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Abstract. A recent line of works – initiated by Gordon, Katz and Vaikun-
tanathan (Asiacrypt 2010) – gave lattice-based constructions allowing
users to authenticate while remaining hidden in a crowd. Despite five
years of efforts, known constructions are still limited to static sets of
users, which cannot be dynamically updated. This work provides new
tools enabling the design of anonymous authentication systems whereby
new users can join the system at any time.

Our first contribution is a signature scheme with efficient protocols,
which allows users to obtain a signature on a committed value and
subsequently prove knowledge of a signature on a committed message.
This construction is well-suited to the design of anonymous credentials
and group signatures. It indeed provides the first lattice-based group
signature supporting dynamically growing populations of users.

As a critical component of our group signature, we provide a simple
joining mechanism of introducing new group members using our signature
scheme. This technique is combined with zero-knowledge arguments
allowing registered group members to prove knowledge of a secret short
vector of which the corresponding public syndrome was certified by
the group manager. These tools provide similar advantages to those of
structure-preserving signatures in the realm of bilinear groups. Namely,
they allow group members to generate their own public key without
having to prove knowledge of the underlying secret key. This results in a
two-message joining protocol supporting concurrent enrollments, which
can be used in other settings such as group encryption.

Our zero-knowledge arguments are presented in a unified framework where:
(i) The involved statements reduce to arguing possession of a {−1, 0, 1}-
vector x with a particular structure and satisfying P · x = v mod q for
some public matrix P and vector v; (ii) The reduced statements can
be handled using permuting techniques for Stern-like protocols. Our
framework can serve as a blueprint for proving many other relations in
lattice-based cryptography.

Keywords. Lattice-based cryptography, anonymity, signatures with effi-
cient protocols, dynamic group signatures, anonymous credentials.



1 Introduction

Lattice-based cryptography is currently emerging as a promising alternative
to traditional public-key techniques. During the last decade, it has received a
permanent interest due to its numerous advantages. Not only does it seemingly
resist quantum attacks, it also provides a better asymptotic efficiency than its
relatives based on conventional number theory. While enabling many advanced
functionalities [41,44,45], lattice-based primitives tend to interact with zero-
knowledge proofs [43] less smoothly than their counterparts in abelian groups
endowed with a bilinear map (see, e.g., [18,31,38,49,2]) or groups of hidden or-
der [6,29,30,26]. Arguably, this partially arises from the fact that lattices have
far less algebraic structure than, e.g., pairing-friendly cyclic groups. It is not
surprising that the most efficient zero-knowledge proofs for lattice-related lan-
guages [15] take advantage of the extra algebraic structure available in the ring
setting [64]. A consequence of the scarcity of truly efficient zero-knowledge proofs
in the lattice setting is that, in the context of anonymity and privacy-preserving
protocols, lattice-based cryptography has undergone significantly slower devel-
opment than in other areas like functional encryption [44,45]. While natural
realizations of ring signatures [70] showed up promptly [52,22] after the seminal
work of Gentry, Peikert and Vaikuntanathan (GPV) [42], viable constructions
of lattice-based group signatures remained lacking until the work of Gordon,
Katz and Vaikuntanathan [46] in 2010. Despite recent advances [57,14,66,62],
privacy-preserving primitives remain substantially less practical and powerful in
terms of functionalities than their siblings based on traditional number theoretic
problems [6,18,38,55] for which solutions even exist outside the random oracle
model [20,21,48,10]. For example, we still have no convenient realization of group
signature supporting dynamic groups [13,55] or anonymous credentials [34,28].

In this paper, we address the latter two problems by first proposing a lattice-
based signature with efficient protocols in the fashion of Camenisch and Lysyan-
skaya [30]. To ease its use in the design of dynamic group signatures, we introduce
a zero-knowledge argument system that allows a user to prove knowledge of a
signature on a public key for which the user knows the underlying secret key.

Related Work. Anonymous credentials were first suggested by Chaum [34]
and efficiently realized by Camenisch and Lysyanskaya [28,30]. They involve
one or more credential issuer(s) and a set of users who have a long-term secret
key which constitutes their digital identity and pseudonyms that can be seen
as commitments to their secret key. Users can dynamically obtain credentials
from an issuer that only knows users’ pseudonyms and obliviously certifies users’
secret keys as well as (optionally) a set of attributes. Later on, users can make
themselves known to verifiers under a different pseudonym and demonstrate
possession of the issuer’s signature on their secret key without revealing neither
the signature nor the key. Anonymous credentials typically consist of a protocol
whereby the user obtains the issuer’s signature on a committed message, another
protocol for proving that two commitments open to the same value (which allows

2



proving that the same secret underlies two distinct pseudonyms) and a protocol
for proving possession of a secret message-signature pair.

The first efficient constructions were given by Camenisch and Lysyanskaya
under the Strong RSA assumption [28,30] or using bilinear groups [31]. Other
solutions were subsequently given with additional useful properties such as non-
interactivity [10], delegatability [9] or support for efficient attributes [24] (see [27]
and references therein). Anonymous credentials with attributes are often obtained
by having the issuer obliviously sign a multi-block message (m1, . . . ,mN ), where
one block is the secret key while other blocks contain public or private attributes.
Note that, for the sake of keeping the scheme compatible with zero-knowledge
proofs, the blocks (m1, . . . ,mN ) cannot be simply hashed before getting signed
using a ordinary, single-block signature.

Group signatures are a central anonymity primitive, introduced by Chaum
and van Heyst [35] in 1991, which allows members of a group managed by some
authority to sign messages in the name of the entire group. At the same time,
users remain accountable for the messages they sign since an opening authority
can identify them if they misbehave.

Ateniese, Camenisch, Joye and Tsudik [6] provided the first scalable con-
struction meeting the security requirements that can be intuitively expected
from the primitive, although clean security notions were not available yet at
that time. Bellare, Micciancio and Warinschi [11] filled this gap by providing
suitable security notions for static groups, which were subsequently extended to
the dynamic setting3 by Kiayias and Yung [55] and Bellare, Shi and Zhang [13].
In these models, efficient schemes have been put forth in the random oracle
model [55,38] (the ROM) and in the standard model [48,2,1].

Lattice-based group signatures were put forth for the first time by Gordon,
Katz and Vaikuntanathan [46] whose solution had linear-size signatures in the
number of group members. Camenisch, Neven and Rückert [32] extended [46] so
as to achieve anonymity in the strongest sense. Laguillaumie et al. [56] decreased
the signature length to be logarithmic in the number Ngs of group members.
While asymptotically shorter, their signatures remained space-consuming as,
analogously to the Boyen-Waters group signature [20], their scheme encrypts
each bit of the signer’s identity individually. Simpler and more efficient solutions
with O(logN) signature size were given by Nguyen, Zhang and Zhang [66] and
Ling, Nguyen and Wang [62]. In particular, the latter scheme [62] achieves signif-
icantly smaller signatures by encrypting all bits of the signer’s identity at once.
Benhamouda et al. [14] described a hybrid group signature that simultaneously
relies on lattice assumptions (in the ring setting) and discrete-logarithm-related
assumptions. Recently, Libert, Ling, Nguyen and Wang [60] obtained substantial
efficiency improvements via a construction based on Merkle trees which elim-
inates the need for GPV trapdoors [42]. For the time being, all known group
signatures are designed for static groups and analyzed in the model of Bellare,

3 By “dynamic setting”, we refer to a scenario where new group members can register
at any time but, analogously to [13,55], we do not consider the orthogonal problem
of user revocation here.
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Micciancio and Warinschi [11], where no new group member can be introduced
after the setup phase. This is somewhat unfortunate given that, in most appli-
cations of group signatures (e.g., protecting the privacy of commuters in public
transportation), the dynamicity property is arguably what we need. To date,
it remains an important open problem to design a lattice-based system that
supports dynamically growing population of users in the models of [13,55].

Our Contributions. Our first result is a lattice-based signature with efficient
protocols for multi-block messages. Namely, we provide a way for a user to obtain
a signature on a committed N -block message (m1, . . . ,mN ) as well as a protocol
for proving possession of a valid message-signature pair. The signature and its
companion protocols can serve as a building block for lattice-based anonymous
credentials and can potentially find applications in other privacy-preserving pro-
tocols (e.g., [25]) based on lattice assumptions.

The main application that we consider in this paper is the design of a lattice-
based group signature scheme for dynamic groups. We prove the security of our
system in the random oracle model [12] under the Short Integer Solution (SIS)
and Learning With Errors (LWE) assumptions. For security parameter λ and for

groups of up to Ngs members, the scheme features public key size Õ(λ2) · logNgs,

user’s secret key size Õ(λ), and signature size Õ(λ) · logNgs. As exhibited in
Table 1, our scheme achieves a level of efficiency comparable to recent proposals
based on standard (i.e., non-ideal) lattices [56,66,62,60] in the static setting [11].
In particular, the cost of moving to dynamic groups is quite reasonable: while
using the scheme from [62] as a building block, our construction only lengthens
the signature size by a (small) constant factor.

Scheme LLLS [56] NZZ [66] LNW [62] LLNW [60] Ours

Group PK Õ(λ2) · logNgs Õ(λ2) Õ(λ2) · logNgs Õ(λ2) Õ(λ2) · logNgs

User’s SK Õ(λ2) Õ(λ2) Õ(λ) Õ(λ) · logNgs Õ(λ)

Signature Õ(λ) · logNgs Õ(λ+log2Ngs) Õ(λ) · logNgs Õ(λ) · logNgs Õ(λ) · logNgs

Table 1. Efficiency comparison among recent lattice-based group signatures for static
groups and our dynamic scheme. The evaluation is done with respect to 2 governing
parameters: security parameter λ and the maximum expected group size Ngs. We do
not include the earlier schemes [46,32] that have signature size Õ(λ2) ·Ngs.

