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Abstract. In the realm of public-key encryption, the confidentiality no-
tion of security against selective opening (SO) attacks considers adver-
saries that obtain challenge ciphertexts and are allowed to adaptively
open them, meaning have the corresponding message and randomness
revealed. SO security is stronger than IND-CCA and often required when
formally arguing towards the security of multi-user applications. While
different ways of achieving SO secure schemes are known, as they gen-
erally employ expensive asymmetric building blocks like lossy trapdoor
functions or lossy encryption, such constructions are routinely left aside
by practitioners and standardization bodies. So far, formal arguments
towards the SO security of schemes used in practice (e.g., for email en-
cryption) are not known.
In this work we shift the focus from the asymmetric to the symmetric
building blocks of PKE and prove the following statement: If a PKE
scheme is composed of a key encapsulation mechanism (KEM) and a
blockcipher-based data encapsulation mechanism (DEM), and the DEM
has specific combinatorial properties, then the PKE scheme offers SO
security in the ideal cipher model. Fortunately, as we show, the required
properties hold for popular modes of operation like CTR, CBC and CCM.
This paper not only establishes the corresponding theoretical framework
of analysis, but also contributes very concretely to practical cryptography
by concluding that selective opening security is given for many real-world
schemes.

1 Introduction

Public key encryption in the multi-user setting. The most important security
notion for public key encryption is indistinguishability under chosen ciphertext
attacks (IND-CCA). The modeled setting is as follows: One user generates a key
pair, a second users encrypts one out of two messages to her, and the adversary
shall find out which one it was. Here, importantly, the adversary controls the
distribution of the two messages and may request decryptions of ciphertexts of
its choice.

The definition of selective opening (SO) security is more general as it takes
into account the fact that the public key setting allows for more than two parties.
Concretely, in the SO setting one user generates a key pair, many users encrypt
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messages to her key (of course using fresh and independent random coins), and
the adversary’s goal is to derive any information about any of the messages.
Again the adversary controls the message distribution (individually for each
participant, but also joint distributions are possible) and may have arbitrary
ciphertexts decrypted. On top of that the adversary is allowed to ‘open’ any
subset of ciphertexts, i.e., to corrupt the encrypters, for instance by breaking into
their computers, and thereby reveal the messages they encrypted and the random
coins they used. (In some applications, like in secure multi-party computation,
users even deliberately reveal their messages and randomness to make their
computations publicly verifiable.) Selective opening security is provided if in
this situation the confidentiality of the remaining ‘unopened’ ciphertexts is still
provided. Intuitively, as all the encryptions occur independently of each other,
IND-CCA should imply SO security. Unfortunately, formal analysis reveals that
this is not the case.

Notions of Selective Opening security. Formalising suitable notions of SO secu-
rity has proven to be highly non-trivial. Since encrypted messages may depend
on each other, opening some ciphertexts might readily leak information on mes-
sages encrypted in other (unopened) ciphertexts. Thus, it is not even clear what
it means for unopened messages to remain confidential. Two flavours of SO secu-
rity have been studied in prior work: notions based on indistinguishability (IND)
and notions based on simulatability (SIM). For IND based notions an adversary
may open arbitrary ciphertexts and is challenged to tell apart the originally
encrypted messages from fresh messages that occur as likely as the original mes-
sages. One usually restricts the distribution on the messages to be efficiently
conditionally resamplable to ensure an efficient security game (weak-IND-SO).
We obtain the security experiment for full-IND-SO if arbitrary distributions may
occur in the experiment.

In contrast, SIM based notions (capturing semantic security in the SO set-
ting) do not suffer from such a restriction. In a nutshell, a scheme is SIM-SO
secure if for every SO adversary there exists a simulator that can compute the
same output without seeing any ciphertexts. Importantly, such simulators may
corrupt senders to learn the messages they (virtually) encrypted.

Both flavours may be considered for passive (CPA) and active (CCA) adver-
saries whereby, in contrast to the CPA setting, a CCA adversary has access to a
decryption oracle (with the usual restrictions). While any of IND-SO-CPA/CCA
and SIM-SO-CPA/CCA implies standard IND-CPA/CCA security, the converse
does not hold in general. Only partial results are known for the reverse direction,
as discussed below. We give more details on the relations amongst the notions
of selective opening security at the end of Section 2.

Motivation and contribution. Considering that users in practice may be ex-
posed to the threats modeled in the SO context, and given that the classical
indistinguishability notions are formally weaker than notions of SO security, the
following question is immediate: Are users ‘safe’ if they trust in a PKE scheme
designed towards the goal of ‘only’ indistinguishability? At least in theory, if the
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security proof of the scheme considers exclusively indistinguishability, informa-
tion about encrypted messages is potentially exposed to the adversary in SO-like
attack scenarios. This observation calls for a thorough SO analysis of all encryp-
tion schemes covered by international standards. The facts that all PKE schemes
that so far were formally confirmed to be SO secure require heavy building blocks
like lossy trapdoor functions (except for one work discussed in Previous work)
and that practitioners systematically avoid such building blocks for reasons of
efficiency suggest that likely most practical schemes would not withstand SO
attacks. Fortunately, however, in this paper we show that virtually all practical
PKE constructions provably do meet SO security.

Our approach is complementary to that of prior works: Instead of analysing
the asymmetric building blocks of constructions, we observe that SO security is
tightly linked to the security of the symmetric building blocks (i.e., symmetric
encryption). We particularly show that in the KEM/DEM paradigm for hybrid
encryption certain properties of blockcipher-based DEMs suffice to render the
overall PKE scheme SO secure (in the ideal cipher model for the blockcipher)
independently of the properties of the KEM.

In a nutshell, our result is: We introduce a specific property called simu-
latability for blockcipher-based DEMs that is met by virtually all DEMs used
in practice and guarantees that if a corresponding DEM is combined with any
IND-CCA secure KEM then the overall hybrid PKE scheme achieves SIM-SO-
CCA security (in the ideal cipher model). Intuitively, simulatable DEMs can be
thought of as some form of non-committing encryption in the realm of symmet-
ric cryptography, while non-committing encryption is usually considered in the
public-key setting.

Previous work. The SO problem dates back to [12] where the selective decommit-
ment problem was studied for commitment schemes. SO notions for encryption
first appeared in [3,6]. The first IND-SO-CPA secure encryption scheme in the
standard model was given in [3] and is based on lossy encryption (cf. [29]).

Also deniable encryption [7] and techniques from non-committing encryp-
tion [8,21] already allow for constructing SO secure PKE ([11]). Lots of sep-
aration and implication results for SO and standard notions were studied in
[5,2,6,26]. While it was known that IND-CPA implies weak-IND-SO-CPA when
messages are drawn pair-wise independently (cf. [12,5]), the implication does
not hold for arbitrary (efficiently conditionally resamplable) distributions as re-
cently reported [25]. The result makes use of heavy machinery as public-coin
differing-inputs obfuscation and correlation intractable hash functions. However,
IND-CPA implies weak-IND-SO-CPA for low-dependency distributions such as
Markov chains [19]. Further, SIM-SO secure constructions in the standard model
usually (cf. [28]) suffer in efficiency from bit-wise encryption to ensure efficient
openability. See [24] for current research. SIM-SO-CCA secure PKE schemes are
constructed in [18] employing extended HPSs and cross-authentication codes.
This line of research continued in [28] identifying special properties of a KEM,
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allowing to construct SIM-SO-CCA secure PKE, when combined with strength-
ened cross-authentication codes.

Note that we only consider SO security under sender corruption. Only re-
cently, security under receiver corruption gained some attention [20] while al-
ready defined in [1].

Work analysing the SO security of standardised widely-used encryption
schemes appeared only recently (in the random oracle model). Concretely, Heuer
et al. [22] consider Hashed ElGamal encryption (standardised under the name of
DHIES) and RSA-OAEP. Unfortunately, the considered versions of these PKE
schemes assume messages that are not longer than the output lengths of the used
random oracle, i.e., less than 128 bytes. This severely limits the results of [22]
for practical considerations.

Paper organization. In Section 2 we recall some important cryptographic no-
tions, including the definition of SO security that we use in this paper. We then,
in Section 3, identify certain combinatorial properties of DEMs that suffice to
achieve SO security of hybrid PKE; more precisely, we expose the central claim
of this paper which states that any DEM that has these properties in combina-
tion with any KEM results, in the ideal cipher model, in a SIM-SO-CCA secure
PKE scheme. In Section 3 we also sketch the arguments required for proving
this claim. We continue in Section 4 with checking whether widely-used DEMs
(in particular the NIST standardised: CTR, CBC, CCM) have these properties,
and come to the conclusion that they do. We work out the full details of our
main claim and its proof in Section 5. We conclude in Section 6.

In the full version of this paper [23] we further show that also the (NIST
standardised) GCM mode of operation possesses the combinatorial properties
identified in Section 3.

2 Preliminaries

For n ∈ N let [n] := {1, . . . , n}. We distinguish the following operators for
assigning values to variables: We use symbol ‘←’ when the assigned value results
from a constant expression (including the output of a deterministic algorithm),
we write ‘←U ’ when the value is sampled uniformly at random from a finite
set, and we write ‘←$’ when the assigned value is the output of a randomised
algorithm. If f is a function or a deterministic algorithm that maps elements from
a set A to a set B we use notations f : A→ B and A→ f → B interchangeably.
If f is a randomised algorithm we correspondingly write A → f →$ B, or
simply f →$ B in case the algorithm takes no input. If A × B → f → C is
a function then for any a ∈ A we write fa = f(a; ·) for the partially applied
function B → fa → C; b 7→ f(a, b). If R denotes the randomness space of a
(randomised) algorithm A → f →$ B, we may write A × R → f → B for its
deterministic version. If A → f → B is a function or a deterministic algorithm
we let [f ] := f(A) ⊆ B denote the image of A under f ; if A → f →$ B has
randomness space R we correspondingly let [f ] := f(A×R) ⊆ B denote the set
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of all its possible outputs. When the union A ∪ B of two sets A,B is a disjoint
union, i.e., if A∩B = ∅, we annotate this with A∪· B. For a bitstring x of length
at least l we write msbl(x) for its left-most l bits and lsbl(x) for its right-most
l bits (‘most/least significant bits’).

Our security definitions are based on games played between a challenger and
an adversary. These games are expressed using program code and terminate
when a ‘Stop’ command is executed; the argument of the latter is the output of
the game. We write Pr[G ⇒ 1] for the probability that game G terminates by
running into a ‘Stop with 1’ instruction.

