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Abstrat. A random orale is an idealization that allows us to model

a hash funtion as an orale that will output a uniformly random string

given any input. We introdue the notion of a universal sampler sheme

that extends the notion of a random orale, to a method of sampling

seurely from arbitrary distributions.

We desribe several appliations that provide a natural motivation for

this notion; these inlude generating the trusted parameters for many

shemes from just a single trusted setup. We further demonstrate the

versatility of universal samplers by showing how they give rise to simple

onstrutions of identity-based enryption and multiparty key exhange.

In partiular, we onstrut adaptively seure non-interative multiparty

key exhange in the random orale model based on indistinguishability

obfusation; obtaining the �rst known onstrution of adaptively seure

NIKE without omplexity leveraging.
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We give a solution that shows how to transform any random orale into

a universal sampler sheme, based on indistinguishability obfusation.

At the heart of our onstrution and proof is a new tehnique we all

�delayed bakdoor programming� that we believe will have other appli-

ations.

1 Introdution

Many ryptographi systems rely on the trusted generation of ommon param-

eters to be used by partiipants. There may be several reasons for using suh

parameters. For example, many utting edge ryptographi protools rely on

the generation of a ommon referene string.
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Construtions for other primi-

tives suh as aggregate signatures [10℄ or bath veri�able signatures [15℄ require

all users to hoose their publi keys using the same algebrai group struture.

Finally, ommon parameters are sometimes used for onveniene and e�ieny

� suh as when generating an EC-DSA publi signing key, one an hoose the

ellipti urve parameters from a standard set and avoid the ost of ompletely

fresh seletion.

In most of these systems it is extremely important to make sure that the

parameters were indeed generated in a trustworthy manner, and failure to do so

often results in total loss of seurity. In ryptographi protools that expliitly

reate a ommon referene string it is obvious how and why a orrupt setup

results in loss of seurity. In other ases, seurity breaks are more subtle. The

issue of trust is exempli�ed by the reent onern over NSA interferene in

hoosing publi parameters for ryptographi shemes [2,27,30℄.

Given these threats it is important to establish a trusted setup proess that

engenders the on�dene of all users, even though users will often have ompet-

ing interests and di�erent trust assumptions. Realizing suh trust is hallenging

and requires a signi�ant amount of investment. For example, we might try to

�nd a single trusted authority to exeute the proess. Alternatively, we might

try to gather di�erent parties that represent di�erent interests and have them

jointly exeute a trusted setup algorithm using seure multiparty omputation.

For instane, one ould imagine gathering disparate parties ranging from the

Eletroni Frontier Foundation, to large orporations, to national governments.

Pulling together suh a trusted proess requires a onsiderable investment.

While we typially measure the osts of ryptographi proesses in terms of om-

putational and ommuniation osts, the organizational overhead of exeuting

a trusted setup may often be the most signi�ant barrier to adoption of a new

1

Several ryptographi primitives (e.g. NIZKs) are realizable using only a ommon

random string and thus only need aess to a trusted random soure for setup. How-

ever, many utting edge onstrutions need to use a ommon referene string that

is setup by some private omputation. For example, the NIZKs in Sahai-Waters [32℄

and the reent two-round MPC protool of Garg et al. [19℄ uses a trusted setup

phase that generates publi parameters drawn from a nontrivial distribution, where

the randomness underlying the spei� parameter hoie needs to be kept seret.
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ryptographi system. Given the large number of urrent and future ryposys-

tems, it is di�ult to imagine that a arefully exeuted trusted setup an be

managed for eah one of these. We address this problem by asking an ambitious

question:

Can a single trusted setup output a set of trusted parameters,

whih an (seurely) serve all ryptographi protools?

In this work, we address this question by introduing a new primitive that we

all Universal Samplers, and we show how to ahieve a strong adaptive notion of

seurity for universal samplers in the random orale model, using indistinguisha-

bility obfusation (iO). To obtain our result, we introdue a new onstrution

and proof tehnique alled delayed bakdoor programming. There are only a small

handful of known high-level tehniques for leveraging iO, and we believe delayed

bakdoor programming will have other appliations in the future.

Universal Sampler Shemes. We want a ryptographi primitive that allows us to

(freshly) sample from an arbitrary distribution, without revealing the underlying

randomness used to generate that sample. We all suh a primitive a universal

sampler sheme. In suh a system there will exist a funtion, Sample, whih

takes as input a polynomial-size iruit desription, d, and outputs a sample

p = d(x) for a randomly hosen x. Intuitively, p should �look like� it was freshly

sampled from the distribution indued by the funtion d. That is from an attak

algorithm's perspetive it should look like a all to the Sample algorithm indues

a fresh sample by �rst seleting a random string x and then outputting d(x),
but keeping x hidden. (We will return to a formal de�nition shortly.)

Perhaps the most natural omparison of our notion is to the random orale

model put forth in the seminal work of Bellare and Rogaway [5℄. In the random

orale model, a funtion H is modeled as an orale that when alled on a er-

tain input will output a fresh sample of a random string x. The random orale

model has had a tremendous impat on the development of ryptography and

several powerful tehniques suh as �programming� and �rewinding� have been

used to leverage its power. However, funtions modeled as random orales are

inherently limited to sampling random strings. Our work explores the power of

a primitive that is �smarter� and an do this for any distribution.

2

Indeed, our

main result is a transformation: we show how to transform any ordinary random

orale into a universal sampler sheme, by making use of indistinguishability

2

We note that random orales are often used as a tool to help sample from various

distributions. For example, we might use them to selet a prime. In RSA full domain

hash signatures [6℄, they are used to selet a group element in Z
∗
N . This sampling

ours as a two step proess. First, the funtion H is used to sample a fresh string x

whih is ompletely visible to the attaker. Then there is some post proessing phase

suh as taking x (mod N) to sample an integer mod N. In the literature this is often

desribed as one funtion for the sake of brevity. However, the distintion between

sampling with a universal sampler sheme and applying post proessing to a random

orale output is very important.
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obfusation applied to a funtion that interats with the outputs of a random

orale � our onstrution does not obfusate a random orale itself, whih would

be problemati to model in a theoretially reasonable way.

On Random Orales, Universal Samplers and Instantiation. We view

universal samplers as the next generation of the random orale model. Universal

samplers are an intuitive yet powerful tool: they apture the idea of a trusted

box in the sky that an sample from arbitrary user-spei�ed distributions, and

provide onsistent samples to every user - inluding providing multiple samples

from the same user-spei�ed distribution. Suh a trusted box is at least as strong

as a random orale, whih is a box in the sky that samples from just the uniform

distribution. Our notion formalizes a onversion proess in the other diretion,

from a random orale to a universal sampler that an sample from arbitrary

(possibly adaptively hosen) distributions.

An important issue is how to view universal samplers, given that our strongest

seurity model requires a random orale for realization. We again turn to the

history of the random orale model for perspetive. The random orale model

itself is a well-de�ned and rigorous model of omputation. While it is obvious that

a hash funtion annot atually be a random orale, a ryptographi primitive

that utilizes a hash funtion in plae of the random orale, and is analyzed in

the random orale model, might atually lead to a seure realization of that

primitive. While it is possible to onstrut ounterexamples [16℄, there are no

natural ryptographi shemes designed in the random orale model that are

known to break when utilizing a ryptographi hash funtion in plae of a random

orale.

In fat, the random orale model has historially served two roles: (1) for

e�ieny, and (2) for initial feasibility results. We fous exlusively on the latter

role. Our paper shows that for ahieving feasibility results, by assuming iO,

one an bootstrap the random orale model to the Universal Sampler Model.

And just as random orale onstrutions led to standard model onstrutions in

the past, most notably for Identity-Based Enryption, we expet the Universal

Sampler Model to be a gateway to new standard model onstrutions. Indeed,

the random-orale IBE sheme of Boneh-Franklin [9℄ led to the standard model

IBE shemes of Canetti-Halevi-Katz [17℄, Boneh-Boyen [8℄, and beyond. It is

unontroverted that these latter onstrutions owe a lot to Boneh-Franklin [9℄,

even though ompletely new ideas were needed to remove the random orale.

Similarly, we antiipate that future standard model onstrutions will share

intuition from universal sampler onstrutions, but new ideas will be needed as

well. Indeed, sine the initial publiation of our work, this has already happened:

for the notion of universal signature aggregators [25℄, an initial solution was

obtained using our universal samplers, and then a standard model notion was

obtained using additional ideas, but building upon the intuition oneived in the

Universal Sampler Model. We antiipate many other similar appliations to arise

from our work. Indeed, identifying spei� distributions that do not require the
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full power of iO may allow one to avoid both the random orale model and iO.

