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Abstract. Many practical lattice-based schemes are built upon the Ring-
SIS or Ring-LWE problems, which are problems that are based on the
presumed difficulty of finding low-weight solutions to linear equations
over polynomial rings Zq[x]/〈f〉. Our belief in the asymptotic computa-
tional hardness of these problems rests in part on the fact that there are
reduction showing that solving them is as hard as finding short vectors
in all lattices that correspond to ideals of the polynomial ring Z[x]/〈f〉.
These reductions, however, do not give us an indication as to the effect
that the polynomial f , which defines the ring, has on the average-case or
worst-case problems.

As of today, there haven’t been any weaknesses found in Ring-SIS or
Ring-LWE problems when one uses an f which leads to a meaningful
worst-case to average-case reduction, but there have been some recent
algorithms for related problems that heavily use the algebraic structures
of the underlying rings. It is thus conceivable that some rings could give
rise to more difficult instances of Ring-SIS and Ring-LWE than other
rings. A more ideal scenario would therefore be if there would be an
average-case problem, allowing for efficient cryptographic constructions,
that is based on the hardness of finding short vectors in ideals of Z[x]/〈f〉
for every f .

In this work, we show that the above may actually be possible. We con-
struct a digital signature scheme based (in the random oracle model) on
a simple adaptation of the Ring-SIS problem which is as hard to break
as worst-case problems in every f whose degree is bounded by the pa-
rameters of the scheme. Up to constant factors, our scheme is as efficient
as the highly practical schemes that work over the ring Z[x]/〈xn + 1〉.

1 Introduction

One of the attractive features of lattice cryptography is that one can construct
cryptographic primitives whose security is based on the hardness of worst-case
lattice problems [Ajt96]. More concretely, average-case problems such as SIS
and LWE are defined in such a way that an adversary who is able to solve
these problems could then be used to find short vectors in any lattice. While
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the worst-case to average-case reductions do not help us figure out the exact
parameter settings that make SIS and LWE hard, they definitely deserve the
credit for leading researchers to the right definitions of these problems.

Recent years have seen numerous cryptographic protocols constructed based
on SIS and LWE. These schemes, however, are not particularly efficient be-
cause SIS and LWE inherently give rise to key sizes and/or outputs which are
Õ(λ2) in the security parameter λ. For this reason, almost all of the practi-
cal lattice-based constructions are built upon the average-case problems Ring-
SIS and Ring-LWE. The algebraic structure underlying Ring-SIS and Ring-
LWE problems are polynomial rings of the form Zq[x]/〈f〉, and it was shown
in [PR06,LM06,SSTX09,LPR13] that solving Ring-SIS and Ring-LWE over this
ring implies finding short vectors in all ideals of Z[x]/〈f〉. Notice that these are
somewhat weaker statements than the proof for SIS and LWE because one needs
to first pick the ring Z[x]/〈f〉 where the worst-case problems are believed to be
hard.

As of today, there have not been any attacks on worst-case problems in any
ring, nor on the Ring-SIS or Ring-LWE problems in rings for which there exist
non-vacuous (i.e. the reduction is not from a problem that is easy) worst-case
to average-case reductions. For this reason, most proposals choose to work with

cyclotomic rings, such as Z[x]/〈x2k + 1〉, due to their particularly nice algebraic
structure for implementation purposes. Cyclotomics also have the feature that
the decision version of the Ring-LWE problem in these rings is hard [LPR13],
which makes them even more useful for cryptographic applications.

While the Ring-SIS and Ring-LWE problems remain hard, there have been
some recent works that were able to solve other problems in certain rings by tak-
ing advantage of the algebraic structure. The work of Cramer et al. [CDPR16],
which built on the approach of Campbell et al. [CGS14], showed that the log-
unit lattice of cyclotomic rings is efficiently decodable. When combined with a
polynomial-time quantum algorithm of Biasse and Song [BS16] (building upon
[EHKS14,CGS14]) for finding generators of principal ideals, one obtains a quan-

tum polynomial-time algorithm for finding a 2Õ(
√
n)-approximate shortest vector

problem in principal ideals of cyclotomic rings.

The simultaneous works of Albrecht et al. [ABD16] and Cheon et al. [CJL16]
exploited the sub-field structure of number fields to give sub-exponential algo-
rithms for the NTRU problem in which the secret polynomials are very small.
This is an approach that is very similar to an early idea mentioned in [GS02,
Section 6]. While it is interesting to note that none of these attacks say any-
thing about worst-case problems or average-case Ring-SIS and Ring-LWE, they
do point out that the choice ring can affect the hardness of problems. For this
reason, there have been proposals for using alternative rings (e.g. Bernstein et
al. [BCLvV16] suggested using rings Z[x]/〈xp − x − 1〉) which do not have the
algebraic structure exploited by the aforementioned algorithms. But in the ab-
sence of attacks on any of the current constructions, it is of course not clear
whether one is more secure than the other.
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1.1 Our Result

A more ideal situation would be if one could build efficient cryptographic schemes
that are simultaneously based on the hardness of average-case (and therefore
worst-case) problems in every ring. In this work we show that this indeed may
be possible. We construct a digital signature scheme which is up to constant
factors, in terms of running time and key/signature sizes, as efficient as the
most practical signature schemes [Lyu12,GLP12,DDLL13] (i.e. the key sizes,
running time, and output sizes are all Õ(λ)), and is based on the hardness of
the Ring-SIS problem in every ring Z[x]/〈f〉, with the obvious restriction that
the degree of f is bounded by the parameters of the scheme.