We next define partial permutations and blockciphers. In our proofs, the
former play an important role for the abstraction of the latter.

Definition 1 (Permutation, partial permutation, blockcipher). For a fi-
nite domain D we denote the set of all permutations on D with P(D) and the set
of all partial permutations on D with PP(D). Precisely, a relation R ⊆ D × D
is a

::::::
partial

:::::::::::
permutation if αRβ, α′Rβ ⇒ α = α′ and αRβ, αRβ′ ⇒ β = β′;

relation R is a
::::::::::
permutation if in addition |R| = |D| holds. A

::::::::::
blockcipher with

key space K and domain D is a family (Ek)k∈K of permutations Ek ∈ P(D).

We associate with a partial permutation R ∈ PP(D) the partial functions
D → R+ → D and D → R− → D that evaluate R left-to-right and right-to-left,
respectively. For instance, if (α, β) ∈ R then R+(α) = β and R−(β) = α. We
write Dom(R) and Rng(R) for the domain and range of R+, i.e., for the sets
{α ∈ D | ∃β : (α, β) ∈ R} and {β ∈ D | ∃α : (α, β) ∈ R}, respectively. If
α /∈ Dom(R) and β /∈ Rng(R) we denote with R ← R ∪ {(α, β)} the operation
of ‘programming’ R such that R+(α) = β and R−(β) = α for the updated R,
which is again a partial permutation. Note that any partial permutation can
be completed to a (full) permutation by adding sufficiently many such pairs
(α, β) to it. More importantly, if a partial permutation is selected according to
the uniform distribution over some subset of PP(D), it can be extended to a
permutation uniformly distributed in P(D) by adding random such pairs (α, β)
to it.

Our definition of keyed hash functions subsumes both message authentication
codes and universal hash functions.

Definition 2 (Keyed hash function). A
:::::
keyed

:::::
hash

::::::::
function for a message

spaceM consists of a key space K, a tag space T , and an efficient function khf
of the form K ×M→ khf → T .

We proceed with specifying the syntax and functionality of DEMs. As a
corresponding notion of authenticity we define integrity of ciphertexts [4]. In a
nutshell, a DEM offers this feature if no adversary with access to an encapsu-
lation oracle can find a fresh ciphertext that corresponds to a valid message,
i.e., is not rejected by the decapsulation algorithm. Relevant in our work is in
particular the corresponding one-time notion where the adversary can pose at
most one encapsulation query.
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Definition 3 (DEM). A
:::
data

:::::::::::::
encapsulation

::::::::::
mechanism (DEM) for a message

space M consists of a finite key space K, a ciphertext space C, and a pair of
efficient algorithms DEM = (D.Enc,D.Dec) of the form

K ×M→ D.Enc→ C K × C → D.Dec→M∪· {⊥} ,

where symbol ‘⊥’ may be used to indicate errors. Correctness requires that for
all k ∈ K and m ∈M, if D.Enc(k,m) = c then D.Dec(k, c) = m.

Definition 4 (INT-CTXT secure DEM). A data encapsulation mechanism
is (τ, qd, ε)-OT-INT-CTXT secure if all τ -time adversaries A that interact in
the OT-INT-CTXT experiment from Figure 1 and issue at most qd queries to the
D.Dec oracle have an advantage of at most ε, where we define

AdvOT-INT-CTXT
A := Pr[OT-INT-CTXT⇒ 1] .

This definition can be generalised to (τ, qe, qd, ε)-INT-CTXT security by remov-
ing line 04 from the experiment and bounding the number of queries to the D.Enc
oracle by qe.

Game OT-INT-CTXT
00 C ← ∅
01 k ←U K
02 AD.Enc,D.Dec

03 Stop with 0

Oracle D.Enc(m)
04 If |C| > 0: Abort
05 c← D.Enc(k,m)
06 C ← C ∪ {c}
07 Return c

Oracle D.Dec(c)
08 If c ∈ C: Abort
09 m← D.Dec(k, c)
10 If m 6= ⊥:
11 Stop with 1
12 Return ⊥

Fig. 1. Security game for defining OT-INT-CTXT security of DEMs. We write ‘Abort’
as an abbreviation for ‘Stop with 0’. Observe that line 04 ensures that the D.Enc oracle
is queried at most once.

In most applications a DEM is combined with a KEM to obtain (hybrid)
PKE [10]. We recall the concepts of KEMs and PKE below, and include an
indistinguishability definition for KEMs.

Definition 5 (KEM). A
::
key

:::::::::::::
encapsulation

::::::::::
mechanism (KEM) for a finite key

space K consists of a public-key space PK, a secret-key space SK, a ciphertext
space C, and a triple of efficient algorithms KEM = (K.Gen,K.Enc,K.Dec) of the
form

K.Gen→$ PK×SK PK → K.Enc→$ K×C SK×C → K.Dec→ K∪· {⊥} ,

where symbol ‘⊥’ may be used to indicate errors. The randomness space of K.Enc
is typically denoted with R. Correctness requires that for all (pk, sk) ∈ [K.Gen],
if (k, c) ∈ [K.Enc(pk)] then K.Dec(sk, c) = k.
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Definition 6 (IND-CCA secure KEM). A KEM is (τ, qd, ε)-IND-CCA se-
cure if all τ -time adversaries A = (A1,A2) that interact in the IND-CCAb ex-
periments from Figure 2 and issue at most qd queries to the K.Dec oracle have
an advantage of at most ε, where we define

AdvIND-CCA(A) := |Pr[IND-CCA0 ⇒ 1]− Pr[IND-CCA1 ⇒ 1]| .

Game IND-CCAb
00 C ← ∅
01 (pk, sk)←$ K.Gen
02 st ←$ AK.Dec

1 (pk)
03 (k∗0 , c∗)←$ K.Enc(pk)
04 k∗1 ←U K
05 C ← C ∪ {c∗}
06 b′ ←$ AK.Dec

2 (st, c∗, k∗b )
07 Stop with b′

Oracle K.Dec(c)
08 If c ∈ C: Abort
09 k ← K.Dec(sk, c)
10 Return k

Fig. 2. Security games for defining IND-CCA security of KEMs. We write ‘Abort’ as
an abbreviation for ‘Stop with 0’.

Definition 7 (PKE). A scheme for
::::::::
public-key

::::::::::
encryption (PKE) for a message

spaceM consists of a public-key space PK, a secret-key space SK, a ciphertext
space C, and a triple of efficient algorithms PKE = (P.Gen,P.Enc,P.Dec) of the
form

P.Gen→$ PK×SK, PK×M→ P.Enc→$ C, SK×C → P.Dec→M∪· {⊥},

where symbol ‘⊥’ may be used to indicate errors. The randomness space of P.Enc
is typically denoted with R. Correctness requires that for all (pk, sk) ∈ [P.Gen]
and m ∈M, if c ∈ [P.Enc(pk,m)] then P.Dec(sk, c) = m.

Construction 1 (Hybrid encryption) Take a DEM for a message spaceM
and a KEM for the key space of the DEM. Then the algorithms in Figure 3
form the hybrid PKE scheme. The randomness space of P.Enc coincides with the
randomness space of K.Enc.

We present now the main security definition of this paper: confidentiality
under selective opening attacks. Our model is based on works of [6,18] Find a
discussion of its details below.

Definition 8 (SIM-SO-CCA secure PKE). Consider the experiments from
Figure 4. For a function ε : N→ R≥0 we say that a PKE scheme is (τ, τ ′, qd, ε)-
SIM-SO-CCA secure if for all τ -time adversaries A = (A1,A2) that interact in
the r-SO-CCA experiment and issue at most qd decryption queries there exists a
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Proc P.Gen(r)
00 (pk, sk)← K.Gen(r)
01 Return (pk, sk)

Proc P.Enc(pk,m, r)
02 (k, c1)← K.Enc(pk, r)
03 c2 ← D.Enc(k,m)
04 Return 〈c1, c2〉

Proc P.Dec(sk, 〈c1, c2〉)
05 k ← K.Dec(sk, c1)
06 If k = ⊥: Return ⊥
07 m← D.Dec(k, c2)
08 Return m

Fig. 3. Hybrid construction of PKE from a KEM and a DEM. We write 〈c1, c2〉 for the
encoding of two ciphertext components into one. For clarity we make the randomness
used by P.Gen and P.Enc explicit.

(roughly) τ -time simulator S = (S1,S2) that interacts in the i-SO-CCA experi-
ment such that for all τ ′-time predicates {0, 1}∗ → Pred→$ {0, 1} and all n ∈ N
the advantage AdvSIM-SO-CCA

A,S,Pred (n) is at most ε(n), where we define

AdvSIM-SO-CCA
A,S,Pred (n) := |Pr[r-SO-CCAAn ⇒ 1]− Pr[i-SO-CCASn ⇒ 1]| .

Game r-SO-CCAAn
00 I ← ∅; C ← ∅
01 (pk, sk)←$ P.Gen
02 (D, st)←$ AP.Dec

1 (pk, n)
03 (m1, . . . ,mn)←$ D
04 For i← 1 to n:
05 ri ←U R
06 ci ← P.Enc(pk,mi, ri)
07 C ← C ∪ {ci}
08 out←$ AOpen,P.Dec

2 (st, c1, . . . , cn)
09 Stop w/ Pred(D,m1, . . . ,mn, I, out)

Oracle Open(i)
10 I ← I ∪ {i}
11 Return (mi, ri)

Oracle P.Dec(c)
12 If c ∈ C: Abort
13 m← P.Dec(sk, c)
14 Return m

Game i-SO-CCASn
15 I ← ∅

16 (D, st)←$ S1(n)
17 (m1, . . . ,mn)←$ D

18 out←$ SOpen
2 (st, |m1|, . . . , |mn|)

19 Stop w/ Pred(D,m1, . . . ,mn, I, out)

Oracle Open(i)
20 I ← I ∪ {i}
21 Return mi

Fig. 4. Security experiments for defining SIM-SO-CCA security of PKE. With D we
denote a randomised circuit that induces a distribution over Mn. The randomness
space of P.Enc is denoted with R. Oracle Open may be called for all i ∈ [n]. We write
‘Abort’ as an abbreviation for ‘Stop with 0’. We show the lines of i-SO-CCA aligned to
the ones of r-SO-CCA for easier comparison.