But our work would provide the substrate for this exploration.

We stress that unlike the random orale model, where heuristi onstrutions

of ryptographi hash funtions preeded the random orale model, before our

work there were not even heuristi onstrutions of universal samplers. Our work

goes further, and gives a andidate whose seurity an be rigorously analyzed in

the random orale model. Moreover, just as iO and UCEs (universal omputa-

tional extrators) [4℄ have posited ahievable standard-model notions related to

ideal models like VBB and random orales, we antiipate that future work will

do so for universal samplers. Our work lays the foundation for this; indeed our

bounded-seure notion of universal samplers is already a realizable notion in the

standard model, that an be a starting point for suh work.

Our work and subsequent work give examples of the power of the univer-

sal sampler model. For example, prior to our work obtaining even weak notions

of adaptivity for NIKE required extremely umbersome shemes and proofs,

whereas universal samplers give an extremely simple and intuitive solution, de-

tailed in the full version of our paper. Thus, we argue that having universal

samplers in the toolkit failitates the development of new primitives by allowing

for very intuitive onstrutions (as evidened in subsequent works [25,24,7,21℄).

Last, but not least, in settings where only a bounded number of seure sam-

ples are required (inluding a subsequent work [28℄), universal samplers are a

useful tool for obtaining standard model solutions.

1.1 Our Tehnial Approah

We now desribe our approah. We begin with a high level overview of the de�-

nition we wish to satisfy; details of the de�nition are in Setion 3. In our system

there is a universal sampler parameter generation algorithm, Setup, whih is

invoked with seurity parameter 1λ and randomness r. The output of this al-

gorithm are the universal sampler parameters U . In addition, there is a seond

algorithm Sample whih takes as input the parameters U and the (iruit) de-

sription of a setup algorithm, d, and outputs the indued parameters pd.

We model seurity as an ideal/real game. In the real game an attaker will

reeive the parameters U produed from the universal parameter generation

algorithm. Next, it will query an orale on multiple setup algorithm desriptions

d1, . . . , dq and iteratively get bak pi = Sample(U, di) for i = 1, 2, . . . , q.
In the ideal world, the attaker will �rst get the universal sampler parameters

U , as before. Now, when the adversary queries on di, a unique true random string

ri is hosen for eah distint di, and the adversary gets bak pi = di(ri), as if
obtaining a freshly random sample from di.

A sheme is seure if no poly-time attaker an distinguish between the real

and ideal game with non-negligible advantage after observing their transripts.

Sine pi is a deterministi funtion of di, this strong de�nition is only ahievable

in the random orale model. This strongest de�nition is formalized in Setion 3.2.

To make progress toward our eventual solution we begin with a relaxed se-

urity notion, whih is in fat realizable in the standard model, without random
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orales. We relax the de�nition in two ways: (1) we onsider a setting where the

attaker makes only a single query to the orale and (2) he ommits to the query

statially (a.k.a. seletively) before seeing the sampler parameters U . While this

seurity notion is too weak for our long term goals, developing a solution will

serve as step towards our �nal solution and provide insights.

In the seletive setting, in the ideal world, it will be possible to program U

to ontain the output orresponding to the attaker's query. Given this insight,

it is straightforward to obtain the seletive and bounded notion of seurity by

using indistinguishability obfusation and applying puntured programming [32℄

tehniques. In our onstrution we onsider setup programs to all ome from a

polynominal iruit family of size ℓ(λ), where eah setup iruit d takes in input

m(λ) bits and outputs parameters of k(λ) bits. The polynomials of ℓ,m, k are

�xed for a lass of systems; we often will drop the dependene on λ when it is

lear from ontext.

The Setup algorithm will �rst hoose a punturable pseudo random funtion

(PRF) key K for funtion F where F (K, ·) takes as input a iruit desription d

and outputs oins x
$

←{0, 1}m. The universal sampler parameters are reated as

an obfusation of a program that on input d omputes and outputs d(F (K, d)).
To prove seurity we perform a hybrid argument between the real and ideal

games in the 1-bounded and seletive model. First, we punture out d∗, the

single program that the attaker queried on, from K to get the puntured key

K(d∗). We hange the parameters to be an obfusation of the program whih

uses K(d∗) to ompute the program for any d 6= d∗. And for d = d∗ we simply

hardwire in the output z where z = d(F (K, d)). This omputation is funtionally

equivalent to the original program � thus indistinguishability of this step from

the previous follows from indistinguishability obfusation. In this next step, we

hange the hardwired value to d(r) for freshly hosen randomness r ∈ {0, 1}m.
This ompletes the transition to the ideal game.

Ahieving Adaptive Seurity. We now turn our attention to ahieving our orig-

inal goal of universal sampler generation for adaptive seurity. While seletive

seurity might be su�ient in some limited situations, the adaptive seurity no-

tion overs many plausible real world attaks. For instane, suppose a group

of people perform a seurity analysis and agree to use a ertain ryptographi

protool and its orresponding setup algorithm. However, for any one algorithm

there will be a huge number of funtionally equivalent implementations. In a real

life setting an attaker ould hoose one of these implementations based on the

universal sampler parameters and might onvine the group to use this one. A

seletively seure system is not neessarily seure against suh an attak, while

this is aptured by the adaptive model.

Obtaining a solution in the adaptive unbounded setting will be signi�antly

more di�ult. Reall that we onsider a setting where a random orale may

be augmented by a program to obtain a universal sampler sheme for arbitrary
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distributions

3

. Indeed, for uniformly distributed samples, our universal sampler

sheme will imply a programmable random orale.

A tempting idea is to simply replae the punturable PRF all from our

last onstrution with a all to a hash funtion modeled as a programmable

random orale. This solution is problemati: what does it mean to obfusate an

orale-aided iruit? It is not lear how to model this notion without yielding

an impossibility result even within the random orale model, sine the most

natural formulation of indistinguishability obfusation for random-orale-aided

iruits would yield VBB obfusation, a notion that is known to be impossible to

ahieve [3℄. In partiular, Goldwasser and Rothblum [23℄ also showed a family of

random-orale-aided iruits that are provably impossible to indistinguishably

obfusate. However, these impossibilities only show up when we try to obfusate

iruits that make random orale alls. Therefore we need to obtain a solution

where random orale alls are only possible outside of obfusated programs. This

ompliates matters onsiderably, sine the obfusated program then has no way

of knowing whether a setup program d is onneted to a partiular hash output.

A new proof tehnique: delayed bakdoor programming. To solve this problem we

develop a novel way of allowing what we all �delayed bakdoor programming�

using a random orale. In our onstrution, users will be provided with universal

sampler parameters whih onsist of an obfusated program U (produed from

Setup) as well as a hash funtion H modeled as a random orale. Users will

use these overall parameters to determine the indued samples. We will use the

notion of �hidden triggers� [32℄ that loosely orresponds to information hidden

in an otherwise pseudorandom string, that an only be reovered using a seret

key.

Let's begin by seeing how Setup reates a program, P , that will be obfus-

ated to reate U . The program takes an input w (looking ahead, this input w

will be obtained by a user as a result of invoking the random orale on his input

distribution d). The program onsists of two main stages. In the �rst stage, the

program heks to see if w enodes a �hidden trigger� using seret key infor-

mation. If it does, this step will output the �hidden trigger� x ∈ {0, 1}n, and
the program P will simply output x. However, for a uniformly randomly hosen

string w, this step will fail to deode with very high probability, sine trigger

values are enoded sparsely. Moreover, without the seret information it will

be di�ult to distinguish an input w ontaining a hidden trigger value from a

uniformly sampled string.

If deoding is unsuessful, P will move into its seond stage. It will om-

pute randomness r = F (K,w) for a punturable PRF F . Now instead of di-

retly omputing the indued samples using r, we add a level of indiretion.

The program will run the Setup algorithm for a 1-bounded universal parameter

generation sheme using randomness r � in partiular the program P ould all

3

Note that one the universal sampler parameters of a �xed polynomial size are given

out, it is not possible for a standard model proof to make an unbounded number of

parameters onsistent with the already-�xed universal sampler parameters.
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the 1-bounded seletive sheme we just illustrated above

4

. The program P then

outputs the 1-bounded universal sampler parameters Uw.

In order to generate an indued sample by exeuting Sample(U, d) on an input
distribution d, the algorithm �rst alls the random orale to obtain H(d) = w.

Next, it runs the program U to obtain output program Uw = U(w). Finally, it
obtains the indued parameters by omputing pd = Uw(d). The extra level of

indiretion is ritial to our proof of seurity.