As a stepping stone in the design of our dynamic group signature, we also
develop a zero-knowledge argument system allowing a group member to prove
knowledge of a secret key (made of a short Gaussian vector) and a member-
ship certificate issued by the group manager on the corresponding public key.
Analogously to structure-preserving signatures [2], our signature scheme and
zero-knowledge arguments make it possible to sign public keys without hashing
them while remaining oblivious of the underlying secret key. They thus enable
a round-optimal dynamic joining protocol – which allows the group manager
to introduce new group members by issuing a membership certificate on their
public key – which does not require any proof of knowledge on behalf of the
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prospective user. As a result, the interaction is minimal: only one message is sent
in each direction between the prospective user and the group manager.4 Besides
being the first lattice-based group signature for dynamic groups, our scheme
thus remains secure in the setting advocated by Kiayias and Yung [54], where
many users want to join the system at the same time and concurrently interact
with the group manager. We believe that, analogously to structure-preserving
signatures [2,1], the combination of our signature scheme and zero-knowledge
arguments can serve as a building blocks for other primitives, including group
encryption [53] or adaptive oblivious transfer [47].

Our Techniques. Our signature scheme with efficient protocols builds on
the SIS-based signature of Böhl et al. [16], which is itself a variant of Boyen’s
signature [19]. Recall that the latter scheme involves a public key containing
matrices A,A0, . . . ,A` ∈ Zn×mq and signs an `-bit message m ∈ {0, 1}` by

computing a short v ∈ Z2m such that [A | A0 +
∑`
j=1 m[i]Aj ] · v = 0n mod q.

The variant proposed by Böhl et al. [16] only uses a constant number of matrices
A,A0,A1 ∈ Zn×mq . Each signature is associated with a single-use tag tag (which
is only used in one signing query in the proof) and the public key involves an
extra matrix D ∈ Zn×mq and a vector u ∈ Znq . A message Msg is signed by first
applying a chameleon hash function h = CMHash(Msg, s) ∈ {0, 1}m and signing h
by computing a short v ∈ Zm such that [A | A0 + tag ·A1] ·v = u + D ·h mod q.

Our scheme extends [16] – modulo the use of a larger number of matrices
({Aj}`j=0,D, {D}Nk=0) – so that an N -block message (m1, . . . ,mN ) ∈ ({0, 1}L)N ,

for some L ∈ N, is signed by outputting a tag τ ∈ {0, 1}` and a short v ∈ Z2m

such that [A | A0 +
∑`
j=1 τ [j] ·Aj ] · v = u + D · CMHash(m1, . . . ,mN , s), where

the chameleon hash function computes cM = D0 · s +
∑N
k=1 Dk ·mk mod q, for

some short vector s, before re-encoding cM so as to enable multiplication by D.
In order to obtain a signature scheme akin to the one of Camenisch and

Lysyanskaya [30], our idea is to have the tag τ ∈ {0, 1}` play the same role as the
prime exponent in Strong-RSA-based schemes [30]. In the security proof of [16],
we are faced with two situations: either the adversary produces a signature on
a fresh tag τ?, or it recycles a tag τ (i) used by the signing oracle for a new,
un-signed message (m?1, . . . ,m

?
N ). In the former case, the proof can proceed as in

Boyen’s proof [19]. In the latter case, the reduction must guess upfront which

tag τ (i†) the adversary will choose to re-use and find a way to properly answer
the i†-th signing query without using the vanished trapdoor (for other queries,
the Agrawal et al. technique [3] applies to compute a suitable v using a trapdoor
hidden in {Aj}`j=0). Böhl et al. [16] solve this problem by “programming” the
vector u ∈ Znq in a special way and achieve full security using chameleon hashing.

To adapt this idea in the context of signatures with efficient protocols, we
have to overcome several difficulties. The first one is to map cM back in the
domain of the chameleon hash function while preserving the compatibility with

4 Note that each signature still requires the user to prove knowledge of his secret key.
However, this is not a problem in concurrent settings as the argument of knowledge
is made non-interactive via the Fiat-Shamir heuristic.
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zero-knowledge proofs. To solve this problem, we extend a technique used in [60]
in order to build a “zero-knowledge-friendly” chameleon hash function. This
function hashes Msg = (m1, . . . ,mN ) by outputting the coordinate-wise binary

decomposition w of D0 · s +
∑N
k=1 Dk ·mk. If we define the “powers-of-2” matrix

H = I⊗
[
1 | 2 | . . . | 2dlog qe], then we can prove that w = CMHash(m1, . . . ,mN , s)

by demonstrating the knowledge of short vectors (m1, . . . ,mN , s,w) such that

H ·w = D0 · s +
∑N
k=1 Dk ·mk mod q, which boils down to arguing knowledge

of a solution to the ISIS problem [61].
The second problem is to prove knowledge of (τ,v, s) and (m1, . . . ,mN )

satisfying [A | A0 +
∑`
j=1 τ [j] ·Aj ] ·v = u+D ·CMHash(m1, . . . ,mN , s), without

revealing any of the witnesses. To this end, we provide a framework for proving all
the involved statement (and many other relations that naturally arise in lattice-
based cryptography) as special cases. We reduce the statements to asserting that
a short integer vector x satisfies an equation of the form P · x = v mod q, for
some public matrix P and vector v, and belongs to a set VALID of short vectors
with a particular structure. While the small-norm property of x is provable using
standard techniques (e.g., [63]), we argue its membership of VALID by leveraging
the properties of Stern-like protocols [72,52,61]. In particular, we rely on the fact
that their underlying permutations interact well with combinatorial statements
pertaining to x, especially x being a bitstring with a specific pattern. We believe
our framework to be of independent interest as it provides a blueprint for proving
many other intricate relations in a modular manner.

When we extend the scheme with a protocol for signing committed messages,
we need the signer to re-randomize the user’s commitment before signing the
hidden messages. This is indeed necessary to provide the reduction with a backdoor
allowing to correctly answer the i†-th query by “programming” the randomness of
the commitment. Since we work with integers vectors, a straightforward simulation
incurs a non-negligible statistical distance between the simulated distributions of
re-randomization coins and the real one (which both have a discrete Gaussian
distribution). Camenisch and Lysyanskaya [30] address a similar problem by
choosing the signer’s randomness to be exponentially larger than that of the
user’s commitment so as to statistically “drown” the aforementioned discrepancy.
Here, the same idea would require to work with an exponentially large modulus q.
Instead, we adopt a more efficient solution, inspired by Bai et al. [7], which is
to apply an analysis based on the Rényi divergence rather than the statistical
distance. In short, the Rényi divergence’s properties tell us that, if some event E
occurs with noticeable probability in some probability space P , so does it in a
different probability space Q for which the second order divergence R2(P ||Q) is
sufficiently small. In our setting, R2(P ||Q) is precisely polynomially bounded
since the two probability spaces only diverge in one signing query.

Our dynamic group signature scheme avoids these difficulties because the
group manager only signs known messages: instead of signing the user’s secret key
as in anonymous credentials, it creates a membership certificate by signing the
user’s public key. Our zero-knowledge arguments accommodate the requirements
of the scheme in the following way. In the joining protocol that dynamically
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introduces new group members, the user i chooses a membership secret consisting
of a short discrete Gaussian vector zi. This user generates a public syndrome
vi = F · zi mod q, for some public matrix F, which constitutes his public key.
In order to certify vi, the group manager computes the coordinate-wise binary
expansion bin(vi) of vi. The vector bin(vi) is then signed using our signature
scheme. Using the resulting signature (τ,v, s) as a membership certificate, the
group member is able to sign a message by proving that: (i) He holds a valid
signature (τ,v, s) on some secret binary message bin(vi); (ii) The latter vector
bin(vi) is the binary expansion of some syndrome vi of which he knows a GPV
pre-image zi. We remark that condition (ii) can be proved by providing evidence
that we have vi = H · bin(vi) = F · zi mod q, for some short integer vector zi
and some binary bin(vi), where H is the “powers-of-2” matrix. Our abstraction
of Stern-like protocols [72,52,61] allows us to efficiently argue such statements.
The fact that the underlying chameleon hash function smoothly interacts with
Stern-like zero-knowledge arguments is the property that maintains the user’s
capability of efficiently proving knowledge of the underlying secret key.

Organization. In the forthcoming sections, we first provide some background
in Section 2. Our signature with efficient protocols is presented in Section 3,
where we also give protocols for obtaining a signature on a committed message
and proving possession of a message-signature pair. Section 4 uses our signature
scheme in the design of a dynamic group signature. The details of the zero-
knowledge arguments used in Section 3 and Section 4 are deferred to Section 5,
where we present them in a unified framework.

2 Background and Definitions

In the following, all vectors are denoted in bold lower-case letters, whereas bold
upper-case letters will be used for matrices. If b ∈ Rn, its Euclidean norm and
infinity norm will be denoted by ‖b‖ and ‖b‖∞, respectively. The Euclidean norm
of matrix B ∈ Rm×n with columns (bi)i≤n is denoted by ‖B‖ = maxi≤n ‖bi‖.
If B is full column-rank, we let B̃ denote its Gram-Schmidt orthogonalization.

When S is a finite set, we denote by U(S) the uniform distribution over S
and by x←↩ D the action of sampling x according to the distribution D.

2.1 Lattices

A (full-rank) lattice L is defined as the set of all integer linear combinations of
some linearly independent basis vectors (bi)i≤n belonging to some Rn. We work
with q-ary lattices, for some prime q.

Definition 1. Let m ≥ n ≥ 1, a prime q ≥ 2, A ∈ Zn×mq and u ∈ Znq , define

Λq(A) := {e ∈ Zm | ∃s ∈ Znq s.t. AT · s = e mod q} as well as

Λ⊥q (A) := {e ∈ Zm | A · e = 0n mod q}, Λu
q (A) := {e ∈ Zm | A · e = u mod q}

For any t ∈ Λu
q (A), Λu

q (A) = Λ⊥q (A) + t so that Λu
q (A) is a shift of Λ⊥q (A).
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For a lattice L, a vector c ∈ Rn and a real σ > 0, define the function ρσ,c(x) =
exp(−π‖x− c‖2/σ2). The discrete Gaussian distribution of support L, parame-
ter σ and center c is defined as DL,σ,c(y) = ρσ,c(y)/ρσ,c(L) for any y ∈ L. We
denote by DL,σ(y) the distribution centered in c = 0. We will extensively use
the fact that samples from DL,σ are short with overwhelming probability.