We give rationale on this formalisation of SO security. The notion compares
the information an adversary can deduce about a set of challenge messages in
two settings: a real setting (game r-SO-CCA) and an idealised setting (game
i-SO-CCA). The real experiment starts with the generation of a key pair. The
adversary receives the public key and specifies a message distribution, repre-
sented by a randomised circuit D. Messages m1, . . . ,mn are sampled according
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to this distribution and encrypted using fresh randomnesses r1, . . . , rn, and the
ciphertexts are given to the adversary which derives some information out about
the hidden messages. The adversary is supported by two oracles: one that de-
crypts arbitrary ciphertexts and one that opens honest ciphertexts by revealing
the corresponding message and the randomness used to encrypt it (this is meant
to model sender corruption).

The ideal experiment is similar but with all the artifacts of public key en-
cryption removed: there is no key generation, no ciphertext generation, and no
decryption oracle. Beyond that, the adversary (in this context called ‘simula-
tor’) performs as above: it specifies a message distribution, adaptively requests
openings, and derives some information out about unopened messages.

Clearly, in the ideal setting the confidentiality of unopened messages is gran-
ted (only their lengths leak in line 18, but this is unavoidable for any practical
PKE scheme and implicitly also happens in line 08). We thus deem a public key
encryption scheme secure under selective opening attacks if the adversary in the
real setting cannot draw more conclusions about unopened messages than can be
drawn in the ideal setting. Formally, it is required that for every A for r-SO-CCA
there exists a corresponding S for i-SO-CCA that derives the same information.
This is tested by distinguishing predicate Pred, which also takes further environ-
mental information into account, for instance the recorded opening history I.
We proceed with some remarks on the model.

In prior works that give simulation-based definitions of SO security there
does not seem to be concensus on the order of quantification of S and Pred.
While most papers (cf. [22,28]) allow for the simulator to depend on the dis-
tinguishing predicate, the work of [6] implicitly defines a stronger notion that
requires the existence of a simulator that is universal. (Interestingly, many pa-
pers that exclusively consider the weaker notion actually do construct universal
simulators.) We adopt the stronger notion and require the simulator to work for
any distinguisher.

In the upcoming sections we construct several PKE schemes that are secure
under selective opening attacks. The corresponding proofs will idealise a central
building block of the schemes, concretely a blockcipher. By consequence, ideal-
cipher oracles have to be added to Figure 4. There are various options how and
where to do this: It is clear that adversary A should have access to the ideal
cipher, but what about S, what about Pred, and what about D? It seems that
each configuration somehow makes sense and gives rise to an individual variant
of SIM-SO-CCA security.1 Each such notion might have particular strengths
and weaknesses, so declaring any of them right or wrong is arbitrary. Ultimately,
when proving the SO security of our schemes, we decided to go for a model where,
besides the relevant algorithms of the encryption scheme itself, only adversary A
gets access to the ideal cipher.

1 A similar situation emerges with NIZK proofs in the random oracle model: In the
corresponding ZK definition, shall the distinguisher have access to the random oracle
or not? See [31] for a formal treatment and a comparison of the many possible
notions.
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Notions of SO security under active Attacks. As mentioned in the introduction,
three notions for SO security under active attacks exist: {weak-IND, full-IND,
SIM}-SO-CCA. Non of them has emerged as a de-facto standard notion, yet.
Clearly, weak-IND-SO-CCA suffers from the unnatural restriction to efficiently
conditionally resamplable message distributions and security implications for
practical applications are unclear. While full-IND-SO-CCA would provide se-
curity for arbitrary underlying message distributions, as of today, no even a
full-IND-SO-CPA secure scheme is known.

We note that SIM-SO-CCA does not suffer from any of the above disad-
vantages (there is no resampling involved) and seems to offer a strong security
guarantee.

Only few results relating the SO-CCA notions are known; [26] shows that
IND-CCA is strictly weaker than weak-IND-CCA in general.

3 Simulatable DEMs and our Main Result

In this section we present our main result on hybrid public key encryption. We
define a combinatorial property of a DEM called simulatability and show that
any KEM and any DEM satisfying standard security notions, if the DEM is in
addition simulatable, when composed yield a SIM-SO-CCA secure PKE, in the
ideal cipher model [9,17,27].

3.1 Simulatable DEMs

Many practical DEMs are constructed from blockciphers, possibly in combi-
nation with further symmetric building blocks like universal hash functions or
MACs. We formalise next what it means for a DEM to make use of a blockci-
pher in a black-box way. Virtually all blockcipher-based DEMs, and in particular
those specified by the major standardisation bodies, are of this type. In our def-
inition, K denotes the key space of the blockcipher and K′ denotes the cartesian
product of the key spaces of the remaining cryptographic primitives used by the
scheme. For instance, in an encrypt-then-MAC construction, K′ would be the
key space of the message authentication code; if the construction requires no
further keyed primitive, K′ would be the trivial set containing a single element.

Recall from Definition 1 that P(D) and PP(D) denote the sets of all permu-
tations and partial permutations, respectively, on domain D.

Definition 9 (Oracle DEM). An
:::::
oracle

:::::
data

:::::::::::::
encapsulation

:::::::::::
mechanism

(oDEM) for a domain D and a message spaceM consists of a finite key space K′,
a ciphertext space C, and efficient algorithms O.Enc and O.Dec that have oracle
access to a permutation on D (in both directions) and are of the form

K′ ×M→ O.Encπ → C K′ × C → O.Decπ →M∪· {⊥} ,

where symbol ‘⊥’ may be used to indicate errors. Correctness requires that for all
π ∈ P(D), k′ ∈ K′, and m ∈M, if O.Encπ(k′,m) = c then O.Decπ(k′, c) = m.
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Definition 10 (Permutation-driven DEM). A DEM for message space M
with keyspace K′′ = K×K′ is

:::::::::::::::::::::::
(K,D)-permutation-driven if there exists an oracle

DEM for D and M with algorithms K′ ×M → O.Encπ → C and K′ × C →
O.Decπ →M∪· {⊥} and a blockcipher (Ek)k∈K on domain D such that for all
k′ ∈ K′ and m ∈M and c ∈ C we have

D.Enc((k, k′),m) = O.EncEk (k′,m) and D.Dec((k, k′), c) = O.DecEk (k′, c) .
(1)

According to this definition, for any specific permutation-driven DEM multi-
ple corresponding oracle DEMs, i.e., O.Enc and O.Dec algorithms, and blockci-
phers E might exist. In practice, however, a single canonic specification of these
algorithms will stick out. This holds, as we will see, in particular for the stan-
dardised DEMs studied in Section 4. For the sake of a concise notation, in this
paper we thus assume that suitable O.Enc, O.Dec, and E algorithms are always
uniquely given.

We next define a combinatorial property called simulatability that holds for
an oracle DEM if, in principle, the encapsulation algorithm could commit to
a ciphertext before seeing the corresponding message; intuitively, this is only
possible if the permutation in the oracle is ‘flexible enough’, i.e., can be ‘pro-
grammed’. We formalise this idea by splitting the encapsulation routine into two
components, Fake and Make. First Fake outputs a ciphertext c without seeing
the message m (but it does see the length of m), then Make, on input m, is
meant to find a possible (partial) permutation instance π̃ under which indeed m
would be encapsulated to c. To be useful in our later selective opening related
proofs where we want to embed π̃ into an ideal cipher, π̃ is further required to
be uniformly distributed (conditioned on the formulated requirements).
Definition 11 (Simulatable oracle DEM). Consider an oracle DEM for a
domain D and a message space M that has an encapsulation algorithm of the
form K′ ×M→ O.Encπ → C. Consider algorithms Fake and Make of the form

K′ × N→ Fake→$ C ×Σ and Σ ×M→ Make→$ PP(D) ,

where Σ is a state space shared between the two algorithms. We say that the
oracle DEM is

::::::::::::
ε-simulatable (by Fake and Make) if for all k′ ∈ K′ and m ∈ M,

for the random variable (defined over the coins of Fake and Make)

Πm
k′ = {π̃ : (c, st)←$ Fake(k′, |m|); π̃ ←$ Make(st,m)}

we have
(1) partial permutation Πm

k′ can be extended to a uniformly distributed permuta-
tion on D, i.e., by ‘filling up’ Πm

k′ with random pairs one obtains a permu-
tation uniformly distributed in P(D);

(2) the ciphertext output by Fake deviates from the one that would be output by
O.Enc if invoked with an extension of the partial permutation output by Make
with probability at most ε. More precisely, for any uniformly distributed ex-
tension π ∈ P(D) of Πm

k′ we have Pr[c 6= O.Encπ(k′,m)] ≤ ε (where the
probability is also taken over the random extension of Πm

k′ to π);

11



(3) the joint running time of Fake(k′, |m|) and Make(st,m) does not exceed the
running time of O.Enc(k′,m), not counting the latter’s oracle queries.

In informal discussions, when we say that a data encapsulation mechanism is
::::::::::
simulatable we mean that it is permutation-driven and Fake,Make algorithms
exist for which it is ε-simulatable with a negligibly small value ε.

Concerning the above definition it is important to understand that the ran-
dom coins of Fake and Make, and the coins used to extend the partial permutation
in items (1) and (2), belong to the same probability space. We give an equivalent
yet more verbose definition that makes this aspect more explicit in the Appendix
of the full version. [23]

In line with a comment made above, for all practical DEMs that are simu-
latable, corresponding specifications for the Fake and Make algorithms emerge
canonically. For the sake of notational clarity, from now on we thus assume
uniqueness.

Proving Simulatability. We discuss a general technique for proving the simulata-
bility of an oracle DEM. The Fake and Make algorithms are typically explicitly
provided in the proof. Fake’s strategy is to mimic the behaviour of O.Enc by exe-
cuting it and answering blockcipher queries with random elements from D. Make
constructs a partial permutation π̃ that fits this random assignment by starting
with the empty relation π̃ = ∅ and iteratively adding pairs (α, β) ∈ D ×D to π̃
that help meeting the O.Encπ̃(k′,m) = c goal, always taking care that also the
απ̃β, α′π̃β ⇒ α = α′ and απ̃β, απ̃β′ ⇒ β = β′ requirements from Definition 1
are not violated (Make aborts if simultaneously reaching these conditions turns
out to be impossible). Simulatability requirement (1) is achieved by ensuring
that for each addition of (α, β) to π̃ either α or β are uniformly distributed, con-
ditioned on the prior state of π̃. Proving the bound from condition (2) typically
requires a combinatorial argument that assesses the probability of collisions.
Requirement (3) follows by inspection of the specifications of Fake and Make.

3.2 Selective Opening Security from Simulatable DEMs

Our main result is on the SO security of public-key encryption obtained by
combining an arbitrary KEM with a permutation-driven DEM. Our analysis is
conducted in the ideal cipher model for the blockcipher underlying the DEM.
We give an informal version of our main theorem and an outline of the proof.
We caution that some technical preconditions are omitted in the statement as
we give it here. See Section 5 for the full theorem statement and proof.