We now give an overview of the proof of seurity. At the highest level the goal

of our proof is to onstrut a sequene of hybrids where parameter generation is

�moved� from being diretly omputed by the seond stage of U (as in the real

game) to where the parameters for setup algorithm d are being programmed in

by the �rst stage hidden trigger mehanism via the input w = H(d). Any poly-

time algorithm A will make at most a polynomial number Q = Q(λ) (unique)
queries d1, . . . , dQ to the random orale with RO outputs w1, . . . , wQ. We perform

a hybrid of Q outer steps where at outer step i we move from using Uwi
to

ompute the indued parameters for di, to having the indued parameter for di
being enoded in wi itself.

Let's zoom in on the ith transition for input distribution di. The �rst hybrid

step uses puntured programming tehniques to replae the normal omputa-

tion of the 1-time universal sampler parameters Uwi
inside the program, with

a hardwired and randomly sampled value Uwi
= U ′

. These tehniques require

making hanges to the universal sampler parameter U . Sine U is published be-

fore the adversary queries the random orale on distribution di, note that we

annot �program� U to speialize to di.

The next step

5

involves a �hand-o�� operation where we move the soure

of the one time parameters U ′
to the trigger that will be hidden inside the

random orale output wi, instead of using the hardwired value U ′
inside the

program. This step is ritial to allowing an unbounded number of samples

to be programmed into the universal sampler sheme via the random orale.

Essentially, we �rst hoose U ′
independently and then set wi to be a hidden

trigger enoding of U ′
. At this point on alling U(wi) the program will get

Uwi
= U ′

from the Stage 1 hidden trigger detetion and never proeed to Stage

2. Sine the seond stage is no longer used, we an use iO seurity to return to

the situation where U ′
is no longer hardwired into the program � thus freeing

up the a-priori-bounded �hardwiring resoures� for future outer hybrid steps.

Interestingly, all proof steps to this point were independent of the atual

program di. We observe that this fat is essential to our proof sine the redution

was able to hoose and program the one-time parameters U ′
ahead of time into

U whih had to be published well before di was known. However, now Uwi
= U ′

omes programmed in to the random orale output wi obtained as a result of the

4

In our onstrution of Setion 5 we diretly use our 1-bounded sheme inside the

onstrution. However, we believe our onstrution an be be adapted to work for

any one bounded sheme.

5

This is atually performed by a sequene of smaller steps in our proof. We simplify

to bigger steps in this overview.
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all to H(di). At this point, the program U ′
needs to be onstruted only after

the orale all H(di) has been made and thus di is known to the hallenger. We

an now use our tehniques from the seletive setting to fore U ′(di) to output

the ideally generated parameters di(r) for distribution di.

We believe our �delayed bakdoor programming� tehnique may be useful

in other situations where an unbounded number of bakdoors are needed in a

program of �xed size.

1.2 Appliations of Universal Samplers

Universal setup. Our notion of arbitrary sampling allows for many appliations.

For starters let's return to the problem of providing a master setup for all ryp-

tographi protools. Using a universal sampler sheme this is quite simple. One

will simply publish the universal sampler U ← Setup(1λ), for seurity parameter

λ. Then if subsequently a new sheme is developed that has a trusted setup algo-

rithm d, everyone an agree to use p = Sample(U, d) as the sheme's parameters.

We an also use universal sampler shemes as a tehnial tool to build applia-

tions as varied as identity-based enryption (IBE), non-interative key exhange

(NIKE), and broadast enryption (BE) shemes. We note that our goal is not to

laim that our appliations below are the �best� realizations of suh primitives,

but more to demonstrate the di�erent and perhaps surprising ways a universal

sampler sheme an be leveraged.

From the publi-key to the identity-based setting. As a warmup, we show how

to transport ryptographi shemes from the publi-key to the identity-based

setting using universal samplers. For instane, onsider a publi-key enryption

(PKE) sheme PKE = (PKGen,PKEnc,PKDec). Intuitively, to obtain an IBE

sheme IBE from PKE, we use one PKE instane for eah identity id of IBE.

A �rst attempt to do so would be to publish a desription of U as the master

publi key of IBE, and then to de�ne a publi key pk id for identity id as pk id =
Sample(U, did), where did is the algorithm that �rst generates a PKE key pair

(pk , sk) ← PKGen(1λ) and then outputs pk . (Furthermore, to distinguish the

keys for di�erent identities, did ontains id as a �xed onstant that is built

into its ode, but not used.) This essentially establishes a �virtual� publi-key

infrastruture in the identity-based setting.

Enryption to an identity id an then be performed using PKEnc under publi

key pk id . However, at this point, it is not lear how to derive individual seret

keys sk id that would allow to derypt these iphertexts. (In fat, this �rst sheme

does not appear to have any master seret key to begin with.)

Hene, as a seond attempt, we add a �master PKE publi key� pk
′
from a

hosen-iphertext seure PKE sheme to IBE's master publi key. Furthermore,

we set (pk id , c
′
id
) = Sample(U, did) for the algorithm did that �rst samples

(pk , sk) ← PKGen(1λ), then enrypts sk under pk
′
via c′ ← PKEnc′(pk ′, sk),

and �nally outputs (pk , c′). This way, we an use sk
′
as a �master seret key� to

extrat sk from c′
id

� and thus extrat individual user seret keys.
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We show that this onstrution yields a seletively-seure IBE sheme one

the used universal sampler sheme is seletively seure and the underlying PKE

shemes are seure. Intuitively, during the analysis, we substitute the user publi

key pk id∗ for the hallenge identity id
∗
with a freshly generated PKE publi key,

and we substitute the orresponding c′
id∗ with a random iphertext. This allows

to embed an externally given PKE publi key pk
∗
, and thus to use PKE's seurity.

Non-interative key exhange and broadast enryption. We provide a very sim-

ple onstrution of a multiparty non-interative key exhange (NIKE) sheme.

In an n-user NIKE sheme, a group of n parties wishes to agree on a shared

random key k without any ommuniation. User i derives k from its own seret

key and the publi keys of the other parties. (Sine we are in the publi-key

setting, eah party hooses its key pair and publishes its publi key.) Seurity

demands that k look random to any party not in the group.

We onstrut a NIKE sheme from a universal sampler sheme and a PKE

sheme PKE = (PKGen,PKEnc,PKDec) as follows: the publi parameters are the

universal samplers U . Eah party hooses a keypair (pk , sk) ← PKGen(1λ). A
shared key K among n parties with publi keys from the set S = {pk1, . . . , pkn}
is derived as follows. First, eah party omputes (c1, . . . , cn) = Sample(U, dS),
where dS is the algorithm that hooses a random key k, and then enrypts it

under eah pk i to ci (i.e., using ci ← PKEnc(pk i, k)). Furthermore, dS ontains

a desription of the set S, e.g., as a omment. (This ensures that di�erent sets S

imply di�erent algorithms dS and thus di�erent independently random Sample

outputs.) Obviously, the party with seret key sk i an derive k from ci. On

the other hand, we show that k remains hidden to any outsiders, even in an

adaptive setting, assuming the universal sampler sheme is adaptively seure,

and the enryption sheme is (IND-CPA) seure.

We also give a variant of the protool that has no setup at all. Roughly, we

follow Boneh and Zhandry [12℄ and designate one user as the �master party�

who generates and publishes the universal sampler parameters along with her

publi key. Unfortunately, as in [12℄, the basi onversion is totally broken in

the adaptive setting. However, we make a small hange to our protool so that

the resulting no-setup sheme does have adaptive seurity. This is in ontrast

to [12℄, whih required substantial hanges to the sheme, ahieved only a weaker

semi-stati seurity, and only obtained seurity though omplexity leveraging.

Not only is our sheme the �rst adaptively seure multiparty NIKE without

any setup, but it is the �rst to ahieve adaptive seurity even among shemes

with trusted setup, and it is the �rst to ahieve any seurity beyond stati seu-

rity without relying on omplexity leveraging. Subsequent to our work, Rao [31℄

gave an adaptive multi-party non-interative key exhange protool under adap-

tive assumptions on multilinear maps. One trade-o� is that our sheme is only

proved seure in the random orale model, whereas [12,31℄ are proved seure in

the standard model. Nevertheless, we note that adaptively seure NIKE with

polynomial loss to underlying assumptions is not known to be ahievable out-

side of the random orale model unless one makes very strong adaptive (non-

falsi�able) assumptions [31℄.
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Finally, using an existing transformation of Boneh and Zhandry [12℄, we

obtain a new adaptive distributed broadast enryption from our NIKE sheme.

1.3 Subsequent work leveraging universal sampler shemes.

After the initial posting of our paper, a few other papers have applied universal

sampler shemes. Hohenberger, Koppula and Waters [25℄ used universal samplers

to ahieve adaptive seurity without omplexity leveraging for a new notion

they alled universal signature aggregators. Hofheinz, Kamath, Koppula and

Waters [24℄ showed how to build adaptively seure onstrained PRFs [11,14,26℄,

for any iruits, using universal parameters as a key ingredient. All previous

onstrutions were only seletively seure, or required omplexity leveraging.

