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Abstra
t. A random ora
le is an idealization that allows us to model

a hash fun
tion as an ora
le that will output a uniformly random string

given any input. We introdu
e the notion of a universal sampler s
heme

that extends the notion of a random ora
le, to a method of sampling

se
urely from arbitrary distributions.

We des
ribe several appli
ations that provide a natural motivation for

this notion; these in
lude generating the trusted parameters for many

s
hemes from just a single trusted setup. We further demonstrate the

versatility of universal samplers by showing how they give rise to simple


onstru
tions of identity-based en
ryption and multiparty key ex
hange.

In parti
ular, we 
onstru
t adaptively se
ure non-intera
tive multiparty

key ex
hange in the random ora
le model based on indistinguishability

obfus
ation; obtaining the �rst known 
onstru
tion of adaptively se
ure

NIKE without 
omplexity leveraging.
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We give a solution that shows how to transform any random ora
le into

a universal sampler s
heme, based on indistinguishability obfus
ation.

At the heart of our 
onstru
tion and proof is a new te
hnique we 
all

�delayed ba
kdoor programming� that we believe will have other appli-


ations.

1 Introdu
tion

Many 
ryptographi
 systems rely on the trusted generation of 
ommon param-

eters to be used by parti
ipants. There may be several reasons for using su
h

parameters. For example, many 
utting edge 
ryptographi
 proto
ols rely on

the generation of a 
ommon referen
e string.

1

Constru
tions for other primi-

tives su
h as aggregate signatures [10℄ or bat
h veri�able signatures [15℄ require

all users to 
hoose their publi
 keys using the same algebrai
 group stru
ture.

Finally, 
ommon parameters are sometimes used for 
onvenien
e and e�
ien
y

� su
h as when generating an EC-DSA publi
 signing key, one 
an 
hoose the

ellipti
 
urve parameters from a standard set and avoid the 
ost of 
ompletely

fresh sele
tion.

In most of these systems it is extremely important to make sure that the

parameters were indeed generated in a trustworthy manner, and failure to do so

often results in total loss of se
urity. In 
ryptographi
 proto
ols that expli
itly


reate a 
ommon referen
e string it is obvious how and why a 
orrupt setup

results in loss of se
urity. In other 
ases, se
urity breaks are more subtle. The

issue of trust is exempli�ed by the re
ent 
on
ern over NSA interferen
e in


hoosing publi
 parameters for 
ryptographi
 s
hemes [2,27,30℄.

Given these threats it is important to establish a trusted setup pro
ess that

engenders the 
on�den
e of all users, even though users will often have 
ompet-

ing interests and di�erent trust assumptions. Realizing su
h trust is 
hallenging

and requires a signi�
ant amount of investment. For example, we might try to

�nd a single trusted authority to exe
ute the pro
ess. Alternatively, we might

try to gather di�erent parties that represent di�erent interests and have them

jointly exe
ute a trusted setup algorithm using se
ure multiparty 
omputation.

For instan
e, one 
ould imagine gathering disparate parties ranging from the

Ele
troni
 Frontier Foundation, to large 
orporations, to national governments.

Pulling together su
h a trusted pro
ess requires a 
onsiderable investment.

While we typi
ally measure the 
osts of 
ryptographi
 pro
esses in terms of 
om-

putational and 
ommuni
ation 
osts, the organizational overhead of exe
uting

a trusted setup may often be the most signi�
ant barrier to adoption of a new

1

Several 
ryptographi
 primitives (e.g. NIZKs) are realizable using only a 
ommon

random string and thus only need a

ess to a trusted random sour
e for setup. How-

ever, many 
utting edge 
onstru
tions need to use a 
ommon referen
e string that

is setup by some private 
omputation. For example, the NIZKs in Sahai-Waters [32℄

and the re
ent two-round MPC proto
ol of Garg et al. [19℄ uses a trusted setup

phase that generates publi
 parameters drawn from a nontrivial distribution, where

the randomness underlying the spe
i�
 parameter 
hoi
e needs to be kept se
ret.
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ryptographi
 system. Given the large number of 
urrent and future 
ryposys-

tems, it is di�
ult to imagine that a 
arefully exe
uted trusted setup 
an be

managed for ea
h one of these. We address this problem by asking an ambitious

question:

Can a single trusted setup output a set of trusted parameters,

whi
h 
an (se
urely) serve all 
ryptographi
 proto
ols?

In this work, we address this question by introdu
ing a new primitive that we


all Universal Samplers, and we show how to a
hieve a strong adaptive notion of

se
urity for universal samplers in the random ora
le model, using indistinguisha-

bility obfus
ation (iO). To obtain our result, we introdu
e a new 
onstru
tion

and proof te
hnique 
alled delayed ba
kdoor programming. There are only a small

handful of known high-level te
hniques for leveraging iO, and we believe delayed

ba
kdoor programming will have other appli
ations in the future.

Universal Sampler S
hemes. We want a 
ryptographi
 primitive that allows us to

(freshly) sample from an arbitrary distribution, without revealing the underlying

randomness used to generate that sample. We 
all su
h a primitive a universal

sampler s
heme. In su
h a system there will exist a fun
tion, Sample, whi
h

takes as input a polynomial-size 
ir
uit des
ription, d, and outputs a sample

p = d(x) for a randomly 
hosen x. Intuitively, p should �look like� it was freshly

sampled from the distribution indu
ed by the fun
tion d. That is from an atta
k

algorithm's perspe
tive it should look like a 
all to the Sample algorithm indu
es

a fresh sample by �rst sele
ting a random string x and then outputting d(x),
but keeping x hidden. (We will return to a formal de�nition shortly.)

Perhaps the most natural 
omparison of our notion is to the random ora
le

model put forth in the seminal work of Bellare and Rogaway [5℄. In the random

ora
le model, a fun
tion H is modeled as an ora
le that when 
alled on a 
er-

tain input will output a fresh sample of a random string x. The random ora
le

model has had a tremendous impa
t on the development of 
ryptography and

several powerful te
hniques su
h as �programming� and �rewinding� have been

used to leverage its power. However, fun
tions modeled as random ora
les are

inherently limited to sampling random strings. Our work explores the power of

a primitive that is �smarter� and 
an do this for any distribution.

2

Indeed, our

main result is a transformation: we show how to transform any ordinary random

ora
le into a universal sampler s
heme, by making use of indistinguishability

2

We note that random ora
les are often used as a tool to help sample from various

distributions. For example, we might use them to sele
t a prime. In RSA full domain

hash signatures [6℄, they are used to sele
t a group element in Z
∗
N . This sampling

o

urs as a two step pro
ess. First, the fun
tion H is used to sample a fresh string x

whi
h is 
ompletely visible to the atta
ker. Then there is some post pro
essing phase

su
h as taking x (mod N) to sample an integer mod N. In the literature this is often

des
ribed as one fun
tion for the sake of brevity. However, the distin
tion between

sampling with a universal sampler s
heme and applying post pro
essing to a random

ora
le output is very important.

3



obfus
ation applied to a fun
tion that intera
ts with the outputs of a random

ora
le � our 
onstru
tion does not obfus
ate a random ora
le itself, whi
h would

be problemati
 to model in a theoreti
ally reasonable way.