In the Ring-SIS problem over the ring Zq[x]/〈f〉, called f -SIS, one is given k
uniformly random polynomials a1, . . . ,ak and is asked to find elements z1, . . . , zk
with small coefficients such that

∑
aizi = 0 in the ring Zq[x]/〈f〉. A simple, yet

very important, observation is that the input to this problem only very loosely
depends on the polynomial f . In particular, for all f of the same degree, this
input has the exact same distribution.

If we then defined a problem over the ring Zq[x] that required finding a
combination of the ai such that

∑
aizi = 0, then these zi would also be a

solution to
∑

aizi = 0 mod f for any f . If the degree of f is larger than the
degree of zi, then as long as one of the zi is non-zero in Zq[x], it is also non-zero
in Zq[x]/〈f〉.

The intuition for building a digital signature scheme is to let the public key be
random polynomials a1, . . . ,ak in Zq[x] of bounded degree n−1, and t =

∑
aisi

where all operations are performed over Zq[x]. We would like to choose the si
such that their degree d is somewhat less than n, and also such that the function
f defined as f(s1, . . . , sk) =

∑
aisi is compressing. One can then adapt the

“Fiat-Shamir with Aborts” technique for Σ-protocols from [Lyu09,Lyu12] to
create a signature (z1, . . . , zk) that is independent of si and satisfies some linear
relation relating ai, t and the “commit” and “challenge” steps of the Σ-protocol.

It can be then shown that an adversary who can break the unforgeability
security property of the digital scheme can be used to extract polynomials with
small norms z1, . . . , zk and c that satisfy the equation

∑
aizi = tc over Zq[x].

We then show that a solution to this equation that satisfies certain conditions on
the coefficient sizes and degrees of polynomials zi, c, as well as the polynomials
si that were used to construct t, implies a solution to the f -SIS problem for any
f whose degree is between d + deg(c) and n.1 When combined with the worst-
case to average-case reduction from finding short vectors in ideals of Z[x]/〈f〉 to
the f -SIS problem from [LM06], this gives a reduction from worst-case lattice
problems in ideals of any ring Z[x]/〈f〉 to the hardness of breaking the signature
scheme.

1 The lower-bound d+deg(c) on the degree of f can be circumvented, but its presence
makes the proofs simpler. We also do not think that it’s particularly interesting to
extend the proofs for f of very small (compared to n) degree, because those problems
will be generally easier than problems over larger rings.
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A Note on the Definition of Length. It should be pointed out that the
quality of the worst-case to f -SIS reduction in [LM06] depends on f . If we define
the norms of elements in Zq[x]/〈f〉 by computing a standard norm on their coef-
ficients (e.g. the `∞-norm), then it is possible that a solution to f -SIS does not
lead to finding short vectors in the lattice. [LM06] defined the “expansion factor”
of f which determined how much coefficients of polynomial products could grow
when multiplied modulo f . For some f , this growth could be exponential, and
one would lose this factor in the reductions, thus making them vacuous. In later
works [PR07,LPR13], it was shown that using coefficient sizes is not the most
natural way to define the length of elements in Zq[x]/〈f〉. If one instead uses
the “canonical embedding” norm whose definition itself depends on f , then a
lot of the issues concerning the expansion factor disappear, and one can achieve
meaningful reductions for all polynomials f .

In this current work, though, we cannot use a definition of norm that depends
on f because there is no f in our average-case problem! We therefore need to use
the most natural definition for small elements that is independent of any ring.
For this, we go back to the definition that simply looks at the coefficients of
the polynomials. The reason that we believe that this is most natural is because
for many rings, a small coefficient norm implies a small norm in the canonical
embedding. Unfortunately, there are rings for which this does not hold true (these
are the ones with the large expansion factor), but it seems impossible to define
a norm that is independent of f in which products of small elements remain
small in Zq[x]/〈f〉 for all f . We do want to point out that all polynomials that
have been proposed for applications such as cyclotomics (of reasonable degree)
and others, such as xp − x− 1, have small expansion factors. In particular, any

polynomial of the form xn+
bn/2c∑
i=0

aix
i where ai are small, has a relatively small

expansion factor [LM06]. Thus the signature scheme in this paper is as hard
to break as finding short vectors all such rings Zq[x]/〈f〉, of which there are
exponentially many.

1.2 Discussion and Open Problems

While our scheme has keys and ciphertexts which are of size Õ(λ) in the security
parameter, just like in signature schemes based on the Ring-SIS and Ring-LWE
problems, the concrete instantiations are worse (see Figure 1) than those of the
most practical schemes. Compared to BLISS [DDLL13], the secret key is about
20 times larger, the public key 10 times, and the signature about 30 times.
We did not optimize our scheme using the tricks from [GLP12,DDLL13] such as
compressing the signature using Huffman codes and altering the random oracle to
allow us to output one less polynomial in the signature. A rough estimate shows
that these improvements would decrease our signature size by about 20%, which
would still not make it competitive with the best constructions. The biggest
contributor to the superiority of the current state-of-the-art schemes is that
they are based on Ring-LWE rather than Ring-SIS.