Our adaptively seure universal sampler sheme in the random orale model,

also turns out to be a key building blok in the onstrution of proof of human-

work puzzles of Bloki and Zhou [7℄. Again, the abstration of universal samplers

proved useful for onstruting NIKE shemes based on polynomially-hard fun-

tional enryption [21℄.

Another paper that appeared subsequent to ours [18℄, introdued the notion

of explainability ompilers and used them to obtain adaptively seure, universally

omposable MPC in onstant rounds based on indistinguishability obfusation

and one-way funtions. We note that explainability ompilers are related to our

notion of seletively seure universal samplers.

1.4 Organization of the Paper

We give an overview of indistinguishability obfusation and punturable PRFs,

the main tehnial tools required for our onstrutions, in Setion 2. In Setion 3,

we de�ne our notion of universal sampler shemes. We give a realization and

proof of seurity for a 1-bounded seletively seure sheme in Setion 4. In

Setion 5, we give the onstrution and seurity overview for our main notion of

an unbounded adaptively seure sheme. The full proof of seurity of the adap-

tive unbounded universal sampler sheme is in the full version. Appliations of

Universal Samplers to IBE and NIKE are also detailed in the full version.

2 Preliminaries

2.1 Indistinguishability Obfusation and PRFs

In this setion, we de�ne indistinguishability obfusation, and variants of pseudo-

random funtions (PRFs) that we will make use of. All variants of PRFs that we

onsider an be onstruted from one-way funtions.

Indistinguishability Obfusation. The de�nition below is adapted from [20℄:

De�nition 1 (Indistinguishability Obfusator (iO)). A uniform PPT ma-

hine iO is alled an indistinguishability obfusator for iruits if the following

onditions are satis�ed:

11



� For all seurity parameters λ ∈ N, for all iruits C, for all inputs x, we
have that

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

� For any (not neessarily uniform) PPT adversaries Samp, D, there exists a

negligible funtion α suh that the following holds: if Pr[|C0| = |C1| and ∀x,C0(x) =
C1(x) : (C0, C1, σ)← Samp(1λ)] > 1− α(λ), then we have:

∣

∣

∣
Pr

[

D(σ, iO(λ,C0)) = 1 : (C0, C1, σ)← Samp(1λ)
]

−Pr
[

D(σ, iO(λ,C1)) = 1 : (C0, C1, σ)← Samp(1λ)
]

∣

∣

∣
≤ α(λ)

We will sometimes omit λ from the notation whenever onvenient and lear from

ontext.

Suh indistinguishability obfusators for iruits were onstruted under novel

algebrai hardness assumptions in [20℄.

PRF variants. We �rst onsider some simple types of onstrained PRFs [11,14,26℄,

where a PRF is only de�ned on a subset of the usual input spae. We fous on

punturable PRFs, whih are PRFs that an be de�ned on all bit strings of a

ertain length, exept for any polynomial-size set of inputs:

De�nition 2. A punturable family of PRFs F is given by a triple of Turing

Mahines KeyF , PunctureF , and EvalF , and a pair of omputable funtions n(·)
and m(·), satisfying the following onditions:

� [Funtionality preserved under punturing℄ For every PPT adversary

A suh that A(1λ) outputs a set S ⊆ {0, 1}n(λ), then for all x ∈ {0, 1}n(λ)

where x /∈ S, we have that:

Pr
[

EvalF (K,x) = EvalF (KS , x) : K ← KeyF (1
λ),KS = PunctureF (K,S)

]

= 1

� [Pseudorandom at puntured points℄ For every PPT adversary (A1, A2)
suh that A1(1

λ) outputs a set S ⊆ {0, 1}n(λ) and state σ, onsider an ex-

periment where K ← KeyF (1
λ) and KS = PunctureF (K,S). Then we have

∣

∣

∣
Pr

[

A2(σ,KS , S,EvalF (K,S)) = 1
]

−Pr
[

A2(σ,KS , S, Um(λ)·|S|) = 1
]

∣

∣

∣
= negl(λ)

where EvalF (K,S) denotes the onatenation of EvalF (K,x1)), . . . ,EvalF (K,xk))
where S = {x1, . . . , xk} is the enumeration of the elements of S in lexio-

graphi order, negl(·) is a negligible funtion, and Uℓ denotes the uniform

distribution over ℓ bits.

For ease of notation, we write F (K,x) to represent EvalF (K,x). We also

represent the puntured key PunctureF (K,S) by K(S).

The GGM tree-based onstrution of PRFs [22℄ from one-way funtions are

easily seen to yield punturable PRFs, as reently observed by [11,14,26℄. Thus:

Theorem 1. [22,11,14,26℄ If one-way funtions exist, then for all e�iently

omputable funtions n(λ) and m(λ), there exists a punturable PRF family that

maps n(λ) bits to m(λ) bits.
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3 De�nitions

In this setion, we desribe our de�nitional framework for universal sampler

shemes. The essential property of a universal sampler sheme is that given

the sampler parameters, and given any program d that generates samples from

randomness (subjet to ertain size onstraints, see below), it should be possible

for any party to use the sampler parameters and the desription of d to obtain

indued samples that look like the samples that d would have generated given

uniform and independent randomness.

We will onsider two de�nitions � a simpler de�nition promising seurity for

a single arbitrary but �xed protool, and a more omplex de�nition promising

seurity in a strong adaptive sense against many protools hosen after the sam-

pler parameters are �xed. All our seurity de�nitions follow a �Real World� vs.

�Ideal World� paradigm. Before we proeed to our de�nitions, we will �rst set

up some notation and onventions:

� We will onsider programs d that are bounded in the following ways: Note

that we will use d to refer to both the program, and the desription of the

program. Below, ℓ(λ),m(λ), and k(λ) are all omputable polynomials. The

desription of d is as an ℓ(λ)-bit string desribing a iruit

6

implementing d.

The program d takes as input m(λ) bits of randomness, and outputs samples

of length k(λ) bits. Without loss of generality, we assume that ℓ(λ) ≥ λ and

m(λ) ≥ λ. When ontext is lear, we omit the dependene on the seurity

parameter λ. The quantities (ℓ,m, k) are bounds that are set during the

setup of the universal sampler sheme.

� We enfore that every ℓ-bit desription of d yields a iruit mapping m bits

to k bits; this an be done by replaing any invalid desription with a default

iruit satisfying these properties.

� We will sometimes refer to the program d that generates samples as a �proto-

ol�. This is to emphasize that d an be used to generate arbitrary parameters

for some protool.

A universal parameter sheme onsists of two algorithms:

(1) The �rst randomized algorithm Setup takes as input a seurity parameter

1λ and outputs sampler parameters U .

(2) The seond algorithm Sample takes as input sampler parameters U and a

iruit d of size at most ℓ, and outputs indued samples pd.

Intuition. Before giving formal de�nitions, we will now desribe the intuition

behind our de�nitions. We want to formulate seurity de�nitions that guarantee

that indued samples are indistinguishable from honestly generated samples to

an arbitrary interative system of adversarial and honest parties.

6

Note that if we assume iO for Turing Mahines, then we do not need to restrit

the size of the desription of d. Candidates for iO for Turing Mahines were given

by [1,13℄.
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We �rst onsider an �ideal world,� where a trusted party, on input a pro-

gram desription d, simply outputs d(rd) where rd is independently hosen true

randomness, hosen one and for all for eah given d. In other words, if F is

a truly random funtion, then the trusted party outputs d(F (d)). In this way,

if any party asks for samples orresponding to a spei� program d, they are

all provided with the same honestly generated value. This orresponds preisely

to the shared trusted publi parameters model in whih protools are typially

onstruted.

In the real world, however, all parties would only have aess to the trusted

sampler parameters. Parties would use the sampler parameters to derive indued

samples for any spei� program d. Following the ideal/real paradigm, we would

like to argue that for any adversary that exists in the real world, there should

exist an equivalently suessful adversary in the ideal world. However, the general

senario of an interation between multiple parties, some maliious and some

honest, interating in an arbitrary seurity game would be umbersome to model

in a de�nition. To avoid this, we note that the only way that honest parties

ever use the sampler parameters is to exeute the sample derivation algorithm

using the sampler parameters and some program desriptions d (orresponding

to the protools in whih they partiipate) to obtain derived samples, whih

these honest parties then use in their interations with the adversary.