On Random Ora
les, Universal Samplers and Instantiation. We view

universal samplers as the next generation of the random ora
le model. Universal

samplers are an intuitive yet powerful tool: they 
apture the idea of a trusted

box in the sky that 
an sample from arbitrary user-spe
i�ed distributions, and

provide 
onsistent samples to every user - in
luding providing multiple samples

from the same user-spe
i�ed distribution. Su
h a trusted box is at least as strong

as a random ora
le, whi
h is a box in the sky that samples from just the uniform

distribution. Our notion formalizes a 
onversion pro
ess in the other dire
tion,

from a random ora
le to a universal sampler that 
an sample from arbitrary

(possibly adaptively 
hosen) distributions.

An important issue is how to view universal samplers, given that our strongest

se
urity model requires a random ora
le for realization. We again turn to the

history of the random ora
le model for perspe
tive. The random ora
le model

itself is a well-de�ned and rigorous model of 
omputation. While it is obvious that

a hash fun
tion 
annot a
tually be a random ora
le, a 
ryptographi
 primitive

that utilizes a hash fun
tion in pla
e of the random ora
le, and is analyzed in

the random ora
le model, might a
tually lead to a se
ure realization of that

primitive. While it is possible to 
onstru
t 
ounterexamples [16℄, there are no

natural 
ryptographi
 s
hemes designed in the random ora
le model that are

known to break when utilizing a 
ryptographi
 hash fun
tion in pla
e of a random

ora
le.

In fa
t, the random ora
le model has histori
ally served two roles: (1) for

e�
ien
y, and (2) for initial feasibility results. We fo
us ex
lusively on the latter

role. Our paper shows that for a
hieving feasibility results, by assuming iO,

one 
an bootstrap the random ora
le model to the Universal Sampler Model.

And just as random ora
le 
onstru
tions led to standard model 
onstru
tions in

the past, most notably for Identity-Based En
ryption, we expe
t the Universal

Sampler Model to be a gateway to new standard model 
onstru
tions. Indeed,

the random-ora
le IBE s
heme of Boneh-Franklin [9℄ led to the standard model

IBE s
hemes of Canetti-Halevi-Katz [17℄, Boneh-Boyen [8℄, and beyond. It is

un
ontroverted that these latter 
onstru
tions owe a lot to Boneh-Franklin [9℄,

even though 
ompletely new ideas were needed to remove the random ora
le.

Similarly, we anti
ipate that future standard model 
onstru
tions will share

intuition from universal sampler 
onstru
tions, but new ideas will be needed as

well. Indeed, sin
e the initial publi
ation of our work, this has already happened:

for the notion of universal signature aggregators [25℄, an initial solution was

obtained using our universal samplers, and then a standard model notion was

obtained using additional ideas, but building upon the intuition 
on
eived in the

Universal Sampler Model. We anti
ipate many other similar appli
ations to arise

from our work. Indeed, identifying spe
i�
 distributions that do not require the
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full power of iO may allow one to avoid both the random ora
le model and iO.

But our work would provide the substrate for this exploration.

We stress that unlike the random ora
le model, where heuristi
 
onstru
tions

of 
ryptographi
 hash fun
tions pre
eded the random ora
le model, before our

work there were not even heuristi
 
onstru
tions of universal samplers. Our work

goes further, and gives a 
andidate whose se
urity 
an be rigorously analyzed in

the random ora
le model. Moreover, just as iO and UCEs (universal 
omputa-

tional extra
tors) [4℄ have posited a
hievable standard-model notions related to

ideal models like VBB and random ora
les, we anti
ipate that future work will

do so for universal samplers. Our work lays the foundation for this; indeed our

bounded-se
ure notion of universal samplers is already a realizable notion in the

standard model, that 
an be a starting point for su
h work.

Our work and subsequent work give examples of the power of the univer-

sal sampler model. For example, prior to our work obtaining even weak notions

of adaptivity for NIKE required extremely 
umbersome s
hemes and proofs,

whereas universal samplers give an extremely simple and intuitive solution, de-

tailed in the full version of our paper. Thus, we argue that having universal

samplers in the toolkit fa
ilitates the development of new primitives by allowing

for very intuitive 
onstru
tions (as eviden
ed in subsequent works [25,24,7,21℄).

Last, but not least, in settings where only a bounded number of se
ure sam-

ples are required (in
luding a subsequent work [28℄), universal samplers are a

useful tool for obtaining standard model solutions.

1.1 Our Te
hni
al Approa
h

We now des
ribe our approa
h. We begin with a high level overview of the de�-

nition we wish to satisfy; details of the de�nition are in Se
tion 3. In our system

there is a universal sampler parameter generation algorithm, Setup, whi
h is

invoked with se
urity parameter 1λ and randomness r. The output of this al-

gorithm are the universal sampler parameters U . In addition, there is a se
ond

algorithm Sample whi
h takes as input the parameters U and the (
ir
uit) de-

s
ription of a setup algorithm, d, and outputs the indu
ed parameters pd.

We model se
urity as an ideal/real game. In the real game an atta
ker will

re
eive the parameters U produ
ed from the universal parameter generation

algorithm. Next, it will query an ora
le on multiple setup algorithm des
riptions

d1, . . . , dq and iteratively get ba
k pi = Sample(U, di) for i = 1, 2, . . . , q.
In the ideal world, the atta
ker will �rst get the universal sampler parameters

U , as before. Now, when the adversary queries on di, a unique true random string

ri is 
hosen for ea
h distin
t di, and the adversary gets ba
k pi = di(ri), as if
obtaining a freshly random sample from di.

A s
heme is se
ure if no poly-time atta
ker 
an distinguish between the real

and ideal game with non-negligible advantage after observing their trans
ripts.

Sin
e pi is a deterministi
 fun
tion of di, this strong de�nition is only a
hievable

in the random ora
le model. This strongest de�nition is formalized in Se
tion 3.2.

To make progress toward our eventual solution we begin with a relaxed se-


urity notion, whi
h is in fa
t realizable in the standard model, without random

5



ora
les. We relax the de�nition in two ways: (1) we 
onsider a setting where the

atta
ker makes only a single query to the ora
le and (2) he 
ommits to the query

stati
ally (a.k.a. sele
tively) before seeing the sampler parameters U . While this

se
urity notion is too weak for our long term goals, developing a solution will

serve as step towards our �nal solution and provide insights.

In the sele
tive setting, in the ideal world, it will be possible to program U

to 
ontain the output 
orresponding to the atta
ker's query. Given this insight,

it is straightforward to obtain the sele
tive and bounded notion of se
urity by

using indistinguishability obfus
ation and applying pun
tured programming [32℄

te
hniques. In our 
onstru
tion we 
onsider setup programs to all 
ome from a

polynominal 
ir
uit family of size ℓ(λ), where ea
h setup 
ir
uit d takes in input

m(λ) bits and outputs parameters of k(λ) bits. The polynomials of ℓ,m, k are

�xed for a 
lass of systems; we often will drop the dependen
e on λ when it is


lear from 
ontext.