Lemma 1 ([8, Le. 1.5]). For any lattice L ⊆ Rn and positive real number σ > 0,
we have Prb←↩DL,σ [‖b‖ ≤

√
nσ] ≥ 1− 2−Ω(n).

As shown by Gentry et al. [42], Gaussian distributions with lattice support can
be sampled efficiently given a sufficiently short basis of the lattice.

Lemma 2 ([23, Le. 2.3]). There exists a PPT (probabilistic polynomial-time)
algorithm GPVSample that takes as inputs a basis B of a lattice L ⊆ Zn and a
rational σ ≥ ‖B̃‖ ·Ω(

√
log n), and outputs vectors b ∈ L with distribution DL,σ.

Lemma 3 ([4, Th. 3.2]). There exists a PPT algorithm TrapGen that takes
as inputs 1n, 1m and an integer q ≥ 2 with m ≥ Ω(n log q), and outputs a
matrix A ∈ Zn×mq and a basis TA of Λ⊥q (A) such that A is within statistical

distance 2−Ω(n) to U(Zn×mq ), and ‖T̃A‖ ≤ O(
√
n log q).

Lemma 3 is often combined with the sampler from Lemma 2. Micciancio and
Peikert [65] recently proposed a more efficient approach for this combined task,
which should be preferred in practice but, for the sake of simplicity, we present
our schemes using TrapGen.

We also make use of an algorithm that extends a trapdoor for A ∈ Zn×mq to

a trapdoor of any B ∈ Zn×m′q whose left n×m submatrix is A.

Lemma 4 ([33, Le. 3.2]). There exists a PPT algorithm ExtBasis that takes
as inputs a matrix B ∈ Zn×m′q whose first m columns span Znq , and a basis TA

of Λ⊥q (A) where A is the left n ×m submatrix of B, and outputs a basis TB

of Λ⊥q (B) with ‖T̃B‖ ≤ ‖T̃A‖.

In our security proofs, analogously to [19,16] we also use a technique due to
Agrawal, Boneh and Boyen [3] that implements an all-but-one trapdoor mecha-
nism (akin to the one of Boneh and Boyen [17]) in the lattice setting.

Lemma 5 ([3, Th. 19]). There exists a PPT algorithm SampleRight that takes
as inputs matrices A,C ∈ Zn×mq , a low-norm matrix R ∈ Zm×m, a short basis

TC ∈ Zm×m of Λ⊥q (C), a vector u ∈ Znq and a rational σ such that σ ≥ ‖T̃C‖ ·
Ω(
√

log n), and outputs a short vector b ∈ Z2m such that
[
A A ·R + C

]
·b =

u mod q and with distribution statistically close to DL,σ where L denotes the
shifted lattice Λu

q

([
A A ·R + C

])
.
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2.2 Computational Problems

The security of our schemes provably relies (in the ROM) on the assumption that
both algorithmic problems below are hard, i.e., cannot be solved in polynomial
time with non-negligible probability and non-negligible advantage, respectively.

Definition 2. Let m, q, β be functions of n ∈ N. The Short Integer Solution
problem SISn,m,q,β is, given A←↩ U(Zn×mq ), find x ∈ Λ⊥q (A) with 0 < ‖x‖ ≤ β.

If q ≥
√
nβ and m,β ≤ poly(n), then SISn,m,q,β is at least as hard as standard

worst-case lattice problem SIVPγ with γ = Õ(β
√
n) (see, e.g., [42, Se. 9]).

Definition 3. Let n,m ≥ 1, q ≥ 2, and let χ be a probability distribution on Z.
For s ∈ Znq , let As,χ be the distribution obtained by sampling a ←↩ U(Znq ) and

e ←↩ χ, and outputting (a,aT · s + e) ∈ Znq × Zq. The Learning With Errors
problem LWEn,q,χ asks to distinguish m samples chosen according to As,χ (for
s←↩ U(Znq )) and m samples chosen according to U(Znq × Zq).

If q is a prime power, B ≥
√
nω(log n), γ = Õ(nq/B), then there exists an

efficient sampleable B-bounded distribution χ (i.e., χ outputs samples with norm
at most B with overwhelming probability) such that LWEn,q,χ is as least as hard
as SIVPγ (see, e.g., [69,68,23]).

3 A Lattice-Based Signature with Efficient Protocols

Our scheme can be seen as a variant of the Böhl et al. signature [16], where
each signature is a triple (τ,v, s), made of a tag τ ∈ {0, 1}` and integer vec-

tors (v, s) satisfying [A | A0 +
∑`
j=1 τ [j] · Aj ] · v = u + D · h mod q, where

matrices A,A0, . . . ,A`,D ∈ Zn×mq are public random matrices and h ∈ {0, 1}m
is a chameleon hash of the message which is computed using randomness s. A
difference is that, while [16] uses a short single-use tag τ ∈ Zq, we need the tag
to be an `-bit string τ ∈ {0, 1}` which will assume the same role as the prime
exponent of Camenisch-Lysyanskaya signatures [30] in the security proof.

We show that a suitable chameleon hash function makes the scheme compati-
ble with Stern-like zero-knowledge arguments [61,62] for arguing possession of a
valid message-signature pair. Section 5 shows how to translate such a statement
into asserting that a short witness vector x with a particular structure satisfies
a relation of the form P · x = v mod q, for some public matrix P and vector v.
The underlying chameleon hash can be seen as a composition of the chameleon
hash of [33, Section 4.1] with a technique used in [67,60]: on input of a message

(m1, . . . ,mN ), it outputs the binary decomposition of D0 · s +
∑N
k=1 Dk ·mk, for

some discrete Gaussian vector s.

3.1 Description

We assume that messages are vectors of N blocks Msg = (m1, . . . ,mN ), where each
block is a 2m-bit string mk = mk[1] . . .mk[2m] ∈ {0, 1}2m for k ∈ {1, . . . , N}.
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For each vector v ∈ ZLq , we denote by bin(v) ∈ {0, 1}Ldlog qe the vector
obtained by replacing each coordinate of v by its binary representation.

Keygen(1λ, 1N ): Given a security parameter λ > 0 and the number of blocks
N = poly(λ), choose the following parameters: n = O(λ); a prime mod-

ulus q = Õ(N · n4); dimension m = 2ndlog qe; an integer ` = Θ(λ); and
Gaussian parameters σ = Ω(

√
n log q log n), σ0 = 2

√
2(N + 1)σm3/2, and

σ1 =
√
σ2

0 + σ2. Define the message space as ({0, 1}2m)N .

1. Run TrapGen(1n, 1m, q) to get A ∈ Zn×mq and a short basis TA of Λ⊥q (A).

This basis allows computing short vectors in Λ⊥q (A) with a Gaussian
parameter σ. Next, choose `+ 1 random A0,A1, . . . ,A` ←↩ U(Zn×mq ).

2. Choose random matrices D←↩ U(Zn×mq ), D0,D1, . . . ,DN ←↩ U(Z2n×2m
q )

as well as a random vector u←↩ U(Znq ).

The private key consists of SK := TA ∈ Zm×m and the public key is

PK :=
(
A, {Aj}`j=0, {Dk}Nk=0, D, u

)
.

Sign
(
SK,Msg

)
: To sign anN -block message Msg = (m1, . . . ,mN ) ∈

(
{0, 1}2m

)N
,

1. Choose a random string τ ←↩ U({0, 1}`). Then, using SK := TA, compute
with ExtBasis a short delegated basis Tτ ∈ Z2m×2m for the matrix

Aτ = [A | A0 +
∑̀
j=1

τ [j]Aj ] ∈ Zn×2m
q . (1)

2. Sample a vector s←↩ DZ2m,σ1
. Compute cM ∈ Z2n

q as a chameleon hash

of (m1, . . . ,mN ): i.e., compute cM = D0 · s +
∑N
k=1 Dk ·mk ∈ Z2n

q , which
is used to define uM = u + D · bin(cM ) ∈ Znq . Then, using the delegated
basis Tτ ∈ Z2m×2m, sample a short vector v ∈ Z2m in DΛ

uM
q (Aτ ),σ.

Output the signature sig = (τ,v, s) ∈ {0, 1}` × Z2m × Z2m.

Verify
(
PK,Msg, sig

)
: Given PK, Msg = (m1, . . . ,mN ) ∈ ({0, 1}2m)N and sig =

(τ,v, s) ∈ {0, 1}` × Z2m × Z2m, return 1 if ‖v‖ < σ
√

2m, ‖s‖ < σ1

√
2m and

Aτ · v = u + D · bin(D0 · s +

N∑
k=1

Dk ·mk) mod q. (2)

When the scheme is used for obliviously signing committed messages, the security
proof follows Bai et al. [7] in that it applies an argument based on the Rényi
divergence in one signing query. This argument requires to sample s from a
Gaussian distribution whose standard deviation σ1 is polynomially larger than σ.

We note that, instead of being included in the public key, the matrices
{Dk}Nk=0 can be part of public parameters shared by many signers. Indeed, only
the matrices (A, {Ai}`i=0) should be specific to the user who holds SK = TA.
In Section 3.3, we use a variant where {Dk}Nk=0 belong to public parameters.
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3.2 Security Analysis

The security analysis in Theorem 1 requires that q > `.

Theorem 1. The signature scheme is secure under chosen-message attacks
under the SIS assumption.

Proof (Sketched). To prove the result, we will distinguish three kinds of attacks:

Type I attacks are attacks where, in the adversary’s forgery sig? = (τ?,v?, s?),
τ? did not appear in any output of the signing oracle.

Type II attacks are such that, in the adversary’s forgery sig? = (τ?,v?, s?),
τ? is recycled from an output sig(i?) = (τ (i?),v(i?), s(i?)) of the signing
oracle, for some index i? ∈ {1, . . . , Q}. However, if Msg? = (m?1, . . . ,m

?
N ) and

Msg(i?) = (m
(i?)
1 , . . . ,m

(i?)
N ) denote the forgery message and the i?-th signing

query, respectively, we have D0·s?+
∑N
k=1 Dk·m?k 6= D0·s(i?)+

∑N
k=1 Dk·m(i?)

k .
Type III attacks are those where the adversary’s forgery sig? = (τ?,v?, s?)

recycles τ? from an output sig(i?) = (τ (i?),v(i?), s(i?)) of the signing oracle
(i.e., τ (i?) = τ? for some index i? ∈ {1, . . . , Q}) and we have the collision

D0 · s? +

N∑
k=1

Dk ·m?k = D0 · s(i?) +

N∑
k=1

Dk ·m(i?)
k . (3)

Type III attacks imply a collision for the chameleon hash function of Kawachi et
al. [52]: if (3) holds, a short vector of Λ⊥q ([D0 | D1 | . . . | DN ]) is obtained as so
that a collision breaks the SIS assumption.