Thus, instead of modeling these honest parties expliitly, we an �absorb�

them into the adversary, as we now explain: We will require that for every real-

world adversary A, there exists a simulator S that an provide simulated sampler

parameters U to the adversary suh that these simulated sampler parameters U

atually indue the ompletely honestly generated samples d(F (d)) reated by

the trusted party: in other words, that Sample(U, d) = d(F (d)). Note that sine

honest parties are instruted to simply honestly ompute indued samples, this

ensures that honest parties in the ideal world would obtain these ompletely

honestly generated samples d(F (d)). Thus, we do not need to model the honest

parties expliitly � the adversary A an internally simulate any (set of) honest

parties. By the ondition we impose on the simulation, these honest parties would

have the orret view in the ideal world.

Seletive (and bounded) vs. Adaptive (and unbounded) Seurity. We explore two

natural formulations of the simulation requirement. The simpler variant is the

seletive ase, where we require that the adversary delare at the start a single

program d∗ on whih it wants the ideal world simulator to enfore equality

between the honestly generated samples d∗(F (d∗)) and the indued samples

Sample(U, d∗). This simpler variant has two advantages: First, it is ahievable in

the standard model. Seond, it is ahieved by natural and simple onstrution

based on indistinguishability obfusation.

However, ideally, we would like our seurity de�nition to apture a senario

where sampler parameters U are set, and then an adversary an potentially

adaptively hoose a program d for generating samples for some adaptively hosen

appliation senario. For example, there may be several plausible implementa-

tions of a program to generate samples, and an adversary ould in�uene whih
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spei� program desription d is used for a partiular protool. Note, however,

that suh an adaptive senario is trivially impossible to ahieve in the standard

model: there is no way that a simulator an publish sampler parameters U of

polynomial size, and then with no further interation with the adversary, fore

Sample(U, d∗) = d∗(F (d∗)) for a d∗ hosen after U has already been delared.

This impossibility is very similar to the trivial impossibility for reusable non-

interative non-ommitting publi-key enryption [29℄ in the plain model. Suh

ausality problems an be addressed, however, in the random-orale model. As

disussed in the introdution, the sound use of the random orale model together

with obfusation requires are: we do not assume that the random orale itself

an be obfusated, whih presents an intriguing tehnial hallenge.

Furthermore, we would like our sampler parameters to be useful to obtain

indued samples for an unbounded number of other appliation senarios. We

formulate and ahieve suh an adaptive unbounded de�nition of seurity in the

random orale model.

3.1 Seletive One-Time Universal Samplers

We now formally de�ne a seletive one-time seure universal sampler sheme.

De�nition 3 (Seletively-Seure One-Time Universal Sampler Sheme).

Let ℓ(λ),m(λ), k(λ) be e�iently omputable polynomials. A pair of e�ient

algorithms (Setup, Sample) where Setup(1λ) → U, Sample(U, d) → pd, is a

seletively-seure one-time universal sampler sheme if there exists an e�ient

algorithm SimUGen suh that:

� There exists a negligible funtion negl(·) suh that for all iruits d of length

ℓ, taking m bits of input, and outputting k bits, and for all strings pd ∈
{0, 1}k, we have that:

Pr[Sample(SimUGen(1λ, d, pd), d) = pd] = 1− negl(λ)

� For every e�ient adversary A = (A1,A2), where A2 outputs one bit, there

exists a negligible funtion negl(·) suh that

∣

∣Pr[Real(1λ) = 1]− Pr[Ideal(1λ) = 1]
∣

∣ = negl(λ) (1)

where the experiments Real and Ideal are de�ned below (σ denotes auxiliary

information).

The experiment Real(1λ) is as follows: The experiment Ideal(1λ) is as follows:
� (d∗, σ)← A1(1

λ). � (d∗, σ)← A1(1
λ).

� Output A2(Setup(1
λ), σ). � Choose r uniformly from {0, 1}m.

� Let pd = d∗(r).
� Output A2(SimUGen(1

λ, d∗, pd), σ).
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3.2 Adaptively Seure Universal Samplers

We now de�ne universal sampler shemes for the adaptive setting in the random

orale model, handling an unbounded number of indued samples simultaneously.

We do not assume obfusation of iruits that all the random orale. Thus, we

allow the random orale to be used only outside of obfusated programs.

We onsider an adversary that uses a universal sampler to obtain samples on

(adaptively hosen) distributions of his hoie. We want to guarantee that for

any distribution spei�ed by the adversary, the output samples he obtains are

indistinguishable from externally generated parameters from the same distribu-

tion. In other words, there must exist a simulator that an fore the adversary to

obtain the externally generated parameters as output of the universal sampler.

Converting this intuition into an atual formal de�nition turns out to be

somewhat ompliated. The reason is that in the real world, the adversary must

be able to generate samples on his own, using the universal sampler provided to

him. However, the simulator whih is required to fore the external parameters

annot learn the adversary's queries to the sampler program. Suh a simulator

must observe all of the adversary's queries to the random orale, and use them

to program the output of the samplers, without knowing any of the adversary's

atual queries to the sampler program.

De�nition 4 (Adaptively-Seure Universal Sampler Sheme). Let ℓ(λ),
m(λ),k(λ) be e�iently omputable polynomials. A pair of e�ient orale al-

gorithms (Setup, Sample) where SetupH(1λ) → U, SampleH(U, d) → pd is an

adaptively-seure universal sampler sheme if there exist e�ient interative

Turing Mahines SimUGen, SimRO suh that for every e�ient admissible ad-

versary A, there exists a negligible funtion negl(·) suh that:

∣

∣Pr[Real(1λ) = 1]− Pr[Ideal(1λ) = 1]
∣

∣ = negl(λ)

where admissible adversaries, the experiments Real and Ideal and our (non-

standard) notion of the Ideal experiment aborting, are desribed below.

� An admissible adversary A is an e�ient interative Turing Mahine that

outputs one bit, with the following input/output behavior:

• A initially takes input seurity parameter λ and sampler parameters U .

• A an send a message (RO, x) orresponding to a random orale query.

In response, A reeives the output of the random orale on input x.

• A an send a message (sample, d), where d is a iruit of length ℓ, taking

m bits of input, and outputting k bits. A does not expet any response

to this message. Instead, upon sending this message, A is required to

honestly ompute pd = Sample(U, d), making use of any additional

RO queries, and append (d, pd) to an auxiliary tape.

Remark. Intuitively, (sample, d) orresponds to an honest party seeking

a sample generated by program d. Reall that A is meant to internalize
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the behavior of honest parties that ompute parameters by orretly

querying the random orale and reording the sampler's output

7

.

� The experiment Real(1λ) is as follows:
1. Throughout this experiment, a random orale H is implemented by as-

signing random outputs to eah unique query made to H.
2. U ← SetupH(1λ)
3. A(1λ, U) is exeuted, where every message of the form (RO, x) reeives

the response H(x).
4. The output of the experiment is the �nal output of the exeution of

A(whih is a bit b ∈ {0, 1}).
� The experiment Ideal(1λ) is as follows:

1. A truly random funtion F that maps ℓ bits to m bits is implemented

by assigning random m-bit outputs to eah unique query made to F8

.

Throughout this experiment, a Samples Orale O is implemented as fol-

lows: On input d, where d is a iruit of length ℓ, taking m bits of input,

and outputting k bits, O outputs d(F (d)).
2. (U, τ)← SimUGen(1λ). Here, SimUGen an make arbitrary queries to the

Samples Orale O.
3. SimRO orresponds to the output of a programmable random orale in the

ideal world.

4. A(1λ, U) and SimRO(τ) begin simultaneous exeution. Messages for A or

SimRO are handled as:

• Whenever A sends a message of the form (RO, x), this is forwarded
to SimRO, whih produes a response to be sent bak to A.

• SimRO an make any number of queries to the Samples Orale O9

.

• Finally, after A sends a message of the form (sample, d), the auxiliary
tape of A is examined until A adds an entry of the form (d, pd) to

it. At this point, if pd 6= d(F (d)), the experiment aborts and we

say that an �Honest Sample Violation� has ourred. Note that this

orresponds to a orretness requirement in the ideal world, and is

the only way that the experiment Ideal an abort

10

. In this ase, if

the adversary itself �aborts�, we onsider this to be an output of zero

by the adversary, not an abort of the experiment itself.

7

Note that proving seurity against suh admissible adversaries su�es to apture the

intuition behind a universal sampler and in partiular su�es for all our appliations.

This is beause honest parties will still use the orretly generated output, and we

would like to guarantee that no maliious adversary will be able to distinguish the

samples used by honest parties from externally generated samples.

8

A does not have diret aess to F , in fat A will only have aess to SimRO whih

we de�ne later to model the output of a programmable random orale.