Theorem 1 (informal). Combine any KEM and any permutation-driven DEM
to obtain a PKE scheme. If the KEM is IND-CCA secure, the DEM is OT-
INT-CTXT secure and the corresponding oracle DEM is simulatable, then the
combined PKE scheme is SIM-SO-CCA secure, in the ideal cipher model.

12



Game r-SO-CCAAn
00 For all k ∈ K: Ek ← ∅
01 I ← ∅; C ← ∅
02 (pk, sk)←$ K.Gen
03 (D, st)←$ AP.Dec,E

1 (pk, n)
04 (m1, . . . ,mn)←$ D
05 For i← 1 to n:
06 ri ←U R
07 (k′′i , ci,1)← K.Enc(pk, ri)
08 (ki, k′i)← k′′i
09 ci,2 ← O.EncE(ki;·)(k′i,mi)
10 ci ← 〈ci,1, ci,2〉
11 C ← C ∪ {ci}
12 out←$ AOpen,P.Dec,E

2 (st, c1, . . . , cn)
13 Stop w/ Pred(D,m1, . . . ,mn, I, out)

Oracle Open(i)
14 I ← I ∪ {i}
15 Return (mi, ri)

Oracle P.Dec(〈c1, c2〉)
16 If 〈c1, c2〉 ∈ C: Abort
17 k′′ ← K.Dec(sk, c1)
18 If k′′ = ⊥: Return ⊥
19 (k, k′)← k′′

20 m← O.DecE(k;·)(k′, c2)
21 Return m

Oracle E+(k, α)
22 If α /∈ Dom(Ek):
23 β ←U D \ Rng(Ek)
24 Ek ← Ek ∪ {(α, β)}
25 Return E+

k (α)

Oracle E−(k, β)
26 If β /∈ Rng(Ek):
27 α←U D \Dom(Ek)
28 Ek ← Ek ∪ {(α, β)}
29 Return E−k (β)

Fig. 5. Game r-SO-CCA adapted towards the analysis of a PKE scheme constructed fol-
lowing the KEM/DEM paradigm using a permutation-driven DEM with corresponding
oracle DEM algorithms O.Enc and O.Dec, in the ideal cipher model. We write ‘Abort’
as an abbreviation for ‘Stop with 0’. We further abbreviate the pair E+,E− of ideal
cipher oracles with just E.

We proceed with the proof outline. The goal is to show that for every adver-
sary A = (A1,A2) for the r-SO-CCA game there exists a simulator S = (S1,S2)
for the i-SO-CCA game that deduces the same information. In Figure 5 we re-
produce the r-SO-CCA game from Figure 4 with the hybrid construction of the
encryption scheme, the oracle DEM underlying the DEM, and the ideal cipher
model made explicit. (In the i-SO-CCA game there is nothing to be adapted.)
We correspondingly equip adversary A and the DEM algorithms with oracles
E+ and E− that implement an ideal blockcipher on domain D. In particular, for
each key k, oracles E+(k; ·) and E−(k; ·) are inverses of each other. For a concise
notation, we typically just write E for the pair consisting of E+ and E−. We
implement ideal cipher E via lazy sampling and keep track of made assignments
using a game internal family (Ek)k∈K of partial permutations Ek ∈ PP(D). Note
that we do not also provide the KEM algorithms with access to E, meaning we
assume the KEM does not use the same blockcipher as the DEM. See Section 5
for a discussion.

When it comes to constructing S from A, the strategy is to let the former
run the latter as a subroutine: Simulator S converts the own input to an input
for A, uses the output of A as the own output, and answers, and in some cases
relays, oracle queries posed by A. We give the footprint of a universal such
simulator that leverages on the simulatability of the (permutation-driven) DEM
in Figure 6. For the sake of clarity, we simplified the specifications of algorithms
S1 and S2 quite a bit, removing many technicalities. While we briefly discuss the
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S1(n)
00 For all k ∈ K: Ek ← ∅
01 C ← ∅
02 (pk, sk)←$ K.Gen
03 D←$ AP.Dec,E

1 (pk, n)
04 Return D

SOpenS
2 (|m1|, . . . , |mn|)

05 For i← 1 to n:
06 ri ←U R
07 (k′′i , ci,1)← K.Enc(pk; ri)
08 (ki, k′i)← k′′i
09 (ci,2, sti)←$ Fake(k′i, |mi|)
10 ci ← 〈ci,1, ci,2〉
11 C ← C ∪ {ci}
12 out←$ AOpenA,P.Dec,E

2 (c1, . . . , cn)
13 Return out

Oracle OpenA(i)
14 mi ← OpenS(i)
15 π̃ ←$ Make(sti,mi)
16 Eki ← Eki ∪ π̃
17 Return (mi, ri)

Oracle P.Dec(〈c1, c2〉)
as in Figure 5

Oracle E+(k, α)
as in Figure 5

Oracle E−(k, β)
as in Figure 5

Fig. 6. Simplified version of simulator S = (S1,S2), constructed from adversary A =
(A1,A2). We write OpenS and OpenA for the opening oracles provided to S2 and A2,
respectively. For simplicity we do not annotate the state information passed from A1
to A2 and from S1 to S2.

missing parts below, for the full details of the simulator and a formal analysis
we refer to Section 5.

We walk the reader through the design principles of our simulator. What
above we refered to as ‘deduces the same information’ formally requires that
the inputs D,m1, . . . ,mn, I, out of the Pred invocations in the r-SO-CCA and
i-SO-CCA games be similar. This is achieved by letting S simulate for A the envi-
ronment of r-SO-CCA in a way such that: S1 forwards the message distribution D
obtained from A1 without modification (this also ensures that the distributions
of m1, . . . ,mn match), S2 keeps the index sets I corresponding to A2’s and its
own Open queries consistent (by forwarding the queries), and S2 forwards A2’s
output out without modification. The lines in Figure 6 corresponding to these
steps are 03,04 and 14 and 12,13, respectively.

Running A as a subroutine leads to useful results only if A is exposed to
an r-SO-CCA-like environment. Effectively this means that S has to ‘fill all the
blank lines’ of the i-SO-CCA game in Figure 4. Concretely this involves (a) gen-
erating and providing a public key for A1, (b) providing ciphertexts to A2 that
correspond to messages m1, . . . ,mn, (c) providing adequate randomness when
processing opening queries of A2, and (d) handling decryption queries of A1
and A2. Further, ideal cipher queries of A1 and A2 have to be taken care of. The
latter is straight-forward when deploying lazy sampling, i.e., using the mecha-
nisms of the r-SO-CCA version from Figure 5. Also (a) and (d) are easy to deal
with: The public key pk provided to A1 is a regular KEM key generated by S1
(lines 02,03); in particular, secret key sk is known to S and can be used to pro-
cess decryption queries. Concerning (b), creating ciphertexts c1, . . . , cn for A2
consists, in principle, of two parts: letting the KEM establish session keys and
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encapsulating messages with the DEM. Component S2 of our simulator does
the former according to the specification, i.e., by invoking algorithm K.Enc with
fresh randomness (lines 06,07), while for the latter, as it cannot invoke D.Enc (or,
more precisely, O.Enc) for not knowing the messages it needs to encapsulate, it
leverages on the simulatability of the DEM and obtains the corresonding cipher-
text from an execution of the Fake algorithm (line 09). How S2 deals with (c) is
now immediate: for each created ciphertext it knows the randomness used, so it
can release it in an opening query (line 17). Note, however, that knowledge of
this randomness brings A2 into the position to verify the DEM ciphertext com-
ponents generated by Fake (e.g., by decapsulating or re-encapsulating them);
correspondingly, the Open oracle in addition runs the Make algorithm and em-
beds the partial permutation proposed by it into ideal cipher E (lines 15,16). By
the definition of simulatability of a DEM, this fixes the ideal cipher such that
overall consistency is established.

As announced earlier, in Figure 6 we leave out some details of our simulator.
These are related to situations in which S cannot uphold a proper environment
for A and has to abort its execution. This is the case when Fake and Make fail
to properly simulate O.Enc (the definition of simulatability considers a small
probability of failure), or if the partial permutation output by Make cannot
be embedded into the ideal cipher (line 16). The latter condition can result
from various actions of adversary A, for instance (explicitly) from queries to
the E oracles, or (implicitly) from evaluations of E during the processing of a
decryption query. In the full proof given in Section 5 we show that if the KEM is
IND-CCA secure and the DEM is OT-INT-CTXT secure, then the probability
is small that any of these conditions is met. (Very briefly speaking, we use the
KEM notion for bounding the probability of explicit queries, and we use the
DEM notion for bounding the probability of implicit ones.)

4 Simulatability of practical DEMs

We prove that three blockcipher-based DEMs that were standardised by NIST
are permutation-driven and simulatable. Concretely we analyse the CTR and
CBC modes of operation (SP 800-38A [13]), a CBC variant with ciphertext
stealing (CTS) (Addendum to SP800-38A [16]) and the CCM mode (SP 800-
38C [14]). The fourth NIST standardised mode of operation, the GCM mode
(SP 800-38D [15]), is covered in the full version of this paper [23]. More pre-
cisely, as for our results on selective opening security only those DEMs are rele-
vant that offer ciphertext integrity (cf. Definition 4), instead of plain CTR, CBC,
and CBC/CTS encryption we actually analyse their encrypt-then-MAC variants,
where we assume arbitrary strongly unforgeable MACs. Further, as CCM is an
authenticated encryption scheme with associated data (AEAD [30]), we turn it
into a DEM by using it with a fixed nonce N0 and an empty associated data
string A0. As the three named modes follow different design principles, some of
which might be incompatible with simulatability, analysing all of them is more
than just a matter of diligence. While CTR mode encrypts by XORing blockci-
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pher outputs into the message, CBC mode encrypts by pushing message blocks
through the cipher, and CCM combines both approaches is a MAC-then-encrypt
design.

In the following we specify the mentioned DEMs in their oracle DEM form,
assuming that the underlying blockcipher (Ek)k∈K is over domain D = {0, 1}`.
We show their simulatability by proposing and analysing corresponding Fake
and Make algorithms, following the general strategy suggested at the end of
Section 3.1.

4.1 CTR-then-MAC

We analyse the DEM obtained by first encrypting the provided message with
the CTR0 mode of operation of a blockcipher (counter mode with fixed initial
counter value) and then appending a deterministic MAC tag to the ciphertext.