The Setup algorithm will �rst 
hoose a pun
turable pseudo random fun
tion

(PRF) key K for fun
tion F where F (K, ·) takes as input a 
ir
uit des
ription d

and outputs 
oins x
$

←{0, 1}m. The universal sampler parameters are 
reated as

an obfus
ation of a program that on input d 
omputes and outputs d(F (K, d)).
To prove se
urity we perform a hybrid argument between the real and ideal

games in the 1-bounded and sele
tive model. First, we pun
ture out d∗, the

single program that the atta
ker queried on, from K to get the pun
tured key

K(d∗). We 
hange the parameters to be an obfus
ation of the program whi
h

uses K(d∗) to 
ompute the program for any d 6= d∗. And for d = d∗ we simply

hardwire in the output z where z = d(F (K, d)). This 
omputation is fun
tionally

equivalent to the original program � thus indistinguishability of this step from

the previous follows from indistinguishability obfus
ation. In this next step, we


hange the hardwired value to d(r) for freshly 
hosen randomness r ∈ {0, 1}m.
This 
ompletes the transition to the ideal game.

A
hieving Adaptive Se
urity. We now turn our attention to a
hieving our orig-

inal goal of universal sampler generation for adaptive se
urity. While sele
tive

se
urity might be su�
ient in some limited situations, the adaptive se
urity no-

tion 
overs many plausible real world atta
ks. For instan
e, suppose a group

of people perform a se
urity analysis and agree to use a 
ertain 
ryptographi


proto
ol and its 
orresponding setup algorithm. However, for any one algorithm

there will be a huge number of fun
tionally equivalent implementations. In a real

life setting an atta
ker 
ould 
hoose one of these implementations based on the

universal sampler parameters and might 
onvin
e the group to use this one. A

sele
tively se
ure system is not ne
essarily se
ure against su
h an atta
k, while

this is 
aptured by the adaptive model.

Obtaining a solution in the adaptive unbounded setting will be signi�
antly

more di�
ult. Re
all that we 
onsider a setting where a random ora
le may

be augmented by a program to obtain a universal sampler s
heme for arbitrary

6



distributions

3

. Indeed, for uniformly distributed samples, our universal sampler

s
heme will imply a programmable random ora
le.

A tempting idea is to simply repla
e the pun
turable PRF 
all from our

last 
onstru
tion with a 
all to a hash fun
tion modeled as a programmable

random ora
le. This solution is problemati
: what does it mean to obfus
ate an

ora
le-aided 
ir
uit? It is not 
lear how to model this notion without yielding

an impossibility result even within the random ora
le model, sin
e the most

natural formulation of indistinguishability obfus
ation for random-ora
le-aided


ir
uits would yield VBB obfus
ation, a notion that is known to be impossible to

a
hieve [3℄. In parti
ular, Goldwasser and Rothblum [23℄ also showed a family of

random-ora
le-aided 
ir
uits that are provably impossible to indistinguishably

obfus
ate. However, these impossibilities only show up when we try to obfus
ate


ir
uits that make random ora
le 
alls. Therefore we need to obtain a solution

where random ora
le 
alls are only possible outside of obfus
ated programs. This


ompli
ates matters 
onsiderably, sin
e the obfus
ated program then has no way

of knowing whether a setup program d is 
onne
ted to a parti
ular hash output.

A new proof te
hnique: delayed ba
kdoor programming. To solve this problem we

develop a novel way of allowing what we 
all �delayed ba
kdoor programming�

using a random ora
le. In our 
onstru
tion, users will be provided with universal

sampler parameters whi
h 
onsist of an obfus
ated program U (produ
ed from

Setup) as well as a hash fun
tion H modeled as a random ora
le. Users will

use these overall parameters to determine the indu
ed samples. We will use the

notion of �hidden triggers� [32℄ that loosely 
orresponds to information hidden

in an otherwise pseudorandom string, that 
an only be re
overed using a se
ret

key.

Let's begin by seeing how Setup 
reates a program, P , that will be obfus-


ated to 
reate U . The program takes an input w (looking ahead, this input w

will be obtained by a user as a result of invoking the random ora
le on his input

distribution d). The program 
onsists of two main stages. In the �rst stage, the

program 
he
ks to see if w en
odes a �hidden trigger� using se
ret key infor-

mation. If it does, this step will output the �hidden trigger� x ∈ {0, 1}n, and
the program P will simply output x. However, for a uniformly randomly 
hosen

string w, this step will fail to de
ode with very high probability, sin
e trigger

values are en
oded sparsely. Moreover, without the se
ret information it will

be di�
ult to distinguish an input w 
ontaining a hidden trigger value from a

uniformly sampled string.

If de
oding is unsu

essful, P will move into its se
ond stage. It will 
om-

pute randomness r = F (K,w) for a pun
turable PRF F . Now instead of di-

re
tly 
omputing the indu
ed samples using r, we add a level of indire
tion.

The program will run the Setup algorithm for a 1-bounded universal parameter

generation s
heme using randomness r � in parti
ular the program P 
ould 
all

3

Note that on
e the universal sampler parameters of a �xed polynomial size are given

out, it is not possible for a standard model proof to make an unbounded number of

parameters 
onsistent with the already-�xed universal sampler parameters.

7



the 1-bounded sele
tive s
heme we just illustrated above

4

. The program P then

outputs the 1-bounded universal sampler parameters Uw.

In order to generate an indu
ed sample by exe
uting Sample(U, d) on an input
distribution d, the algorithm �rst 
alls the random ora
le to obtain H(d) = w.

Next, it runs the program U to obtain output program Uw = U(w). Finally, it
obtains the indu
ed parameters by 
omputing pd = Uw(d). The extra level of

indire
tion is 
riti
al to our proof of se
urity.

We now give an overview of the proof of se
urity. At the highest level the goal

of our proof is to 
onstru
t a sequen
e of hybrids where parameter generation is

�moved� from being dire
tly 
omputed by the se
ond stage of U (as in the real

game) to where the parameters for setup algorithm d are being programmed in

by the �rst stage hidden trigger me
hanism via the input w = H(d). Any poly-

time algorithm A will make at most a polynomial number Q = Q(λ) (unique)
queries d1, . . . , dQ to the random ora
le with RO outputs w1, . . . , wQ. We perform

a hybrid of Q outer steps where at outer step i we move from using Uwi
to


ompute the indu
ed parameters for di, to having the indu
ed parameter for di
being en
oded in wi itself.

Let's zoom in on the ith transition for input distribution di. The �rst hybrid

step uses pun
tured programming te
hniques to repla
e the normal 
omputa-

tion of the 1-time universal sampler parameters Uwi
inside the program, with

a hardwired and randomly sampled value Uwi
= U ′

. These te
hniques require

making 
hanges to the universal sampler parameter U . Sin
e U is published be-

fore the adversary queries the random ora
le on distribution di, note that we


annot �program� U to spe
ialize to di.

The next step

5

involves a �hand-o�� operation where we move the sour
e

of the one time parameters U ′
to the trigger that will be hidden inside the

random ora
le output wi, instead of using the hardwired value U ′
inside the

program. This step is 
riti
al to allowing an unbounded number of samples

to be programmed into the universal sampler s
heme via the random ora
le.

Essentially, we �rst 
hoose U ′
independently and then set wi to be a hidden

trigger en
oding of U ′
. At this point on 
alling U(wi) the program will get

Uwi
= U ′

from the Stage 1 hidden trigger dete
tion and never pro
eed to Stage

2. Sin
e the se
ond stage is no longer used, we 
an use iO se
urity to return to

the situation where U ′
is no longer hardwired into the program � thus freeing

up the a-priori-bounded �hardwiring resour
es� for future outer hybrid steps.