4



It was shown in [Lyu12] that by creating the public key for the signature
scheme based on LWE (or an inhomogeneous version of SIS where there is a
unique solution), one can reduce the key/signature sizes by about an order of
magnitude. There seems to be a major roadblock to getting a reduction from
such problems to those that work over the ring Zq[x], though. As we mentioned in
the previous section, one reason that we were able to give a reduction from f -SIS
to Ring-SIS over Zq[x] is because the input to f -SIS does not really depend on
f . In an inhomogeneous version of f -SIS, however, where one is given a1, . . . ,ak
and t =

∑
aisi ∈ Zq[x]/〈f〉, where t is not statistically-close to uniform in

Zq[x]/〈f〉, the value of t very much depends on f . Thus it is not clear to us how
to transform this into an instance that is at the same time independent from f ,
yet somehow retains pseudo-randomness.

In addition to being able to create more efficient signatures based on the
hardness of worst-case problems over all rings, getting such a reduction from
f -LWE would then allow for efficient constructions of encryption schemes and
a myriad of other primitives with the same hardness guarantees. We therefore
believe that finding such a reduction would be truly an outstanding result. A
slightly weaker, yet also very interesting achievement, would be to construct
schemes which are simultaneously as hard as problems over a few different types
of rings. The trivial solution would be to simply combine two schemes over two
different rings, so the question here is whether it is possible to get something
more efficient than the trivial construction.

Of a more theoretical nature is the direction of trying to understand the real
hardness of our new average case problems without relating them to Zq[x]/〈f〉.
The average-case problems that we define in this paper operate over the ring
Zq[x], so perhaps showing that they are as hard as solving lattice problems over
ideals in Z[x]/〈f〉 is not the most “natural” reduction. It would therefore be an
interesting problem if one could give a reduction to our average-case problem
from a different worst-case problem, perhaps more directly related to the ring
Zq[x].

1.3 Paper Organization

In Section 2 we introduce the notation and definitions that are used throughout
the paper. Section 3 presents the new average-case problems defined over the ring
Zq[x] and lemmas showing their relation to lattice problems over all polynomial
rings. In Section 4, we describe a signature scheme and prove its security based
on the hardness of our new average-case problems.

2 Preliminaries

2.1 Notation

Throughout the paper, R will denote the polynomial ring Zq[x]. We will also
assume that all polynomial operations occur in this ring (thus we will not write
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mod q, as it is implicit). Elements of this ring can be represented by polynomials

a =
∞∑
i=0

aix
i where ai ∈ {−b q2c, . . . , b

q−1
2 c}. For a polynomial a ∈ R with a finite

degree deg(a), we denote ‖a‖∞ to mean max
ai
|ai| and ‖a‖1 to be

deg(a)−1∑
i=0

|ai|.

We will write R<n to mean the set of all polynomials in R of degree less
than n, and R<ni to be polynomials a ∈ R<n with ‖a‖∞ ≤ i. For a polynomial
a ∈ R and a monic polynomial f of degree n, the expression a mod f denotes
the unique polynomial a′ in R<n for which there exists an r ∈ Zq[x] such that
a′ + rf = a.

There is a natural mapping between polynomial in Z[x] of degree n− 1 and
vectors in Zn that simply maps each coefficient of the polynomial to a vector
coordinate. We will make use of this mapping implicitly throughout the paper –
that is elements in Zn are simultaneously polynomials in R<n. If a1, . . . ,ak are
elements in Zn, then their concatenation (a1 | . . . | ak) is a vector in Zkn.

For a set S, we denote s
$← S to mean that s is chosen uniformly at random

from S. For a distribution D, we write s
$← D to mean that s is chosen according

to the distribution D.

2.2 Lattice Problems

Definition 2.1 (Approximate shortest vector problem.). Let Λ be a lat-
tice corresponding to an ideal in the polynomial ring Z[x]/〈f〉 and γ ≥ 1 be
some real. The f -SVPγ(Λ) problem asks to find an element v ∈ Λ such that
‖v‖∞ ≤ γ · min

w∈Λ\{0}
(‖w‖∞).

Definition 2.2 (Ring-SIS). The homogeneous f -SIS problem is defined as fol-

lows. An instance of the f -SISk,q,β problem consists of a1, . . . ,ak
$← Zq[x]/〈f〉.

A solution to the problem is k elements z1, . . . , zk such that ‖zi‖∞ ≤ β and

k∑
i=1

aizi = 0 mod f .

The main result of [LM06] was a connection between the hardness of the
f -SVPγ problem for all lattices in Z[x]/〈f〉 and the f -SISk,q,β problem. If the
length of elements is defined by the ‖ · ‖∞ function that simply looks at the
largest coefficient, then the quality of the reduction has a dependency on a
certain property of f that was called the “expansion factor”. This expansion
factor explains how much the coefficients of a polynomial in Z[x] grow when
reduced modulo f .

For the purposes of the theorem, we define the value θf as

θf = max
g∈Z[x],deg(g)≤3(deg(f)−1)

‖g mod f‖∞
‖g‖∞

.
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It was shown in [LM06] that for polynomials such as xn + 1 and
p−1∑
i=0

xi, the

value of θf is a small constant (3 and 6 respectively). The paper also showed
how to put bounds on the expansion factor of other polynomials. We direct the
interested reader to [LM06] for a further discussion of this topic.

Theorem 2.3. [LM06] For any monic, irreducible (over the integers) f and
q > 2θfβkn

1.5 log n, if there is a polynomial-time algorithm that solves the f -
SISk,q,β problem with some non-negligible probability, then there is a polynomial-
time algorithm that solves the f -SVPγ problem with γ = 8θfβkn log2 n for any
lattice Λ that corresponds to an ideal in Z[x]/〈f〉.