The security against Type I attacks is proved by Lemma 6 which applies the
same technique as in [19,65]. In particular, the prefix guessing technique of [50]
allows keeping the modulus smaller than the number Q of adversarial queries
as in [65]. In order to deal with Type II attacks, we can leverage the technique
of [16]. In Lemma 7, we prove that Type II attack would also contradict SIS. ut

The following lemmas are proved in the full version of the paper [59].

Lemma 6. The scheme is secure against Type I attacks if the SISn,m,q,β′ as-
sumption holds for β′ = m3/2σ2(`+ 3) +m1/2σ1.

Lemma 7. The scheme is secure against Type II attacks under the SISn,m,q,β′′
assumption for β′′ =

√
2(`+ 2)σ2m3/2 +m1/2.

3.3 Protocols for Signing a Committed Value and Proving
Possession of a Signature

We first show a two-party protocol whereby a user can interact with the signer
in order to obtain a signature on a committed message.

In order to prove that the scheme still guarantees unforgeability for obliviously
signed messages, we will assume that each message block mk ∈ {0, 1}2m is
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obtained by encoding the actual message Mk = Mk[1] . . .Mk[m] ∈ {0, 1}m as
mk = Encode(Mk) = (M̄k[1],Mk[1], . . . , M̄k[m],Mk[m]). Namely, each 0 (resp.
each 1) is encoded as a pair (1, 0) (resp. (0, 1)). The reason for this encoding is
that the proof of Theorem 2 requires that at least one block m?k of the forgery
message is 1 while the same bit is 0 at some specific signing query. We will show
(see Section 5) that the correctness of this encoding can be efficiently proved
using Stern-like [72] protocols.

To sign committed messages, a first idea is exploit the fact that our signature
of Section 3.1 blends well with the SIS-based commitment scheme suggested
by Kawachi et al. [52]. In the latter scheme, the commitment key consists of
matrices (D0,D1) ∈ Z2n×2m

q × Z2n×2m
q , so that message m ∈ {0, 1}2m can

be committed to by sampling a Gaussian vector s ←↩ DZ2m,σ and computing
C = D0 · s + D1 ·m ∈ Z2n

q . This scheme extends to commit to multiple messages

(m1, . . . ,mN ) at once by computing C = D0 · s +
∑N
k=1 Dk · mk ∈ Z2n

q using

a longer commitment key (D0,D1, . . . ,DN ) ∈ (Z2n×2m
q )N+1. It is easy to see

that the resulting commitment remains statistically hiding and computationally
binding under the SIS assumption.

In order to make our construction usable in the definitional framework of
Camenisch et al. [27], we assume common public parameters (i.e., a common
reference string) and encrypt all witnesses of which knowledge is being proved
under a public key included in the common reference string. The resulting
ciphertexts thus serve as statistically binding commitments to the witnesses. To
enable this, the common public parameters comprise public keys G0 ∈ Zn×`q ,
G1 ∈ Zn×2m

q for multi-bit variants of the dual Regev cryptosystem [42] and
all parties are denied access to the underlying private keys. The flexibility of
Stern-like protocols allows us to prove that the content of a perfectly hiding
commitment cm is consistent with encrypted values.

Global-Setup: Let B =
√
nω(log n) and let χ be a B-bounded distribution.

Let p = σ · ω(
√
m) upper-bound entries of vectors sampled from the dis-

tribution DZ2m,σ. Generate two public keys for the dual Regev encryp-
tion scheme in its multi-bit variant. These keys consists of a public ran-
dom matrix B ←↩ U(Zn×mq ) and random matrices G0 = B · E0 ∈ Zn×`q ,

G1 = B ·E1 ∈ Zn×2m
q , where E0 ∈ Zm×` and E1 ∈ Zm×2m are short Gaus-

sian matrices with columns sampled from DZm,σ. These matrices will be
used to encrypt integer vectors of dimension ` and 2m, respectively. Finally,
generate public parameters CK := {Dk}Nk=0 consisting of uniformly random
matrices Dk ←↩ U(Z2n×2m

q ) for a statistically hiding commitment to vectors

in ({0, 1}2m)N . Return public parameters consisting of

par := { B ∈ Zn×mq , G0 ∈ Zn×`q , G1 ∈ Zn×2m
q , CK}.

Issue ↔ Obtain : The signer S, who has PK := {A, {Aj}`j=0, D, u} and
SK := TA, interacts with the user U , who has (m1, . . . ,mN ), as follows.

1. U samples s′ ←↩ DZ2m,σ and computes cm = D0 ·s′+
∑N
k=1 Dk ·mk ∈ Z2n

q

which is sent to S as a commitment to (m1, . . . ,mN ). Next, U encrypts
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{mk}Nk=1 and s′ under the key (B,G1) by computing for all k ∈ [1, N ]:

ck = (ck,1, ck,2)

=
(
BT · sk + ek,1, GT

1 · sk + ek,2 + mk · bq/2c
)
∈ Zmq × Z2m

q (4)

for randomly chosen sk ←↩ χn, ek,1 ←↩ χm, ek,2 ←↩ χ2m, and

cs′ = (cs′,1, cs′,2)

=
(
BT · s0 + e0,1, GT

1 · s0 + e0,2 + s′ · bq/pc
)
∈ Zmq × Z2m

q (5)

where s0 ←↩ χn, e0,1 ←↩ χm, e0,2 ←↩ χ2m. The ciphertexts {ck}Nk=1 and
cs′ are sent to S along with cm.
Then, U generates an interactive zero-knowledge argument to convince S
that cm is a commitment to (m1, . . . ,mN ) with the randomness s′ such
that {mk}Nk=1 and s′ were honestly encrypted to {ck}Ni=1 and cs′ , as
in (4) and (5). For convenience, this argument system will be described
in Section 5.3, where we demonstrate that, together with other zero-
knowledge protocols used in this work, it can be derived from a Stern-
like [72] protocol constructed in Section 5.1.

2. If the argument of step 1 properly verifies, S samples s′′ ←↩ DZ2m,σ0

and computes a vector um = u + D · bin
(
cm + D0 · s′′

)
∈ Znq . Next, S

randomly picks τ ←↩ {0, 1}` and uses TA to compute a delegated basis
Tτ ∈ Z2m×2m for the matrix Aτ ∈ Zn×2m

q of (1). Using Tτ ∈ Z2m×2m,
S samples a short vector v ∈ Z2m in DuM

Λ⊥(Aτ ),σ
. It returns the vector

(τ,v, s′′) ∈ {0, 1}` × Z2m × Z2m to U .
3. U computes s = s′ + s′′ over Z and verifies that

Aτ · v = u + D · bin
(
D0 · s +

N∑
k=1

Dk ·mk
)

mod q.

If so, it outputs (τ,v, s). Otherwise, it outputs ⊥.

Note that, if both parties faithfully run the protocol, the user obtains a valid
signature (τ,v, s) for which the distribution of s isDZ2m,σ1

, where σ1 =
√
σ2 + σ2

0 .
The following protocol allows proving possession of a message-signature pair.

Prove: On input of a signature (τ,v = (vT1 | vT2 )T , s) ∈ {0, 1}` × Z2m × Z2m on
the message (m1, . . . ,mN ), the user does the following.

1. Using (B,G0) and (B,G1) generate perfectly binding commitments to
τ ∈ {0, 1}`, {mk}Nk=1, v1,v2 ∈ Zm and s ∈ Z2m. Namely, compute

cτ = (cτ,1, cτ,2)

=
(
BT · sτ + eτ,1, GT

0 · sτ + eτ,2 + τ · bq/2c
)
∈ Zmq × Z`q,

ck = (ck,1, ck,2) ∈ Zmq × Z2m
q

=
(
BT · sk + ek,1, GT

1 · sk + ek,2 + mk · bq/2c
)

∀k ∈ [1, N ]

13



where sτ , sk ←↩ χn, eτ,1, ek,1 ←↩ χm, eτ,2 ←↩ χ`, ek,2 ←↩ χ2m, as well as

cv = (cv,1, cv,2)

=
(
BT · sv + ev,1, GT

1 · sv + ev,2 + v · bq/pc
)
∈ Zmq × Z2m

q

cs = (cs,1, cs,2)

=
(
BT · s0 + e0,1, GT

1 · s0 + e0,2 + s · bq/pc
)
∈ Zmq × Z2m

q ,

where sv, s0 ←↩ χn, ev,1, e0,1 ←↩ χm, ev,2, e0,2 ←↩ χ2m.
2. Prove in zero-knowledge that cτ , cs, cv, {ck}Nk=1 encrypt a valid message-

signature pair. In Section 5.4, we show that this involved zero-knowledge
protocol can be derived from the statistical zero-knowledge argument
of knowledge for a simpler, but more general relation that we explicitly
present in Section 5.1. The proof system can be made statistically ZK
for a malicious verifier using standard techniques (assuming a common
reference string, we can use [36]). In the random oracle model, it can be
made non-interactive using the Fiat-Shamir heuristic [40].

We require that the adversary be unable to prove possession of a signature
of a message (m1, . . . ,mN ) for which it did not legally obtain a credential by
interacting with the issuer. Note that the messages that are blindly signed by the
issuer are uniquely defined since, at each signing query, the adversary is required
to supply perfectly binding commitments {ck}Nk=1 to (m1, . . . ,mN ).

In instantiations using non-interactive proofs, we assume that these can be
bound to a verifier-chosen nonce to prevent replay attacks, as suggested in [27].

