools.ietf.org/html/rfc5155.

2

We provide the first zero-knowledge accumulator construction and prove its se-
curity. Our construction builds upon the bilinear accumulator of Nguyen [53] and
achieves perfect zero-knowledge. Our scheme falls within the category of dynamic
universal cryptographic accumulators: It allows to prove both membership and non-
membership statements (i.e., one can compute a witness for x 6∈ X), and supports ef-
ficient updates in the accumulation value due to insertions and deletions in the set. It
satisfies soundness under the q-Strong Bilinear Diffie-Hellman assumption (q-SBDH),
introduced in [6]. In order to provide non-membership witness computation in zero-
knowledge, we had to deviate from existing non-membership proof techniques for the
bilinear accumulator ([19, 2]). We instead use the set-disjointness technique of [56],
appropriately enhanced for privacy. From an efficiency perspective, we show that in-
troducing zero-knowledge to the bilinear accumulator comes at an insignificant cost:
Asymptotically all query overheads are either the same or within a poly-logarithmic
factor of the construction in [53] that offers no privacy.

Zero-knowledge vs. indistinguishability. Recently, de Meer et al. [20] and Derler et
al. [23] introduced an indistinguishability property for cryptographic accumulators. Un-
fortunately, the definition of the former was inherently flawed, as noted in [23].7 The
accumulator definition in [23], while meant to support changes in the accumulated set
(i.e., element insertion or deletion), did not protect the privacy of these changes. In
particular, any adversary suspecting a particular modification in the set could easily
check the correctness of his guess. Our notion of zero-knowledge differs from the pri-
vacy notion of [23], by protecting not only the originally accumulated set but also all
subsequent updates. In fact, we formally prove that, for cryptographic accumulators,
zero-knowledge is a strictly stronger property than indistinguishability.

Relation to zero-knowledge sets. Our privacy notion is reminiscent of that of zero-
knowledge sets [48, 15, 14, 58, 43] where set membership and non-membership queries
can be answered without revealing anything else about the set. Zero-knowledge accu-
mulators can be seen as a relaxation of zero-knowledge sets in an “honest-committer”
setting. In Section 3.2 we discuss this relation in more detail, also looking into the
dynamic setting, comparing with existing work on updatable zero-knowledge sets [45].

Relation to zero-knowledge authenticated data structures. A cryptographic accumulator
can be viewed as a special case of an authenticated data structure (ADS) [51, 63], where
the supported data type is a set. Likewise, the zero-knowledge accumulator we intro-
duce here, falls within the framework of zero-knowledge authenticated data structures
(ZKADS) introduced recently in [29]. We discuss the relation in detail in Section 3.2.

Beyond set-membership. One question that arises naturally is how to build a “set-
friendly” ZKADS with a supported functionality beyond set-membership. In particular,
given multiple sets, we are interested in accommodating more elaborate set-operations:
set union, intersection and difference.8 We introduce the primitive of zero-knowledge
authenticated dynamic set collection for the following setting. A party that owns a
database of sets outsources it to an untrusted server that is subsequently charged with
handling queries, expressed as set operations among the database sets, issued by multi-

7 Subsequently, the definition was strengthened in [61], but it is still subsumed by that of [23].
8 We stress that, in the computational setting, these operations form a complete set algebra.

3

ple clients; at any point, the owner can make updates to the outsourced sets. We present
the first scheme that provides not only integrity of computations but also privacy for
the queried set (i.e., the provided proofs leak nothing beyond the answer). The ba-
sic building block is our zero-knowledge accumulator, together with a carefully de-
ployed accumulation tree [57] . We note that if we restrict the security properties only
to soundness—as is the case in the traditional literature of ADS—there are existing
schemes (specifically for set-operations) by Papamanthou et al. [56] for the single-
operation case, and by Canetti et al. [12] and Kosba et al. [40] for the case of multi-
ple (nested) operations. However, none of these constructions offers privacy, thus our
scheme is a natural strengthening of their security guarantees, while maintaining the
same efficient performance. Preserving efficiency while maintaining integrity and zero-
knowledge privacy turned out to be quite challenging. In particular, answering union
and set difference queries for set collections required new techniques to be developed.
At a high level, the efficiency of the proof techniques in [56] strongly relies on reveal-
ing much of the non-queried information and hence could not be extended to support
privacy-preserving queries.

Contributions. Our contributions can be summarized as follows:
– We introduce the property of zero-knowledge for cryptographic accumulators and

show that it is strictly stronger than existing privacy notions for accumulators.
– We give an overview of the connection between zero-knowledge accumulators and

related cryptographic primitives in the area (e.g., we show that zero-knowledge
accumulators imply primary-secondary-resolver systems proposed in [52]).

– We provide the first construction of a zero-knowledge dynamic universal accumu-
lator. Our scheme is perfect zero-knowledge and secure under the q-SBDH assump-
tion; it achieves these security properties with only a small (or no) overhead. We
compare efficiency with the accumulator of [53] in Figure 3 in terms of number of
cryptographic operations performed.

– Using our zero-knowledge accumulator as a building block, we construct the
first protocol for zero-knowledge outsourced set operations. Our scheme is non-
interactive and offers secure and efficient subset, intersection and union operations
under the q-SBDH assumption. For set-difference queries, our construction is se-
cure under q-SBDH assumption as well, but proof construction entails a Sigma
protocol thus requiring interaction. This secure set-difference protocol can also be
made non-interactive, albeit in the random oracle model, (in which case the con-
struction is in the Common Reference String model).
Our construction (except for the update cost) is asymptotically as efficient as the
previous state-of-the-art construction from [56], that offered no privacy guarantees.

1.1 Other Related Work

Existing works (e.g., [11, 53, 2, 41]) equip some accumulators with zero-knowledge
proof-of-knowledge protocols, such that a party that knows that value x is (or is not)
in X can efficiently prove it to a third-party arbitrator, without revealing the value.
While hiding x, all existing constructions trivially expose the accumulation value as
part of the proven statement. This may itself reveal information about set X . Our pri-

4

vacy goals are therefore different, yet the techniques are compatible. Developing zero-
knowledge proof-of-knowledge protocols for membership and non-membership, that
can work with a zero-knowledge accumulator will yield a strong tool that leaks nothing
about either the set or the particular element in the proof.

Most widely-used accumulator constructions—including ours—are in the trusted-
setup model, i.e., the party that generates the scheme parameters originally, holds some
trapdoor information that is not revealed to the adversary. E.g., for the RSA-based con-
structions, any adversary that knows the factorization of the modulo can trivially cheat.
An alternative body of work aims to build trapdoorless accumulators (also referred to as
strong accumulators) [54, 55, 62, 7, 9, 44], where the owner is entirely untrusted (effec-
tively the owner and the server are the same entity). Unfortunately, the earlier of these
works are quite inefficient for all practical purposes, while the more recent ones either
yield witnesses that grow logarithmically with the size of X or rely on algebraic groups
that are not yet well-studied in cryptography. A straight-forward way to construct a
strong accumulator is via a black-box reduction from zero-knowledge sets (with cor-
responding efficiency caveats). While a scheme without the need for a trusted setup is
clearly more attractive in terms of security, it is safe to say that we do not yet have a
practical scheme with constant-size proofs, based on standard security assumptions.

Recently, Naor et al. [52] introduced primary-secondary-resolver membership proof
systems, a primitive that is also a relaxation of zero-knowledge sets in the three-party
model, and showed applications in network protocols [33]. While our definitions have
similarities, in Section 3.2 we show that zero-knowledge accumulators are a stronger
primitive than primary-secondary-resolver systems.

Regarding related work for set operations, the focus in the cryptographic literature
has been on the privacy aspect with a very long line of works (see for example, [27, 39,
5, 36, 37]), some of which focus specifically on set-intersection (e.g., [38, 18, 17, 24]).
The above works fit in the secure two-party computation model and most are secure
(or can be made with some loss in efficiency) also against malicious adversaries, thus
guaranteeing the authenticity of the result. However, this approach typically requires
multi-round interaction or larger communication cost than our construction. On the
other hand, our two security properties are “one-sided”: Only the server may cheat
with respect to soundness and only the client with respect to privacy; in this setting we
achieve non-interactive solutions with optimal proof-size. There also exist works that
deal exclusively with the integrity of set operations, such as [50] that achieves linear
verification and proof cost, and [64] that only focuses on set-intersection but can be
combined with an encryption scheme to achieve privacy versus the server.

Another work that is related to ours is that of Fauzi et al. [25] that presents an
efficient non-interactive zero-knowledge argument for proving relations between com-
mitted sets. Conceptually this work is close to zero-knowledge sets, allowing also for
more general set operation queries. From a security viewpoint, it is in the stronger two-
party model and, from a functionality viewpoint, it works for (more general) multi-set
operations. However, its security relies on non-falsifiable knowledge assumptions, and
the construction trivially leaks an upper-bound on the committed sets. Moreover, it can-
not be efficiently generalized for operations on more than two sets at a time and it does
not explicitly support efficient modifications in the sets.

5

We also note that recently other instantiations of zero-knowledge authenticated
data structures have been proposed, including lists, trees and partially-ordered sets of
bounded dimension [32, 29].

2 Preliminaries

We denote with λ the security parameter and with ν(λ) a negligible function. A function
f (λ) is negligible if for each polynomial function poly(λ) and all large enough values
of λ, f (λ)< 1/(poly(λ)). We say that an event can occur with negligible probability if
its occurrence probability can be upper bounded by a negligible function. Respectively,
an event takes place with overwhelming probability if its complement takes place with

negligible probability. The symbol $←−X denotes uniform sampling from domain X. We
denote the fact that a party Adv (instantiated as Turing machine) is probabilistic and
runs in polynomial-time by writing PPT Adv.
Bilinear pairings. Let G be a cyclic multiplicative group of prime order p, gener-
ated by g. Let also GT be a cyclic multiplicative group with the same order p and
e : G×G→ GT be a bilinear pairing with the following properties: (1) Bilinearity:
e(Pa,Qb) = e(P,Q)ab for all P,Q∈G and a,b∈Zp; (2) Non-degeneracy: e(g,g) 6= 1GT ;
(3) Computability: There is an efficient algorithm to compute e(P,Q) for all P,Q ∈ G.
We denote with pub := (p,G,GT ,e,g) the bilinear pairings parameters, output by a
randomized polynomial-time algorithm GenParams on input 1λ. For clarity of presen-
tation, we assume for the rest of the paper a symmetric (Type 1) pairing e. We note
though that both our constructions can be securely implemented in the (more efficient)
asymmetric pairing case, with straight-forward modifications (see [16] for a general
discussion on pairings). Our security proofs make use of the q-Strong Bilinear Diffie-
Hellman (q-SBDH) assumption over groups with bilinear pairings introduced in [6].