2.3 The Discrete Normal (Gaussian) Distribution over Zm

Definition 2.4. The continuous Normal distribution over Rm centered at v with

standard deviation σ is defined by the function ρmv,σ(x) =
(

1√
2πσ2

)m
e
−‖x−v‖2

2σ2

When v = 0, we will just write ρmσ (x). The discrete Normal distribution over
Zm is defined as follows:

Definition 2.5. The discrete Normal distribution over Zm centered at some
v ∈ Zm with standard deviation σ is defined as Dm

v,σ(x) = ρmv,σ(x)/ρmσ (Zm).

The below is a basic fact about the length of the discrete Gaussian distribu-
tion over Z.

Lemma 2.6. For any r > 0

Pr
z←D1

σ

[|z| > rσ] ≤ 2e−r
2/2.

Lemma 2.7 (Adapted from [Lyu12]). Let V be a subset of Zm in which all
elements have norms less than T , σ be defined as 11 · T , and h : V → R be a
probability distribution. Then the probability that the following algorithm
A:

1: v
$← h

2: z
$← Dm

v,σ

3: output (z,v) with probability min
(

Dmσ (z)
3·Dmv,σ(z)

, 1
)

4: if nothing was output, goto Step 1

terminates within 200 iterations is greater than 1 − 2−90 (the expected number
of iterations is 3), and conditioned on its termination, its distribution is within
statistical distance 2−95 of the distribution of the following algorithm
F :

1: v
$← h

2: z
$← Dm

σ

3: output (z,v)
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2.4 Digital Signatures

Definition 2.8. A signature scheme consists of a triplet of polynomial-time
(possibly probabilistic) algorithms (G,S, V ) such that for every pair of outputs
(s, v) of G(1n) and any n-bit message m,

Pr[V (v,m, S(s,m)) = 1] = 1

where the probability is taken over the randomness of algorithms S and V .

In the above definition, G is called the key-generation algorithm, S is the signing
algorithm, V is the verification algorithm, and s and v are, respectively, the
signing and verification keys.

Definition 2.9. A signature scheme (G,S, V ) is said to be secure if for every
polynomial-time (possibly randomized) forger F , the probability that after seeing
the public key and
{(µ1, S(s, µ1)), . . . , (µq, S(s, µq))} for any q messages µi of its choosing (where
q is polynomial in n), F can produce (µ 6= µi, σ) such that V (v, µ, σ) = 1, is
negligibly small. The probability is taken over the randomness of G, S, V , and
F .

A stronger notion of security, called strong unforgeability requires that in
addition to the above, a forger shouldn’t even be able to come up with a different
signature for a message whose signature he has already seen. The scheme in this
paper satisfies this stronger notion.

2.5 Auxiliary Lemmas

Lemma 2.10. Let a be any monic polynomial in Z[x] of degree n. If b is a
polynomial in Z[x] of degree m each of whose coefficients is chosen at random
modulo q, then the coefficients of c = a · b mod q corresponding to the terms
xn, . . . ,xm+n are jointly uniformly random modulo q.

Proof. If we write c = c0 + c1x + . . .+ cm+nxm+n, then the coefficient cn+m−j
for 0 ≤ j ≤ m is

cm+n−j =

j∑
i=0

an−i · bm−j+i = bm−j +

j∑
i=1

an−i · bm−j+i,

with the second equality being true because a is a monic polynomial.
From the above equality, is not hard to see that once we generate the co-

efficients bm−j through bm, we will have completely determined the coefficients
cm+n−j through cm+n of the product. We can now prove the claim of the lemma
by induction. The coefficient cm+n = bm, and is therefore uniformly random
modulo q. Now assume that we have already selected the coefficients bm−k
through bm, and therefore completely determined the coefficients of cm+n−j
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through cm+n, and they are jointly uniformly random modulo q. Once we select

the coefficient bm−j−1, we will have cm+n−j−1 = bm−j−1 +
j+1∑
i=1

an−i · bm−j−1+i.

Because the term bm−j−1 was not used to determine cm through cm+n−j , we
have

Pr [cm+n−j−1 = γ | cm, . . . , cm+n−j ]

= Pr

[
bm−j−1 = γ −

j+1∑
i=1

an−i · bm−j−1+i | cm, . . . , cm+n−j

]

= Pr

[
bm−j−1 = γ −

j+1∑
i=1

an−i · bm−j−1+i

]
= 1/q

ut

Lemma 2.11. Let h : X → Y be a deterministic function where X and Y are
finite sets and |X| ≥ 2λ|Y |. If x is chosen uniformly at random from X, then with
probability at least 1− 2−λ, there exists another x′ ∈ X such that h(x) = h(x′).

Proof. There are at most |Y | − 1 elements x in X for which there is no x′

such that h(x) = h(x′). Therefore the probability that a randomly chosen x has
a corresponding x′ for which h(x) = h(x′) is at least (|X| − |Y | + 1)/|X| =
1− |Y |/|X|+ 1/|X| > 1− 2−λ. ut

3 Ring-SIS over Zq[x]

We will now present several average-case problems that are defined over the
ring Zq[x] rather than Zq[x]/〈f〉. The first such problem simply asks for a linear
combination of the inputs that sum to 0 in Zq[x]. This is quite similar to the
f -SIS problem from Definition 2.2, except that there is no reduction modulo f
and we also limit the degrees of the solution polynomials.