Interestingly, all proof steps to this point were independent of the a
tual

program di. We observe that this fa
t is essential to our proof sin
e the redu
tion

was able to 
hoose and program the one-time parameters U ′
ahead of time into

U whi
h had to be published well before di was known. However, now Uwi
= U ′


omes programmed in to the random ora
le output wi obtained as a result of the

4

In our 
onstru
tion of Se
tion 5 we dire
tly use our 1-bounded s
heme inside the


onstru
tion. However, we believe our 
onstru
tion 
an be be adapted to work for

any one bounded s
heme.

5

This is a
tually performed by a sequen
e of smaller steps in our proof. We simplify

to bigger steps in this overview.

8




all to H(di). At this point, the program U ′
needs to be 
onstru
ted only after

the ora
le 
all H(di) has been made and thus di is known to the 
hallenger. We


an now use our te
hniques from the sele
tive setting to for
e U ′(di) to output

the ideally generated parameters di(r) for distribution di.

We believe our �delayed ba
kdoor programming� te
hnique may be useful

in other situations where an unbounded number of ba
kdoors are needed in a

program of �xed size.

1.2 Appli
ations of Universal Samplers

Universal setup. Our notion of arbitrary sampling allows for many appli
ations.

For starters let's return to the problem of providing a master setup for all 
ryp-

tographi
 proto
ols. Using a universal sampler s
heme this is quite simple. One

will simply publish the universal sampler U ← Setup(1λ), for se
urity parameter

λ. Then if subsequently a new s
heme is developed that has a trusted setup algo-

rithm d, everyone 
an agree to use p = Sample(U, d) as the s
heme's parameters.

We 
an also use universal sampler s
hemes as a te
hni
al tool to build appli
a-

tions as varied as identity-based en
ryption (IBE), non-intera
tive key ex
hange

(NIKE), and broad
ast en
ryption (BE) s
hemes. We note that our goal is not to


laim that our appli
ations below are the �best� realizations of su
h primitives,

but more to demonstrate the di�erent and perhaps surprising ways a universal

sampler s
heme 
an be leveraged.

From the publi
-key to the identity-based setting. As a warmup, we show how

to transport 
ryptographi
 s
hemes from the publi
-key to the identity-based

setting using universal samplers. For instan
e, 
onsider a publi
-key en
ryption

(PKE) s
heme PKE = (PKGen,PKEnc,PKDec). Intuitively, to obtain an IBE

s
heme IBE from PKE, we use one PKE instan
e for ea
h identity id of IBE.

A �rst attempt to do so would be to publish a des
ription of U as the master

publi
 key of IBE, and then to de�ne a publi
 key pk id for identity id as pk id =
Sample(U, did), where did is the algorithm that �rst generates a PKE key pair

(pk , sk) ← PKGen(1λ) and then outputs pk . (Furthermore, to distinguish the

keys for di�erent identities, did 
ontains id as a �xed 
onstant that is built

into its 
ode, but not used.) This essentially establishes a �virtual� publi
-key

infrastru
ture in the identity-based setting.

En
ryption to an identity id 
an then be performed using PKEnc under publi


key pk id . However, at this point, it is not 
lear how to derive individual se
ret

keys sk id that would allow to de
rypt these 
iphertexts. (In fa
t, this �rst s
heme

does not appear to have any master se
ret key to begin with.)

Hen
e, as a se
ond attempt, we add a �master PKE publi
 key� pk
′
from a


hosen-
iphertext se
ure PKE s
heme to IBE's master publi
 key. Furthermore,

we set (pk id , c
′
id
) = Sample(U, did) for the algorithm did that �rst samples

(pk , sk) ← PKGen(1λ), then en
rypts sk under pk
′
via c′ ← PKEnc′(pk ′, sk),

and �nally outputs (pk , c′). This way, we 
an use sk
′
as a �master se
ret key� to

extra
t sk from c′
id

� and thus extra
t individual user se
ret keys.

9



We show that this 
onstru
tion yields a sele
tively-se
ure IBE s
heme on
e

the used universal sampler s
heme is sele
tively se
ure and the underlying PKE

s
hemes are se
ure. Intuitively, during the analysis, we substitute the user publi


key pk id∗ for the 
hallenge identity id
∗
with a freshly generated PKE publi
 key,

and we substitute the 
orresponding c′
id∗ with a random 
iphertext. This allows

to embed an externally given PKE publi
 key pk
∗
, and thus to use PKE's se
urity.

Non-intera
tive key ex
hange and broad
ast en
ryption. We provide a very sim-

ple 
onstru
tion of a multiparty non-intera
tive key ex
hange (NIKE) s
heme.

In an n-user NIKE s
heme, a group of n parties wishes to agree on a shared

random key k without any 
ommuni
ation. User i derives k from its own se
ret

key and the publi
 keys of the other parties. (Sin
e we are in the publi
-key

setting, ea
h party 
hooses its key pair and publishes its publi
 key.) Se
urity

demands that k look random to any party not in the group.

We 
onstru
t a NIKE s
heme from a universal sampler s
heme and a PKE

s
heme PKE = (PKGen,PKEnc,PKDec) as follows: the publi
 parameters are the

universal samplers U . Ea
h party 
hooses a keypair (pk , sk) ← PKGen(1λ). A
shared key K among n parties with publi
 keys from the set S = {pk1, . . . , pkn}
is derived as follows. First, ea
h party 
omputes (c1, . . . , cn) = Sample(U, dS),
where dS is the algorithm that 
hooses a random key k, and then en
rypts it

under ea
h pk i to ci (i.e., using ci ← PKEnc(pk i, k)). Furthermore, dS 
ontains

a des
ription of the set S, e.g., as a 
omment. (This ensures that di�erent sets S

imply di�erent algorithms dS and thus di�erent independently random Sample

outputs.) Obviously, the party with se
ret key sk i 
an derive k from ci. On

the other hand, we show that k remains hidden to any outsiders, even in an

adaptive setting, assuming the universal sampler s
heme is adaptively se
ure,

and the en
ryption s
heme is (IND-CPA) se
ure.

We also give a variant of the proto
ol that has no setup at all. Roughly, we

follow Boneh and Zhandry [12℄ and designate one user as the �master party�

who generates and publishes the universal sampler parameters along with her

publi
 key. Unfortunately, as in [12℄, the basi
 
onversion is totally broken in

the adaptive setting. However, we make a small 
hange to our proto
ol so that

the resulting no-setup s
heme does have adaptive se
urity. This is in 
ontrast

to [12℄, whi
h required substantial 
hanges to the s
heme, a
hieved only a weaker

semi-stati
 se
urity, and only obtained se
urity though 
omplexity leveraging.

Not only is our s
heme the �rst adaptively se
ure multiparty NIKE without

any setup, but it is the �rst to a
hieve adaptive se
urity even among s
hemes

with trusted setup, and it is the �rst to a
hieve any se
urity beyond stati
 se
u-

rity without relying on 
omplexity leveraging. Subsequent to our work, Rao [31℄

gave an adaptive multi-party non-intera
tive key ex
hange proto
ol under adap-

tive assumptions on multilinear maps. One trade-o� is that our s
heme is only

proved se
ure in the random ora
le model, whereas [12,31℄ are proved se
ure in

the standard model. Nevertheless, we note that adaptively se
ure NIKE with

polynomial loss to underlying assumptions is not known to be a
hievable out-

side of the random ora
le model unless one makes very strong adaptive (non-

falsi�able) assumptions [31℄.
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Finally, using an existing transformation of Boneh and Zhandry [12℄, we

obtain a new adaptive distributed broad
ast en
ryption from our NIKE s
heme.