Assumption 1 (q-Strong Bilinear Diffie-Hellman) For any PPT adversary Adv and
for q being a parameter of size polynomial in λ, there exists negligible function ν(λ)
such that the following holds:

Pr
[

pub← GenParams(1λ);s←R Z∗p;
(z,γ) ∈ Z∗p×GT ← Adv(pub,(gs, ...,gsq

)) : γ = e(g,g)1/(z+s))

]
≤ ν(λ) .

Complexity model. For ease of notation, we measure the asymptotic performance of
our schemes by counting numbers of operations and group elements, ignoring a, poly-
logarithmic in λ, factor (e.g., an operation in G takes one unit time).
Characteristic polynomial. A set X = {x1, . . . ,xn} with elements xi ∈ Zp can be
represented by a polynomial following an idea introduced in [27]. The polynomial
ChX (z) = ∏

n
i=1(xi + z) from Zp[z], where z is a formal variable, is called the character-

istic polynomial of X . In what follows, we will denote this polynomial simply by ChX
and its evaluation at a point y as ChX (y). Characteristic polynomials enjoy a number of
homomorphic properties w.r.t. set operations. We use the following characterization of
set intersection of the sets: Given a collection of sets Xi1 , . . .Xik and their characteristic
polynomial representation, we summarize a characterization of the intersection of the
sets in the following lemma.

6

Lemma 1 ([56]) A set answer that is a common subset of sets Xi1 , . . .Xik , is their inter-
section if and only if there exist polynomials q1[z], . . .qk[z] such that ∑ j∈[i1,ik] q j[z]Pj[z] =
1 where Pj[z] = ChX j\answer[z]. Computing polynomials q j[z] where j ∈ [i1, ik] has
O(N log2 N log logN) complexity where N = ∑ j∈[i1,ik] n j and n j = |X j|.

The following two lemmas characterize the efficiency of computing the characteristic
polynomial of a set –note that there is no requirement for the existence of an n-th root
of unity in Zp for such an algorithm to exist– and the probability that two polynomials
are equivalent at a randomly chosen point.

Lemma 2 ([59]) Given a set X = x1, ...,xn ∈ Zn
p, its characteristic polynomial ChX :=

∑
n
i=0 cizi ∈ Zp[z] can be computed with O(n logn) operations by FFT interpolation.

Lemma 3 (Schwartz–Zippel–DeMillo–Lipton) Let p[z],q[z] be two d-degree polyno-

mials from Zp[z] with p[z] 6= q[z], Then for w $←− Zp, the probability that p(w) = q(w) is
at most d/p, and the equality can be tested in time O(d).

If p ∈ O(2λ), it follows that the above probability is negligible, if d is poly(λ).
Accumulation tree. Given a collection of sets S = {X1,X2, . . . ,Xm}, let acc(Xi) be a
succinct representation of Xi using its characteristic polynomial. We describe an au-
thentication mechanism that does the following. A trusted party computes m hash val-
ues hi := h(acc(Xi)) (using a collision resistant cryptographic hash function) of the m
sets of S. Then given a short public digest information of the current set collection S,
the authentication mechanism provides publicly verifiable proofs of the form “hi is the
hash of the ith set of the current set collection S”. A popular authentication mechanism
for such proofs are Merkle hash trees [47] based on a single value digest can provide
logarithmic size proofs and support updates. An alternative mechanism to Merkle trees,
(specifically in the bilinear group setting) are accumulation trees [57]. Intuitively, an ac-
cumulation tree can be seen as a “flat" version of Merkle trees. In this work, we use our
extension (for batch updates) of the accumulation tree in [56]. The detailed construction
can be found in the full version.

3 Zero-Knowledge Universal Accumulators (ZKUA)

A dynamic universal accumulator (DUA) consists of five probabilistic polynomial time
algorithms (GenKey, Setup, Witness, Verify, Update). It represents a set X , with el-
ements from domain X, by an accumulation value acc ∈ A. It supports queries of the
form “is x ∈ X ?” for x ∈ X and updates to the current set (e.g., using “insert x” or
“remove x” operations). The algorithms of DUA, as described below, are run between
three parties: the owner, the server and the client. We follow the definitional style of [26]
and [23] where the accumulator is described as a tuple of algorithms. In the full version
we provide a discussion regarding our chosen definitional style.

Definition 1 (Dynamic Universal Accumulator) A dynamic universal accumulator is a
tuple of five PPT algorithms, DUA= (GenKey,Setup,Witness,Verify,Update) defined
as follows:

7

(sk,vk)← GenKey(1λ)
This probabilistic algorithm takes as input the security parameter and outputs a
(public) verification key vk that will be used by the client to verify query responses
and a secret key sk that is kept by the owner.

(acc,ek,aux)← Setup(sk,X)
This probabilistic algorithm is run by the owner. It takes as input the source set X
and produces the accumulation value acc that will be published to both server and
client, and an evaluation key ek as well as auxiliary information aux that will be
sent only to the server in order to facilitate proof construction.

(b,w)←Witness(acc,X ,x,ek,aux)
This algorithm is run by the server. It takes as input the evaluation key and the
accumulation value ek,acc generated by the owner, the source set X , a queried
element x, as input. It outputs a boolean value b indicating whether the element is
in the set and a witness w for the answer.

(accept/reject)← Verify(acc,x,b,w,vk)
This algorithm is run by the client. It takes as input the accumulation value acc and
the public key vk computed by the owner, a queried element x, a bit b, the witness
w and it outputs accept/reject.

(acc′,ek′,aux′)← Update(acc,X ,x,sk,aux,upd)
This algorithm takes as input the current set with its accumulation value and aux-
iliary information, as well as an element x to be inserted to X if upd = 1 or re-
moved from X if upd = 0. If upd = 1 and x ∈ X , (likewise if upd = 0 and x /∈ X)
the algorithm outputs ⊥ and halts, indicating an invalid update. Otherwise, it out-
puts (acc′,ek′,aux′) where acc′ is the new accumulation value corresponding to set
X ∪{x} or X \{x} (to be published), ek′ is the (possibly) modified evaluation key,
and aux′ is respective auxiliary information (both to be sent only to the server).

To update existing witnesses efficiently (i.e., not recomputing them from scratch) after
an change of the accumulation value, we define the WitUpdate functionality.
(upd,w′)←WitUpdate(acc,acc′,x,w,y,ek′,aux,aux′,upd)

This algorithm is to be run after an invocation of Update. It takes as input the
old and the new accumulation values and auxiliary informations, the evaluation
key ek′ output by Update, as well as the element x that was inserted or removed
from the set, according to the binary value upd (the same as in the execution of
Update). It also takes a different element y and its existing witness w (that may be
a membership or non-membership witness). It outputs a new witness w′ for y, with
respect to the new set X ′. The output must be the same as the one computable by
running Witness(acc′,X ′,y,ek′,aux′).

We point out that the ability to update membership witnesses is inherently more impor-
tant than that of non-membership witnesses. The former corresponds to the (polynomi-
ally many) values in the set whereas the latter will be exponentially many (or infinite).
A server that wants to cache witness values and update them efficiently can thus bene-
fit more from storing pre-computed positive witnesses than negative ones (that are less
likely to be used again).
Untrusted vs. trusted setup. The way we formulated our definition, Setup and Update
require knowledge of sk, Witness requires ek and Verify takes only vk. From a practical

8

point of view, the owner is the party that is responsible for maintaining the accumulation
value at all times (e.g., signing it and posting it to a public log); all changes in X should,
in a sense, be validated by him first. On the other hand, in most popular schemes (e.g.,
the RSA construction of [11] and the bilinear accumulator of [53]), setup and update
can be run by the server (without trapdoor sk) and the only distinction is that the owner
can achieve this much faster. The same holds for our construction, but in the security
definitions we adopt the more general framework where the adversary is given oracle
access to these algorithms. It should be noted that for our construction, all security
properties hold even if sk is empty –only the complexity analysis changes.

3.1 Zero-Knowledge Accumulators: Security Properties

The first property we require from a cryptographic accumulator is completeness, i.e.,
a witness output by any sequence of invocations of the scheme algorithms, for a valid
statement (corresponding to the state of the set at the time of the witness generation) is
verified correctly with all but negligible probability.

Definition 2 (Completeness) Let Xi denote the set with elements from X, constructed
after i invocations of the Update algorithm (starting from a set X0) and likewise for
eki,auxi. A dynamic universal accumulator is complete if, for all sets X0 where |X0| and
l ≥ 0 are polynomial in λ and for all xi ∈ X, for 0 = 1, . . . , l, there exists a negligible
function ν(λ) such that:

Pr

 (sk,vk)← GenKey(1λ);(ek0,acc0,aux0)← Setup(sk,X0);
{(acci+1,eki+1,auxi+1)← Update(acci,Xi,xi,sk,auxi,updi)}0≤i≤l

(b,w)←Witness(accl ,Xl ,x,ekl ,auxl) : Verify(accl ,x,b,w,vk) = accept

≥ 1−ν(λ)

where the probability is taken over the randomness of the algorithms.

In the above we purposely omitted the WitUpdate algorithm that was introduced purely
for efficiency gains at the server. In fact, recall that we restricted it to return the exact
same output as Update (run for the corresponding set and element) hence the value w
in the above definition might as well have been computed during an earlier update and
subsequently updated by (one or more) calls of WitUpdate.

The second property is soundness which captures that fact that adversarial servers
cannot provide accepting witnesses for incorrect statements. It is formulated as the in-
ability of Adv to win a game during which he is given oracle access to all the algorithms
of the scheme (except for those he can run on his own using ek,aux –see discussion on
private versus public setup and updates above) and is required to output such a statement
and a corresponding witness.

Definition 3 (Soundness) For all PPT adversaries Adv running on input 1λ and all l
polynomial in λ, the probability of winning the following game, taken over the random-
ness of the algorithms and the coins of Adv is negligible:

Setup The challenger runs (sk,vk)← GenKey(1λ) and forwards vk to Adv. The latter
responds with a set X0. The challenger runs (ek0,acc0,aux0)← Setup(sk,X0) and
sends the output to the adversary.

9

Updates The challenger initiates a list L and inserts the tuple (acc0,X0). Fol-
lowing this, the adversary issues update xi and receives the output of
Update(acci,Xi,xi,sk,auxi,updi) from the challenger, for i = 0, . . . , l. After each
invocation of Update, if the output is not ⊥, the challenger appends the returned
(acci+1,Xi+1) to L . Otherwise, he appends (acci,Xi).