9

Looking ahead, in our proof, SimRO will use the output of queries to O to generate

a programmed output of the Random Orale.

10

Reall that an admissible adversary only honestly omputes samples and adds them

to its tape � i.e., an admissible adversary always writes pd = Sample
H(U, d) as the

honest output of the sampler program. Thus, an honest sample violation in the ideal

world indiates that the simulator did not fore the orret samples d(F (d)) obtained
externally from a trusted party, into the output of the sampler program.
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5. The output of the experiment is the �nal output of the exeution of A
(whih is a bit b ∈ {0, 1}).

Remark 1. We note that indistinguishability of the real and ideal worlds also

implies that: Pr[Ideal(1λ) aborts] < negl(λ)

4 Seletive One-Time Universal Samplers

In this setion, we show the following:

Theorem 2 (Seletive One-Time Universal Samplers). If indistinguisha-

bility obfusation and one-way funtions exist, then there exists a seletively se-

ure one-time universal sampler sheme, aording to De�nition 3.

The required Seletive One-Time Universal Sampler Sheme onsists of pro-

grams Setup and Sample.

� Setup(1λ) �rst samples the key K for a PRF that takes ℓ bits as input and
outputs m bits. It then sets Sampler Parameters U to be an indistinguisha-

bility obfusation of the program

11

Seletive-Single-Samples in Figure 1. It

outputs U .

� Sample(U, d) runs the program U on input d to generate and output U(d).

Seletive-Single-Samples

Constant: PRF key K.

Input: Program desription d.

1. Output d(F (K, d)).
Reall that d is a program desription whih outputs k bits.

Fig. 1: Program Seletive-Single-Samples

4.1 Overview of Seurity Proof

The proof follows straightforwardly from the punturing tehniques of [32℄ and

we give a brief overview before giving the full proof. In the real world, the

adversary ommits to his input d∗ and then the hallenger gives the Seletive-

Single-Samples program to the adversary. In the �rst hybrid, we punture the

PRF key K at value d∗, and hardwire the output f∗ = d∗(PRF (K, d∗)) into

the program, arguing seurity by iO of the funtionally equivalent programs. In

the next hybrid, PRF (K, d∗) an be replaed with a random value x, setting
f∗ = d∗(x) and arguing seurity beause of the punturable PRF. Finally, the

value f∗
an be replaed with the external sample pd.

11

Appropriately padded to the maximum of the size of itself and Program Seletive-

Single-Samples: 2 in Figure 2

18



4.2 Hybrids

We prove seurity by a sequene of hybrids, starting with the original experiment

Hybrid0 in the Real World and replaing the output at d∗ with an external sample

in the �nal hybrid (Ideal World). Eah hybrid is an experiment that takes as

input 1λ. The output of eah hybrid is the adversary's output when it terminates.

We denote hanges between subsequent hybrids using red underlined font.

Hybrid0:

� The adversary piks protool desription d∗ and sends it to the hallenger.

� The hallenger piks PRF key K and sends the adversary an iO of the pro-

gram

12

Seletive-Single-Samples in Figure 1.

� The adversary queries the program on input d∗ to obtain the sample.

Hybrid1:

� The adversary piks protool desription d∗ and sends it to the hallenger.

� The hallenger piks PRF key K, sets f∗ = d∗(F (K, d∗)), puntures K at d∗

and sends the adversary an iO of the program

13

Seletive-Single-Samples: 2
in Figure 2.

� The adversary queries the program on input d∗ to obtain the sample.

Seletive-Single-Samples: 2

Constant: PRF key K{d∗}, d∗, f∗
.

Input: Program desription d.

1. If d = d∗ output f∗
.

2. Else output d(F (K, d)). Reall that d is a program desription

whih outputs k bits.

Fig. 2: Program Seletive-Single-Samples: 2

Hybrid2:

� The adversary piks protool desription d∗ and sends it to the hallenger.

� The hallenger piks PRF key K, piks x← {0, 1}m, sets f∗ = d∗(x), pun-

tures K at d∗ and sends the adversary an iO of the program

14

Seletive-

Single-Samples: 2 in Figure 2.

� The adversary queries the program on input d∗ to obtain the sample.

12

Padded to the maximum of the size of itself and Seletive-Single-Samples: 2.
13

Padded to the maximum of the size of itself and Seletive-Single-Samples.

14

Padded to the maximum of the size of itself and Seletive-Single-Samples.
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Hybrid3:

� This hybrid desribes how SimUGen works.

� The adversary piks protool desription d∗ and sends it to the hallenger.

� The hallenger exeutes SimUGen(1λ, d∗), whih does the following: It piks

PRF key K, sets f∗ = pd for externally obtained sample pd, puntures K at

d∗ and outputs an iO of the program

15

Seletive-Single-Samples: 2 in Figure 2.
This is then sent to the adversary.

� The adversary queries the program on input d∗ to obtain the sample.

4.3 Indistinguishability of the Hybrids

To prove Theorem 2, it su�es to prove the following laims,

Claim. Hybrid0(1
λ) and Hybrid1(1

λ) are omputationally indistinguishable.

Proof. Hybrid0 and Hybrid1 are indistinguishable by seurity of iO, sine the pro-

grams Seletive-Single-Samples and Seletive-Single-Samples: 2 are funtionally

equivalent. Suppose not, then there exists a distinguisher D1 that distinguishes

between the two hybrids. This an be used to break seurity of the iO via the

following redution to distinguisher D.
D ats as hallenger in the experiment of Hybrid0. He ativates the adversary

D1 to obtain input d∗, and omputes f∗ = d∗(F (K, d∗)), to obtain iruits C0 =
Seletive-Single-Samples aording to Figure 1 and C1 = Seletive-Single-Samples: 2

aording to Figure 2 with inputs d∗, f∗
. He gives C0, C1 to the iO hallenger.

The iO hallenger pads these iruits in order to bring them to equal size.

It is easy to see that these iruits are funtionally equivalent. Next, the iO

hallenger gives iruit Cx = iO(C0) or Cx = iO(C1) to D.
D ontinues the experiment of Hybrid1 exept that he sends the obfusated

iruit Cx instead of the obfusation of Seletive-Single-Samples to the adversary

D1. Sine D1 has signi�ant distinguishing advantage, there exists a polynomial

p(·) suh that,

∣

∣

∣
Pr

[

D1(Hybrid0) = 1
]

− Pr
[

D1(Hybrid1) = 1
]

∣

∣

∣
≥ 1/p(λ).

We note that Hybrid0 and Hybrid1 orrespond exatly to Cx being C0 and

C1 respetively, thus we an just have D eho the output of D1 suh that the

following is true, for α(·) = 1/p(·)

∣

∣

∣
Pr

[

D(σ, iO(n,C0)) = 1
]

− Pr
[

D(σ, iO(n,C1)) = 1
]

∣

∣

∣
≥ α(λ)

Claim. Hybrid1(1
λ) and Hybrid2(1

λ) are omputationally indistinguishable.

Proof. Hybrid1 and Hybrid2 are indistinguishable by seurity of the puntured

PRF K{d∗}. Suppose they are not, then onsider an adversary D2 who distin-

guishes between these hybrids with signi�ant advantage.

This adversary an be used to break seletive seurity of the puntured PRF

K via the following redution algorithm to distinguisher D, that �rst gets the

15

Padded to the maximum of the size of itself and Seletive-Single-Samples.
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protool d∗ after ativating the distinguisher D2. The PRF hallenger gives the

puntured PRF K along with hallenge a to the PRF attaker D, whih is ei-

ther the output of the PRF at d∗ or is set uniformly at random in {0, 1}m.

D sets f∗ = d∗(a) and ontinues the experiment of Hybrid1 against D2. Then,
∣

∣

∣
Pr

[

D2(Hybrid1) = 1
]

− Pr
[

D2(Hybrid2) = 1
]

∣

∣

∣
≥ 1/p(λ) for some polynomial

p(·).
If a is the output of the puntured PRF K at d∗, then we are in Hybrid1. If a

was hosen uniformly at random, then we are in Hybrid2. Therefore, we an just

have D eho the output of D2 suh that

∣

∣

∣
Pr

[

D(F (K{d∗}, d∗)) = 1
]

− Pr
[

D(y ← {0, 1}n) = 1
]

∣

∣

∣
≥ 1/p(λ).

Claim. Hybrid2(1
λ) and Hybrid3(1

λ) are idential.

Proof. These are idential sine x is sampled uniformly at random in {0, 1}n.

Claim. Pr[Sample(SimUGen(1λ, d, pd), d) = pd] = 1

Proof. It follows from inspetion of our onstrution that the program always

outputs the external samples in the ideal world, therefore ondition (1) in De�nition 3

is ful�lled.