The security proof (in Theorem 2) makes crucial use of the Rényi divergence
using arguments in the spirit of Bai et al. [7]. The reduction has to guess upfront
the index i? ∈ {1, . . . , Q} of the specific signing query for which the adversary
will re-use τ (i?). For this query, the reduction will have to make sure that the
simulation trapdoor of Agrawal et al. [3] (used by the SampleRight algorithm
of Lemma 5) vanishes: otherwise, the adversary’s forgery would not be usable
for solving SIS. This means that, as in the proof of [16], the reduction must
answer exactly one signing query in a different way, without using the trapdoor.
While Böhl et al. solve this problem by exploiting the fact that they only need to
prove security against non-adaptive forgers, we directly use a built-in chameleon
hash function mechanism which is implicitly realized by the matrix D0 and the
vector s. Namely, in the signing query for which the Agrawal et al. trapdoor [3]
cancels, we assign a special value to the vector s ∈ Z2m, which depends on

the adaptively-chosen signed message (Msg
(i?)
1 , . . . ,Msg

(i?)
N ) and some Gaussian

matrices {Rk}Nk=1 hidden behind {Dk}Nk=1.
One issue is that this results in a different distribution for the vector s ∈ Zm.

However, we can still view s as a vector sampled from a Gaussian distribution
centered away from 02m. Since this specific situation occurs only once during the
simulation, we can apply a result proved in [58] which upper-bounds the Rényi
divergence between two Gaussian distributions with identical standard deviations
but different centers. By choosing the standard deviation σ1 of s ∈ Z2m to be
polynomially larger than that of the columns of matrices {Rk}Nk=1, we can keep

14



the Rényi divergence between the two distributions of s (i.e., the one of the
simulation and the one of the real game) sufficiently small to apply the probability
preservation property (which still gives a polynomial reduction since the argument
must only be applied on one signing query). Namely, the latter implies that, if the
Rényi divergence R2(sreal||ssim) is polynomial, the probability that the simulated
vector ssim ∈ Z2m passes the verification test will only be polynomially smaller
than in the real game and so will be the adversary’s probability of success.

Another option would have been to keep the statistical distance between sreal

and ssim negligible using the smudging technique of [5]. However, this would
have implied to use an exponentially large modulus q since σ1 should have been
exponentially larger than the standard deviations of the columns of {Rk}Nk=1.

The proofs of the following theorems are given in the full version of the paper.

Theorem 2. Under the SISn,2m,q,β̂ assumption, where β̂ = Nσ(2m)3/2+4σ1m
3/2,

the above protocols are secure protocols for obtaining a signature on a committed
message and proving possession of a valid message-signature pair.

Theorem 3. The scheme provides anonymity under the LWEn,q,χ assumption.

4 A Dynamic Lattice-Based Group Signature

In this section, the signature scheme of Section 3 is used to design a group
signature for dynamic groups using the syntax and the security model of Kiayias
and Yung [55], which is recalled in the full version of the paper.

In the notations hereunder, for any positive integers n, and q ≥ 2, we define the

“powers-of-2” matrix Hn×ndlog qe = In ⊗ [1 | 2 | 4 | . . . | 2dlog qe−1] ∈ Zn×ndlog qe
q .

Also, for each vector v ∈ Zn
q , we define bin(v) ∈ {0, 1}ndlog qe to be the vector

obtained by replacing each entry of v by its binary expansion. Hence, we have
v = Hn×ndlog qe · bin(v) for any v ∈ Zn

q .
In our scheme, each group membership certificate is a signature generated by

the group manager on the user’s public key. Since the group manager only needs
to sign known (rather than committed) messages, we can use a simplified version
of the signature, where the chameleon hash function does not need to choose the
discrete Gaussian vector s with a larger standard deviation than other vectors.

A key component of the scheme is the two-message joining protocol whereby
the group manager admits new group members by signing their public key. The
first message is sent by the new user Ui who samples a membership secret con-
sisting of a short vector zi ←↩ DZ4m,σ (where m = 2ndlog qe), which is used to
compute a syndrome vi = F · zi ∈ Z4n

q for some public matrix F ∈ Z4n×4m
q . This

syndrome vi ∈ Z4n
q must be signed by Ui using his long term secret key usk[i]

(as in [55,13], we assume that each user has a long-term key upk[i] for a digital
signature, which is registered in some PKI) and will uniquely identify Ui. In order
to generate a membership certificate for vi ∈ Z4n

q , the group manager GM signs

its binary expansion bin(vi) ∈ {0, 1}4ndlog qe using the scheme of Section 3.
Equipped with his membership certificate (τ,d, s) ∈ {0, 1}` × Z2m × Z2m,
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the new group member Ui can sign a message using a Stern-like protocol for
demonstrating his knowledge of a valid certificate for which he also knows the
secret key associated with the certified public key vi ∈ Z4n

q . This boils down to
providing evidence that the membership certificate is a valid signature on some
binary message bin(vi) ∈ {0, 1}4ndlog qe for which he also knows a short zi ∈ Z4m

such that vi = H4n×2m · bin(vi) = F · zi ∈ Z4n
q .

Interestingly, the process does not require any proof of knowledge of the mem-
bership secret zi during the joining phase, which is round-optimal. Analogously to
the Kiayias-Yung technique [54] and constructions based on structure-preserving
signatures [2], the joining protocol thus remains secure in environments where
many users want to register at the same time in concurrent sessions.

4.1 Description of the Scheme

Setup(1λ, 1Ngs): Given a security parameter λ > 0 and the maximal expected
number of group members Ngs = 2` ∈ poly(λ), choose lattice parameter

n = O(λ); prime modulus q = Õ(`n3); dimension m = 2ndlog qe; Gaussian
parameter σ = Ω(

√
n log q log n); infinity norm bounds β = σω(logm) and

B =
√
nω(log n). Let χ be a B-bounded distribution. Choose a hash function

H : {0, 1}∗ → {1, 2, 3}t for some t = ω(log n), which will be modeled as a
random oracle in the security analysis. Then, do the following.

1. Generate a key pair for the signature of Section 3.1 for signing single-block
messages. Namely, run TrapGen(1n, 1m, q) to get A ∈ Zn×mq and a short

basis TA of Λ⊥q (A), which allows computing short vectors in Λ⊥q (A)
with Gaussian parameter σ. Next, choose matrices A0,A1, . . . ,A`,D←↩
U(Zn×mq ), D0,D1 ←↩ U(Z2n×2m

q ) and a vector u←↩ U(Znq ).
2. Choose an additional random matrix F←↩ U(Z4n×4m

q ) uniformly. Looking
ahead, this matrix will be used to ensure security against framing attacks.

3. Generate a master key pair for the Gentry-Peikert-Vaikuntanathan IBE
scheme in its multi-bit variant. This key pair consists of a statistically
uniform matrix B ∈ Zn×mq and a short basis TB ∈ Zm×m of Λ⊥q (B).
This basis will allow us to compute GPV private keys with a Gaussian
parameter σGPV ≥ ‖T̃B‖ ·

√
logm.

4. Choose a one-time signature scheme ΠOTS = (G,S,V) and a hash func-
tion H0 : {0, 1}∗ → Zn×2m

q , that will be modeled as random oracles.
The group public key is defined as

Y :=
(
A, {Aj}`j=0, B, D, D0, D1, F, u, ΠOTS, H, H0

)
.

The opening authority’s private key is SOA := TB and the private key of the
group manager consists of SGM := TA. The algorithm outputs

(
Y,SGM,SOA

)
.

Join(GM,Ui): the group manager GM and the prospective user Ui run the following
interactive protocol: [Juser(λ,Y), JGM(λ, St,Y,SGM)]

1. Ui samples zi ← DZ4m,σ and computes vi = F · zi ∈ Z4n
q . He sends

the vector vi ∈ Z4n
q , whose binary representation is bin(vi) ∈ {0, 1}2m,

together with an ordinary digital signature sigi = Signusk[i](vi) to GM.
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2. JGM verifies that vi was not previously used by a registered user and
that sigi is a valid signature on vi w.r.t. upk[i]. It aborts if this is not
the case. Otherwise, GM chooses a fresh identifier idi ∈ {0, 1}` and uses
SGM = TA to certify Ui as a new group member. To this end, GM defines

Aidi =
[
A A0 +

∑`
j=1 idi[j]Aj

]
∈ Zn×2m

q . (6)

Then, GM runs T′idi ← ExtBasis(Aidi ,TA) to obtain a short delegated

basis T′idi of Λ⊥q (Aidi) ∈ Z2m×2m. Finally, GM samples a short vector
si ←↩ DZ2m,σ and uses the obtained delegated basis T′idi to compute a

short vector di = [dTi,1|dTi,2]T ∈ Z2m such that

Aidi · di =
[
A A0 +

∑`
j=1 idi[j]Aj

]
· di

= u + D · bin
(
D0 · bin(vi) + D1 · si

)
mod q. (7)

The triple (idi,di, si) is sent to Ui. Then, Juser verifies that the received
(idi,di, si) satisfies (7) and that ‖di‖∞ ≤ β, ‖si‖∞ ≤ β. If these condi-
tions are not satisfied, Juser aborts. Otherwise, Juser defines the membership
certificate as certi = (idi,di, si). The membership secret seci is defined
to be seci = zi ∈ Z4m. JGM stores transcripti = (vi, certi, i, upk[i], sigi) in
the database Sttrans of joining transcripts.

Sign(Y, certi, seci,M): To sign M using certi = (idi,di, si), where di ∈ Z2m and
si ∈ Z2m, as well as the membership secret seci = zi ∈ Z4m, Ui generates a
one-time signature key pair (VK,SK)← G(n) and does the following.

1. Compute G0 = H0(VK) ∈ Zn×2m
q and use it as an IBE public key to

encrypt bin(vi) ∈ {0, 1}2m, where vi = F · zi ∈ Z4n
q is the syndrome of

seci = zi ∈ Z4m for the matrix F. Namely, compute cvi ∈ Zmq × Z2m
q as

cvi = (c1, c2) =
(
BT · e0 + x1, GT

0 · e0 + x2 + bin(vi) · bq/2c
)

(8)

for randomly chosen e0 ←↩ χn, x1 ←↩ χm,x2 ←↩ χ2m. Notice that, as in
the construction of [62], the columns of G0 can be interpreted as public
keys for the multi-bit version of the dual Regev encryption scheme.