Challenge The adversary outputs an index j, and a triplet (x∗,b∗,w∗). Let L [j] be
(acc j,X j). The adversary wins the game if:

Verify(acc j,x∗,b∗,w∗,vk) = accept∧ ((x∗ ∈ X j ∧b∗ = 0)∨ (x∗ /∈ X j ∧b∗ = 1))

A discussion on the winning conditions of the game is due at this point. This property
(also referred to as collision-freeness) was introduced in this format in [41] and was
more recently adapted in [23] with slight modifications. In particular, Adv outputs set
X ∗ and accumulation value acc∗ as well as the randomness used (possibly) to com-
pute the latter (to cater for randomized accumulators). It is trivial to show that the two
versions of the property are equivalent.

An alternative, more demanding, way to formulate the game is to require that the
adversary wins if he outputs two accepting witnesses for the same element and with
respect to the same accumulation value (without revealing the pre-image set): a mem-
bership and a non-membership one. This property, introduced in the context of accu-
mulators in [7], is known as undeniability and is the same as the privacy property of
zero-knowledge sets. Recently, Derler et al. [23] showed that undeniability is a stronger
property than soundness. However, existing constructions for undeniable accumulators
are in the trapdoor-less setting (with the limitations discussed in Section 1.1); since our
construction is in the three-party setting, we restrict our attention to soundness. This
should come as no surprise, as undeniability allows an adversary to provide a candidate
accumulation value, without explicitly giving a corresponding set. In a trusted-setup set-
ting, the accumulation value is always maintained by the trusted owner; there is no need
to question whether it was honestly computed (e.g., whether he knows a set pre-image
or even whether there exists one) hence undeniability in this model is an “overkill” in
terms of security (see also the related discussion in Section 3.2).

The novel property we introduce here is zero-knowledge. Informally, this property
ensures that an adversarial party (i.e., the client) that sees the accumulation value as
well as all membership and non-membership witnesses exchanged during the protocol
execution, and has the ability to issue arbitrary queries, learns nothing about the set, not
even its size. Zero-knowledge guarantees that nothing can be learned from the protocol
except for the answer to a query itself. In other words, explicitly querying for an ele-
ment is the only way to learn whether it appears in the set or not. We formalize this in
a way that is very similar to zero-knowledge sets (e.g, see the definition of [15]) appro-
priately extended to handle not only queries but also updates issued by the adversary. In
particular, we want the proofs to be ephemeral, i.e., proofs generated before an update
should be invalidated after an update. We require that there exists a simulator such that
no adversarial client can distinguish whether he is interacting with the algorithms of the
scheme or with the simulator that has no knowledge of the set or the element updates
that occur, other than whether a queried element is in the set and whether requested

10

updates are valid. This information is given to the simulator as the output of a function
D that checks the validity of a requested operation9.

Definition 4 (Zero-Knowledge) Let D be a binary function defined as follows. For
queries, D(query,x,X)) = 1 iff x ∈ X . For updates D(update,x,c,X)) = 1 iff (c = 1
∧ x /∈ X) or (c = 0 ∧ x ∈ X). Let RealAdv(1λ), IdealAdv,Sim(1λ) be games between a
challenger, an adversary Adv and a simulator Sim= (Sim1,Sim2), defined as follows:

RealAdv(1λ):
Setup The challenger runs (sk,vk)← GenKey(1λ) and forwards vk to Adv. The

latter chooses a set X0 with |X0| ∈ poly(λ) and sends it to the challenger who
in turn runs Setup(sk,X0) to get (acc0,ek0,aux0). He then sends acc0 to Adv
and sets (X ,acc,ek,aux)← (X0,acc0,ek0,aux0).

Query For i = 1, . . . , l, where l ∈ poly(λ), Adv outputs (op,xi,ci) where op ∈
{query,update} and ci ∈ {0,1}:
If op= query: The challenger runs (b,wi)←Witness(acc,X ,xi,ek,aux) and

returns the output to Adv.
If op= update: The challenger runs Update(acc,X ,xi,sk,aux,ci). If the

output is not ⊥ he updates the set accordingly to get Xi, sets
(X ,acc,ek,aux)← (Xi,acci,eki,auxi) and forwards acc to Adv. Else, he
responds with ⊥.

Response The adversary outputs a bit d.

IdealAdv(1λ):
Setup The simulator Sim1, on input 1λ, outputs a vk which he forwards to Adv. The

adversary chooses a set X0 with |X0| ∈ poly(λ). Sim1 (without seeing X0) re-
sponds with acc0 and maintains state stateS. Finally, let (X ,acc)← (X0,acc0).

Query For i = 1, . . . , l Adv outputs (op,xi,ci) where op ∈ {query,update} and
ci ∈ {0,1}:
If op= query: The simulator runs (b,wi) ←

Sim2(acc,xi,stateS,D(query,xi,X)) and returns the output to Adv.
If op= update: The simulator runs Sim2(acc,stateS,D(update,xi,ci,X)). If

the output of D(update,xi,ci,X) is 1, let X ← Xi ∪ xi in the case c1 = 1
and X ← Xi \ xi in the case c1 = 0 —i.e., X is a placeholder variable for
the latest set version at all times according to valid updates, that is however
never observed by the simulator. The simulator responds to Adv with acc′.
If the response acc′ is not ⊥ then acc← acc′.

Response The adversary outputs a bit d.

A dynamic universal accumulator is zero-knowledge if there exists a PPT simulator
Sim= (Sim1,Sim2) such that for all adversaries Adv there exists negligible function ν

such that:
|Pr[RealAdv(1λ) = 1]−Pr[IdealAdv(1λ) = 1]| ≤ ν(λ).

If Adv is PPT, then this defines computational zero-knowledge; perfect and statisti-
cal zero-knowledge can be defined similarly.

9 Instead of using D with different arguments for checking the validity of query and update, we
could make D work only for queries, i.e., D(query, . . .), and express the validity of a requested
update as D(query, . . .)⊕ci. We chose to use the former notation because we feel it is cleaner.

11

Observe that, even though Adv may be unbounded (in the case of statistical or per-
fect zero-knowledge) the size of the set is always polynomial in the security parame-
ter as in [15]; in fact it is upper bounded by |X0|+ l. This ensures that we can have
polynomial-time simulation, matching the real-world execution where all parties run in
polynomial-time. Having computationally unbounded adversaries is still meaningful;
such a party may, after having requested polynomially many updates, spend unlimited
computational resources trying to distinguish the two settings.

As already observed in [20, 21, 23], when formulating a notion of privacy for cryp-
tographic accumulators the fact that the accumulation value computation must be ran-
domized becomes evident. If Setup (and similarly, Update) is a deterministic algorithm,
then each set has a uniquely defined accumulation value (subject to particular sk) that
can be reproduced by any adversary with oracle access to the algorithm.

In our definition, the server holds the evaluation key ek that is used to produce
witnesses, and that is not available to the client. This is not a restriction of the model,
but should rather be seen as a generalization, in order to capture zero-knowledge in all
settings; if ek does not leak any information about the set, it may be included in the
public vk. Specifically for our construction from Section 4, if we choose to make ek
public, then what is leaked is an upper-bound on the set size, formally captured by the
notion of functional zero-knowledge [52].

3.2 Relation to Other Primitives

There exist various cryptographic primitives that address the problem of secure set (non-
)membership, in the same or related models, and it is imperative to compare the primi-
tive of zero-knowledge accumulators with these.

We present a mapping of the research literature for the construction of cryptographic
proofs for set-membership and non-membership, which has attracted significant atten-
tion lately; proofs can be found in the full version. This is far from a complete presen-
tation of results in the area; we focus on the relation between those primitives that are
most closely related to the problem, avoiding general approaches (e.g., general-purpose
zero-knowledge protocols) or related models that address similar problems (such as
group signatures, e.g., [1]). The overall picture for the static case (i.e., without assum-
ing changes in the set) can be seen in Figure 1. Arrows denote implication; an arrow
from A to B translates to “B can be built in black-box manner from A”. Double-sided
arrows denote equivalence of definitions, i.e., both can be constructed in a black-box
manner from each other.

The most prominent such primitive is zero-knowledge sets [48, 15, 14, 43]. There,
queries can be answered without revealing anything about the set, albeit at a stronger
setting where the server and the owner are the same (untrusted) entity. In the same set-
ting, we also discussed trapdoorless (or strong) accumulators (see Section 1.1). Zero-
knowledge sets are a stronger primitive than accumulators; they satisfy the same sound-
ness property with trapdoorless accumulators but they additionally offer privacy. Hence
all other primitives in our mapping can be built from them. Additionally, if a scheme is
a trapdoorless accumulator it is secure with an untrusted setup execution, therefore (and
quite trivially) it is also secure with a trusted setup, hence it is a also an accumulator.

12

ZKS

T-ACC

T-ZKACC

ACC

ZKACC

PSR

Fig. 1: Relations among cryptographic primitives for
proof of membership and non-membership (static
case). ZKS: zero-knowledge sets, T-ACC: trap-
doorless accumulators, ACC: accumulators, T-
ZKACC: trapdoorless zero-knowledge accumulators,
ZKACC: our zero-knowledge accumulators (circled),
PSR: primary-secondary-resolver membership proof
systems.

As a mental exercise, let us now
try to define the privacy-preserving
counterparts of trapdoorless accu-
mulators, i.e., trapdoorless zero-
knowledge accumulators10. Quite
informally, the completeness and
zero-knowledge definitions remain
the same but the soundness prop-
erty is replaced by the, strictly
stronger, property of undeniabil-
ity (see, e.g., [44] for a concrete
definition), which is the same as
the soundness property of zero-
knowledge sets: By “merging” the
existing soundness guarantee of
trapdoorless accumulators with our
zero-knowledge property (which, for
the static case, is identical to that of
zero-knowledge sets) we –quite unsurprisingly– ended up with zero-knowledge sets.
We stress that the latter exist in the common reference string model (or the trusted
parameters model) hence this must also be true for trapdoorless zero-knowledge accu-
mulators (e.g., a trusted authority runs the key-generation algorithm and publishes the
result as a common reference string). On the contrary, this is not necessary for trapdoor-
less accumulators (without privacy) since the security game there is one-sided; the client
can perform key-generation himself. As a final note, we point out, that zero knowledge
(trapdoorless) accumulators imply (trapdoorless) accumulators since the former satisfy
a strict superset of the security properties of the latter.

This equivalence of zero-knowledge sets and trapdoorless zero-knowledge accu-
mulators can be useful in two ways: (i) more efficient (e.g., with smaller proof sizes)
zero-knowledge sets may be achievable with techniques borrowed from the accumula-
tors literature, and (ii) an impossibility result in one of the two models is translatable
to the other. This holds, for example, in the case of the batch-update impossibility for
accumulators of [8]. We want to stress that our construction in Section 4 is not trap-
doorless; to the best of our knowledge, the best known way to construct trapdoorless
zero-knowledge accumulators is via a black-box reduction from zero-knowledge sets.