We specify the O.Enc and O.Dec algorithms of CTR0-DEM in Figure 7,
where we assume that G : [1 .. V ] → D denotes a fixed injective function (a
‘counter generator’) for some sufficiently large value V . The MAC is represented
by a keyed hash function K′ × {0, 1}∗ → khf → {0, 1}T . The message space of
CTR0-DEM isM = {0, 1}∗ and the ciphertext space is C = {0, 1}≥T .

O.Encπ(k′,m)
00 Write |m| as (l − 1)`+ l∗

01 Split m into m1 . . .ml−1m
∗
l

02 ml ← m∗l ‖0`−l
∗

03 For i← 1 to l:
04 ui ← G(i)
05 vi ← π(ui)
06 ci ← mi ⊕ vi
07 c∗l ← msbl∗(cl)
08 c̄← c1 . . . cl−1c

∗
l

09 t← khf(k′, c̄)
10 c← c̄t
11 Return c

O.Decπ(k′, c)
12 If |c| < T : Return ⊥
13 Split c into c̄t
14 If t 6= khf(k′, c̄):
15 Return ⊥
16 Write |c̄| as (l − 1)`+ l∗

17 Split c̄ into c1 . . . cl−1c
∗
l

18 cl ← c∗l ‖0`−l
∗

19 For i← 1 to l:
20 ui ← G(i)
21 vi ← π(ui)
22 mi ← ci ⊕ vi
23 m∗l ← msbl∗(ml)
24 m← m1 . . .ml−1m

∗
l

25 Return m

Fig. 7. CTR0-DEM. Lines 00 and 16 uniquely identify quantities l and l∗ such that
l ∈ N≥1 and 0 ≤ l∗ < `, and |m| = (l − 1)` + l∗ and |c̄| = (l − 1)` + l∗, respectively.
Correspondingly, line 01 assumes |m1| = . . . = |ml−1| = ` and |m∗l | = l∗, and line 17
assumes |c1| = . . . = |cl−1| = ` and |c∗l | = l∗. Further, line 13 assumes |t| = T .

Lemma 1. CTR0-DEM is ε-simulatable with ε = (dL/`e2−dL/`e)/2`+1, where
L is the maximum message length (in bits).

Proof. Consider algorithms Fake and Make from Figure 8. The idea of Fake is
to compute intermediate ciphertext c̄ on basis of uniformly distributed block-
cipher outputs (see how line 01 of Fake replaces l-many iterations of line 06
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Fake(k′, |m|)
00 Write |m| as (l−1)`+ l∗

01 c1, . . . , cl ←U D
02 c∗l ← msbl∗(cl)
03 c̄← c1 . . . cl−1c

∗
l

04 t← khf(k′, c̄)
05 c← c̄t
06 st ← (c1, . . . , cl)
07 Return c, st

Make(st,m)
08 π̃ ← ∅
09 Write |m| as (l − 1)`+ l∗

10 Parse st as (c1, . . . , cl)
11 Split m into m1 . . .ml−1m

∗
l

12 ml ← m∗l ‖0`−l
∗

13 For i← 1 to l:
14 ui ← G(i)
15 vi ← mi ⊕ ci
16 If ui ∈ Dom(π̃): Abort
17 If vi ∈ Rng(π̃): Abort
18 π̃ ← π̃ ∪ {(ui, vi)}
19 Return π̃

Fig. 8. Fake and Make for CTR0-DEM. We write ‘Abort’ as an abbreviation for ‘Re-
turn ∅’.

of O.Enc), but to compute the MAC tag on c̄ faithfully. Note that the correct
length of c̄ is known to Fake as it coincides with the length ofm. Inspection shows
that, given m, algorithm Make finds a minimal partial permutation π̃ such that
Fake and Make jointly mimic the behaviour of O.Enc (see here how lines 15–18
of Make arrange the entries of π̃ such that they are consistent with lines 05–06
of O.Enc). In some invocations of the algorithms, the described process might fail
(lines 16, 17), namely when partial permutation π̃ would become inconsistent
(i.e., the updated π̃ would stop being an element of PP). In such cases Make
aborts, outputting the empty partial permutation π̃ = ∅.

We next show that the conditions from Definition 11 are met. Observe that,
as Fake picks values c1, . . . , cl uniformly and independently of each other, the
same holds for the values v1, . . . , vl computed in line 15. That is, in each iteration
of line 18 a value vi is added to Rng(π̃) that is uniform conditioned on the then
current state of Rng(π̃). Thus condition (1) holds. To establish the correctness
bound of condition (2) we analyse the probability that Make aborts. By the
injectivity of function G the ui-values from line 14 are pairwise distinct, so the
abort condition of line 16 is never met. Further, as values vi computed in line 15
are uniformly distributed and independent of each other, the abort condition of
line 17 is met with probability ε = (0 + . . . + (l − 1))/|D| = ((l2 − l)/2)/|D|
(accumulated over all iterations of the loop). Plugging in the maximum value
l = dL/`e gives the bound claimed in the statement. Condition (3) is clear. ut

4.2 CBC-then-MAC

We consider the DEM obtained by encrypting the message with CBC0 mode
(cipher block chaining with initialisation vector zero) and appending a MAC
tag to the ciphertext. As a variant we also look at CBC0-CTS (CBC0 with
‘ciphertext stealing’) that supports a complementary message space.
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O.Encπ(k′,m)
00 Write |m| as l`
01 Split m into m1 . . .ml

02 c0 ← 0`
03 For i← 1 to l:
04 ui ← mi ⊕ ci−1
05 ci ← π(ui)
06 c̄← c1 . . . cl
07 t← khf(k′, c̄)
08 c← c̄t
09 Return c

O.Decπ(k′, c)
10 If |c| < T : Return ⊥
11 Split c into c̄t
12 If t 6= khf(k′, c̄):
13 Return ⊥
14 Write |c̄| as l`
15 Split c̄ into c1 . . . cl
16 c0 ← 0`
17 For i← 1 to l:
18 ui ← π−1(ci)
19 mi ← ui ⊕ ci−1
20 m← m1 . . .ml

21 Return m

Fig. 9. CBC-DEM (for multi-block messages). Lines 00 and 14 identify quantity l ∈
N≥0 such that |m| = l` and |c̄| = l`, respectively. Correspondingly, line 01 assumes
|m1| = . . . = |ml| = ` and line 15 assumes |c1| = . . . = |cl| = `. Further, line 11
assumes |t| = T .

O.Encπ(k′,m)
00 Write |m| as l`+ l∗

01 Split m into m1 . . .mlm
∗
l+1

02 ml+1 ← m∗l+1 ‖0`−l
∗

03 c0 ← 0`
04 For i← 1 to l + 1:
05 ui ← mi ⊕ ci−1
06 ci ← π(ui)
07 c∗l ← msbl∗(cl)
08 c̄← c1 . . . cl−1c

∗
l cl+1

09 t← khf(k′, c̄)
10 c← c̄t
11 Return c

O.Decπ(k′, c)
12 If |c| < T : Return ⊥
13 Split c into c̄t
14 If t 6= khf(k′, c̄):
15 Return ⊥
16 Write |c̄| as l`+ l∗

17 Split c̄ into c1 . . . cl−1c
∗
l cl+1

18 ul+1 ← π−1(cl+1)
19 m∗l+1 ← msbl∗(ul+1)⊕ c∗l
20 cl ← c∗l ‖ lsb`−l∗(ul+1)
21 c0 ← 0`
22 For i← 1 to l:
23 ui ← π−1(ci)
24 mi ← ui ⊕ ci−1
25 m← m1 . . .mlm

∗
l+1

26 Return m

Fig. 10. CBC-CTS-DEM (for messages that require padding). Lines 00 and 16 uniquely
identify quantities l and l∗ such that l ∈ N≥1 and 1 ≤ l∗ < `, and |m| = l` + l∗ and
|c̄| = l`+ l∗, respectively. Correspondingly, line 01 assumes |m1| = . . . = |ml| = ` and
|m∗l+1| = l∗, and line 17 assumes |c1| = . . . = |cl−1| = ` and |c∗l | = l∗ and |cl+1| = `.
Further, line 13 assumes |t| = T .

We specify the O.Enc and O.Dec algorithms of CBC-DEM in Figure 9 and
of CBC-CTS-DEM in Figure 10. Similarly as for CTR0-DEM, the MAC is rep-
resented by a keyed hash function of the form K′ × {0, 1}∗ → khf → {0, 1}T .
The message space of CBC-DEM consists of all messages that have a length
that is a multiple of the blocklength `, i.e., M =

⋃
λ≥`,`|λ{0, 1}λ; the cipher-

text space is C =
⋃
λ≥`,`|λ{0, 1}λ+T . In contrast, CBC-CTS-DEM supports all
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Fake(k′, |m|)
00 Write |m| as l`
01 c1, . . . , cl ←U D
02 c̄← c1 . . . cl
03 t← khf(k′, c̄)
04 c← c̄t
05 st ← (c1, . . . , cl)
06 Return c, st

Make(st,m)
07 π̃ ← ∅
08 Write |m| as l`
09 Parse st as (c1, . . . , cl)
10 Split m into m1 . . .ml

11 c0 ← 0`
12 For i← 1 to l:
13 ui ← mi ⊕ ci−1
14 If ui ∈ Dom(π̃): Abort
15 If ci ∈ Rng(π̃): Abort
16 π̃ ← π̃ ∪ {(ui, ci)}
17 Return π̃

Fig. 11. Fake and Make for CBC-DEM. We write ‘Abort’ as an abbreviation for ‘Re-
turn ∅’.

message lengths that are not a multiple of `, with a minimum value of `+ 1; for-
mally, M =

⋃
λ≥`,`-λ{0, 1}λ and C =

⋃
λ≥`,`-λ{0, 1}λ+T . Together, CBC-DEM

and CBC-CTS-DEM can handle messages of any length not smaller than `.2

Lemma 2. CBC-DEM is ε-simulatable where ε = ((L/`)2 − (L/`))/2`, and
CBC-CTS-DEM is ε-simulatable with ε = (bL/`c2 + bL/`c)/2`, where L is the
maximum message length (in bits).

Proof. The proof is similar to the one of Lemma 1. Consider algorithms Fake
and Make from Figure 11. The idea of Fake is to compute intermediate cipher-
text c̄ on basis of uniformly distributed blockcipher outputs (see how line 01
of Fake replaces l-many iterations of line 05 of O.Enc), but to compute the MAC
tag on c̄ faithfully. Note that the correct length of c̄ is known to Fake as it co-
incides with the length of m. Inspection shows that, given m, algorithm Make
finds a minimal partial permutation π̃ such that Fake and Make jointly mimic
the behaviour of O.Enc (see here how lines 13–16 of Make arrange the entries of
π̃ such that they are consistent with lines 04–05 of O.Enc). In some invocations
of the algorithms, the described process might fail (lines 14, 15), namely when
partial permutation π̃ would become inconsistent. In such cases Make aborts,
outputting the empty partial permutation π̃ = ∅.