5 Adaptively Seure Universal Samplers

Theorem 3 (Adaptively Seure Universal Samplers). If indistinguisha-

bility obfusation and one way funtions exist, then there exists an adaptively

seure universal sampler sheme, aording to De�nition 4, in the Random Or-

ale Model.

Our sheme onsists of algorithms Setup and Sample, de�ned below. We rely

on injetive PRGs and indistinguishability obfusation.

� Setup(1λ, r) �rst samples PRF keys K1,K2,K
′
2 and then sets Sampler Pa-

rameters U to be an indistinguishability obfusation of the program Adaptive-

Samples

16

, Figure 3. The �rst three steps in the program look for �hidden

triggers� and extrat an output if a trigger is found, the �nal step represents

the normal operation of the program (when no triggers are found).

The program takes as input a value u, where |u| = n2
and v where |v| = n,

suh that u||v is obtained as the output of a random orale H on input d.
Here, n is the size of an iO of program

17 PK3
(Figure 4). As suh, n will be

some �xed polynomial in the seurity parameter λ. The key to our proof is

16

This program must be padded appropriately to maximum of the size of itself and

other orresponding programs in various hybrids, as desribed in the next setion.

17

Appropriately padded to the maximum of the size of itself and P ′
K3,p

∗

j
,d∗

j
in future

hybrids
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to instantiate the random orale H appropriately to generate the sample for

any input protool desription d.

Denote by F
(n)
1 = {F 1,0

1 , F 1,1
1 , F 2,0

1 , F 2,1
1 . . . Fn,0

1 , Fn,1
1 } a sequene of 2n

punturable PRF's that eah take n-bit inputs and output n bits. For some

key sequene {K1,0
1 ,K1,1

1 ,K2,0
1 ,K2,1

1 . . .Kn,0
1 ,Kn,1

1 }, denote the ombined

key by K
(n)
1 . Then, on a n-bit input v1, denote the ombined output of

the funtion F
(n)
1 using key K

(n)
1 by F

(n)
1 (K

(n)
1 , v1). Note that the length of

this ombined output is 2n2
. Denote by F2 a punturable PRF that takes

inputs of (n2 + n) bits and outputs n1 bits, where n1 is the size of the key

K3 for the program PK3
in Figure 4. In partiular, n1 = λ. Denote by F ′

2 an-

other punturable PRF that takes inputs of (n2+n) bits and outputs n2 bits,

where n2 is the size of the randomness r used by the iO given the program

PK3
in Figure 4. Denote by F3 another punturable PRF that takes inputs

of ℓ bits and outputs m bits. Denote by PRG an injetive length-doubling

pseudo-random generator that takes inputs of n bits and outputs 2n bits.

Here m is the size of uniform randomness aepted by d(·), k is the size of

samples generated by d(·).
� Sample(U, d) queries the random orale H to obtain (u, v) = H(d). It then

runs the program U generated by Setup(1λ) on input (u, v) to obtain as

output the obfusated program P . It now runs this program P on input d
to obtain the required samples.

Adaptive-Samples

Constants: PRF keys K
(n)
1 , K2,K

′
2.

Input: Program hash u = u[1], . . . , u[n], v.

1. Compute F1(K
(n)
1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).

2. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set

xi = 1 else set xi = ⊥
3. If x ∈ {0, 1}n (i.e. no ⊥s), output x.

4. Else set K3 = F2(K2, u|v), r = F2(K
′
2, u|v). Output P =

iO(PK3
; r) of the program

a PK3
of Figure 4.

a

Appropriately padded to the maximum of the size of itself and

P ′
K3,p

∗

j
,d∗

j
in future hybrids

Fig. 3: Program Adaptive-Samples

5.1 Overview of the Seurity Game and Hybrids

We onvert any admissible adversary A - that is allowed to send any message

(RO, x) or (params, d) - and onstrut a modi�ed adversary, suh that whenever

A sends message (params, d), our modi�ed adversary sends message (RO, d) and

22



PK3

Constant: PRF key K3.

Input: Program desription d.

1. Output d(F3(K3, d)). Reall that d is a program desription whih

outputs k bits.

Fig. 4: Program PK3

then sends message (params, d). It su�es to prove the seurity of our sheme

with respet to suh modi�ed adversaries beause this modi�ed adversary is

funtionally equivalent to the admissible adversary. Beause the modi�ed ad-

versary always provides protool desription d to the random orale, our proof

will not diretly deal with messages of the form (params, d) and it will su�e to

handle only messages (RO, d) sent by the adversary.

We prove via a sequene of hybrids, that algorithms Setup and Sample satisfy

the seurity requirements of De�nition 4 in the Random Orale Model. Hybrid0
orresponds to the real world in the seurity game desribed above. Suppose the

adversary makes q(λ) queries to the random orale H, for some polynomial q(·).
The argument proeeds via the sequene Hybrid0,Hybrid1,1,Hybrid1,2, . . .Hybrid1,13,
Hybrid2,1, . . .Hybrid2,13 . . .Hybridq(λ),13, eah of whih we prove to be indistin-

guishable from the previous one. We de�ne Hybrid0 ≡ Hybrid0,13 for onveniene.

The �nal hybrid Hybridq(λ),13 orresponds to the ideal world in the seurity game

desribed above, and ontains (impliitly) desriptions of SimUGen, SimRO as re-

quired in De�nition 4. For brevity, we only desribe Hybrid0 and Hybrids,13 for

a generi s ∈ q(λ) in this setion. We also give a short overview of how the se-

quene of hybrids progresses. The omplete sequene of hybrids along with om-

plete indistinguishability arguments, beginning with Hybrid0 and then Hybrids,1,

Hybrids,2, . . .Hybrids,13 for a generi s ∈ [q(λ)], an be found in the next setions.

In the following experiments, the hallenger hooses PRF keys K
(n)
1 ,K2 and

K ′
2 for PRFs F

(n)
1 , F2 and F ′

2. Eah hybrid is an experiment that takes input 1λ.
The output of any hybrid experiment denotes the output of the adversary upon

termination. Changes between hybrids are denoted using red underlined font.

Hybrid0 :

� The hallenger pads the program Adaptive-Samples in Figure 3 to be the

maximum of the size of itself and all orresponding programs (Adaptive-

Samples: 2, Adaptive-Samples: 3) in other hybrids. Next, he sends the ob-

fusation of the program in Figure 3 to the adversary.

� Set j = 0. While the adversary queries the RO, inrement j and repeat:

1. Let the adversary query the random orale on protool desription d∗j .

2. The hallenger sets the output of the RO, (u∗
j , v

∗
j )← {0, 1}

n2+n
.

� The adversary then outputs a single bit b′.
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Hybrids,13 :

� The hallenger pads the program Adaptive-Samples in Figure 5 appropri-

ately

18

and sends an iO of the program to the adversary.

� Set j = 0. While the adversary queries the RO, inrement j and repeat:

1. Let the adversary query the random orale on protool desription d∗j .
2. If j ≤ s, the hallenger sets the output of the random orale, v∗j ← {0, 1}

n
.

He sets K3 ← {0, 1}
n, e′ ← {0, 1}n. He queries the orale to obtain the

sample p∗j and sets g = iO(P ′
K3,p

∗

j
,d∗

j
, e′) (See Figure 7).

For all b ∈ {0, 1} and i ∈ [1, n], he sets (y∗1,0, y
∗
1,1), . . . , (y

∗
n,0, y

∗
n,1)

= F1(K
(n)
1 , v∗j ), u

∗
j [i] = y∗i,gi , where gi is the ith bit of g.

3. If j > s, hallenger sets the RO output, (u∗
j , v

∗
j )← {0, 1}

n2+n
.

� The adversary then outputs a single bit b′.

Adaptive-Samples

Constants: PRF keys K
(n)
1 , K2,K

′
2.

Input: Program hash u = u[1], . . . , u[n], v.

1. Compute F1(K
(n)
1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).

2. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set

xi = 1 else set xi = ⊥
3. If x ∈ {0, 1}n (i.e. no ⊥s), output x.

4. Else set K3 = F2(K2, u|v), r = F2(K
′
2, u|v). Output iO(PK3

; r)
of the program

a PK3
of Figure 6.

a

Appropriately padded to the maximum size of itself and P ′
K3,p

∗

j
,d∗

j

Fig. 5: Program Adaptive-Samples

PK3

Constant: PRF key K3. Input: Program desription d.

1. Output d(F3(K3, d)).

Fig. 6: Program PK3

Note that Hybridq(λ),13 is the Ideal World and it desribes how SimUGen and

SimRO work in the �rst and seond bullet points above, respetively.