Another related primitive is primary-secondary-resolver proof systems (PSR), intro-
duced by Naor et al. [52]. Their privacy notion is a relaxation of zero-knowledge defined
as functional zero-knowledge, i.e., the simulator may be allowed to learn some function
of the set (typically its size). Also, the games in the PSR definition are non-adaptive in
the following sense: Adv needs to declare its cheating set before he even receives the
corresponding keys (ek,vk for soundness and only vk for zero-knowledge –using our

10 It should be noted that, in the accumulators literature, the trapdoor refers to a secret value pos-
sibly used for efficiency purposes when computing accumulation values and witnesses by the
trusted owner. This should not be confused with the trapdoor typically used in zero-knowledge
protocols for simulation purposes.

13

terminology)11. For the above reasons, while it is trivial that zero-knowledge accumu-
lators imply PSR (where the leaked function is void), the other direction is generally
not true. We stress that the above distinction between adaptive and selective security
does not hold in the dynamic setting. There an adversary may declare a cheating set
originally, receive the keys, and then modify his choice via a series of update calls (see,
however, our discussion for this setting in the next paragraph).

Our results here are complementary to the relations proven in [52]. There, the au-
thors prove that PSR systems exist, if and only if, one-way functions exist, which in
turn implies that zero-knowledge sets cannot be built in a black-box manner from PSR.
Dynamic setting. Once we move to the dynamic setting, where there exist efficient algo-
rithms for modifications in the set, the relations are largely the same as in Figure 1, but
some clarifications are in order. The first work addressing updatable zero-knowledge
sets was by Liskov [45], where two notions of privacy were introduced: opacity and
transparency. Constructions of the latter form were presented in [45] and [13]. The
above relations between definitions hold with respect to opacity. A construction for ef-
ficiently updatable opaque zero-knowledge sets (from standard assumptions) remains
an open problem. However, when restricted to the three-party model (i.e., with trusted
setup), it can be shown that our construction from Section 4 (with minor modifications)
satisfies the opacity property. On the other hand, transparency is a weaker form of pri-
vacy, as it trivially leaks whether a particular element, that has been previously queried,
was affected by an update (but it otherwise allows parties to maintain cached witnesses).

Regarding the relation between zero-knowledge accumulators and PSR, matters are
also straight-forward as the latter are explicitly defined only for the static case. In [52],
the authors recommend the usage of techniques from certificate-revocation lists [51], as
an additional external mechanism to accommodate updates. Contrary to this, our defini-
tional approach is to make update-handling mechanisms explicitly part of the scheme.
In this sense, zero-knowledge accumulators are a natural definitional extension of PSR
in the dynamic setting. That said, we explicitly require that clients can at all times ac-
cess the latest accumulation value, which would not be the case following the revocation
scheme approach. We stress however that this does not necessitate active authenticated
channels between owner and clients; in practice it is achievable with a “timestamp-sign-
and-publish” from the owner.

We note that recently [42] introduced the general notion of functional commitments
(which can capture accumulators as a special case). However, their construction handles
only subset queries and it does not support updates on the committed set. On the other
hand, [60] introduced the notion of asynchronous accumulators in a distributed setting
and does not consider privacy.

Relation to zero-knowledge authenticated data structures. Another important ob-
servation is the relation of zero-knowledge accumulators with the framework of zero-

11 One could possibly modify the PSR model –and the security games– significantly to make
them adaptive, by separating the key generation and setup algorithms. Indeed, to the best of our
knowledge, the PSR construction of [33] would probably satisfy such a modified definition,
assuming it was instantiated with an adaptively-secure signature scheme and an adaptively-
secure verifiable random function.

14

knowledge authenticated data structures (ZKADS), recently introduced in [29].12

ZKADS extend the well-known primitive of authenticated data structures (ADS) adding
an additional zero-knowledge property. The setting is the standard three-party model but
now the supported type may be any kind of data structure. The choice of data structure
defines the kind of data stored and the type of supported queries. In [29, 32, 31], the au-
thors provided constructions for various types of data structures, in particular for a zero-
knowledge authenticated list (i.e., a data structure that supports “insert-after”, “delete”
operations, as well as “order” queries), a tree, and a partially-ordered set (poset) of
bounded dimension and range queries. Consequently, a zero-knowledge accumulator is
a type of ZKADS where the data structure is a set of elements supporting –unordered–
insertions and deletions, and (non-)membership queries.

The above constructions are the only ZKADS instantiations in the literature so far.
One natural way to extend zero-knowledge authenticated sets to accommodate more
elaborate query types is by allowing for set-operations beyond (non-)membership. In
particular, consider a data structure, called set collection, that consists of a collection
of sets and accommodates operations among (an arbitrary selection among) them. We
stress that a construction that accommodates set unions, intersection and differences,
allows for a complete set algebra.13 In the full version we provide a definition of zero-
knowledge authenticated set collection, in the style of [29], and the corresponding con-
struction (which naturally uses our zero-knowledge authenticated set construction from
Section 4 as a building block).

3.3 Zero-knowledge Implies Indistinguishability (for Accumulators)

The notion of zero-knowledge defined here is a strengthening of the indistinguishability
property introduced in [23]. There the authors introduce a notion similar to ours that also
requires the accumulation value produced by Setup to be randomized. If we restrict our
attention to static accumulators, the effect of both notions is the same, i.e., the clients
see a randomized accumulation value and corresponding “blinded” witnesses.

However, while the indistiguishability game entails updates, it inherently does not
offer any privacy for the elements inserted to or removed from the set, as the Update
algorithm is deterministic. At a high level, that notion only protects the original accu-
mulated set and not subsequent updates. We believe this is an important omission for a
meaningful privacy definition for accumulators, as highlighted by the following exam-
ple. Consider, a third-party adversary that observes the protocol’s execution before and
after an insertion (or deletion) update. If the adversary has reasons to suspect that the
inserted (or deleted) value may be y, he can always test that. A very realistic example of
this behavior is a setting where the accumulator is used to implement a revocation list.

12 Though [29] uses the term Privacy-Preserving Authenticated Data Structures, we use ZKADS
to fit our notation.

13 In the computationally-bounded setting, a negation operation is infeasible unless the element
domain is of polynomial size in the security parameter. In that case, a negation can be instan-
tiated as a set difference from the set that contains the entire domain.

15

In that case an adversary may want to know if his fake certificate (value y in the above
case) has been “caught” yet. We provide the following result14.

Theorem 1 Every zero-knowledge dynamic universal accumulator is also indistin-
guishable under the definition of [23], while the opposite is not always true.

Proof. We first show that every scheme that is zero-knowledge is also indistinguishable.
Then we show that the construction of [23] is not zero-knowledge.

ZK⇒ IND: We prove this direction by contradiction. Assume there exists an accu-
mulator that is zero-knowledge but not indistinguishable. Then, there exists a PPT
adversary Adv that wins the indistinguishability game. Adv gives two sets X0,X1 to
a challenger who flips a coin b and provides oracle access to Adv for the algorithms
with respect to Xb. By assumption, Adv can output a bit b′ correctly guessing b
with non-negligible advantage ε over 1/2. The (natural) constraint is that Adv can-
not issue a query (or update request) that is trivially revealing the chosen set (e.g.,
if x ∈ X0 and x 6∈ X1, Adv is not allowed to query for x). We defer interested readers
to [23] for a formal definition of the indistinguishability game.
We will now construct a PPT adversary Adv′ that breaks the zero-knowledge prop-
erty of the scheme as follows. Adv′ on input 1λ,vk runs Adv with the same input and
receives sets X0,X1. He then forwards X1 as the challenge for the zero-knowledge
game and receives accumulation value acc0, which he forwards to Adv. Conse-
quently, he responds to all messages of Adv (queries and updates) with calls to the
zero-knowledge game interface and forwards all responses back to Adv. Finally, he
outputs the output bit b′ of Adv.
First, observe that Adv′ is clearly PPT, since Adv is PPT. Now let us argue about
his success probability in distinguishing between real and ideal interaction. Ob-
serve that, if Adv′ is interacting with the algorithms of the scheme (i.e., is playing
the real game), the interface he is providing to Adv is a perfect simulation of the
indistinguishability game for b= 1. On the other hand, if he is interacting with Sim,
the view of the latter during this interaction is exactly the same independently of
whether the set chosen by Adv′ is X0 or X1. Hence, the view offered to Adv is the
same in both cases, and therefore Pr[b′ = 1] = Pr[b′ = 0] = 1/2. Let E be the event
that the Adv′ is playing the real game (and likewise for the complement Ec). From
the above analysis (recall that Adv′ outputs the bit b′ returned by Adv), it holds
that Pr[b′ = 1|E] > 1/2+ ε and Pr[b′ = 1|Ec] = 1/2. This implies that Adv′ can
distinguish between the two executions with non-negligible probability, breaking
the zero-knowledge property of the scheme. The claim follows by contradiction.

14 In [23] the indistinguishability definition assumes that the adversary is also given access to the
Setup algorithm arbitrarily many times. This makes sense in their model, since they explicitly
require that Setup is randomized whereas Update is deterministic. Here this requirement is
redundant since both processes may be randomized; any setup response can be emulated by a
series of update calls that shape the required set. To simplify the process, we assume that the
indistinguishability adversary only makes Update and Witness calls. We stress that this is not
a limitation of the reduction. We could alternatively have chosen to define our zero-knowledge
game giving the adversary access to Setup and the result would still hold.