2. Run the protocol in Section 5.5 to prove the knowledge of idi ∈ {0, 1}`,
vectors si ∈ Z2m,di,1,di,2 ∈ Zm, zi ∈ Z4m with infinity norm bound β;
e0 ∈ Zn, x1 ∈ Zm,x2 ∈ Z2m with infinity norm bound B and bin(vi) ∈
{0, 1}2m,wi ∈ {0, 1}m, that satisfy (8) as well as

A · di,1 + A0 · di,2 +
∑̀
j=1

(idi[j] · di,2) ·Aj −D ·wi = u ∈ Znq (9)

and

{
H2n×m ·wi = D0 · bin(vi) + D1 · si ∈ Z2n

q

F · zi = H4n×2m · bin(vi) ∈ Z4n
q .

(10)

The protocol is repeated t = ω(log n) times in parallel to achieve negligible
soundness error, and then made non-interactive using the Fiat-Shamir
heuristic [40] as a triple πK = ({CommK,j}tj=1,ChallK , {RespK,j}tj=1),
where ChallK = H(M,VK, cvi , {CommK,j}tj=1) ∈ {1, 2, 3}t
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3. Compute a one-time signature sig = S(SK, (cvi , πK)).

Output the signature that consists of

Σ =
(
VK, cvi , πK , sig

)
. (11)

Verify(Y,M,Σ): Parse the signature Σ as in (11). Then, return 1 if and only if:
(i) V(VK, (cvi , csi , cid, πK), sig) = 1; (ii) The proof πK properly verifies.

Open(Y,SOA,M,Σ): Parse SOA as TB ∈ Zm×m and Σ as in (11).
1. Compute G0 = H0(VK) ∈ Zn×2m

q . Then, using TB to compute a small-
norm matrix E0,VK ∈ Zm×2m such that B ·E0,VK = G0 mod q.

2. Using E0,VK, decrypt cvi to obtain a string bin(v) ∈ {0, 1}2m (i.e., by
computing b(c2 −ET

0,VK · c1)/(q/2)e).
3. Determine if the bin(v) ∈ {0, 1}2m obtained at step 2 corresponds to a

vector v = H4n×2m · bin(v) mod q that appears in a record transcripti =
(v, certi, i, upk[i], sigi) of the database Sttrans for some i. If so, output
the corresponding i (and, optionally, upk[i]). Otherwise, output ⊥.

We remark that the scheme readily extends to provide a mechanism whereby
the opening authority can efficiently prove that signatures were correctly opened
at each opening operation. The difference between the dynamic group signature
models suggested by Kiayias and Yung [55] and Bellare et al. [13] is that, in the
latter, the opening authority (OA) must be able to convince a judge that the Open
algorithm was run correctly. Here, such a mechanism can be realized using the
techniques of public-key encryption with non-interactive opening [37]. Namely,
since bin(vi) is encrypted using an IBE scheme for the identity VK, the OA can
simply reveal the decryption matrix E0,VK, that satisfies B ·E0,VK = G0 mod q
(which corresponds to the verification of a GPV signature) and allows the verifier
to perform step 2 of the opening algorithm himself. The resulting construction is
easily seen to satisfy the notion of opening soundness of Sakai et al. [71].

4.2 Efficiency and Correctness

Efficiency. The given dynamic group signature scheme can be implemented
in polynomial time. The group public key has total bit-size O(`nm log q) =

Õ(λ2) · logNgs. The secret signing key of each user consists of a small constant

number of low-norm vectors, and has bit-size Õ(λ).
The size of each group signature is largely dominated by that of the non-

interactive argument πK , which is obtained from the Stern-like protocol of
Section 5.5. Each round of the protocol has communication cost Õ(m · log q) ·
logNgs. Thus, the bit-size of πK is t ·Õ(m · log q) · logNgs = Õ(λ) · logNgs. This is
also the asymptotic bound on the size of the group signature.

Correctness. The correctness of algorithm Verify(Y,M,Σ) follows from the
facts that every certified group member is able to compute valid witness vectors
satisfying equations (8), (9) and (10), and that the underlying argument system
is perfectly complete. Moreover, the scheme parameters are chosen so that the
GPV IBE [42] is correct, which implies that algorithm Open(Y,SOA,M,Σ) is
also correct.
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4.3 Security Analysis

Due to the fact that the number of public matrices {Aj}`j=0 is only logarithmic in

Ngs = 2` instead of being linear in the security parameter λ, the proof of security
against misidentification attacks (as defined in the full version of this paper
and in [53]) cannot rely on the security of our signature scheme in a modular
manner. The reason is that, at each run of the Join protocol, the group manager
maintains a state and, instead of choosing the `-bit identifier id uniformly in
{0, 1}`, it chooses an identifier that has not been used yet. Since `� λ (given
that Ngs = 2` is polynomial in λ), we thus have to prove security from scratch.
However, the strategy of the reduction is exactly the same as in the security
proof of the signature scheme.

The proofs of the following theorems are given in the full version of the paper.

Theorem 4. The scheme is secure against misidentification attacks under the
SISn,2m,q,β′ assumption, for β′=O(`σ2m3/2).

Theorem 5. The scheme is secure against framing attacks under the SIS4n,4m,q,β′′

assumption, where β′′ = 4σ
√
m.

Theorem 6. In the random oracle model, the scheme provides CCA-anonymity
if the LWEn,q,χ assumption holds and if ΠOTS is a strongly unforgeable one-time
signature.

5 Supporting Zero-Knowledge Argument Systems

This section provides a general framework that allows obtaining zero-knowledge
arguments of knowledge (ZKAoK) for many relations appearing in lattice-based
cryptography. Since lattice-based cryptosystems are built upon the hardness of the
SIS and LWE problems, the relations among objects of the schemes are typically
represented by modular linear equations. Thanks to the linearity property, we
can often unify the given equations into one equation of the form:

P · x = v mod q, (12)

where (P, v) are public and x is a secret vector (or matrix) that possesses some
constraints to be proven in zero-knowledge, e.g., its smallness (like a SIS solution
or an LWE noise) or a special arrangement of its entries. Starting from this
high-level observation, we look for a tool that handles these constraints well.

Stern’s protocol [72], originally proposed in the context of code-based cryptog-
raphy, appears to be well-suited for our purpose. Stern’s main idea is simple, yet
elegant: To prove that a binary vector x has the fixed-Hamming-weight constraint,
simply send the verifier a random permutation π(x) which should guarantee that
the constraint is satisfied while leaking no additional information about x. Ling
et al. [61] developed this idea to handle the smallness constraint, via a technique
called Decomposition-Extension. This technique decomposes a vector with small
infinity norm B ≥ 1 into blog2Bc + 1 vectors with infinity norm 1, and then,
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extends these vectors into elements of sets that are closed under permutations.
Several subsequent works [57][62][60] employed the techniques of [72,61] in differ-
ent contexts, but did not address the applicability and flexibility of the protocol
in an abstract, generalized manner.

In Section 5.1, we abstract Stern’s protocol to capture many relations that
naturally appear in lattice-based cryptography. In particular, the argument
systems used in our signature with efficient protocols (Section 3) and dynamic
group signature (Section 4) can all be derived from this abstract protocol, which
we will demonstrate in Sections 5.3, 5.4 and 5.5, respectively.

We note that several works [51,73,15] addressed the problem of proving
multiplicative and additive relations among committed linear objects (matrices
and vectors over Zq) in lattice-based cryptography. These results, however, do
not yield a simple solution for the relations involved in our schemes. If we were to
plug proof systems like [51,73,15] in our relations, we would need to commit to
all objects using perfectly binding commitments (which would require very long
commitment keys) and express the relations in terms of many multiplications and
additions gates before running many instances of the proof systems depending
on the circuit. Instead of considering general circuits, our framework aims at a
more direct (but still fairly general) solution for a large class of relations that
naturally appear in SIS and LWE-based cryptography.

5.1 Abstracting Stern’s Protocol

Let D,L, q ≥ 2 be positive integers let VALID be a subset of {−1, 0, 1}L. Suppose
that S is a finite set such that one can associate every π ∈ S with a permutation
Tπ of L elements, satisfying the following conditions:{

x ∈ VALID ⇐⇒ Tπ(x) ∈ VALID,

If x ∈ VALID and π is uniform in S, then Tπ(x) is uniform in VALID.
(13)

We aim to construct a statistical ZKAoK for the following abstract relation:

Rabstract =
{

(P,v),x ∈ ZD×Lq × ZDq × VALID : P · x = v mod q.
}

Note that, Stern’s original protocol corresponds to the special case when
VALID = {x ∈ {0, 1}L : wt(x) = k} (where wt(·) denotes the Hamming weight
and k < L is a given integer), S = SL - hereunder the set of all permutations
of L elements, and Tπ(x) = π(x).

The conditions in (13) play a crucial role in proving in ZK that x ∈ VALID: To
do so, the prover samples π ←↩ U(S) and let the verifier check that Tπ(x) ∈ VALID,
while the latter cannot learn any additional information about x thanks to the
randomness of π. Furthermore, to prove in ZK that the linear equation holds,
the prover samples a masking vector r ←↩ U(ZLq ), sends y = x + r mod q, and
convinces the verifier instead that P · y = P · r + v mod q.

The interactive protocol between the prover and the verifier with common
input (P,v) and prover’s secret input x is described in Figure 1. The protocol
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1. Commitment: Prover samples r←↩ U(ZLq ), π ←↩ U(S) and randomness ρ1, ρ2, ρ3
for COM. Then he sends CMT =

(
C1, C2, C3

)
to the verifier, where

C1 = COM(π,P · r; ρ1), C2 = COM(Tπ(r); ρ2), C3 = COM(Tπ(x + r); ρ3).

2. Challenge: The verifier sends a challenge Ch←↩ U({1, 2, 3}) to the prover.
3. Response: Depending on Ch, the prover sends RSP computed as follows:

– Ch = 1: Let tx = Tπ(x), tr = Tπ(r), and RSP = (tx, tr, ρ2, ρ3).
– Ch = 2: Let π2 = π, y = x + r, and RSP = (π2,y, ρ1, ρ3).
– Ch = 3: Let π3 = π, r3 = r, and RSP = (π3, r3, ρ1, ρ2).