Definition 3.1. The homogeneous R<n-SISk,d,β problem is defined as follows.

An instance of R<n-SISk,d,β consists of a1, . . . ,ak
$← R<n and a solution to

the problem is k elements z1, . . . , zk ∈ R<dβ such that at least one zi 6= 0 and
k∑
i=1

aizi = 0.

Notice that if deg(f) is n, then instances of the f -SISk,q,β and the R<n-
SISk,d,β have exactly the same distributions. Furthermore, it should be clear
that if z1, . . . , zk is a solution to the instance a1, . . . ,ak of the R<n-SISk,d,β
problem, then it is also a solution to the instance a1, . . . ,ak of the f -SISk,q,β
problem. The next simple lemma shows that one can also transform instance of
the f -SISk,q,β problem for d ≤ deg(f) ≤ n into instances of the R<n-SISk,d,β
problem such that solutions to the latter are still solutions to the former.
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Lemma 3.2. If there is an algorithm that can solve the R<n-SISk,d,β problem
in time t with probability ε, then there is an algorithm that can solve f -SISk,q,β
problem in time t+ poly(n) with probability ε as long as d ≤ deg(f) ≤ n.

Proof. Given a1, . . . ,ak that form an instance of the f -SISk,q,β , we choose poly-
nomials r1, . . . , rk ∈ R<n−deg(f) and create a′i ← ai + f · ri. If we write a′i =
n−1∑
j=0

ajx
j , then Lemma 2.10 states that the coefficients adeg(f) through an−1 are

jointly uniformly random modulo q (because they are completely determined by
f · ri). And since all the ai are uniformly random in R<deg(f), we have that all
of the a′i = ai + f · ri are uniformly random in R<n.

We feed the instance a′1, . . . ,a
′
k to the R<n-SISk,d,β oracle. If he returns a

solution z1 . . . , zk ∈ R<dβ such that
k∑
i=1

a′izi = 0, then we claim that z1, . . . , zk is

also a solution to the f -SISk,q,β problem. First observe that

0 =

k∑
i=1

a′izi =

k∑
i=1

(ai + rif)zi =

k∑
i=1

aizi +

k∑
i=1

rifzi =

k∑
i=1

aizi mod f .

Furthermore, because deg(zi) < d ≤ deg(f), we have that zi = zi mod f . Thus
if at least one of the zi is non-zero, so is one of the zi mod f . ut

We next define an approximate inhomogeneous version of the Ring-SIS prob-
lem over Zq[x]. The exact reasoning for the particular definition is due to the
particularities of the signature scheme that we will be constructing in the next
section. Intuitively, the inhomogeneous version of Ring-SIS should ask to find a
solution (z1, . . . , zk) that satisfies

∑
aizi = t. In our definition below, we addi-

tionally specify the distribution that the input t should have, and also allow an
approximate solution to this equation – meaning that the sum

∑
aizi does not

to equal exactly t, but could equal to tc for some element c ∈ Zq[x] with a small
`1 norm.

Definition 3.3. We define the approximate inhomogeneous Ring-SIS problem
as follows. An instance of the R<n-SISk,d1,d2,s,c,β problem consists of polynomi-

als a1, . . . ,ak
$← R<n and a t =

k∑
i=1

aisi where si
$← R<d1s . A solution to the

problem is k elements z1, . . . , zk ∈ R<d2β and a c ∈ R<d2−d1+1 with 0 < ‖c‖1 ≤ c
such that

k∑
i=1

aizi = tc.

The next lemma relates the hardness of solving the inhomogeneous Ring-
SIS problem to the homogeneous one. We show that under certain conditions,
solving the particular version of the inhomogeneous problem implies being able
to solve the homogeneous one.

Lemma 3.4. Suppose that the following relationships are satisfied:
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1. d1 < d2 ≤ n.

2. s > 2
λ
kd1
−1 · q

n+d1
kd1

3. sc < q/4

If there is an algorithm that solves the R<n-SISk,d1,d2,s,c,β problem in time t with
probability ε, there is an algorithm that solves the R<n-SISk,d2,β+sc problem with
probability at least 1

2 · (ε− 2−λ) in time poly(n) + t.

Proof. Given an instance a1, . . . ,ak of an R<n-SISk,d2,β+sc problem, we select

s1, . . . , sk
$← R<d1s and set t←

k∑
i=1

aisi. We give the instance a1, . . . ,ak, t to the

oracle who can solve R<n-SISk,d1,d2,s,c,β .
Suppose the oracle solves the problem and returns k elements z1, . . . , zk ∈

R<d2β and a c ∈ R<d2−d1+1 with ‖c‖1 ≤ c such that

k∑
i=1

aizi = tc = c

k∑
i=1

aisi,

which implies that
k∑
i=1

ai(zi − sic) = 0.

Note that deg(zi − sic) < d2 and

‖zi − sic‖∞ ≤ ‖zi‖∞ + ‖sic‖∞ ≤ β + ‖si‖∞ · ‖c‖1 ≤ β + sc.