16

IND 6 ⇒ ZK: The main observation for this part of the proof is that in the construction
of [23], given the accumulation acc of set X , the new accumulation value after in-
serting or deleting an element is computed via a deterministic algorithm. Assume
now an adversary Adv that operates as follows when playing the zero-knowledge
game against the scheme of [23]. He initially plays the setup phase of Defini-
tion 4 choosing a set X0 and receiving acc0 from the challenger. Then he chooses

e $←− {0,1}. If e = 0 then Adv chooses x uniformly from Zp \ {X0} and sends to
the challenger first (update,x,1), receiving acc1, and then (update,x,0), receiv-
ing acc2. Else, if e = 1 he chooses x,y uniformly from Zp \ {X0} with y 6= x, and
sends to the challenger first (update,x,1), receiving acc1, and then (update,y,1),
receiving acc2. Finally, if (acc2 = acc0∧e = 0) or (acc2 6= acc0∧e = 1), he outputs
d = 1. In all other cases he outputs d = 0.
Observe first that Adv is clearly PPT as all algorithms of the scheme are run in
polynomial time. Regarding his success probability, we argue as follows. If Adv is
playing the real game versus the challenger running the algorithms of [23], then
we identify the following two probabilities Pr[acc2 = acc0|e = 0] and Pr[acc2 =
acc0|e = 1]. The first probability is equal to 1 whereas the second one is negligibly
small; as explained above, the updates of the scheme are deterministic therefore
adding and removing the same element will result in the same accumulation value,
whereas adding two elements will always result in a different accumulation value,
unless the latter happens to be the multiplicative inverse of the former. On the other
hand, if Adv is playing the ideal game against the simulator, the latter is only given
access to the information that two updates occurred (not even the nature of the
update operations). Therefore, the simulator’s view is the same, independently of
the value of e, and Pr[acc2 = acc0|e = 0] = Pr[acc2 = acc0|e = 1] = 1/2. Let E
be the event that the Adv′ is playing the real game (and likewise for the comple-
ment Ec). From the above analysis it follows that Pr[d = 1|E] = 1−ν(λ), whereas
Pr[d = 1|Ec] = 1/2 therefore Adv distinguishes the two games with non-negligible
probability and the accumulator of [23] is not zero-knowledge.

Other privacy notions. The indistinguishability property of [23] is a strengthening of
a that of [20]. The latter was the first work to formally define a privacy property for
cryptographic accumulators, however their definition had inherent problems, e.g., it was
easy to prove that deterministic accumulators –that clearly were not private– satisfied it.
Another technique for providing privacy to cryptographic accumulators was proposed
earlier in [41], without a formalization. The idea is to simply produce a randomized
accumulation value for a set X by choosing at random an element x from the elements
universe during Setup and outputting the accumulation of set X ∪ {x}. This generic
mechanism will work for any static accumulator, but will also not protect updates.
Moreover it weakens soundness as an adversary could potentially produce a member-
ship witness for the element x 6∈ X . Out approach does not suffer from this as there is no
additional element accumulated and the randomness r used to blind the accumulation
value during Setup is explicitly given to the server without compromising soundness.
Finally, Theorem 1 implies that our construction from Section 4, is also the only known
algebraic construction of a universal indistinguishable accumulator. The two schemes

17

of [23] are a black-box reduction from the stronger primitive of zero-knowledge sets,
and a construction similar to ours that only offers membership witnesses.

4 A Zero-Knowledge Universal Accumulator Construction

In this section we present our construction for a zero-knowledge dynamic universal
accumulator. It builds upon the bilinear accumulator of Nguyen [53], adopting some of
the techniques of [23] that we further expand to achieve zero-knowledge. It supports
sets with elements from Zp \ {s} where p is prime and p ∈ O(2λ) and s is the scheme
trapdoor. Note that, the fact that the elements must be of log p bits each, is not a strong
limitation of the scheme; one can always apply a collision-resistant hash function that
maps arbitrarily long strings to Zp. We now make several observations about our ZKUA
construction in Figure 2.

The main property of our construction is that the algorithms do not reveal anything
about the set in the units sent to the client. The key vk published from the key-generating
algorithm reveals nothing about the set. The accumulation value produced by Setup is
the standard bilinear accumulation value of [53] which is now blinded by a random
value r, also revealed to the server. Witness generation also utilizes this randomness r.

For membership queries, the process is the same as in [53, 19] with one additional
exponentiation with r for privacy purposes. This technique proves that an element x∈X
iff the degree-one polynomial x+ z divides ChX [z]. The major deviation occurs in the
non-membership case. As previously discussed, there are existing works [19, 2] that en-
hance the bilinear accumulator to provide non-membership witnesses. Their technique
is a complement of the one used for the membership case. At a high level, it entails
proving that the degree-one polynomial x+ z does not divide ChX [z], by revealing the
scalar (i.e., zero-degree polynomial) remainder of their long division. Unfortunately,
using this approach here entirely breaks the zero-knowledge property: It reveals r (mul-
tiplied by an easily computable query-specific value) to any client. Instead, we adopt an
entirely different approach. Our scheme uses the set-disjointness test, first proposed in
[56]. In order to prove that x 6∈ X , the server proves the statement X ∩{x}= /0. The dif-
ferent nature of the proved statement allows us to use fresh query-specific randomness
γ together with r to prove non-membership in zero-knowledge. As a consequence, the
verification for membership and non-membership is also different, but always efficient.

Finally, the way updates are handled is especially important as it is another strong
point of divergence from previous schemes that seek to provide privacy. After each
update, a fresh randomness r′ is used to blind the new accumulation value. This re-
randomization technique perfectly hides the nature of the change in X and lets us
achieve zero-knowledge. Observe that, at all times, the owner maintains a variable N
which is the maximum set-cardinality observed up to that point (through the original
setup and subsequent insertions). If an insertion increases N (at most by one), the owner
provides the server with an additional ek component that can be used by the server for
subsequent witness generation. This is a slight deviation from our notation in Section 3
where the new key produced from Update replaces the previous ek. Instead the new
evaluation key must be set to ek∪ ek′. This has no meaningful impact to the security of
our scheme; we could always have Update output the entire old key together with the

18

Notation: The notation q[z] denotes polynomial q over undefined variable z and q(s) is the
evaluation of the polynomial at point s. All arithmetic operations are performed mod p. N
is a variable maintained by the owner.

Key Generation (sk,vk)← GenKey(1λ)

Run GenParams(1k) to receive bilinear parameters pub = (p,G,GT ,e,g). Choose s $←−
Z∗p. Return sk = s and vk = (gs, pub).

Setup (acc,ek,aux)← Setup(sk,X)

Choose r $←− Z∗p. Set value N = |X |. Return acc = gr·ChX (s), ek = (g,gs,gs2
, . . . ,gsN

)
and aux= (r,N).

Witness Generation (b,w)←Witness(acc,X ,x,ek,aux)
If x ∈ X compute w = (acc)

1
s+x = gr·ChX \{x}(s) and return (1,w).

Else, proceed as follows:
– Using the Extended Euclidean algorithm, compute polynomials q1[z],q2[z] such

that q1[z]ChX [z]+q2[z]Ch{x}[z] = 1.

– Pick a random γ
$←− Z∗p and set q′1[z] = q1[z] + γ ·Ch{x}[z] and q′2[z] = q2[z]− γ ·

ChX [z].
– Set W1 := gq′1(s)r

−1
,W2 = gq′2(s) and w := (W1,W2). Return (0,w).

Verification (accept/reject)← Verify(acc,x,b,w,vk)
If b = 1 return accept if e(acc,g) = e(w,gx · gs), reject otherwise. If b = 0 do the
following:

– Parse w as (W1,W2).
– Return accept if e(W1,acc)e(W2,gx ·gs) = e(g,g), reject otherwise.

Update (acc′,ek′,aux′)← Update(acc,X ,x,sk,aux,upd)
Parse aux as (r,N). If (upd = 1∧ x ∈ X) or (upd = 0∧ x /∈ X) output ⊥ and halt.

Choose r′ $←− Z∗p. If upd= 1:
– Compute acc′ = acc(s+x)r′ .
– If |X |+1 > N, set N = |X |+1 and compute ek′ = gsN

.

Else, compute acc′ = acc
r′

s+x and ek′ = /0. In both cases, set aux′ := (r · r′,N) and return
(acc′,ek′,aux′).

Witness Update (upd,w′)←WitUpdate(acc,acc′,x,w,y,ek′,aux,aux′,upd)
Parse aux,aux′ to get r,r′.

– If w is a membership witness:

If upd= 1 output (1,w′ = (acc ·wx−y)r′). Else, output (0,w′ = acc
′ 1
(y−x) ·w

r′
(x−y)).

– If w is a non-membership witness:
Let X ′ be the set produced after the execution of Update for element x (i.e., the

current set). Run Witness(acc′,X ′,y,ek′,aux′) and return its output.

Fig. 2: Zero-knowledge Dynamic Universal Accumulator Construction.

additional element. From an efficiency perspective though, that overly naive approach
would require Update to run in time linear to N –the same holds for WitUpdate. Re-
garding witness updates, for the (more meaningful, as discussed in Section 3) case of
membership witnesses there indeed exists a fast method. On the other hand, for non-
membership witness updates, our scheme resorts to re-computation from scratch.

19

We can now present our main result. We give the proof of security below and defer
the asymptotic analysis to the full version [30].

Theorem 2 The algorithms {KeyGen,Setup,Witness,Verify,Update,WitUpdate}
constitute a zero-knowledge dynamic universal accumulator with perfect completeness,
soundness under the q-SBDH assumption (with q = N set to the maximum set size
observed during the soundness game) and perfect zero-knowledge. Let N be the
cardinality of the set. Then, the runtime of GenKey is O(poly(λ)) where λ is the
security parameter, the complexity of Setup is O(N), that of Witness is O(N logN) for
membership witnesses and O(N log2 N log logN) for non-membership witnesses, that of
Verify is O(1), that of Update is O(1), and that of WitUpdate is O(1) for membership
witnesses and O(N log2 N log logN) for non-membership witnesses. Finally, witnesses
consist of O(1) bilinear group elements.

Proof Completeness follows by close inspection of the algorithms’ execution. We pro-
ceed to prove soundness and zero-knowledge.

Proof of Soundness. Assume there exists PPT adversary Adv that on input 1λ breaks
the soundness of our scheme with non-negligible probability. We will construct a PPT
adversary Adv′ that breaks the q-SBDH assumption for q = N, running as follows:

1. On input (pub,(gs, . . . ,gsN
)), run Adv on input (gs, pub,1λ).

2. Upon receiving set X0, choose r0
$←−Z∗p. Use r0 and (gs, . . . ,gsN

) to compute acc0 =

gr0·ChX0 (s) = g(ChX0 (s))
r0 and respond with (ek0 = (g,gs, . . . ,gs|X0 |),acc0,r0). Initiate

list L and insert triplet (acc0,X0,r0) as L [0] (i.e., the first element of the list). The
notation L [i] j denotes the first part of the i-th element of the list (e.g., L [0]0 = acc0).
Also set n = |X0|.

3. Initiate update counter i= 0. While i≤ l proceed as follows. Upon receiving update
updi,xi, check whether this is a valid update for Xi = L [i]1. If it is not, respond

with ⊥ and re-append acci = L [i]0,Xi,ri to L . Otherwise, pick r′ $←− Z∗p and set
ri+1 = ri ·r′. Update Xi according to updi,xi to get Xi+1. If |Xi+1|> n, set n = |Xi+1|
and eki+1 = gsn

. Else, eki+1 = /0. Use ri+1 and (gs, . . . ,gsN
) to compute acci+1 =

gri+1·ChXi+1 (s) = g(ChXi+1 (s))
ri+1

and respond with (eki+1,acci+1,ri+1). Append triplet
(acci+1,Xi+1,ri+1) to L . In both cases, increase i by 1.