18

To the maximum of the size of itself and all orresponding programs in the other

hybrids.
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P ′
K3,p

∗

j
,d∗

j

Constants: PRF key K3{d
∗
j}, d

∗
j , p

∗
j . Input: Program desription d.

1. If d = d∗j output p∗j .

2. Else output d(F3(K3, d)).

Fig. 7: Program P ′
K3,p

∗

j
,d∗

j

From Hybrid
s−1,13

to Hybrid
s,13

.

We now outline a series of sub-hybrids from Hybrids−1,13 to Hybrids,13 for a

generi s ∈ [1, q], where we program the universal sampler U to output external

parameters on the sth query of the adversary. Our proof omprises of two main

steps: the �rst step onsists in hardwiring a fresh single-use program into the

random orale output for the sth query � this is done by �rst hardwiring values

into the obfusated program, then hanging the output of the random orale,

and then un-hardwiring these values from the obfusated program.

One this is done, the seond step omprises of hardwiring the external pa-

rameters into this single-use program. The omplete hybrids and indistinguisha-

bility arguments are in the next subsetion.

First step. Hybrids,1 : Let the sth random orale query of the adversary be on

input d∗s. We �rst use puntured programming to hardwire omputation orre-

sponding to input d∗s into the Adaptive-Samples program.

To do this, in Hybrids,1 the hallenger piks v∗s uniformly at random as the

output of the random orale on input d∗s. He sets (y∗1,0, y
∗
1,1, . . . y

∗
n,0, y

∗
n,1) =

F1(K
(n)
1 , v∗s ). Then, for all b ∈ {0, 1}, i ∈ [n] he sets z∗i,b = PRG(y∗i,b). Next, he

adds a hek at the beginning of the main program suh that for v = v∗s , if u[i] =
z∗i,b, the program sets xi = b. The program Adaptive-Samples of Hybrids−1,13 is

replaed by the program Adaptive-Samples:2 illustrated in Figure 8. This is in-

distinguishable from the previous hybrid by the seurity of indistinguishability

obfusation, beause the programs Adaptive-Samples and Adaptive-Samples: 2

are funtionally equivalent.

Hybrids,2 : In Hybrids,2, the output of PRF F1 on input v∗s is replaed with ran-

dom. That is for all b ∈ {0, 1}, i ∈ [n], he sets yi,b
$

← {0, 1}
n
. This hybrid is

indistinguishable from Hybrids,1 by seurity of the punturable PRF.

Hybrids,3 : Next, the string z∗ is set uniformly at random. That is, for eah

i ∈ [n], b ∈ {0, 1}, instead of setting z∗i,b = PRG(y∗i,b), the hallenger sets

z∗i,b
$

← {0, 1}
2λ
. This hybrid is indistinguishable from Hybrids,2 by seurity of

the PRG. Note that this step �deativates� the extra hek we had added in

Hybrids,1, beause with overwhelming probability, z∗ will lie outside the image
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Adaptive-Samples: 2

Constants: v∗s , PRF key K
(n)
1 {v∗s}, K2,K

′
2, z∗i,b for i ∈ [1, n]

and b ∈ {0, 1}
Input: Program hash u = u[1], . . . , u[n], v.

1. If v = v∗s then for i = 1, . . . , n do

If PRG(u[i]) = z∗i,0 let xi = 0, if PRG(u[i]) = z∗i,1 xi = 1, else xi = ⊥.

Go to step 4.

2. Compute F1(K
(n)
1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).

3. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set

xi = 1 else set xi = ⊥
4. If x ∈ {0, 1}n (i.e. no ⊥s), output x.

5. Else set K3 = F2(K2, u|v), r = F2(K
′
2, u|v). Output iO(PK3

; r)
of the program

a PK3
of Figure 6.

a

Appropriately appended to the maximum of the size of itself and

P ′
K3,p

∗

j
,d∗

j

Fig. 8: Program Adaptive-Samples: 2

of the PRG.

Hybrids,4 : One this is done, for u∗
s and v∗s both �xed uniformly at random

as random orale response to query d∗s, in Hybrids,4 the hallenger sets e =
F2(K2, u

∗
s|v

∗
s ), e

′ = F ′
2(K

′
2, u

∗
s|v

∗
s ), g = iO(Pe, e

′) and adds an initial hek in

the main program: if input u = u∗
s and v = v∗s , then output g and exit. Simulta-

neously, the hallenger puntures the keys K2 and K ′
2 in the main program. The

modi�ed program Adaptive-Samples: 3 is depited in Figure 9. At this point,

we have hardwired Adaptive-Samples: 3 to output g on input values (u∗
s, v

∗
s ),

obtained from the RO on input d∗s. This is indistinguishable from Hybrids,3 by

the seurity of indistinguishability obfusation, beause the programs Adaptive-

Samples: 3 and Adaptive-Samples: 2 are funtionally equivalent.

Hybrids,5 : In this hybrid, the hallenger generates e uniformly at random instead

of the output of the puntured PRF F2.

Hybrids,6 : In this hybrid, the hallenger generates e′ uniformly at random in-

stead of the output of the puntured PRF F ′
2. This will be needed in the next

few hybrids when we start programming the single-use parameters.

Hybrids,7 : Sine the (bounded size) program Adaptive-Samples: 3 must remain

programmable for an unbounded number of samples, we now move the hard-

wired single-use paramters g from the Adaptive-Samples: 3 program to a hidden

trigger enoding in the output of the random orale, u∗
s. Spei�ally, this is done

by setting for all i ∈ [1, n], z∗i,gi = PRG(u∗
s[i]) in Hybrids,7. This is made possible
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Adaptive-Samples: 3

Constants: v∗s , u∗
s , g, PRF keys K

(n)
1 {v∗s}, K2{u

∗
s |v

∗
s}, K

′
2{u

∗
s |v

∗
s},

z∗i,b for i ∈ [1, n] and b ∈ {0, 1}
Input: Program hash u = u[1], . . . , u[n], v.

1. If u = u∗
s and v = v∗s output g and stop.

2. If v = v∗s then for i = 1, . . . , n do

If PRG(u[i]) = z∗i,0 let xi = 0, if PRG(u[i]) = z∗i,1 let xi = 1, else
xi = ⊥.

Go to step 4.

3. Compute F1(K
(n)
1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).

4. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set

xi = 1 else set xi = ⊥
5. If x ∈ {0, 1}n (i.e. no ⊥s), output x.

6. Else set K3 = F2(K2, u|v), r = F2(K
′
2, u|v). Output iO(PK3

; r)
of the program

a PK3
of Figure 6.

a

Appropriately appended to the maximum of the size of itself and

P ′
K3,p

∗

j
,d∗

j

Fig. 9: Program Adaptive-Samples: 3

also by injetivity of the PRG. One u∗
s has been programmed appropriately to

enode the value g, hardwiring g into the program beomes redundant, and it

is possible to replae Adaptive-Samples: 3 with the previous program Adaptive-

Samples: 2.

At this point, we an seal bak the puntured keys, un-hardwire g from the

program and return to the original program Adaptive-Samples in a sequene of

hybrids, Hybrids,8 to Hybrids,10 whih reverse our sequene of operations from

Hybrids,1 to Hybrids,3. More spei�ally, Hybrids,8 involves generating z∗i,b for all
i ∈ [n], b ∈ {0, 1} as outputs of a PRG, and this is indistinguishable by seurity of

the PRG. Then Hybrids,9 involves generating (y∗1,0, y
∗
1,1 . . . y

∗
n,0, y

∗
n,1 as the output

of F1(K
(n)
1 , v∗s ), and this is indistinguishable by seurity of the punturable PRF.

At this point, hardwiring the z∗ values beomes redundant, and it is possible

to go bak to program Adaptive-Samples, in Hybrids,10 arguing indistinguisha-

bility via indistinguishability obfusation.

Now, Hybrids,10 beomes idential to Hybrids−1,13 exept for a trapdoor that

has been programmed into the random orale output u∗
s, whih outputs spei�

seletive single-use parameters.

Seond Step. Now, it is straightforward (following the same sequene of hybrids

as the seletive single-use ase) to fore the single-use parameters that were

programmed into u∗
s to output external parameters p∗s, in hybrids Hybrids,11

through Hybrids,13. Please refer to the full version for a more detailed proof.
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No honest sample violations. At this point, in the �nal hybrid, whenever the

adversary queries H on any input d, in the �nal hybrid we set (u, v) = H(d) to
output the externally spei�ed samples p∗s. Thus, the orretness requirement in

the ideal world is always met, and there are no honest sample violations aord-

ing to De�nition 4.

Aknowledgements. The authors would like to thank the anonymous Asi-

arypt 2016 reviewers for their helpful omments, and in partiular for pointing

out the ontents of Remark 1.
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