We next show that the conditions from Definition 11 are met. Observe that, as
Fake picks values c1, . . . , cl uniformly and independently of each other, in each it-
eration of line 16 a value ci is added to Rng(π̃) that is uniform conditioned on the
then current state of Rng(π̃). Thus condition (1) holds. To establish the correct-
ness bound of condition (2) we analyse the probability that Make aborts. With
values c1, . . . , cl−1 also the values u2, . . . , ul computed in line 13 are uniformly
distributed and independent of each other, so the abort condition of line 14 is
2 Instead of specifying different algorithms for different classes of message length, one
could also join them together to a single, more general algorithm. This is usually
done in standards [16], but we abstain from doing so in this document to avoid rather
obstructing case distinctions in the analysis.
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met with probability (0 + . . .+ (l− 1))/|D| = ((l2− l)/2)/|D| (accumulated over
all iterations of the loop). The same bound holds for line 15. Plugging in the
maximum value l = L/` gives the bound claimed in the statement. Condition (3)
is clear.

Algorithms Fake and Make for CBC-CTS-DEM are given in Figure 12. The
analysis is similar. Here, however, we have l = bL/`c and for lines 16 and 17 the
accumulated probabilities of abort amount to (0 + . . .+ l)/|D| each. ut

Fake(k′, |m|)
00 Write |m| as l`+ l∗

01 c1, . . . , cl+1 ←U D
02 c∗l ← msbl∗(cl)
03 c̄← c1 . . . cl−1c

∗
l cl+1

04 t← khf(k′, c̄)
05 c← c̄t
06 st ← (c1, . . . , cl+1)
07 Return c, st

Make(st,m)
08 π̃ ← ∅
09 Write |m| as l`+ l∗

10 Parse st as (c1, . . . , cl+1)
11 Split m into m1 . . .mlm

∗
l+1

12 ml+1 ← m∗l+1 ‖0`−l
∗

13 c0 ← 0`
14 For i← 1 to l + 1:
15 ui ← mi ⊕ ci−1
16 If ui ∈ Dom(π̃): Abort
17 If ci ∈ Rng(π̃): Abort
18 π̃ ← π̃ ∪ {(ui, ci)}
19 Return π̃

Fig. 12. Fake and Make for CBC-CTS-DEM. We write ‘Abort’ as an abbreviation for
‘Return ∅’.

4.3 CCM

We analyse the CCM mode of operation (‘CTR mode with CBC-MAC’) with
fixed nonce and associated data field; we call this mode CCM0-DEM. CCM is
parameterised by an authentication tag length T , a formatting function F : N ×
A×M→ D+ (where N and A denote the nonce space and the associated data
space, respectively), and a counter generation function G : N × [0 .. V ] → D,
where V is a sufficiently large value. While only one set of instantiations of F
andG is suggested in SP 800-38C (and if it is chosen the resulting version of CCM
is the one used in wireless encryption standard IEEE 802.11), the specification
is explicitly modular in the sense that it works with any F and G that meet
certain conditions. Amongst others, the conditions listed in [14] imply that for
allN ∈ N the functionG(N ; ·) is injective and that for all (N,A,m) ∈ N×A×M
and z0 . . . zr = F (N,A,m) we have that z0 /∈ G(N, [0 .. V ]). Now, if we fix any
nonce N0 and any associated data string A0 (e.g., the all-zero string for N0
and the empty string for A0) and define the restrictions F0 : M → D+; m 7→
F (N0, A0,m) and G0 : [0 .. V ] → D; i 7→ G(N0, i), then the algorithms of the
resulting oracle DEM associated with CCM are given in Figure 13. The message
space of CCM0-DEM isM = {0, 1}∗ and the ciphertext space is C = {0, 1}≥T .
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O.Encπ(k′,m)
00 z0 . . . zr ← F0(m)
01 y0 ← π(z0)
02 For i← 1 to r:
03 xi ← zi ⊕ yi−1
04 yi ← π(xi)
05 u0 ← G0(0)
06 v0 ← π(u0)
07 t← yr ⊕ v0
08 t∗ ← msbT (t)
09 Write |m| as (l − 1)`+ l∗

10 Split m into m1 . . .ml−1m
∗
l

11 ml ← m∗l ‖0`−l
∗

12 For j ← 1 to l:
13 uj ← G0(j)
14 vj ← π(uj)
15 cj ← mj ⊕ vj
16 c∗l ← msbl∗(cl)
17 c← c1 . . . cl−1c

∗
l t
∗

18 Return c

O.Decπ(k′, c)
19 If |c| < T : Return ⊥
20 Write |c| as (l− 1)`+ l∗+T
21 Split c into c1 . . . cl−1c

∗
l t
∗

22 cl ← c∗l ‖0`−l
∗

23 For j ← 1 to l:
24 uj ← G0(j)
25 vj ← π(uj)
26 mj ← cj ⊕ vj
27 m∗l ← msbl∗(ml)
28 m← m1 . . .ml−1m

∗
l

29 z0 . . . zr ← F0(m)
30 y0 ← π(z0)
31 For i← 1 to r:
32 xi ← zi ⊕ yi−1
33 yi ← π(xi)
34 u0 ← G0(0)
35 v0 ← π(u0)
36 t← yr ⊕ v0
37 If t∗ 6= msbT (t): Return ⊥
38 Return m

Fig. 13. CCM0-DEM. Lines 09 and 20 uniquely identify quantities l and l∗ such that
l ∈ N≥1 and 0 ≤ l∗ < `, and |m| = (l− 1)`+ l∗ and |c| = (l− 1)`+ l∗+T , respectively.
Correspondingly, line 10 assumes |m1| = . . . = |ml−1| = ` and |m∗l | = l∗, and line 21
assumes |c1| = . . . = |cl−1| = ` and |c∗l | = l∗ and |t∗| = T .

Lemma 3. CCM0-DEM is ε-simulatable with ε ≤ bL/`c2/2`−2, where L is the
maximum message length (in bits).

Proof. Consider algorithms Fake and Make from Figure 14. The idea of Fake is
to compute the visible ciphertext components on basis of uniformly distributed
blockcipher outputs while completely ignoring the blockcipher invocations of
CCM’s internal CBC-MAC computation (see how line 07 and l-many iterations
of line 15 of O.Enc (in Figure 13) are replaced by lines 00 and 03 of Fake, while
lines 01 and 04 of O.Enc have no counterpart). Inspection shows that, given m,
algorithm Make finds a minimal partial permutation π̃ such that Fake and Make
jointly mimic the behaviour of O.Enc (see here how lines 24–27, 30–33, 35–
38, 43–46 of Make arrange the entries of π̃ such that they are consistent with
lines 01, 04, 06/07, 14/15 of O.Enc). In some invocations of the algorithms, the
described process might fail (in lines 25/26, 31/32, 36/37, 44/45), namely when
partial permutation π̃ would become inconsistent. In such cases Make aborts,
outputting the empty partial permutation π̃ = ∅.

We next show that the requirements from Definition 11 are met. To see
that condition (1) holds, observe that in Make the values y0, yi, v0, and vj
are uniformly distributed and independent of each other at the point they are
added to Rng(π̃) in lines 27, 33, 38, 46. To establish the correctness bound
of condition (2) we assess the probability that Make aborts. Using a similar
analysis as in the proof of Lemma 1 we obtain the following (accumulated)
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Fake(k′, |m|)
00 t←U D
01 t∗ ← msbT (t)
02 Write |m| as (l−1)`+ l∗

03 c1, . . . , cl ←U D
04 c∗l ← msbl∗(cl)
05 c← c1 . . . cl−1c

∗
l t
∗

06 st ← (t, c1, . . . , cl)
07 Return c, st

Make(st,m)
20 π̃ ← ∅
21 Write |m| as (l − 1)`+ l∗

22 Parse st as (t, c1, . . . , cl)
23 z0 . . . zr ← F0(m)
24 y0 ←U D
25 If z0 ∈ Dom(π̃): Abort
26 If y0 ∈ Rng(π̃): Abort
27 π̃ ← π̃ ∪ {(z0, y0)}
28 For i← 1 to r:
29 xi ← zi ⊕ yi−1
30 yi ←U D
31 If xi ∈ Dom(π̃): Abort
32 If yi ∈ Rng(π̃): Abort
33 π̃ ← π̃ ∪ {(xi, yi)}

34 u0 ← G0(0)
35 v0 ← yr ⊕ t
36 If u0 ∈ Dom(π̃): Abort
37 If v0 ∈ Rng(π̃): Abort
38 π̃ ← π̃ ∪ {(u0, v0)}
39 Split m into m1 . . .ml−1m

∗
l

40 ml ← m∗l ‖0`−l
∗

41 For j ← 1 to l:
42 uj ← G0(j)
43 vj ← mj ⊕ cj
44 If uj ∈ Dom(π̃): Abort
45 If vj ∈ Rng(π̃): Abort
46 π̃ ← π̃ ∪ {(uj , vj)}
47 Return π̃

Fig. 14. Fake and Make for CCM0-DEM. We write ‘Abort’ as an abbreviation for
‘Return ∅’.

probabilities: The abort conditions in lines 25 and 26 are never met; for lines
31 and 32 the probabilities are (1 + . . . + r)/|D| each; by the properties of
CCM’s functions F0 and G0, for lines 36 and 37 the probabilities are r/|D| and
(r+1)/|D|; for line 44 the probability is lr/|D|; finally, for line 45 the probability
is ((r+2)+. . .+(r+l+1))/|D|. If we assume reasonable behaviour of function F0
and let r = l, we obtain quantity 4l2/|D| as an upper bound for the sum of these
probabilities. This establishes the claimed bound. Condition (3) is clear. ut

5 A Formal Treatment of Our Main Result

We anticipated the main result of this paper in Section 3: Any (hybrid) PKE
scheme constructed from a KEM and a permutation-driven DEM offers SIM-
SO-CCA security in the ideal cipher model, if the KEM provides confidentiality
(IND-CCA), the DEM provides authenticity (OT-INT-CTXT), and the DEM is
simulatable. Prerequisites like IND-CCA and OT-INT-CTXT on the KEM and
DEM, respectively, are standard for proofs of the IND-CCA security of hybrid
encryption, so the important finding is that the added constraint of simulatability
suffices to lift security to the stronger notion of SO security.3