Thus if for some i, zi − sic 6= 0, we have a solution for R<n-SISk,d,β+sc. If
we consider the function f : (R<d1s )k → R/<n+d1−1 defined as f(s1, · · · , sk) =
k∑
i=1

a′isi, the domain size of this function is (2s+ 1)kd1 , while the range is of size

qn+d1−1. Because we set s > 2λ/(kd1)−1 · q(n+d1−1)/(kd1), the size of the domain
is greater than 2λ ·qn+d1−1. By Lemma 2.11, there is probability at least 1−2−λ

that there exists another s′1, . . . , s
′
k ∈ R<d1s such that

t =

k∑
i=1

a′isi =

k∑
i=1

a′is
′
i.

Since it is perfectly indistinguishable whether s1, . . . , sk or s′1, . . . , s
′
k were used in

creating t (because both of them have the same posterior probability of having
been chosen), the probability of the oracle outputting z1, . . . , zk, c such that
zi − sic mod f = 0 is exactly the same if t were generated as in the reduction,
but then after the adversary produced his output, the preimage of t was chosen
at random among all the valid choices. We will now show that zi − sic can only
equal 0 for all i for at most one of these choices.

If (s1, . . . , sk) 6= (s′1, . . . , s
′
k), then there should be at least one si 6= s′i. For

this i, suppose that zi − sic = 0 = zi − s′ic. This implies that (si − s′i)c = 0.

11



Since Zq[x] is an integral domain, this can only happen if either c = 0 or if
si = s′i. This is a contradiction. Therefore with probability at least 1/2, some
zi − sic 6= 0.

ut

4 The Signature Scheme

We now formally describe our scheme via secret key generation, public key gen-
eration, signing, and verification algorithms.

The fixed, public parameters in our scheme are stated below. The values
n, k, q, s, d1, d2, c are intuitively related to the parametrization of the R<n-SIS
problem, with the standard deviation σ being related to the parameter β. We
furthermore define a cryptographic function H whose range is the set C which
consists of bounded-degree polynomials with small `1 norms.

Fixed parameters:

– Positive integers n, k, q, s, d1, d2, c, σ = 11sc ·
√
d2k

– Ring R = Zq[x]
– Set C = {c ∈ R<d2−d1+1

1 with ‖c‖1 ≤ c}
– Cryptographic hash function H : {0, 1}∗ → C

In Figure 1, we give some sample parameters with which our scheme can be
instantiated. For this, we use the reduction from breaking the signature scheme to
the f -SIS problem that is given in the next section. In that section we show that
breaking the scheme implies solving the f -SISk,q,β problem for β = 2sc + 10σ.
Even though there is a reduction from every f whose degree is between d2 and
n, we instantiate the security based on the hardness of the f -SIS problem for
f whose degree is close to n. Of course if one wants to be more conservative,
one could set the parameters so that the scheme is even secure in practice for
polynomials whose degrees are closer to d2.

To set the concrete parameters, we use the standard notion of the Hermite
factor defined in [GN08] and the explanation for how to approximate it for the
SIS problem given in [MR08].

The key generation algorithm generates a1, . . . ,ak
$← R<n and s1, . . . , sk

$←

R<d1s , and then outputs (a1, . . . ,ak, t =
k∑
i=1

aisi) as the public key. This is, in

fact, an instance of the inhomogeneous R<n-SIS problem from Definition 3.3.

To generate a signature of µ, the signer selects “masking” variables yi from
a particular distribution, computes c = H(

∑
aiyi, µ), and then creates zi =

sic + yi. By the way the parameters were set, each zi is in R<d2 . Thus the
concatenation of the k vectors z = (z1 | . . . |zk) can be thought of as a vec-
tor in Zkd2 . If we similarly define the vector s = (s1c | . . . , skc) ∈ Zkd2 , then

12



n 1459

k 6

q ≈ 230

s 1535

d1 1111

d2 1285

c 36

σ ≈ 225.7

secret key size 8.8 KB

public key size 9.6 KB

signature size 27 KB

Hermite factor 1.005

Fig. 1. Sample parameters for the Signature Scheme

Key Generation:

1. Generate a1, . . . ,ak
$← R<n

2. Generate s1, . . . , sk
$← R<d1s

3. Set t←
k∑
i=1

aisi

4. Public Key ← (a1, . . . ,ak, t), Secret Key ← (s1, . . . , sk)

we can see that the vector z is distributed according to the discrete Gaussian
distribution Dkd2

s,σ . To get rid of the dependence on s, we use the rejection sam-
pling procedure from [Lyu12] by running the RejectionSample algorithm. By the
way the parameters are set, there is a 1/3 probability that the signature will be
output, and a 2/3 chance that the signing procedure will need to be restarted.
After some (z1, . . . , zk) eventually passes the rejection sampling procedure, its
distribution will be exactly Dkd2

σ .

Because the distribution is being sampled from Zkn, which is an orthogonal
lattice, each coefficient of zi is distributed according to D1

σ. Thus, by Lemma
2.6, the probability that some coefficient is larger than 5σ in absolute value is
less than 2e−25/2 < 2−17. For simplicity, we would like to make sure that all zi
are small, and so we check that each of their coefficients is less than 5σ. The
probability that all kd2 positions are less than 5σ is at least 1 − kd2 · 2−17. In
our sample instantiation, kd2 < 213, and thus the probability that this check is
passed is greater than 15/16. So with probabilty at most 1/16, the procedure
gets restarted. The signing algorithm finally outputs (z1, . . . , zk, c).