4. Upon receiving the j-th challenge with triplet (x∗,b∗,w∗) proceed as follows:
– If b∗ = 1, then x∗ 6∈ X j yet Verify(acc j,x∗,1,vk) accepts. Compute poly-

nomial q[z] and scalar c such that ChX j [z] = (x∗ + z)q[z] + c. Output

[x∗,(e(w∗,g)r−1
j e(g,g−q(s)))c−1

].
– If b∗ = 0, then x∗ ∈ X j yet Verify(acc j,x∗,0,vk) accepts. Parse w∗ as

(W ∗1 ,W
∗
2). Compute polynomial q[z] such that ChX j [z] = (x∗+ z)q[z]. Output

[x∗,(e(W ∗1 ,g
r j ·q(s))e(W ∗2 ,g))].

First of all observe that Adv′ perfectly emulates the challenger for the DUA security
game to Adv. This holds since all accumulation values and witness are computable

20

without access to trapdoor sk in polynomial time. All the necessary polynomial arith-
metic can be also run efficiently hence Adv′ is PPT. Regarding its success probability,
we argue for the two cases separately as follows:

b∗ = 1 Since x∗ 6∈ X j, it follows that (x∗+ z) 6 |ChX j [z] which guarantees the existence
of q[z],c. Also observe that c is a scalar (zero-degree polynomial) since it is the
remainder of the polynomial division and it must have degree less than that of
(x∗+ z). Since verify accepts we can write

e(w∗,gx∗ ·gs)= e(w∗,g)(x
∗+s) = e(acc j,g)= e(gr j ·ChX j (s),g)= e(g,g)r j((x∗+s)q(s)+c)

from which it follows that:

e(w∗,g)r j
−1(x∗+s) = e(g,g)(x

∗+s)q(s)+c

e(w∗,g)r j
−1

= e(g,g)q(s)+c/(x∗+s)

e(w∗,g)r j
−1

e(g,g)−q(s) = e(g,g)c/(x∗+s)

[e(w∗,g)r j
−1

e(g,g)−q(s)]c
−1

= e(g,g)1/(x∗+s).

b∗ = 0 Since x∗ ∈ X j, it follows that (x∗+ z)|ChX j [z] which guarantees the existence of
q[z]. Since verify accepts we can write:

e(W ∗1 ,acc j)e(W ∗2 ,g
x∗ ·gs) = e(g,g)

e(W ∗1 ,g
r j ·ChX j (s))e(W ∗2 ,g

(x∗+s)) = e(g,g)

e(W ∗1 ,g
r j(x∗+s)q(s))e(W ∗2 ,g

(x∗+s)) = e(g,g)

[e(W ∗1 ,g
r j ·q(s))e(W ∗2 ,g)]

(x∗+s) = e(g,g)

[e(W ∗1 ,g
r j ·q(s))e(W ∗2 ,g)] = e(g,g)1/(x∗+s)

Observe that in both cases the left hand of the above equations is efficiently computable
with access to pub,(gs, . . . ,gsN

),r j,X j,x∗,w∗. Hence, whenever Adv′ succeeds in break-
ing the soundness of our scheme, Adv′ outputs a pair breaking the q-SBDH assumption
for q = N. By assumption the latter can happen only with negligible probability, and
our claim that our scheme has soundness follows by contradiction.

Proof of Zero-Knowledge. We define simulator Sim = (Sim1,Sim2) as follows. At all
times, we assume stateS contains all variables seen by the simulator this far.

– Sim1 runs GenParams to receive pub. He then picks s $←− Z∗p and sends g,gs, pub to

Adv. After Adv has output his set choice X , Sim1 picks r $←− Z∗p and responds with
acc= gr. Finally, he stores r and initiates empty list C .

– For i = 1, . . . , l upon input (op,xi,ci):
• If op= query, the simulator checks if xi ∈ C .

– If xi 6∈ C , then if D(query,xi,X) = 1, he computes κ = r · (xi + s)−1 and
responds with (b = 1,w = gκ). Else, if D(query,xi,X) = 0 he computes

21

q1,q2 such that q1 · r+ q2 · (xi + s) = 1, picks γ
$←− Z∗p and responds with

(b = 0,w = (W1 = gq1+γ(xi+s),W2 = gq2−γr)). In both cases, the simulator
appends (xi,b,w) to C .

– If xi ∈ C he responds with the corresponding entries b,w from C .
• If op= update then the simulator proceeds as follows. If D(update,xi,ci,X) =

0 then he responds with⊥. Else, he picks r′ $←−Z∗p and responds with acc= gr′ .
Finally he sets r← r′ and C ← /0.

The simulator Sim= (Sim1,Sim2) produces a view that is identically distributed to that
produced by the challenger during RealAdv. Observe that random values r are chosen
independently after each update (and initial setup) in both cases. Once s,r are fixed
then for any possible choice of X there exists unique r∗ ∈ Z∗p such that gr = gr∗·ChX (s).
It follows that the accumulation values in RealAdv are indistinguishable from the (truly
random) ones produced by Sim. For fixed s,r, given a set-element combination (X ,xi)
with xi ∈ X , in each game there exists a unique membership witness w that satisfies
verification. For negative witness w= (W1,W2), given a set-element combination (X ,xi)
with xi 6∈ X , for each possible independently chosen value of γ, in both games there
exists only one distinct corresponding pair W1,W2 that satisfies the verifying equation.
It follows that the distributions in Definition 4 are identical and our scheme is perfect
zero-knowledge.

Efficiency comparison with the bilinear accumulator of [53]. Here we compare the
efficiency of our accumulator with the bilinear accumulator of [53] –as extended in [2]–
which is secure under the same assumption, but does not offer privacy. In Figure 3,
we show the number of necessary cryptographic operations for the constructions. We
denote by ADD,MUL point addition and scalar multiplication in the elliptic curve group
G, by ADDT point addition in GT and by PAIR a bilinear pairing computation. We stress
that we do not measure the number of "non-cryptographic" operations, i.e., additions
and multiplications modulo p.

[53] This paper
Setup nMUL nMUL

Update 1MUL 2MUL

Witness (Member) nMUL+(n−1)ADD nMUL+(n−1)ADD
Witness (Non-Member) nMUL+(n−1)ADD (n+1)MUL+(n−1)ADD

Verify (Member) 1(MUL+ADD+PAIR) 1(MUL+ADD+PAIR)

Verify (Non-Member) 2(MUL+ADD+PAIR) 1(MUL+ADD+ADDT)+2PAIR
Witness Update (Member) 1(MUL+ADD) 2MUL+1ADD

Witness Update (Non-Member) 2MUL+1ADD (n+1)MUL+(n−1)ADD

Fig. 3: This table compares the number of cryptographic operations involved in each
operation between our construction and that of [53] as extended in [2]. ADD,MUL
denote point addition and scalar multiplication in the elliptic curve group G, ADDT
point addition in GT and PAIR a pairing computation, whereas n is the size of the set.

22

As can be seen, our construction requires the same number of cryptographic op-
erations for setup and membership witness construction and verification. For all other
algorithms, the additional number of operations is only a constant (at most one) high-
lighting that zero-knowledge is achieved in practice with only a very small overhead15.
The only notable exception is the update of non-membership witnesses in which case
our construction resorts to re-computation from scratch.

Proving (non-)membership in batch. Another important property of our construction
is that it allows the server to efficiently prove statements in batch. Consider the case
when a client wants to issue a query on every element of a set (y1, . . . ,ym). One way
to achieve this would be to provide a separate membership/non-membership witness.
This approach would yield a proof that consists of O(m) group elements. Instead, with
our construction the server can produce a single membership witness for all yi ∈ X and
a single non-membership witness for those 6∈ X . We will use this technique for our
construction in Section 5.

5 Zero-Knowledge Authenticated Set Collection (ZKASC)

Zero-knowledge accumulators, as presented so far, can be viewed as zero-knowledge
authenticated sets where authenticated zero-knowledge membership/non-membership
queries are supported on an outsourced set. In this section, we generalize the problem
of zero-knowledge authentication from a set to a collection of sets to support outsourced
set algebra operations: is-subset, intersection, union and set difference. We refer to this
primitive as zero-knowledge authenticated set collection (ZKASC) since it falls in the
general model of zero-knowledge authenticated data structures [29].

We consider a dynamic collection S of m sets X1, . . . ,Xm, with elements from X,
that is remotely stored with an untrusted server. S has two types of operations defined
on it: immutable operations Q() and mutable operations U(). Q(S,q) takes a set algebra
query q (wrt the indices of S) as input and returns an answer and a proof and it does
not alter S. U(S,u) takes as input an update request and changes S accordingly. An
update u = (x,upd, i) is either an insertion (if upd= 1) of an element x into a set Xi or
a deletion (if upd= 0) of x from Xi.

ZKASC is a tuple of six probabilistic polynomial time algorithms ZKASC =
(KeyGen,Setup,Update,UpdateServer,Query,Verify). Informally, ZKASC lets the
owner outsource S and some auxiliary information and an evaluation key ek to the
server (using KeyGen,Setup) and publish a verification key vk and public digest for
S. Then, the client can query S by sending queries to the server. For each query, the
server generates answer and prepares its proof (using Query). The owner can also up-
date his set collection and make corresponding changes to digest (using Update) and
the changes are propagated by the server to his copy of S and auxiliary information and
ek (using UpdateServer). The client verifies the query answer against proof and the

15 Note however, that computing the coefficients of the polynomials that will be encoded in the
exponents of the witnesses requires different types of polynomial arithmetic operations. In our
construction the server runs an Extended Euclidean algorithm on input two polynomials of
degree n and 1 respectively whereas in [2] he runs a polynomial division on the same inputs.

23

digest corresponding to the latest update using vk (in Verify). The security properties of
ZKASC are: completeness, soundness and zero-knowledge. They are similar to those of
ZKUA as described in Section 3, since both follow definition of ZKADS [29].

In the rest of the section we informally introduce our efficient construction of
ZKASC, present the main theorem and compare the asymptotic complexity of the al-
gorithms of our ZKASC scheme with that of [56] in Figure 4. Our construction makes
use of zero-knowledge dynamic universal accumulator introduced in Section 3 and ac-
cumulation tree described in Section 2. For the detailed algorithms and their security
analysis we refer the reader to the full version.