1.3 Subsequent work leveraging universal sampler s
hemes.

After the initial posting of our paper, a few other papers have applied universal

sampler s
hemes. Hohenberger, Koppula and Waters [25℄ used universal samplers

to a
hieve adaptive se
urity without 
omplexity leveraging for a new notion

they 
alled universal signature aggregators. Hofheinz, Kamath, Koppula and

Waters [24℄ showed how to build adaptively se
ure 
onstrained PRFs [11,14,26℄,

for any 
ir
uits, using universal parameters as a key ingredient. All previous


onstru
tions were only sele
tively se
ure, or required 
omplexity leveraging.

Our adaptively se
ure universal sampler s
heme in the random ora
le model,

also turns out to be a key building blo
k in the 
onstru
tion of proof of human-

work puzzles of Blo
ki and Zhou [7℄. Again, the abstra
tion of universal samplers

proved useful for 
onstru
ting NIKE s
hemes based on polynomially-hard fun
-

tional en
ryption [21℄.

Another paper that appeared subsequent to ours [18℄, introdu
ed the notion

of explainability 
ompilers and used them to obtain adaptively se
ure, universally


omposable MPC in 
onstant rounds based on indistinguishability obfus
ation

and one-way fun
tions. We note that explainability 
ompilers are related to our

notion of sele
tively se
ure universal samplers.

1.4 Organization of the Paper

We give an overview of indistinguishability obfus
ation and pun
turable PRFs,

the main te
hni
al tools required for our 
onstru
tions, in Se
tion 2. In Se
tion 3,

we de�ne our notion of universal sampler s
hemes. We give a realization and

proof of se
urity for a 1-bounded sele
tively se
ure s
heme in Se
tion 4. In

Se
tion 5, we give the 
onstru
tion and se
urity overview for our main notion of

an unbounded adaptively se
ure s
heme. The full proof of se
urity of the adap-

tive unbounded universal sampler s
heme is in the full version. Appli
ations of

Universal Samplers to IBE and NIKE are also detailed in the full version.

2 Preliminaries

2.1 Indistinguishability Obfus
ation and PRFs

In this se
tion, we de�ne indistinguishability obfus
ation, and variants of pseudo-

random fun
tions (PRFs) that we will make use of. All variants of PRFs that we


onsider 
an be 
onstru
ted from one-way fun
tions.

Indistinguishability Obfus
ation. The de�nition below is adapted from [20℄:

De�nition 1 (Indistinguishability Obfus
ator (iO)). A uniform PPT ma-


hine iO is 
alled an indistinguishability obfus
ator for 
ir
uits if the following


onditions are satis�ed:
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� For all se
urity parameters λ ∈ N, for all 
ir
uits C, for all inputs x, we
have that

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

� For any (not ne
essarily uniform) PPT adversaries Samp, D, there exists a

negligible fun
tion α su
h that the following holds: if Pr[|C0| = |C1| and ∀x,C0(x) =
C1(x) : (C0, C1, σ)← Samp(1λ)] > 1− α(λ), then we have:

∣

∣

∣
Pr

[

D(σ, iO(λ,C0)) = 1 : (C0, C1, σ)← Samp(1λ)
]

−Pr
[

D(σ, iO(λ,C1)) = 1 : (C0, C1, σ)← Samp(1λ)
]

∣

∣

∣
≤ α(λ)

We will sometimes omit λ from the notation whenever 
onvenient and 
lear from


ontext.

Su
h indistinguishability obfus
ators for 
ir
uits were 
onstru
ted under novel

algebrai
 hardness assumptions in [20℄.

PRF variants. We �rst 
onsider some simple types of 
onstrained PRFs [11,14,26℄,

where a PRF is only de�ned on a subset of the usual input spa
e. We fo
us on

pun
turable PRFs, whi
h are PRFs that 
an be de�ned on all bit strings of a


ertain length, ex
ept for any polynomial-size set of inputs:

De�nition 2. A pun
turable family of PRFs F is given by a triple of Turing

Ma
hines KeyF , PunctureF , and EvalF , and a pair of 
omputable fun
tions n(·)
and m(·), satisfying the following 
onditions:

� [Fun
tionality preserved under pun
turing℄ For every PPT adversary

A su
h that A(1λ) outputs a set S ⊆ {0, 1}n(λ), then for all x ∈ {0, 1}n(λ)

where x /∈ S, we have that:

Pr
[

EvalF (K,x) = EvalF (KS , x) : K ← KeyF (1
λ),KS = PunctureF (K,S)

]

= 1

� [Pseudorandom at pun
tured points℄ For every PPT adversary (A1, A2)
su
h that A1(1

λ) outputs a set S ⊆ {0, 1}n(λ) and state σ, 
onsider an ex-

periment where K ← KeyF (1
λ) and KS = PunctureF (K,S). Then we have

∣

∣

∣
Pr

[

A2(σ,KS , S,EvalF (K,S)) = 1
]

−Pr
[

A2(σ,KS , S, Um(λ)·|S|) = 1
]

∣

∣

∣
= negl(λ)

where EvalF (K,S) denotes the 
on
atenation of EvalF (K,x1)), . . . ,EvalF (K,xk))
where S = {x1, . . . , xk} is the enumeration of the elements of S in lexi
o-

graphi
 order, negl(·) is a negligible fun
tion, and Uℓ denotes the uniform

distribution over ℓ bits.

For ease of notation, we write F (K,x) to represent EvalF (K,x). We also

represent the pun
tured key PunctureF (K,S) by K(S).

The GGM tree-based 
onstru
tion of PRFs [22℄ from one-way fun
tions are

easily seen to yield pun
turable PRFs, as re
ently observed by [11,14,26℄. Thus:

Theorem 1. [22,11,14,26℄ If one-way fun
tions exist, then for all e�
iently


omputable fun
tions n(λ) and m(λ), there exists a pun
turable PRF family that

maps n(λ) bits to m(λ) bits.
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3 De�nitions

In this se
tion, we des
ribe our de�nitional framework for universal sampler

s
hemes. The essential property of a universal sampler s
heme is that given

the sampler parameters, and given any program d that generates samples from

randomness (subje
t to 
ertain size 
onstraints, see below), it should be possible

for any party to use the sampler parameters and the des
ription of d to obtain

indu
ed samples that look like the samples that d would have generated given

uniform and independent randomness.

We will 
onsider two de�nitions � a simpler de�nition promising se
urity for

a single arbitrary but �xed proto
ol, and a more 
omplex de�nition promising

se
urity in a strong adaptive sense against many proto
ols 
hosen after the sam-

pler parameters are �xed. All our se
urity de�nitions follow a �Real World� vs.

�Ideal World� paradigm. Before we pro
eed to our de�nitions, we will �rst set

up some notation and 
onventions:

� We will 
onsider programs d that are bounded in the following ways: Note

that we will use d to refer to both the program, and the des
ription of the

program. Below, ℓ(λ),m(λ), and k(λ) are all 
omputable polynomials. The

des
ription of d is as an ℓ(λ)-bit string des
ribing a 
ir
uit

6

implementing d.