The verification algorithm looks at the signature (z1, . . . , zk, c) and accepts if

and only if all the coefficients of the zi are less than 5σ and c = H

(
k∑
i=1

aizi − tc, µ

)
.
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Sign(µ, (a1, . . . ,ak, t), (s1, . . . , sk)):

1. Generate y1, . . . ,yk ∈ R<d2 such that yi ∼ Dd2
σ

2. Set c = H

(
k∑
i=1

aiyi, µ

)
3. For i = 1 to k, set zi = sic + yi
4. b← RejectionSample(z1, . . . , zk, s1, . . . , sk, c, σ, d2)
5. If b = 0, then goto 1
6. If for some i, ‖zi‖∞ > 5σ, then goto 1
7. Output (z1, . . . , zk, c)

RejectionSample(z1, . . . , zk, s1, . . . , sk, c, σ, d2):

1. Let z← (z1 | . . . | zk) ∈ Zkd2
2. Let s← (s1c | . . . | skc) ∈ Zkd2
3. With probability Dkd2

σ (z)/(3 ·Dkd2
s,σ (z)), output 1. Else output 0.

Verify((a1, . . . ,ak, t), (z1, . . . , zk, c)):
1. If for some i, deg(zi) ≥ d2 or ‖zi‖∞ > 5σ, then Reject

2. If c 6= H

(
k∑
i=1

aizi − tc, µ

)
, then Reject

3. Accept

4.1 Security

The main result of this section is a reduction from solving theR<n-SISk,d2,2sc+10σ

problem to forging the signature scheme. We first show how one can simulate
the signing algorithm without knowing the secret key s1, . . . , sk by programming
the random oracle (Lemma 4.1).

We then show in Theorem 4.2 that an adversary who breaks the signature
scheme that uses the signing algorithm from Lemma 4.1 can be used to solve
either the R<n-SIS problem from Definition 3.1 or the one from Definition 3.3.
By Lemma 3.4, this implies that the adversary can be used to solve the problem
from Definition 3.1, and therefore any instance of the f -SIS problem for f of
degree between d2 and n. The latter then allows one to solve worst-case lattice
problems in the ring Z[x]/〈f〉.

Lemma 4.1. Suppose that the random oracle H is already programmed on v
values. Then the statistical distance between the output of the signing procedure
and the following Hybrid signing algorithm, which does not take any secret keys
si as inputs, is at most 2−95 + v(

√
2πσ − 1)−d2

HybridSign(µ, (a1, . . . ,ak, t))

1. c
$← C

14



2. Generate z1, . . . , zk ∈ R<d2 such that zi ∼ Dd2
σ

3. If for some i, ‖zi‖∞ > 5σ, then goto 1

4. Program c = H

(
k∑
i=1

aizi − tc, µ

)
5. Output (z1, . . . , zk, c)

Proof. We first define another intermediate signing hybrid algorithm named
HybridSign′.

HybridSign′(µ, (a1, . . . ,ak, t), (s1, . . . , sk))

1. Generate y1, . . . ,yk ∈ R<d2 such that yi ∼ Dd2
σ

2. c
$← C

3. For i = 1 to k, set zi = sic + yi
4. b← RejectionSample(z1, . . . , zk, s1, . . . , sk, c, σ, d2),
5. if b = 0, then goto 1
6. If for some i, ‖zi‖∞ > 5σ, then goto 1

7. Program c = H

(
k∑
i=1

aizi − tc, µ

)
8. Output (z1, . . . , zk, c)

The difference between the real signing procedure and HybridSign′ is that the
value of

c = H

(
k∑
i=1

aizi − tc, µ

)
= H

(
k∑
i=1

aiyi, µ

)
gets set uniformly at random in HybridSign′, whereas in the real signature

scheme, H would first check whether H was already evaluated on

(
k∑
i=1

aiyi, µ

)
and only assign it a random value if it wasn’t. Therefore HybridSign′ will differ

from the real scheme in the case that the value of
k∑
i=1

aiyi collides with one of

the already-queried values.
For any w,

Pr
yi

$←Dd2σ

[∑
i

aiyi = w

]
≤ Pr

z1
$←Dd2σ

az1 =

w −
∑
i6=1

aiyi

 < (
√

2πσ − 1)−d2 ,

where the last inequality holds because there is at most one possible z1 that
satisfies this equation (because Zq[x] is an integral domain) and because the
likeliest element in the discrete Gaussian distribution is 0 which has probability
less than (

√
2πσ−1)−n. Thus if there were already v values of the random oracle

that were set, there is less than a v · (
√

2πσ− 1)−d2 probability that there would
be a collision. In our sample instantiation, for example, σ is approximately 225

and d2 > 1200, and so this probability is extremely small.
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We now compare HybridSign′ with Hybrid 2. Lemma 2.7 states that the
distribution of the eventual value of (z1, . . . , zk, c) after the first 5 steps of
HybridSign′ is within statistical distance 2−95 of the distribution of (z1, . . . , zk, c)
after two steps of HybridSign. Since the rest of the steps in both hybrids is iden-
tical, their statistical distance is at most 2−95. Thus the statistical distance of
the distributions of the output of the real signing algorithm and HybridSign is
2−95 + (

√
2πσ − 1)−d2 . ut

Theorem 4.2. Suppose there exists an adversary who makes a total of t queries
to the Signing hybrid in Lemma 4.1 and the random oracle H during his attack
and succeeds in forging with probability δ. Then there is an algorithm with the
same time complexity that solves either the R<n-SISk,d1,d2,s,2c,10σ problem or
the R<n-SISk,d2,10σ problem with probability at least

1

2
·
(
δ − 1

|C|

)(
δ − 1/|C|

t
− 1

|C|

)
.