5.1 Setup and Update Algorithms

The construction uses pub = (p,G,GT ,e,g) as in Section 4. The owner runs Setup
algorithm with the secret key s, the verification key (gs, pub) (after generating them
using KeyGen) and the set collection S as input and generates a short public digest
for the client, the evaluation key ek and some authentication information of S for the
server. The algorithm computes acc(Xi) (zero-knowledge accumulation using Setup
algorithm of Section 4) for each set Xi ∈ S. It then builds an accumulation tree on
acc(X1) . . .acc(Xm) and publishes the root of this tree as the public digest of S. It sets
the evaluation key to (g,gs, . . . ,gsN

) where N = ∑i∈[1,m] |Xi|. The auxiliary information
for the server contains the randomness used for computing each acc(Xi).

Update algorithm takes as input an update string u and updates the corresponding
set in the set collection (using the Update algorithm in Section 4) and accordingly
updates the authentication path in the accumulation tree and the auxiliary information,
(possibly) the evaluation key and the public digest. As described so far, the update does
not guarantee zero-knowledge. If a client queries wrt some set j 6= i before and after
u was performed, and sees that acc(X j) has not changed, then he learns that X j is not
affected by the update. This will also imply that the proofs that the client holds wrt X j
between updates are still valid. To achieve zero-knowledge, we require Update to re-
randomize all the accumulation values that the client has seen (due to queries) since the
last update. The update involves changes to authentication information stored with the
server. To this end, the server runs UpdateServer algorithm to propagate owner’s update
on the set collection and authentication information. This algorithm updates the relevant
set and updates all the authentication paths in the accumulation tree corresponding to
the sets whose accumulation value has been changed or refreshed by the owner.

5.2 Set Algebra Query and Verify Algorithms

Query and Verify algorithms let the server construct a proof of a response to a set
operation query and the client verify it, respectively. Since ZKASC supports several set
operations, we describe each algorithm in terms of modular subroutines.
Is-subset query: A subset query q = (∆, i) is parametrized by a set of elements ∆ and
an index i of a set collection. Given q, the subset query returns answer = 1 if ∆ ⊆ Xi
and answer = 0 if ∆ * Xi. This query is an efficient generalization of Witness (Sec-
tion 4) where membership/non-membership query is supported for a batch of elements

24

instead of a single element. The proof technique is similar to the membership and non-
membership proof generation for a single element using Witness algorithm.
Set intersection query: Set intersection query q = (i1, . . . , ik) is parameterized by a set
of indices of the set collection. The answer to an intersection query is a set of elements
which we denote as answer and a simulatable proof of the correctness of the answer. If
the intersection is computed correctly then answer = Xi1 ∩Xi2 ∩ . . .∩Xik . We express
the correctness of intersection with the two following conditions as in [56]:

Subset condition: answer ⊆ Xi1 ∧ . . .∧ answer ⊆ Xik . This condition ensures that the
returned answer is a subset of all the queried set indices, i.e., every element of
answer belongs to each set in the query.

Completeness condition: (Xi1 − answer)∩ . . .∩ (Xik − answer) = /0. This ensures that
answer indeed contains all the common elements of Xi1 , . . . ,Xik , i.e., none of the
elements have been omitted from answer.

To prove the first condition, we will use subset query as a subroutine. Proving the second
condition is more tricky; it relies on the fact that the characteristic polynomials for the
sets X j− answer, for all j ∈ [i1, ik], do not have common factors. In other words, these
polynomials should be co-prime and their GCD should be 1 (Lemma 1). Since the proof
units should be simulatable, we cannot directly use the technique as in [56]. To this end,
we randomize the proof units by generalizing the randomization technique in Section 4
used to prove non-membership in a single set. The technique essentially adds noise in
the exponent for each unit of the intersection proof such that they cancel out when used
by the client in the bilinear map equality check.
Set union query: Set union query q = (i1, . . . ik) is parameterized by a set of indices of
the set collection. The answer to a union query contains a set of elements, denoted as
answer = Xi1 ∪Xi2 ∪ . . .∪Xik , and a simulatable proof of the correctness of the answer.
We introduce a technique for checking correctness of union operation based on the
following conditions:

Superset condition: Xi1 ⊆ answer∧Xi2 ⊆ answer∧ . . .∧Xik ⊆ answer. This condition
ensures that no element has been excluded from the returned answer.

Membership condition: answer⊆ Ũ where Ũ =Xi1]Xi2] . . .]Xik .] denotes multiset
union of the sets, i.e.,] preserves the multiplicity of every element in the union.
This condition ensures that every element of answer belongs to at least one of the
sets Xi1 , . . . ,Xik . We note that the trivial way (used in [56]) of proving this condition
is to prove that each element of answer is a member of X j for j ∈ [i1, ik]. This
technique obviously does not support zero knowledge as it reveals which set the
element comes from.

The first condition can be checked by using the subset proof as a subroutine.16 The
second condition should be proved carefully and not reveal (1) whether an element be-
longs to more than one of the sets in the query, and (2) which set an element in the
union comes from. For example, returning Ũ in the clear trivially reveals the multiplic-
ity of every element in answer. Instead, we request the server to return acc(Ũ) which
equals gChŨ (s) blinded with randomness in the exponent. In order to prove that the server
computed acc(Ũ) correctly, we introduce a union tree.

16 We note that even the security proof does not assume the security proof for subset in a blackbox
fashion since here it is the superset rather than the subset that is the known answer.

25

A union tree (UT) is a binary tree computed as follows. Corresponding to the k
queried indices, acc(Xi1), . . . ,acc(Xik) are the leaves of UT. The leaves are computed
bottom up. Every internal node v is computed as follows. Let v1 and v2 be its two
children. The (multi)set associated with v is the multiset M = M1]M2 where M1 and
M2 are (multi)sets for v1 and v2 respectively. Let r1 and r2 be the blinding factors used
in computing the accumulation values of v1 and v2, respectively. Then the node v stores
value a(v) = gr1r2ChM(s). Finally, the server constructs a proof of subset for answer in
Ũ .

The client can verify the correctness of each node of UT bottom up using a bilinear
map as follows: e(a(v),g) ?

= e(a(v1),a(v2)), where g is a part of the verification key.
The membership proof verification of X j ⊆ answer, ∀ j ∈ [i1, ik], and answer⊆ Ũ is done
using subset verification subroutine.
Set difference query: Set difference query q is parameterized by two set indices of the
set collection q = (i1, i2). The answer to a set difference query is answer= Xi1−Xi2 and
a proof of correctness of the answer. We express the correctness of the answer using the
following statement: (answer= Xi1−Xi2) ⇐⇒ Xi1 \answer = Xi1 ∩Xi2 . It ensures two
conditions: (1) all the elements of answer indeed belong to Xi1 and (2) all the elements
of Xi1 that are not in Xi2 are contained in answer. In other words, the union of answer
and the intersection I = Xi1 ∩Xi2 equals Xi1 .

The second condition is tricky to prove for the following reasons. The server can
reveal neither Xi1−answer nor Xi1 ∩Xi2 to the client, since this reveals more than the set
difference answer the client requested for (hence, breaking our zero-knowledge prop-
erty).17 Hence, we are required to provide blinded accumulators corresponding to these
sets. Unfortunately, the blinded version of Xi1 \ answer = Xi1 ∩Xi2 , even if the server
computed them correctly, would be different. This is caused by different blinding factors
used for these accumulators, even though the exponent that corresponds to the elements
of the sets is the same. We use the latter fact and require the server to prove that the
non-blinded exponents are the same. For this we use standard Schnorr proofs that can
be made NIZKPoK in the Common Reference String model using standard techniques
[28, 46, 22]. We describe the properties of a particular NIZKPoK protocol for discrete
log in the full version [30]. We can now state the following result. The security proof
and an efficiency analysis can be found in [30] .

Theorem 3 The scheme ZKASC = (KeyGen,Setup,Update,UpdateServer,Query,
Verify) has perfect completeness, soundness under the q-SBDH assumption (with q set
to the sum of maximum set sizes produced during the soundness game) and perfect zero-
knowledge. Let S = {X1, . . . ,Xm} be the original set collection. Define M = ∑i∈m |Xi|,
n j = |X j|, and N = ∑ j∈[i1,ik] n j. Let k be the number of group elements in the query
input (for the subset query, it is the cardinality of a queried subset, and for the rest of
the queries it is the number of set indices). Let ρ be the size of a query answer, L be the
number of sets touched by the queries between updates ut−1 and ut , and 0 < ε < 1 be a
constant chosen at the time of setup. We have:

– KeyGen has complexity O(1);
– Setup has complexity O(M+m);

17 We note that the sets are revealed to the client in [56] where privacy is not a concern.

26

– Update and UpdateServer have complexity O(L);
– Query and Verify have the following complexity:
• For is-subset, the complexity is O(N log2 N log logN+mε logm). The proof size

is O(k) and the verification has complexity O(k). 18

• For set intersection, the complexity is O(N log2 N log logN + kmε logm). The
proof size is O(ρ+ k) and the verification has complexity O(ρ+ k).

• For set union, the complexity is O(kρ logρ + N logN logk + kmε logm). The
proof size is O(ρ+ k) and the verification has complexity O(ρ+ k).

• For set difference, the complexity is O(N log2 N log logN+mε logm). The proof
size is O(ρ) and the verification has complexity O(ρ).

5.3 Efficiency Comparison with the Scheme of [56]

We compare the asymptotic complexity of the algorithms of our ZKASC scheme with
that of [56] in Figure 4, which provides only authenticity and trivially reveals informa-
tion about the set collection. We show that only update algorithms are more expensive
compared to that of [56]. The extra cost is to achieve zero-knowledge, which requires
all the proofs be ephemeral, i.e., proofs should not hold good between updates. We defer
a more detailed comparison to the full version.

[56] \ This paper
Setup M+m

Update Owner 1 \ L
Server 1 \ L

Subset Query N log2 N log logN +mε logm
Verify/Proof size k

Instersection Query N log2 N log logN + kmε logm
Verify/Proof size ρ+ k

Union Query kN logN + kmε logm
Verify/Proof size ρ+ k

Difference Query N log2 N log logN +mε logm
Verify/Proof size ρ

Fig. 4: This table compares the asymptotic complexity of each operation with that of
[56]. When only one value appears in the last column, it applies to both constructions.
We note that the complexity of Union Query was originally mistakenly reported as
O(N logN) in [56]. Notation: m = |S|, M = ∑i∈m |Xi|, n j = |X j|, N = ∑ j∈[i1,ik] n j, k is
the number of group elements in the query input (for the subset query it is the size of a
queried subset ∆ and for the rest of the queries it is the number of set indices), ρ is the
size of the answer, L is the number of sets touched by queries between updates ut−1 and
ut , and 0 < ε < 1 is a constant chosen during setup.

18 Note that if the subset query is of the form: is set at index i a subset of the set at index j, then
the proof complexity can be made constant.