The program d takes as input m(λ) bits of randomness, and outputs samples

of length k(λ) bits. Without loss of generality, we assume that ℓ(λ) ≥ λ and

m(λ) ≥ λ. When 
ontext is 
lear, we omit the dependen
e on the se
urity

parameter λ. The quantities (ℓ,m, k) are bounds that are set during the

setup of the universal sampler s
heme.

� We enfor
e that every ℓ-bit des
ription of d yields a 
ir
uit mapping m bits

to k bits; this 
an be done by repla
ing any invalid des
ription with a default


ir
uit satisfying these properties.

� We will sometimes refer to the program d that generates samples as a �proto-


ol�. This is to emphasize that d 
an be used to generate arbitrary parameters

for some proto
ol.

A universal parameter s
heme 
onsists of two algorithms:

(1) The �rst randomized algorithm Setup takes as input a se
urity parameter

1λ and outputs sampler parameters U .

(2) The se
ond algorithm Sample takes as input sampler parameters U and a


ir
uit d of size at most ℓ, and outputs indu
ed samples pd.

Intuition. Before giving formal de�nitions, we will now des
ribe the intuition

behind our de�nitions. We want to formulate se
urity de�nitions that guarantee

that indu
ed samples are indistinguishable from honestly generated samples to

an arbitrary intera
tive system of adversarial and honest parties.

6

Note that if we assume iO for Turing Ma
hines, then we do not need to restri
t

the size of the des
ription of d. Candidates for iO for Turing Ma
hines were given

by [1,13℄.
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We �rst 
onsider an �ideal world,� where a trusted party, on input a pro-

gram des
ription d, simply outputs d(rd) where rd is independently 
hosen true

randomness, 
hosen on
e and for all for ea
h given d. In other words, if F is

a truly random fun
tion, then the trusted party outputs d(F (d)). In this way,

if any party asks for samples 
orresponding to a spe
i�
 program d, they are

all provided with the same honestly generated value. This 
orresponds pre
isely

to the shared trusted publi
 parameters model in whi
h proto
ols are typi
ally


onstru
ted.

In the real world, however, all parties would only have a

ess to the trusted

sampler parameters. Parties would use the sampler parameters to derive indu
ed

samples for any spe
i�
 program d. Following the ideal/real paradigm, we would

like to argue that for any adversary that exists in the real world, there should

exist an equivalently su

essful adversary in the ideal world. However, the general

s
enario of an intera
tion between multiple parties, some mali
ious and some

honest, intera
ting in an arbitrary se
urity game would be 
umbersome to model

in a de�nition. To avoid this, we note that the only way that honest parties

ever use the sampler parameters is to exe
ute the sample derivation algorithm

using the sampler parameters and some program des
riptions d (
orresponding

to the proto
ols in whi
h they parti
ipate) to obtain derived samples, whi
h

these honest parties then use in their intera
tions with the adversary.

Thus, instead of modeling these honest parties expli
itly, we 
an �absorb�

them into the adversary, as we now explain: We will require that for every real-

world adversary A, there exists a simulator S that 
an provide simulated sampler

parameters U to the adversary su
h that these simulated sampler parameters U

a
tually indu
e the 
ompletely honestly generated samples d(F (d)) 
reated by

the trusted party: in other words, that Sample(U, d) = d(F (d)). Note that sin
e

honest parties are instru
ted to simply honestly 
ompute indu
ed samples, this

ensures that honest parties in the ideal world would obtain these 
ompletely

honestly generated samples d(F (d)). Thus, we do not need to model the honest

parties expli
itly � the adversary A 
an internally simulate any (set of) honest

parties. By the 
ondition we impose on the simulation, these honest parties would

have the 
orre
t view in the ideal world.

Sele
tive (and bounded) vs. Adaptive (and unbounded) Se
urity. We explore two

natural formulations of the simulation requirement. The simpler variant is the

sele
tive 
ase, where we require that the adversary de
lare at the start a single

program d∗ on whi
h it wants the ideal world simulator to enfor
e equality

between the honestly generated samples d∗(F (d∗)) and the indu
ed samples

Sample(U, d∗). This simpler variant has two advantages: First, it is a
hievable in

the standard model. Se
ond, it is a
hieved by natural and simple 
onstru
tion

based on indistinguishability obfus
ation.

However, ideally, we would like our se
urity de�nition to 
apture a s
enario

where sampler parameters U are set, and then an adversary 
an potentially

adaptively 
hoose a program d for generating samples for some adaptively 
hosen

appli
ation s
enario. For example, there may be several plausible implementa-

tions of a program to generate samples, and an adversary 
ould in�uen
e whi
h
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spe
i�
 program des
ription d is used for a parti
ular proto
ol. Note, however,

that su
h an adaptive s
enario is trivially impossible to a
hieve in the standard

model: there is no way that a simulator 
an publish sampler parameters U of

polynomial size, and then with no further intera
tion with the adversary, for
e

Sample(U, d∗) = d∗(F (d∗)) for a d∗ 
hosen after U has already been de
lared.

This impossibility is very similar to the trivial impossibility for reusable non-

intera
tive non-
ommitting publi
-key en
ryption [29℄ in the plain model. Su
h


ausality problems 
an be addressed, however, in the random-ora
le model. As

dis
ussed in the introdu
tion, the sound use of the random ora
le model together

with obfus
ation requires 
are: we do not assume that the random ora
le itself


an be obfus
ated, whi
h presents an intriguing te
hni
al 
hallenge.

Furthermore, we would like our sampler parameters to be useful to obtain

indu
ed samples for an unbounded number of other appli
ation s
enarios. We

formulate and a
hieve su
h an adaptive unbounded de�nition of se
urity in the

random ora
le model.

3.1 Sele
tive One-Time Universal Samplers

We now formally de�ne a sele
tive one-time se
ure universal sampler s
heme.

De�nition 3 (Sele
tively-Se
ure One-Time Universal Sampler S
heme).

Let ℓ(λ),m(λ), k(λ) be e�
iently 
omputable polynomials. A pair of e�
ient

algorithms (Setup, Sample) where Setup(1λ) → U, Sample(U, d) → pd, is a

sele
tively-se
ure one-time universal sampler s
heme if there exists an e�
ient

algorithm SimUGen su
h that:

� There exists a negligible fun
tion negl(·) su
h that for all 
ir
uits d of length

ℓ, taking m bits of input, and outputting k bits, and for all strings pd ∈
{0, 1}k, we have that:

Pr[Sample(SimUGen(1λ, d, pd), d) = pd] = 1− negl(λ)

� For every e�
ient adversary A = (A1,A2), where A2 outputs one bit, there

exists a negligible fun
tion negl(·) su
h that

∣

∣Pr[Real(1λ) = 1]− Pr[Ideal(1λ) = 1]
∣

∣ = negl(λ) (1)

where the experiments Real and Ideal are de�ned below (σ denotes auxiliary

information).

The experiment Real(1λ) is as follows: The experiment Ideal(1λ) is as follows:
� (d∗, σ)← A1(1

λ). � (d∗, σ)← A1(1
λ).

� Output A2(Setup(1
λ), σ). � Choose r uniformly from {0, 1}m.

� Let pd = d∗(r).
� Output A2(SimUGen(1

λ, d∗, pd), σ).
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3.2 Adaptively Se
ure Universal Samplers

We now de�ne universal sampler s
hemes for the adaptive setting in the random

ora
le model, handling an unbounded number of indu
ed samples simultaneously.