Proof. Let (a1, . . . ,ak, t) be an instance of the R<n-SISk,d1,d2,s,2c,10σ problem
and (a′1, . . . ,a

′
k) be an instance of the R<n-SISk,d2,10σ problem. If we choose

s′1, . . . , s
′
k

$← R<nd1 and compute t′ =
∑

a′is
′
i, then the distribution of (a1, . . . ,ak, t)

is exactly the same as that of (a′1, . . . ,a
′
k, t
′). The simulator then chooses one

of those two sets at random and declares it as the public key of the signature
scheme. If the adversary produces a forgery on a new message, then we will
show that he will solve an instance of the R<n-SISk,d1,d2,s,2c,10σ problem. If he
produces a signature of a message he has already seen, then he will solve the
R<n-SISk,d2,10σ problem. The simulator’s hope is therefore that if he gives the
adversary the instance (a1, . . . ,ak, t), the adversary will forge a signature on a
new message, whereas if the simulator gives (a′1, . . . ,a

′
k, t
′), the adversary will

forge on a message he has already seen. It’s easy to see that this lowers the
success probability of the simulator by a factor of 2.

For simplicity, we will now refer to the public key as (a1, . . . ,ak, t). During
the attack, the adversary may interact with the Simulator in one of three ways.
He may ask for a signature of a message µ′ for which the Simulator will use
Hybrid 2, or query the hash function H on any element in {0, 1}∗, or produce
a forgery µ. If the adversary asks for a signature of µ, the Simulator simply
returns the output of Hybrid 2. If the adversary queries H on some value, then
the Simulator first checks if that value was already assigned and returns it, or
otherwise just chooses a random element c ∈ C and programs it to be the output
of H on the adversary’s input.

If the adversary comes up with a signature (z1, . . . , zk, c) for a message µ,

then this signature satisfies the equality c = H

(
k∑
i=1

aizi − tc, µ

)
. If the value

for H

(
k∑
i=1

aizi − tc, µ

)
has never been programmed during a signing query or

a random oracle query, then the adversary has only a 1/|C| chance of guessing
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the c that equals to H

(
k∑
i=1

aizi − tc, µ

)
. So we will assume that the value for

H

(
k∑
i=1

aizi − tc, µ

)
has already been set.

We will first handle the case where it has been set during a signing query. In
this case, the simulator already gave a signature (z′1, . . . , z

′
k, c) for the message

µ. In order for (z1, . . . , zk, c) to be a valid forgery for µ, some zi must be different
from z′i. The adversary’s forgery therefore implies that

k∑
i=1

aizi − tc =

k∑
i=1

aiz
′
i − tc,

and therefore
k∑
i=1

ai(zi − z′i) = 0

and at least for one i, zi 6= z′i. Since all ‖zi− z′i‖∞ ≤ 10σ and deg(zi− z′i) ≤ d2,
they form a solution to the R<n-SISn,q,d2,10σ problem.

We now move to the case where the adversary constructs a signature for
a message he has not yet seen. If the adversary comes up with a valid forgery

(z1, . . . , zk, c) for a new message µ, then ‖zi‖∞ ≤ 5σ and c = H

(
k∑
i=1

aizi − tc, µ

)
.

As before, if the adversary never queried H on

(
k∑
i=1

aizi − tc, µ

)
, then he only

has at most a 1/|C| chance of producing such a forgery. Thus let’s assume that
the adversary did make such a “winning” query. We then “rewind” the adversary
by rerunning him with the same random coins and responding to all the random
oracle queries (both his and the ones used in the signing) the same way as before
until the “winning” query. Starting from the “winning” query, however, we se-
lect uniformly random responses to all random oracle queries. Let c′ be the new
response to the “winning” query. By the General Forking Lemma of Bellare and
Neven [BN06, Lemma 1], the probability that c 6= c′ and the adversary again
forges on the “winning” query is at least(

δ − 1

|C|

)(
δ − 1/|C|

t
− 1

|C|

)
.

With the above probability, then, the Simulator obtains another equation c′ =

H

(
k∑
i=1

aiz
′
i − tc′, µ

)
where

k∑
i=1

aiz
′
i − tc′ =

k∑
i=1

aizi − tc because the query was

the same in both runs of the adversary. Therefore

k∑
i=1

ai(z− z′i) = t(c− c′)

and so (z1 − z′1, . . . , zk − z′k, c − c′) is a solution to the instance (a1, . . . ,ak, t)
of the R<n-SISk,d1,d2,s,2c,10σ problem. ut
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Putting Theorem 4.2, Lemma 4.1, and Lemma 3.4 together, we see that if
the signature scheme parameters satisfy the pre-conditions on the public param-
eters in Lemma 3.4, then an adversary who breaks the signature scheme either
solves the R<n-SISk,d2,10σ problem or the R<n-SISk,d2,2sc+10σ problem (the lat-
ter is a strictly weaker problem). This implies that an adversary who breaks the
signature scheme can be used to break the f -SISk,q,2sc+10σ problem for any
polynomial f of degree between d2 and n. By Theorem 2.3, this in turn gives a
connection between breaking the signature scheme and finding short vectors for
any lattice in any polynomial ring Z[x]/〈f〉 where the degree of f is between d2
and n.
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[GLP12] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical
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