27

6 Conclusion

In this work, we introduced the property of zero-knowledge for cryptographic accumu-
lators. This is a strong privacy property, requiring that witnesses and accumulation val-
ues leak nothing about the accumulated set at any given point in the protocol execution,
even after insertions and deletions. We showed that zero-knowledge accumulators are
located between zero-knowledge sets and the recently introduced notion of primary-
secondary-resolver membership proof systems, as the they can be constructed (in a
black-box manner) from the former and they can be used to construct (in a black-box
manner) the latter. We also presented a construction of an accumulator that achieves
computational soundness and perfect zero-knowledge. Using this construction as a
building block, we have designed a zero-knowledge authenticated set collection scheme
that handles set-related queries that go beyond set (non-)membership. In particular, our
scheme supports set unions, intersections, and differences, thus offering a complete set
algebra. Future directions in the area include developing constructions that support effi-
cient witness update, constructions based on constant-size assumptions (such as RSA)
and constructing an efficient non-interactive set-difference protocol that does not rely
on NIZKPoK’s. Another interesting future direction is to equip zero-knowledge accu-
mulators with zero-knowledge proofs of knowledge for membership/non-membership.

Acknowledgments

We thank the reviewers for their insightful comments and suggestions. We also thank
Markulf Kohlweiss, Leonid Reyzin and Asaf Ziv for helpful discussions. This research
was supported in part by the U.S. National Science Foundation under CNS grants
1012798, 1012910, 1228485 and 1645661.

References

1. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably secure
coalition-resistant group signature scheme. In CRYPTO, 2000.

2. M. H. Au, P. P. Tsang, W. Susilo, and Y. Mu. Dynamic universal accumulators for DDH
groups and their application to attribute-based anonymous credential systems. In CT-RSA,
2009.

3. N. Baric and B. Pfitzmann. Collision-free accumulators and fail-stop signature schemes
without trees. In EUROCRYPT, 1997.

4. J. Benaloh and M. de Mare. One-way accumulators: A decentralized alternative to digital
signatures. In EUROCRYPT, 1994.

5. M. Blanton and E. Aguiar. Private and oblivious set and multiset operations. In ASIACCS,
2012.

6. D. Boneh and X. Boyen. Short signatures without random oracles. In EUROCRYPT, 2004.
7. A. Buldas, P. Laud, and H. Lipmaa. Accountable certificate management using undeniable

attestations. In CCS, 2000.
8. P. Camacho and A. Hevia. On the impossibility of batch update for cryptographic accumu-

lators. In LATINCRYPT. 2010.
9. P. Camacho, A. Hevia, M. Kiwi, and R. Opazo. Strong accumulators from collision-resistant

hashing. In Information Security. 2008.

28

10. J. Camenisch, M. Kohlweiss, and C. Soriente. An accumulator based on bilinear maps and
efficient revocation for anonymous credentials. In Public Key Cryptography, 2009.

11. J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to efficient revo-
cation of anonymous credentials. In CRYPTO, 2002.

12. R. Canetti, O. Paneth, D. Papadopoulos, and N. Triandopoulos. Verifiable set operations over
outsourced databases. In PKC, 2014.

13. D. Catalano and D. Fiore. Vector commitments and their applications. In PKC, 2013.
14. D. Catalano, D. Fiore, and M. Messina. Zero-knowledge sets with short proofs. In EURO-

CRYPT, 2008.
15. M. Chase, A. Healy, A. Lysyanskaya, T. Malkin, and L. Reyzin. Mercurial commitments

with applications to zero-knowledge sets. In EUROCRYPT, 2005.
16. S. Chatterjee and A. Menezes. On cryptographic protocols employing asymmetric pairings

- the role of ψ revisited. Discrete Applied Mathematics, 2011.
17. E. D. Cristofaro and G. Tsudik. Practical private set intersection protocols with linear com-

plexity. In FC, 2010.
18. D. Dachman-Soled, T. Malkin, M. Raykova, and M. Yung. Efficient robust private set inter-

section. In ACNS, 2009.
19. I. Damgård and N. Triandopoulos. Supporting non-membership proofs with bilinear-map

accumulators. Cryptology ePrint Archive, Report 2008/538, 2008.
20. H. de Meer, M. Liedel, H. C. Pöhls, and J. Posegga. Indistinguishability of one-way accu-

mulators. In Technical Report MIP-1210, Faculty of Computer Science and Mathematics
(FIM), University of Passau, 2012.

21. H. de Meer, H. C. Pöhls, J. Posegga, and K. Samelin. Redactable signature schemes for trees
with signer-controlled non-leaf-redactions. In E-Business and Telecommunications, 2014.

22. A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust non-
interactive zero knowledge. In CRYPTO. 2001.

23. D. Derler, C. Hanser, and D. Slamanig. Revisiting cryptographic accumulators, additional
properties and relations to other primitives. In CT-RSA, 2015.

24. C. Dong, L. Chen, and Z. Wen. When private set intersection meets big data: an efficient and
scalable protocol. In ACM CCS, 2013.

25. P. Fauzi, H. Lipmaa, and B. Zhang. Efficient non-interactive zero knowledge arguments for
set operations. In FC, 2014.

26. N. Fazio and A. Nicolosi. Cryptographic accumulators: Definitions, constructions and appli-
cations. In Technical Report. Courant Institute of Mathematical Sciences, New York Univer-
sity, 2002.

27. M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set intersection.
In EUROCRYPT, 2004.

28. J. A. Garay, P. MacKenzie, and K. Yang. Strengthening zero-knowledge protocols using
signatures. In EUROCRYPT, 2003.

29. E. Ghosh, M. T. Goodrich, O. Ohrimenko, and R. Tamassia. Verifiable zero-knowledge order
queries and updates for fully dynamic lists and trees. In SCN, 2016.

30. E. Ghosh, O. Ohrimenko, D. Papadopoulos, R. Tamassia, and N. Triandopoulos. Zero-
knowledge accumulators and set operations. ePrint, 2015/404, 2015.

31. E. Ghosh, O. Ohrimenko, and R. Tamassia. Efficient verifiable range and closest point
queries in zero-knowledge. Privacy Enhancing Technologies Symposium (PETs), 2016(4).

32. E. Ghosh, O. Ohrimenko, and R. Tamassia. Zero-knowledge authenticated order queries and
order statistics on a list. In ACNS, 2015.

33. S. Goldberg, M. Naor, D. Papadopoulos, L. Reyzin, S. Vasant, and A. Ziv. NSEC5: Provably
preventing DNSSEC zone enumeration. Cryptology ePrint Archive, Report 2014/582, 2014.

34. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof-
systems (extended abstract). In STOC, 1985.

29

35. C. Hanser and D. Slamanig. Structure-preserving signatures on equivalence classes and their
application to anonymous credentials. In ASIACRYPT, 2014.

36. C. Hazay and K. Nissim. Efficient set operations in the presence of malicious adversaries. J.
Cryptology, 25(3), 2012.

37. Y. Huang, D. Evans, and J. Katz. Private set intersection: Are garbled circuits better than
custom protocols? In NDSS, 2012.

38. S. Jarecki and X. Liu. Efficient oblivious pseudorandom function with applications to adap-
tive OT and secure computation of set intersection. In TCC, 2009.

39. L. Kissner and D. X. Song. Privacy-preserving set operations. In CRYPTO, 2005.
40. A. E. Kosba, D. Papadopoulos, C. Papamanthou, M. F. Sayed, E. Shi, and N. Triandopoulos.

TRUESET: faster verifiable set computations. In USENIX, 2014.
41. J. Li, N. Li, and R. Xue. Universal accumulators with efficient nonmembership proofs. In

ACNS, 2007.
42. B. Libert, S. C. Ramanna, and M. Yung. Functional commitment schemes: From polynomial

commitments to pairing-based accumulators from simple assumptions. In ICALP, 2016.
43. B. Libert and M. Yung. Concise mercurial vector commitments and independent zero-

knowledge sets with short proofs. In TCC, 2010.
44. H. Lipmaa. Secure accumulators from euclidean rings without trusted setup. In ACNS, 2012.
45. M. Liskov. Updatable zero-knowledge databases. In ASIACRYPT, 2005.
46. P. MacKenzie and K. Yang. On simulation-sound trapdoor commitments. In EUROCRYPT.

2004.
47. R. C. Merkle. Protocols for public key cryptosystems. In IEEE Symposium on Security and

Privacy, 1980.
48. S. Micali, M. O. Rabin, and J. Kilian. Zero-knowledge sets. In FOCS, 2003.
49. I. Miers, C. Garman, M. Green, and A. D. Rubin. Zerocoin: Anonymous distributed e-cash

from bitcoin. In IEEE Symposium on Security and Privacy, 2013.
50. R. Morselli, S. Bhattacharjee, J. Katz, and P. J. Keleher. Trust-preserving set operations. In

IEEE INFOCOM, 2004.
51. M. Naor and K. Nissim. Certificate revocation and certificate update. IEEE Journal on

Selected Areas in Communications, 18(4), 2000.
52. M. Naor and A. Ziv. Primary-secondary-resolver membership proof systems. In TCC. 2015.
53. L. Nguyen. Accumulators from bilinear pairings and applications. In CT-RSA, 2005.
54. K. Nyberg. Commutativity in cryptography. In 1st International Trier Conference in Func-

tional Analysis, 1996.
55. K. Nyberg. Fast accumulated hashing. In Fast Software Encryption, 1996.
56. C. Papamanthou, R. Tamassia, and N. Triandopoulos. Optimal verification of operations on

dynamic sets. In CRYPTO, 2011.
57. C. Papamanthou, R. Tamassia, and N. Triandopoulos. Authenticated hash tables based on

cryptographic accumulators. Algorithmica, 2015.
58. M. Prabhakaran and R. Xue. Statistically hiding sets. In CT-RSA, 2009.
59. F. Preparata, D. Sarwate, and I. U. A. U.-C. C. S. LAB. Computational Complexity of Fourier

Transforms Over Finite Fields. DTIC, 1976.
60. L. Reyzin and S. Yakoubov. Efficient asynchronous accumulators for distributed PKI. In

SCN, 2016.
61. K. Samelin, H. C. Poehls, A. Bilzhause, J. Posegga, and H. De Meer. Redactable signatures

for independent removal of structure and content. In ISPEC, 2012.
62. T. Sander. Efficient accumulators without trapdoor. In ICICS, 1999.
63. R. Tamassia. Authenticated data structures. In ESA, 2003.
64. Q. Zheng and S. Xu. Verifiable delegated set intersection operations on outsourced encrypted

data. IACR Cryptology ePrint Archive, 2014.

30