We do not assume obfus
ation of 
ir
uits that 
all the random ora
le. Thus, we

allow the random ora
le to be used only outside of obfus
ated programs.

We 
onsider an adversary that uses a universal sampler to obtain samples on

(adaptively 
hosen) distributions of his 
hoi
e. We want to guarantee that for

any distribution spe
i�ed by the adversary, the output samples he obtains are

indistinguishable from externally generated parameters from the same distribu-

tion. In other words, there must exist a simulator that 
an for
e the adversary to

obtain the externally generated parameters as output of the universal sampler.

Converting this intuition into an a
tual formal de�nition turns out to be

somewhat 
ompli
ated. The reason is that in the real world, the adversary must

be able to generate samples on his own, using the universal sampler provided to

him. However, the simulator whi
h is required to for
e the external parameters


annot learn the adversary's queries to the sampler program. Su
h a simulator

must observe all of the adversary's queries to the random ora
le, and use them

to program the output of the samplers, without knowing any of the adversary's

a
tual queries to the sampler program.

De�nition 4 (Adaptively-Se
ure Universal Sampler S
heme). Let ℓ(λ),
m(λ),k(λ) be e�
iently 
omputable polynomials. A pair of e�
ient ora
le al-

gorithms (Setup, Sample) where SetupH(1λ) → U, SampleH(U, d) → pd is an

adaptively-se
ure universal sampler s
heme if there exist e�
ient intera
tive

Turing Ma
hines SimUGen, SimRO su
h that for every e�
ient admissible ad-

versary A, there exists a negligible fun
tion negl(·) su
h that:

∣

∣Pr[Real(1λ) = 1]− Pr[Ideal(1λ) = 1]
∣

∣ = negl(λ)

where admissible adversaries, the experiments Real and Ideal and our (non-

standard) notion of the Ideal experiment aborting, are des
ribed below.

� An admissible adversary A is an e�
ient intera
tive Turing Ma
hine that

outputs one bit, with the following input/output behavior:

• A initially takes input se
urity parameter λ and sampler parameters U .

• A 
an send a message (RO, x) 
orresponding to a random ora
le query.

In response, A re
eives the output of the random ora
le on input x.

• A 
an send a message (sample, d), where d is a 
ir
uit of length ℓ, taking

m bits of input, and outputting k bits. A does not expe
t any response

to this message. Instead, upon sending this message, A is required to

honestly 
ompute pd = Sample(U, d), making use of any additional

RO queries, and append (d, pd) to an auxiliary tape.

Remark. Intuitively, (sample, d) 
orresponds to an honest party seeking

a sample generated by program d. Re
all that A is meant to internalize
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the behavior of honest parties that 
ompute parameters by 
orre
tly

querying the random ora
le and re
ording the sampler's output

7

.

� The experiment Real(1λ) is as follows:
1. Throughout this experiment, a random ora
le H is implemented by as-

signing random outputs to ea
h unique query made to H.
2. U ← SetupH(1λ)
3. A(1λ, U) is exe
uted, where every message of the form (RO, x) re
eives

the response H(x).
4. The output of the experiment is the �nal output of the exe
ution of

A(whi
h is a bit b ∈ {0, 1}).
� The experiment Ideal(1λ) is as follows:

1. A truly random fun
tion F that maps ℓ bits to m bits is implemented

by assigning random m-bit outputs to ea
h unique query made to F8

.

Throughout this experiment, a Samples Ora
le O is implemented as fol-

lows: On input d, where d is a 
ir
uit of length ℓ, taking m bits of input,

and outputting k bits, O outputs d(F (d)).
2. (U, τ)← SimUGen(1λ). Here, SimUGen 
an make arbitrary queries to the

Samples Ora
le O.
3. SimRO 
orresponds to the output of a programmable random ora
le in the

ideal world.

4. A(1λ, U) and SimRO(τ) begin simultaneous exe
ution. Messages for A or

SimRO are handled as:

• Whenever A sends a message of the form (RO, x), this is forwarded
to SimRO, whi
h produ
es a response to be sent ba
k to A.

• SimRO 
an make any number of queries to the Samples Ora
le O9

.

• Finally, after A sends a message of the form (sample, d), the auxiliary
tape of A is examined until A adds an entry of the form (d, pd) to

it. At this point, if pd 6= d(F (d)), the experiment aborts and we

say that an �Honest Sample Violation� has o

urred. Note that this


orresponds to a 
orre
tness requirement in the ideal world, and is

the only way that the experiment Ideal 
an abort

10

. In this 
ase, if

the adversary itself �aborts�, we 
onsider this to be an output of zero

by the adversary, not an abort of the experiment itself.

7

Note that proving se
urity against su
h admissible adversaries su�
es to 
apture the

intuition behind a universal sampler and in parti
ular su�
es for all our appli
ations.

This is be
ause honest parties will still use the 
orre
tly generated output, and we

would like to guarantee that no mali
ious adversary will be able to distinguish the

samples used by honest parties from externally generated samples.

8

A does not have dire
t a

ess to F , in fa
t A will only have a

ess to SimRO whi
h

we de�ne later to model the output of a programmable random ora
le.

9

Looking ahead, in our proof, SimRO will use the output of queries to O to generate

a programmed output of the Random Ora
le.

10

Re
all that an admissible adversary only honestly 
omputes samples and adds them

to its tape � i.e., an admissible adversary always writes pd = Sample
H(U, d) as the

honest output of the sampler program. Thus, an honest sample violation in the ideal

world indi
ates that the simulator did not for
e the 
orre
t samples d(F (d)) obtained
externally from a trusted party, into the output of the sampler program.
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5. The output of the experiment is the �nal output of the exe
ution of A
(whi
h is a bit b ∈ {0, 1}).

Remark 1. We note that indistinguishability of the real and ideal worlds also

implies that: Pr[Ideal(1λ) aborts] < negl(λ)

4 Sele
tive One-Time Universal Samplers

In this se
tion, we show the following:

Theorem 2 (Sele
tive One-Time Universal Samplers). If indistinguisha-

bility obfus
ation and one-way fun
tions exist, then there exists a sele
tively se-


ure one-time universal sampler s
heme, a

ording to De�nition 3.

The required Sele
tive One-Time Universal Sampler S
heme 
onsists of pro-

grams Setup and Sample.

� Setup(1λ) �rst samples the key K for a PRF that takes ℓ bits as input and
outputs m bits. It then sets Sampler Parameters U to be an indistinguisha-

bility obfus
ation of the program

11

Sele
tive-Single-Samples in Figure 1. It

outputs U .

� Sample(U, d) runs the program U on input d to generate and output U(d).

Sele
tive-Single-Samples

Constant: PRF key K.

Input: Program des
ription d.

1. Output d(F (K, d)).
Re
all that d is a program des
ription whi
h outputs k bits.

Fig. 1: Program Sele
tive-Single-Samples

4.1 Overview of Se
urity Proof

The proof follows straightforwardly from the pun
turing te
hniques of [32℄ and

we give a brief overview before giving the full proof. In the real world, the

adversary 
ommits to his input d∗ and then the 
hallenger gives the Sele
tive-

Single-Samples program to the adversary. In the �rst hybrid, we pun
ture the

PRF key K at value d∗, and hardwire the output f∗ = d∗(PRF (K, d∗)) into

the program, arguing se
urity by iO of the fun
tionally equivalent programs. In

the next hybrid, PRF (K, d∗) 
an be repla
ed with a random value x, setting
f∗ = d∗(x) and arguing se
urity be
ause of the pun
turable PRF. Finally, the

value f∗

an be repla
ed with the external sample pd.