We discussed an informal version of our result in Section 3.2. Recall from the
included proof sketch that an important subgoal was bounding the probability of
the ideal cipher being evaluated on input a key established by the KEM before a
corresponding Open query is posed. (If the cipher is evaluated earlier, the par-
tial permutation found by Fake and Make cannot be smoothly embedded into it
any more.) In the following we argue that without putting further restrictions on
3 We note that a typical proof of IND-CCA security of hybrid PKE requires the DEM
to also offer some kind of confidentiality (e.g., OT-IND-CCA). A corresponding
notion appears only implicitly in our theorem statement, as it follows from the
DEM’s simulatability (in the ideal cipher model).
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the KEM, bounding this probability to any small value is in general impossible.
Indeed, assume for a moment a KEM where K.Enc, before outputting a key k
and a ciphertext c, evaluates the blockcipher used by D.Enc on input key k and
a value d0, where the latter is any fixed element d0 ∈ D in the cipher’s domain,
and assume K.Enc completely ignores the result. Even though this blockcipher
evaluation is completely pointless and should not affect security of the overall
design, for such a KEM our arguments would not work. Below, in the formal
version of our theorem statement, we correspondingly restrict the set of consid-
ered KEMs to those that do not evaluate the blockcipher at all. This admittedly
is a limitation of our result, but we believe it is a mild one. Indeed, all practi-
cal KEMs we are aware of do not (internally) invoke blockcipher operations at
all. This holds in particular for Hashed ElGamal, PSEC-KEM, Cramer-Shoup
KEM, and RSA-KEM. In the following theorem statement, if E is a blockcipher,
we say a KEM is

:::::::::::::
E-independent if no KEM algorithm evaluates E+ or E−.

We proceed with the statement and proof of our main theorem.

Theorem 2. Let DEM be a (K,D)-permutation-driven DEM with corresponding
oracle DEM oDEM and blockcipher E. Let KEM denote an E-independent KEM
for the key space of the DEM. Let PKE denote the hybrid PKE scheme obtained
when instantiating Construction 1 in Figure 3 with KEM and DEM.

Let DEM be (τ, qd, εctxt)-OT-INT-CTXT secure and KEM be (τ, qd, εcca)-
IND-CCA secure.

If oDEM is εsim-simulatable, then PKE is (τ, τ ′, qd, qic, ε)-SIM-SO-CCA se-
cure where ε can be upper-bounded by

ε(n) ≤ n ·
(

3 · εcca + εctxt + εsim + 2 · n+ qic + qd
|K|

)
and E is modeled as an ideal cipher.

See Section 3.2 for a proof sketch including the high-level ideas. We proceed
with a detailed proof of Theorem 2.

Proof. For the list of n challenge ciphertexts (〈c1,1, c1,2〉, . . . , 〈cn,1, cn,2〉) and
J ⊆ [n] let CJ ,1 denote the set {cj,1 | j ∈ J }. For the keys (ki, k′i)← k′′i output
by the n iterations of K.Enc, and J ⊆ [n] let KJ denote the set {kj | j ∈ J } of
blockcipher keys ki for i ∈ J . For the family of partial permutations (Ek)k∈K
maintained by S to implement ideal cipher E, let supp(E) := {k ∈ K | Ek 6= ∅}
denote the set of keys k ∈ K where partial permutation Ek is not empty.

Fix any SIM-SO-CCA adversary A. We define a simulator (S1,S2) by giving
its pseudocode in Figure 15. Simulator S1 consists of lines 00 – 03, S2 consists of
lines 04 – 11. Their code is enhanced by bookkeeping and abort events, while the
explicit invocation of S1, S2 and their input/output behaviour is merged into
the ideal game. Instructions in grey boxes are performed by the ideal game.

We show that S, when run in the ideal game, can simulate the real game for
A. To this end we proceed in a sequence of experiments tracing A’s advantage
of distinguishing two consecutive games. The sequence interpolates between the
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I ← ∅
00 For all k ∈ K: Ek ← ∅
01 I ← ∅; C ← ∅
02 (pk, sk)←$ K.Gen
03 (D, st)←$ AP.Dec,E

1 (pk)
(m1, . . . ,mn)←$ D

04 For i← 1 to n:
05 ri ←U R
06 (k′′i , ci,1)← K.Enc(pk; ri)
07 (ki, k′i)← k′′i
08 If ki ∈ K[i−1] ∪ supp(E): Abort
09 (ci,2, sti)←$ Fake(k′i, |mi|)
10 ci ← 〈ci,1, ci,2〉
11 out←$ AOpen,P.Dec,E

2 (st, c1, . . . , cn)
Stop with Pred(D,m1, . . . ,mn, I, out)

Oracle Open(i)
12 I ← I ∪ {i}
13 If ki ∈ K[i−1] ∪ supp(E): Abort
14 π̃ ←$ Make(sti,mi)
15 Eki ← π̃
16 If ci,2 6= O.EncE(ki;·)(k′i,mi): Abort
17 Return (mi, ri)

Oracle P.Dec(〈c1, c2〉)
18 If 〈c1, c2〉 ∈ C[n]: Abort
19 If c1 ∈ C[n]\I,1: Return ⊥
20 k′′ ← K.Dec(sk, c1)
21 If k′′ = ⊥: Return ⊥
22 (k, k′)← k′′

23 m← O.DecE(k,·)(k′, c2)
24 Return m

Oracle E+(k, α)
25 If k ∈ K[n]\I : Abort
26 If α /∈ Dom(E+

k ):
27 β ←U D \ Rng(E+

k )
28 Ek ← Ek ∪ {(α, β)}
29 Return β

Oracle E−(k, β)
30 If k ∈ K[n]\I : Abort
31 If β /∈ Dom(E−k ):
32 α←U D \ Rng(E−k )
33 Ek ← Ek ∪ {(α, β)}
34 Return α

Fig. 15. Proposed simulator S = (S1,S2) inlined into the i-SO-CCA experiment. S1 in
lines 00 – 03, S2 given in lines 04 – 11. Instructions in grey boxes are executed by the
ideal experiment. The whole code corresponds to the last game G6 in our proof. For
J ⊆ [n] we denote CJ ,1 := {cj,1 | j ∈ J } and KJ := {kj | j ∈ J }. Further, we denote
supp(E) := {k ∈ K | Ek 6= ∅}.

real game (G0 = r-SO-CCA, cf. Figure 5) and a simulated real game (G6, cf.
Figure 15) provided by the simulator S inlined into the ideal game.

The whole sequence of experiments is given in Figure 16. Lines ending with
a range of experiments Gi – Gj (resp. Gi if j = i) are only executed when an
experiment within the range is run.

Without loss of generality we assume that A does not make the same opening
query twice. We proceed with detailed descriptions of the experiments.

Game G0. The r-SO-CCA game as given in Figure 5.

Game G1. Lines 28 and 29 are added: Any decryption query of the form 〈c1, c2〉
is answered with ⊥ if c1 ∈ C[n]\I,1. That is, there exists i ∈ [n] such that c1 = ci,1
and A did not query Open(i).

Claim. There exists an adversary Bcca that (τ, qd, εcca)-breaks the IND-CCA
security of KEM and an adversary Bctxt that (τ, qd, εctxt)-breaks the OT-INT-
CTXT security of DEM with |Pr[G0 ⇒ 1]− Pr[G1 ⇒ 1]| ≤ n · (εcca + εctxt).

Proof. Games G0 and G1 proceed identically, untilA submits a ciphertext 〈c1, c2〉
to decryption where c1 ∈ C[n]\I and P.Dec(sk, 〈c1, c2〉) 6= ⊥. We fix some i ∈ [n]
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Experiments G0 − G6
00 For all k ∈ K: Ek ← ∅
01 I ← ∅; C ← ∅
02 bad← 0 //G4
03 (pk, sk)←$ K.Gen
04 (D, st)←$ AP.Dec,E

1 (pk)
05 (m1, . . . ,mn)←$ D
06 For i← 1 to n:
07 ri ←U R
08 (k′′i , ci,1)← K.Enc(pk; ri)
09 (ki, k′i)← k′′i
10 If ki ∈ K[i−1] ∪ supp(E): Abort //G2 – G6

11 ci,2 ← O.EncE(ki;·)(k′i,mi) //G0 – G2
12 (ci,2, sti)←$ Fake(k′i, |mi|) //G3 – G6
13 π̃ ←$ Make(sti,mi) //G3 – G5
14 Eki ← π̃ //G3 – G5
15 If ci,2 6= O.EncE(ki;·)(k′i,mi): //G3 – G5
16 Abort //G3 – G5
17 ci ← 〈ci,1, ci,2〉
18 out←$ AOpen,P.Dec,E

2 (st, c1, . . . , cn)
19 If bad: Abort //G4
20 Stop with Pred(D,m1, . . . ,mn, I, out)

Oracle Open(i)
21 I ← I ∪ {i}
22 If ki ∈ K[i−1] ∪ supp(E): Abort //G6
23 π̃ ←$ Make(sti,mi) //G6
24 Eki ← π̃ //G6
25 If ci,2 6= O.EncE(ki;·)(k′i,mi): Abort //G6
26 Return (mi, ri)

Oracle P.Dec(〈c1, c2〉)
27 If 〈c1, c2〉 ∈ C[n]: Abort
28 If c1 ∈ C[n]\I,1: //G1 – G6
29 Return ⊥ //G1 – G6
30 k′′ ← K.Dec(sk, c1)
31 If k′′ = ⊥: Return ⊥
32 (k, k′)← k′′

33 m← O.DecE(k,·)(k′, c2)
34 Return m

Oracle E+(k, α)
35 If k ∈ K[n]\I : //G4 – G6
36 bad← 1 //G4
37 Abort //G5 – G6
38 If α /∈ Dom(E+

k ):
39 β ←U D \ Rng(E+

k )
40 Ek ← Ek ∪ {(α, β)}
41 Return β

Oracle E−(k, β)
42 If k ∈ K[n]\I : //G4 – G6
43 bad← 1 //G4
44 Abort //G5 – G6
45 If β /∈ Dom(E−k ):
46 α←U D \ Rng(E−k )
47 Ek ← Ek ∪ {(α, β)}
48 Return α

Fig. 16. Experiments G0 – G6 used in the proof of Theorem 2. We write ‘Abort’ as an
abbreviation for ‘Stop with 0’.

and analyse the probability that A submits a ciphertext 〈c1, c2〉 where c1 ∈
C{i}\I and P.Dec(sk, 〈c1, c2〉) 6= ⊥ we denote this event by ‘〈ci,1, c2〉9 ⊥’.