Verification: Receiving RSP, the verifier proceeds as follows:

– Ch = 1: Check that tx ∈ VALID and C2 = COM(tr; ρ2), C3 = COM(tx + tr; ρ3).
– Ch = 2: Check that C1 = COM(π2,P · y − v; ρ1), C3 = COM(Tπ2(y); ρ3).
– Ch = 3: Check that C1 = COM(π3,P · r3; ρ1), C2 = COM(Tπ3(r3); ρ2).

In each case, the verifier outputs 1 if and only if all the conditions hold.

Fig. 1: A ZKAoK for the relation Rabstract.

employs a statistically hiding and computationally binding string commitment
scheme COM (e.g., the SIS-based one from [52]).

The properties of the given protocol are summarized in the following lemma.

Lemma 8. The protocol in Figure 1 is a statistical ZKAoK for the relation
Rabstract with perfect completeness, soundness error 2/3, and communication

cost Õ(L log q). In particular:

– There exists an efficient simulator that, on input (P,v), outputs an accepted
transcript which is statistically close to that produced by the real prover.

– There exists an efficient knowledge extractor that, on input a commitment
CMT and 3 valid responses (RSP1,RSP2,RSP3) to all 3 possible values of
the challenge Ch, outputs x′ ∈ VALID such that P · x′ = v mod q.

The proof of Lemma 8 employs standard simulation and extraction techniques
for Stern-like protocols [52][61][62]. It is detailed in the full version of the paper.

5.2 Supporting Notations and Techniques

Below we will describe the notations and techniques, adapted from recent works
on Stern-like protocols [61][57][39][60], that we will employ in the next subsections
to handle 3 different constraints of the witness vectors.

Let m be an arbitrary dimension, and B be an arbitrary infinity norm bound.

Case 1: w ∈ {0, 1}m. We denote by B2
m the set of all vectors in {0, 1}2m having

exactly m coordinates equal to 1. We also let Ext2m(w) be the algorithm that
outputs a vector ŵ ∈ B2

m by appending m suitable coordinates to w ∈ {0, 1}m.
Note that, for any permutation ρ ∈ S2m, we have ŵ ∈ B2

m ⇔ ρ(ŵ) ∈ B2
m.
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Case 2: w ∈ [−B,B]m. We define δB := blog2Bc+ 1 and denote by B3
mδB

the

set of vectors in {−1, 0, 1}3mδB with exactly mδB coordinates equal to j, for
every j ∈ {−1, 0, 1}. The Decomposition-Extension technique from [61] consists
in transforming w ∈ [−B,B]m to a vector DecExtm,B(w) ∈ B3

mδB
, as follows.

Define the sequence B1, . . . , BδB , where Bj =
⌊
B+2j−1

2j

⌋
for all j ∈ [1, δB].

As noted in [61], it satisfies
∑δB
j=1Bj = B, and for any w ∈ [−B,B], one can

efficiently compute w(1), . . . , w(δB) ∈ {−1, 0, 1} such that
∑δB
j=1Bj · w(j) = w.

Next, define the matrix

Km,B = Im ⊗ [B1 | . . . |BδB ] =

B1 . . . BδB
. . .

B1 . . . BδB

 ∈ Zm×mδB ,

and its extension K̂m,B =
[
Km,B

∣∣0m×2mδB
]
∈ Zm×3mδB .

If we let w = (w1, . . . , wm)T , then we can compute

w′ =
(
w

(1)
1 , . . . , w

(δB)
1 , . . . , w(1)

m , . . . , w(δB)
m

)T ∈ {−1, 0, 1}mδB

satisfying Km,B ·w′ = w. By appending 2mδB suitable coordinates to w′, we

can obtain ŵ ∈ B3
mδB

satisfying K̂m,B · ŵ = w.
Note that for any φ ∈ S3mδB , we have ŵ ∈ B3

mδB
⇔ φ(ŵ) ∈ B3

mδB
.

Case 3: w ∈ {0, 1}2m is the correct encoding of some t ∈ {0, 1}m.
Recall that the encoding function from Section 3.3, hereunder denoted by

Encodem if the input is a binary vector of length m, extends t = (t1, . . . , tm)T

to Encodem(t) = (t̄1, t1, . . . , t̄m, tm). We define CorEnc(m) = {w = Encodem(t) :
t ∈ {0, 1}m} - the set of all correct encodings of m-bit vectors. To handle the
constraint w ∈ CorEnc(m), we adapt the permuting technique from [57][39][60].

For b = (b1, . . . , bm)T ∈ {0, 1}m, we let Eb be the permutation transforming

vector w = (w0
1, w

1
1, . . . , w

0
m, w

1
m) ∈ Z2m to Eb(w) = (wb11 , w

b̄1
1 , . . . , w

bm
m , wb̄mm ).

Note that, Eb transforms w=Encodem(t) to Eb(w) = Encodem(t⊕b), where ⊕
denotes the bit-wise addition modulo 2. Thus, for any b ∈ {0, 1}m, we have

w ∈ CorEnc(m)⇔ Eb(w) ∈ CorEnc(m).

5.3 Proving the Consistency of Commitments

The argument system used in our protocol for signing a committed value in
Section 3.3 can be summarized as follows.

Common Input: Matrices {Dk ∈ Z2n×2m
q }Nk=0; B ∈ Zn×mq ; G1 ∈ Zn×2m

q ;

vectors cm ∈ Z2n
q ; {ck,1 ∈ Zmq }Nk=1; {ck,2 ∈ Z2m

q }Nk=1; cs′,1 ∈ Zmq ; cs′,2 ∈ Z2m
q .

Prover’s Input: m = (mT1 ‖ . . . ‖mTN )T ∈ CorEnc(mN);
{sk ∈ [−B,B]n, ek,1 ∈ [−B,B]m; ek,2 ∈ [−B,B]2m}Nk=1; s0 ∈ [−B,B]n;
e0,1 ∈ [−B,B]m; e0,2 ∈ [−B,B]2m; s′ ∈ [−(p− 1), (p− 1)]2m

Prover’s Goal: Convince the verifier in ZK that:
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cm = D0 · s′ +

∑N
k=1 Dk ·mk mod q;

cs′,1 = BT · s0 + e0,1 mod q; cs′,2 = GT
1 · s0 + e0,2 + bq/pc · s′ mod q;

∀k ∈ [N ] : ck,1 = BT · sk + ek,1; ck,2 = GT
1 · sk + ek,2 + bq/2c ·mk.

(14)

We will show that the above argument system can be obtained from the one in
Section 5.1. We proceed in two steps.

Step 1: Transforming the equations in (14) into a unified one of the form
P · x = v mod q, where ‖x‖∞ = 1 and x ∈ VALID - a “specially-designed” set.

To do so, we first form the following vectors and matrices:

x1 =
(
sT0 ‖eT0,1‖eT0,2‖sT1 ‖eT1,1‖eT1,2‖ . . . ‖sTN‖eTN,1‖eTN,2

)T∈ [−B,B](n+3m)(N+1);

v =
(
cTm‖cTs′,1‖cTs′,2‖cT1,1‖cT1,2‖ . . . ‖cTN,1‖cTN,2

)T ∈ Z2n+3m(N+1)
q ;

P1 =

(
BT

GT
1

I3m

)
; Q2 =

(
0

b q2cI2m

)
; Qp =

(
0

b qpcI2m

)

M1 =


0

P1

P1

. . .
P1

 ; M2 =


D1| . . . |DN

0

Q2

. . .
Q2

 ; M3 =



D0

Qp

0


.

We then observe that (14) can be rewritten as:

M1 · x1 + M2 ·m + M3 · s′ = v ∈ ZDq , (15)

where D = 2n+ 3m(N + 1). Now we employ the techniques from Section 5.2 to
convert (15) into the form P · x = v mod q. Specifically, if we let:

DecExt(n+3m)(N+1),B(x1)→ x̂1 ∈ B3
(n+3m)(N+1)δB

;

M′
1 = M1 · K̂(n+3m)(N+1),B ∈ ZD×3(n+3m)(N+1)δB

q ;

DecExt2m,p−1(s′)→ ŝ ∈ B3
2mδp−1

; M′
3 = M3 · K̂2m,p−1 ∈ ZD×6mδp−1

q ,

L = 3(n+ 3m)(N + 1)δB + 2mN + 6mδp−1, and P =
[
M′

1|M2|M′
3

]
∈ZD×Lq , and

x =
(
x̂T1 ‖mT ‖ŝT

)T
, then we will obtain the desired equation:

P · x = v mod q.

Having performed the above unification, we now define VALID as the set of all

vectors t∈ {−1, 0, 1}L of the form t =
(
tT1 ‖tT2 ‖tT3

)T
, where t1 ∈ B3

(n+3m)(N+1)δB
,

t2 ∈ CorEnc(mN), and t3 ∈ B3
2mδp−1

. Note that x ∈ VALID.

Step 2: Specifying the set S and permutations of L elements {Tπ : π ∈ S} for
which the conditions in (13) hold.
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– Define S := S3(n+3m)(N+1)δB × {0, 1}mN × S6mδp−1
.

– For π = (π1,b, π3) ∈ S, and for vector w =
(
wT

1 ‖wT
2 ‖wT

3

)T ∈ ZLq , where

w1 ∈ Z3(n+3m)(N+1)δB
q , w2 ∈ Z2mN

q , w3 ∈ Z6mδp−1
q , we define:

Tπ =
(
π1(w1)T ‖Eb(w2)T ‖π3(w3)T

)T
.

By inspection, it can be seen that the properties in (13) are satisfied, as desired.
As a result, we can obtain the required argument system by running the protocol
in Section 5.1 with common input (P,v) and prover’s input x.

5.4 Proving the Possession of a Signature on a Committed Value

We now describe how to derive the protocol for proving the possession of a
signature on a committed value, that is used in Section 3.3.