At first, we replace k′′i as output by the ith invocation of K.Enc with a uni-
formly random key. We lose an additional summand of εcca in the bound on
Pr[〈ci,1, c2〉9 ⊥] as shown by the following reduction run by adversary Bcca: It
uses its decapsulation oracle to answer decryption queries from A1. Receiving
(c∗, k∗b ), Bcca parses (kb, k′b)← k∗b and computes all ciphertexts faithfully except
for ci ← 〈c∗,O.EncE(kb;·)(k′b,mi)〉. Decryption queries 〈c1, c2〉 by A2 are answered
employing the decapsulation oracle for c1 6= c∗ and using key k∗b otherwise.

The reduction perfectly simulates G1 until A queries Open(i) which the
reduction cannot answer. Yet, to bound the probability of event ‘〈ci,1, c2〉9 ⊥’
happening, it suffices to make sure that the reduction ‘works’ as long as the event
can occur. Observe that ‘〈ci,1, c2〉9 ⊥’ cannot happen after query Open(i).

We now show how to break the OT-INT-CTXT security of the DEM if
‘〈ci,1, c2〉9 ⊥’ happens. We construct Bctxt. The reduction performed by Bctxt
runs K.Gen and starts A1(pk). Decryption queries are answered using sk. Once
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A1 outputs D, Bctxt samples messages but submits mi to the D.Enc oracle of
its OT-INT-CTXT game to obtain a data encapsulation c∗2 ← D.Enc(k′′$ ,m∗)
under a random key k′′$ . Additionally, Bctxt runs K.Enc to obtain (k, c∗1) and
sends (c1, . . . , ci−1, 〈c∗1, c∗2〉, . . . , cn) to A. Adversary Bctxt answers all further de-
cryption queries on its own, unless the ciphertext is of the form 〈c∗1, c2〉 where
it submits c2 to the decapsulation oracle of the OT-INT-CTXT experiment. If it
receives ⊥, it returns ⊥ to A2.

Clearly, Bctxt wins the OT-INT-CTXT game when A submits a ciphertext
that causes ‘〈ci,1, c2〉9 ⊥’ to happen.

We obtain Pr[〈ci,1, c2〉9 ⊥] ≤ εcca+εctxt. The claim follows from the union-
bound over all i ∈ [n]. ut

The next game hop ensures that (if it is not aborted) the ith invocation of
the oracle data encapsulation, i.e., O.EncE(ki;·), has access to an empty partial
permutation Eki . This is a preparational step to ensure that later, when O.Enc
is replaced with Fake and Make, the partial permutation output by Make can be
embedded into Eki

.

Game G2. Line 10 is added. That is, G2 aborts if the ith iteration of O.Enc would
have oracle access to a non-empty permutation E(ki; ·). 4

Claim. There exists an adversary Bcca that (τ, qd, εcca)-breaks the IND-CCA
security of KEM with |Pr[G1 ⇒ 1]−Pr[G2 ⇒ 1]| ≤ n · (εcca+ (n+ qic+ qd) / |K|).

Proof. We bound Pr[ki ∈ K[i−1]∪supp(E)] for fixed i ∈ [n]. Again, we use KEM’s
IND-CCA security to replace k′′i output by the ith invocation of K.Enc with a
uniform key. We construct adversary Bcca. It receives pk and starts A1(pk).
Decryption queries are answered using the decapsulation oracle. When A1 halts,
Bcca requests its IND-CCA challenge (c∗, k∗b ) — let (kb, k′b)← k∗b — and runs the
For loop 07. In the ith iteration Bcca halts and returns 1 iff kb ∈ K[i−1]∪supp(E).
Clearly, the reduction is perfect until Bcca halts and we have |Pr[ki ∈ K[i−1] ∪
supp(E)]− Pr[k$ ∈ K[i−1] ∪ supp(E)]| ≤ εcca where k$ ←$ K.

Note that each decryption query or query to the ideal cipher oracles adds at
most one element to supp(E), hence |K[i−1] ∪ supp(E)| ≤ n + qic + qd. Thus,
we obtain Pr[k$ ∈ K[i−1] ∪ supp(E)] ≤ (n+ qic + qd) / |K| and Pr[ki ∈ K[i−1] ∪
supp(E)] ≤ εcca + (n+ qic + qd) / (|K|). The claim follows from the union-bound
over i ∈ [n]. ut

Game G3. The faithful data encapsulation is replaced by algorithms Fake and
Make. More precisely, for each iteration of the For loop (line 06) we replace the in-
vocation O.DecE(ki;·)(k′i,mi) (line 11) with running Fake(k′i, |mi|) and Make(mi)
4 As of now, in the ith iteration of the For loop, we have K[i−1] ⊆ supp(E) as the
invocation of O.EncE(ki;·) adds elements to Eki . Later, in game G6, we do not invoke
code that (implicitly) adds elements to Eki and rely on set K[i−1] to detect collisions
amongst the (blockcipher) keys.
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back to back (lines 12,13). Eki gets assigned partial permutation π̃ as output by
Make (cf. line 14) and a check is performed whether Eki

has been programmed
‘consistently’; if not, experiment G3 aborts (lines 15, 16).

Claim. |Pr[G2 ⇒ 1]− Pr[G3 ⇒ 1]| ≤ n · εsim.

Proof. Fix i ∈ [n]. Due to the modifications in games G1 and G2 partial per-
mutation Eki

is empty at the time of invoking O.Enc. Hence, once we replace
O.Enc by Fake and Make, the partial permutation as output by Make can always
be embedded into Eki

. Particularly, partial permutations Eki
accessed by O.Enc

and π̃ output by Make are identically distributed when randomly extended to
a full permutation on D. We conclude that the abort in line 16 happens with
probability at most εsim as oDEM is εsim-simulatable. The claim follows from
the union-bound over all i ∈ [n]. ut

Recall from the proof outline that, eventually, Make shall be run as part of the
Open procedure. The upcoming modifications ensure that partial permutation
Eki

remains empty until Open(i) is queried.

Game G4. Line 02 is added to initialise a flag ‘bad’ as 0. Lines (35, 36) are added
to the E+ oracle, lines (42, 43) are added to the E− oracle and line 19 is added.
That is, if E+ or E− is queried on (ki, z) for any z and i /∈ I, ‘bad’ is set to 1
and the game aborts

::::
after the execution of A2 (in line 19).

Claim. There exists an adversary Bcca that (τ, qd, εcca)-breaks the IND-CCA
security of KEM with |Pr[G3 ⇒ 1]− Pr[G4 ⇒ 1]| ≤ n · (εcca + (qic + qd)/|K|).

Proof. Fix i ∈ [n] and let ‘k ∈ K{i}\I ’ denote the event that E+ or E− is queried
on (k, z) where k ∈ K{i}\I . (That is, the condition in lines 35 or 42 holds, even
for K{i}\I). Again, we replace key k′′i output in the ith invocation of K.Enc with
a uniform key (k$, k

′
$)← k′′$ . The reduction run by Bcca proceeds as in the proof

to bridge G0 and G1. Here, Bcca halts after A2’s execution and outputs 1 iff
bad = 1. Clearly |Pr[k ∈ K{i}\I ]−Pr[k ∈ {k$} \ I]| ≤ εcca for uniform k$ ←$ K.

The reduction is perfect unless A2 queries Open(i) which cannot be an-
swered. Note that after query Open(i), ‘bad’ cannot be set to 1 as K{i}\I = ∅.
Similarly to before, it suffices to guarantee the correctness of the simulation as
long as the abort in line 19 can potentially happen.

Note that k$ is uniform from A’s view: Only ciphertext 〈ci,1, ci,2〉 might
contain information on k$ but ci,1 is independent of k$ as it is sampled after
K.Enc output ci,1 and data encapsulation ci,2 is independent of k$ as we run
Fake(k′i,mi) to compute ci,2. Thus, Pr[k ∈ {k$}\I] ≤ (qic+qd)/|K| and collecting
the probabilities and applying the union-bound gives the desired bound. ut

Game G5. Lines 37 and 44 are added. Instead of aborting after the execution of
A2 if bad = 1, game G5 aborts as soon as bad (as introduced in game G4) is set
to 1. Now obsolete lines 02, 19, 36 and 43 are removed for clarity.
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Claim. Pr[G4 ⇒ 1] = Pr[G5 ⇒ 1].

Proof. The claim follows from observing that game G5 aborts in lines 37 or 44
if and only if game G4 aborts in line 19. ut

Game G6. An abort event is added in line 22. The invocation of Make, the
embedding of a partial permutation and the consistency check are moved from
the For loop in lines 13 – 16 to the Open oracle (lines 23 – 24).

Claim. Pr[G5 ⇒ 1] = Pr[G6 ⇒ 1].

Proof. The abort event in line 22 is solely added for clarity but never met:
Assume that line 22 would cause an abort, then the condition in line 10, or
lines 35/42 would have been satisfied earlier. Hence, for all i ∈ [n]: a) in game
G5 partial permutation Eki

← π̃ as output by Make in line 13 is information-
theoretically hidden from A until it queries Open and b) in game G6 partial
permutation Eki remains empty until A queries Open. Thus, embedding partial
permutation π̃ into Eki

always succeeds. Further, moving the invocation of Make,
the embedding and checking to the Open oracle is completely oblivious to A. ut

We observe that the code as given in game G6 in Figure 16 matches the code
of the simulator as given in Figure 15.

The claim of Theorem 2 follows by collecting the probabilities.
ut

6 Conclusion

The most promising practical approach to public key encryption is through the
hybrid KEM/DEM paradigm. Suitable KEMs include Hashed ElGamal, PSEC-
KEM, Cramer-Shoup KEM, and RSA-KEM, and candidates for the DEM part
are readily derived from the highly efficient encryption modes CTR, CBC, CCM
standardised by NIST (to reach CCA security, the former two should be en-
hanced with a MAC, e.g., CMAC or HMAC). The last NIST standardised mode
of operation, GCM, is covered in the full version of this paper [23], too. To
compress the contribution of this paper into a single line: We effectively show
that if any of these KEMs is combined with any of these DEMs in the sense
of hybrid encryption, then the obtained PKE scheme offers a strong notion of
selective opening security. Our result holds in the (heuristic) ideal cipher model
for the underlying blockcipher. We thus recommend using modern blockciphers
like AES as they come closest to meeting such requirements.
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