Common Input: Matrices A, {Aj}`j=0,D ∈ Zn×mq ; {Dk ∈ Z2n×2m
q }Nk=0; B ∈

Zn×mq ; G1 ∈ Zn×2m
q ; G0 ∈ Zn×`q ; vectors {ck,1}Nk=1, cτ,1, cv,1, cs,1 ∈ Zmq ;

{ck,2}Nk=1, cv,2, cs,2 ∈ Z2m
q ; cτ,2 ∈ Z`q; u ∈ Znq .

Prover’s Input: v =

(
v1

v2

)
, where v1,v2 ∈ [−β, β]m and β = σ · ω(logm) -

the infinity norm bound of signatures; τ ∈ {0, 1}`; s ∈ [−(p− 1), (p− 1)]2m;

m = (mT1 ‖ . . . ‖mTN )T ∈ CorEnc(mN); {sk}Nk=1, sv, s0, sτ ∈ [−B,B]n;

{ek,1}Nk=1, ev,1, e0,1, eτ,1 ∈ [−B,B]m; {ek,2}Nk=1, e0,2, ev,2 ∈ [−B,B]2m;

eτ,2 ∈ [−B,B]`.

Prover’s Goal: Convince the verifier in ZK that:

A·v1 + A0 ·v2 +
∑̀
i=1

Ai ·τ [i]v2 −D·bin(D0 ·s +

N∑
k=1

Di ·mk) = u mod q, (16)

and that (modulo q)

∀k ∈ [N ] : ck,1 = BT · sk + ek,1; ck,2 = GT
1 · sk + ek,2 + bq/2c ·mk;

cv,1 = BT · sv + ev,1;

cv,2 = GT
1 ·sv+ev,2+b qpc·v=GT

1 ·sv+ev,2+

(
b qpcIm

0

)
· v1+

(
0

b qpcIm

)
·v2;

cs,1 = BT · s0 + e0,1; cs,2 = GT
1 · s0 + e0,2 + bq/pc · s;

cτ,1 = BT · sτ + eτ,1; cτ,2 = GT
0 · sτ + eτ,2 + bq/2c · τ.

(17)

We proceed in two steps.

Step 1: Transforming the equations in (16) and (17) into a unified one of the
form P · x = c mod q, where ‖x‖∞ = 1 and x ∈ VALID - a “specially-designed”
set.
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Note that, if we let y = bin(D0 ·s +
∑N
k=1 Di ·mk) ∈ {0, 1}m, then we have

H2n×m ·y = D0·s +
∑N
k=1 Di·mk mod q, and (16) can be equivalently written as:(

A
0

)
·v1 +

(
A0

0

)
·v2 +

∑̀
i=1

(
Ai

0

)
·τ [i]v2 +

(
0

D0

)
· s +

(
−D

−H2n×m

)
· y

+

(
0

D1| . . . |DN

)
·m =

(
u

02n

)
mod q.

Next, we use linear algebra to combine this equation and (17) into (modulo q):

F·v1+F0 ·v2+
∑̀
i=1

Fi ·τ [i]v2 + M1 ·τ+M2 ·y + M3 ·m+M4 ·s+M5 ·e=c, (18)

where, for dimensions D = `+ 3n+ 7m+ 3mN and L0 = D + nN ,

– Matrices F,F0,F1, . . . ,F` ∈ ZD×mq , M1 ∈ ZD×`q , M2 ∈ ZD×mq , M3 ∈
ZD×2mN
q , M4 ∈ ZD×2m

q , M5 ∈ ZD×L0
q and vector c ∈ ZDq are built from the

public input.
– Vector e =

(
sT1 ‖ . . . ‖sTN ‖sTv ‖sT0 ‖sTτ ‖eT1,1 ‖ . . . ‖eTN,1‖eTv,1 ‖eT0,1 ‖eTτ,1‖
‖eT1,2 ‖ . . . ‖eTN,2‖eT0,2 ‖eTv,2 ‖eTτ,2

)T ∈ [−B,B]L0 .

Now we further transform (18) using the techniques from Section 5.2. Specifi-
cally, we form the following:

DecExtm,β(v1)→ v̂1 ∈ B3
mδβ

; DecExtm,β(v2)→ v̂2 ∈ B3
mδβ

;

F′ =
[
F · K̂m,β |F0 · K̂m,β |F1 · K̂m,β | . . . |F` · K̂m,β |0D×3mδβ`

]
∈ ZD×3mδβ(2`+2)

q ;

Ext2`(τ)→ τ̂ = (τ [1], . . . , τ [`], . . . , τ [2`])T ∈ B2
` ; M′

1 = [M1|0D×`] ∈ ZD×2`
q ;

Ext2m(y)→ ŷ ∈ B2
m; M′

2 = [M2|0D×m] ∈ ZD×2m
q ;

DecExt2m,p−1(s)→ ŝ ∈ B3
2mδp−1

; M′
4 = M4 · K̂2m,p−1 ∈ ZD×6mδp−1

q ;

DecExtL0,B(e)→ ê ∈ B3
L0δB

; M′
5 = M5 · K̂L0,B ∈ ZD×3L0δB

q .

Now, let L = 3mδβ(2`+ 2) + 2`+ 2m+ 2mN + 6mδp−1 + 3L0δB , and construct
matrix P =

[
F′ |M′

1 |M′
2 |M3 |M′

4 |M′
5

]
∈ ZD×Lq and vector

x =
(
v̂T1 ‖ v̂T2 ‖ τ [1]v̂T2 ‖ . . . ‖ τ [`]v̂T2 ‖ . . . ‖ τ [2`]v̂T2 ‖ τ̂T ‖ ŷT ‖mT ‖ ŝT ‖ êT

)T
,

then we will obtain the equation P · x = c mod q.
Before going on, we define VALID as the set of w ∈ {−1, 0, 1}L of the form:

w =
(
wT

1 ‖wT
2 ‖g1w

T
2 ‖ . . . ‖g2`w

T
2 ‖gT ‖wT

3 ‖wT
4 ‖wT

5 ‖wT
6

)T
for some w1,w2 ∈ B3

mδβ
, g = (g1, . . . , g2`) ∈ B2`, w3 ∈ B2

m, w4 ∈ CorEnc(mN),

w5 ∈ B3
2mδp−1

, and w6 ∈ B3
L0δB

. It can be checked that the constructed vector x
belongs to this tailored set VALID.

Step 2: Specifying the set S and permutations of L elements {Tπ : π ∈ S} for
which the conditions in (13) hold.
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– Define S = S3mδβ × S3mδβ × S2` × S2m × {0, 1}mN × S6mδp−1
× S3L0δB .

– For π = (φ, ψ, γ, ρ,b, η, ξ) ∈ S and z =
(
z1

0‖z2
0‖z1‖ . . . ‖z2`‖g‖t1‖t2‖t3‖t4

)
∈

ZLq , where z1
0, z

2
0, z1, . . . , z2` ∈ Z3mδβ

q , g ∈ Z2`
q , t1 ∈ Z2m

q , t2 ∈ Z2mN
q , t3 ∈

Z6mδp−1
q , and t4 ∈ Z3L0δB

q , we define:

Tπ(z) =
(
φ(z1

0)T ‖ψ(z2
0)T ‖ψ(zγ(1))

T ‖ . . . ‖ψ(zγ(2`))
T ‖γ(g)T ‖

‖ρ(t1)T ‖Eb(t2)T ‖η(t3)T ‖ξ(t4)T
)T

as the permutation that transforms z as follows:
1. It rearranges the order of the 2` blocks z1, . . . , z2` according to γ.
2. It then permutes block z1

0 according to φ, blocks z2
0, {zi}2`i=1 according

to ψ, block g according to γ, block t1 according to ρ, block t2 according
to Eb, block t3 according to η, and block t4 according to ξ.

It can be check that (13) holds. Therefore, we can obtain a statistical ZKAoK for
the given relation by running the protocol in Section 5.1.

5.5 The Underlying ZKAoK for the Group Signature Scheme

The argument system upon which our group signature scheme is built can be
summarized as follows.

Common Input: Matrices A, {Aj}`j=0,B ∈ Zn×mq , D0,D1 ∈ Z2n×2m
q , F ∈

Z4n×4m
q , H2n×m ∈Z2n×m

q , H4n×2m ∈Z4n×2m
q , G0 ∈Zn×2m

q ; vectors u∈Znq ,
c1∈Zmq , c2∈Z2m

q .

Prover’s Input: z ∈ [−β, β]4m, y ∈ {0, 1}2m, w ∈ {0, 1}m, d1,d2 ∈ [−β, β]m,
s ∈ [−β, β]2m, id = (id[1], . . . , id[`])T ∈ {0, 1}`,
e0 ∈ [−B,B]n, e1 ∈ [−B,B]m, e2 ∈ [−B,B]2m.

Prover’s Goal: Convince the verifier in ZK that
F · z = H4n×2m · y mod q; H2n×m ·w = D0 · y + D1 · s mod q;

A · d1 + A0 · d2 +
∑`
j=1 Aj · (id[j] · d2)−D ·w = u mod q;

c1 = BT · e0 + e1 mod q; c2 = GT
0 · e0 + e2 + bq/2c · y mod q.

Using the same strategy as in Sections 5.3 and 5.4, we can derive a statis-
tical ZKAoK for the above relation from the protocol in Section 5.1. As the
transformations are similar to those in Section 5.4, we only sketch main points.

In the first step, we combine the given equations to an equation of the form:

M ·

d1

s
z

+ M0 ·d2 +
∑̀
j=1

Mj(id[j]d2) + M′ ·
(

w
y

)
+ M′′ ·

e0

e1

e2

 = v mod q,

where matrices M,M0, . . . ,M`,M
′,M′′ and vector v are built from the input.

We then apply the techniques of Section 5.2 for x0 = (dT1 ‖sT ‖zT )T ∈
[−β, β]7m, d2 ∈ [−β, β]m; x1 = (wT ‖yT )T ∈ {0, 1}3m; and x2 = (eT0 ‖eT1 ‖eT2 )T ∈
[−B,B]n+3m. This allows us to obtain a unified equation P ·x = v mod q, and to
define the sets VALID, S, and permutations {Tπ : π ∈ S} so that the conditions
in (13) hold, in a similar manner as in Section 5.4.
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