11

Appropriately padded to the maximum of the size of itself and Program Sele
tive-

Single-Samples: 2 in Figure 2
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4.2 Hybrids

We prove se
urity by a sequen
e of hybrids, starting with the original experiment

Hybrid0 in the Real World and repla
ing the output at d∗ with an external sample

in the �nal hybrid (Ideal World). Ea
h hybrid is an experiment that takes as

input 1λ. The output of ea
h hybrid is the adversary's output when it terminates.

We denote 
hanges between subsequent hybrids using red underlined font.

Hybrid0:

� The adversary pi
ks proto
ol des
ription d∗ and sends it to the 
hallenger.

� The 
hallenger pi
ks PRF key K and sends the adversary an iO of the pro-

gram

12

Sele
tive-Single-Samples in Figure 1.

� The adversary queries the program on input d∗ to obtain the sample.

Hybrid1:

� The adversary pi
ks proto
ol des
ription d∗ and sends it to the 
hallenger.

� The 
hallenger pi
ks PRF key K, sets f∗ = d∗(F (K, d∗)), pun
tures K at d∗

and sends the adversary an iO of the program

13

Sele
tive-Single-Samples: 2
in Figure 2.

� The adversary queries the program on input d∗ to obtain the sample.

Sele
tive-Single-Samples: 2

Constant: PRF key K{d∗}, d∗, f∗
.

Input: Program des
ription d.

1. If d = d∗ output f∗
.

2. Else output d(F (K, d)). Re
all that d is a program des
ription

whi
h outputs k bits.

Fig. 2: Program Sele
tive-Single-Samples: 2

Hybrid2:

� The adversary pi
ks proto
ol des
ription d∗ and sends it to the 
hallenger.

� The 
hallenger pi
ks PRF key K, pi
ks x← {0, 1}m, sets f∗ = d∗(x), pun
-

tures K at d∗ and sends the adversary an iO of the program

14

Sele
tive-

Single-Samples: 2 in Figure 2.

� The adversary queries the program on input d∗ to obtain the sample.

12

Padded to the maximum of the size of itself and Sele
tive-Single-Samples: 2.
13

Padded to the maximum of the size of itself and Sele
tive-Single-Samples.

14

Padded to the maximum of the size of itself and Sele
tive-Single-Samples.
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Hybrid3:

� This hybrid des
ribes how SimUGen works.

� The adversary pi
ks proto
ol des
ription d∗ and sends it to the 
hallenger.

� The 
hallenger exe
utes SimUGen(1λ, d∗), whi
h does the following: It pi
ks

PRF key K, sets f∗ = pd for externally obtained sample pd, pun
tures K at

d∗ and outputs an iO of the program

15

Sele
tive-Single-Samples: 2 in Figure 2.
This is then sent to the adversary.

� The adversary queries the program on input d∗ to obtain the sample.

4.3 Indistinguishability of the Hybrids

To prove Theorem 2, it su�
es to prove the following 
laims,

Claim. Hybrid0(1
λ) and Hybrid1(1

λ) are 
omputationally indistinguishable.

Proof. Hybrid0 and Hybrid1 are indistinguishable by se
urity of iO, sin
e the pro-

grams Sele
tive-Single-Samples and Sele
tive-Single-Samples: 2 are fun
tionally

equivalent. Suppose not, then there exists a distinguisher D1 that distinguishes

between the two hybrids. This 
an be used to break se
urity of the iO via the

following redu
tion to distinguisher D.
D a
ts as 
hallenger in the experiment of Hybrid0. He a
tivates the adversary

D1 to obtain input d∗, and 
omputes f∗ = d∗(F (K, d∗)), to obtain 
ir
uits C0 =
Sele
tive-Single-Samples a

ording to Figure 1 and C1 = Sele
tive-Single-Samples: 2

a

ording to Figure 2 with inputs d∗, f∗
. He gives C0, C1 to the iO 
hallenger.

The iO 
hallenger pads these 
ir
uits in order to bring them to equal size.

It is easy to see that these 
ir
uits are fun
tionally equivalent. Next, the iO


hallenger gives 
ir
uit Cx = iO(C0) or Cx = iO(C1) to D.
D 
ontinues the experiment of Hybrid1 ex
ept that he sends the obfus
ated


ir
uit Cx instead of the obfus
ation of Sele
tive-Single-Samples to the adversary

D1. Sin
e D1 has signi�
ant distinguishing advantage, there exists a polynomial

p(·) su
h that,

∣

∣

∣
Pr

[

D1(Hybrid0) = 1
]

− Pr
[

D1(Hybrid1) = 1
]

∣

∣

∣
≥ 1/p(λ).

We note that Hybrid0 and Hybrid1 
orrespond exa
tly to Cx being C0 and

C1 respe
tively, thus we 
an just have D e
ho the output of D1 su
h that the

following is true, for α(·) = 1/p(·)

∣

∣

∣
Pr

[

D(σ, iO(n,C0)) = 1
]

− Pr
[

D(σ, iO(n,C1)) = 1
]

∣

∣

∣
≥ α(λ)

Claim. Hybrid1(1
λ) and Hybrid2(1

λ) are 
omputationally indistinguishable.

Proof. Hybrid1 and Hybrid2 are indistinguishable by se
urity of the pun
tured

PRF K{d∗}. Suppose they are not, then 
onsider an adversary D2 who distin-

guishes between these hybrids with signi�
ant advantage.

This adversary 
an be used to break sele
tive se
urity of the pun
tured PRF

K via the following redu
tion algorithm to distinguisher D, that �rst gets the

15

Padded to the maximum of the size of itself and Sele
tive-Single-Samples.
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proto
ol d∗ after a
tivating the distinguisher D2. The PRF 
hallenger gives the

pun
tured PRF K along with 
hallenge a to the PRF atta
ker D, whi
h is ei-

ther the output of the PRF at d∗ or is set uniformly at random in {0, 1}m.

D sets f∗ = d∗(a) and 
ontinues the experiment of Hybrid1 against D2. Then,
∣

∣

∣
Pr

[

D2(Hybrid1) = 1
]

− Pr
[

D2(Hybrid2) = 1
]

∣

∣

∣
≥ 1/p(λ) for some polynomial

p(·).
If a is the output of the pun
tured PRF K at d∗, then we are in Hybrid1. If a

was 
hosen uniformly at random, then we are in Hybrid2. Therefore, we 
an just

have D e
ho the output of D2 su
h that

∣

∣

∣
Pr

[

D(F (K{d∗}, d∗)) = 1
]

− Pr
[

D(y ← {0, 1}n) = 1
]

∣

∣

∣
≥ 1/p(λ).

Claim. Hybrid2(1
λ) and Hybrid3(1

λ) are identi
al.

Proof. These are identi
al sin
e x is sampled uniformly at random in {0, 1}n.

Claim. Pr[Sample(SimUGen(1λ, d, pd), d) = pd] = 1

Proof. It follows from inspe
tion of our 
onstru
tion that the program always

outputs the external samples in the ideal world, therefore 
ondition (1) in De�nition 3

is ful�lled.

5 Adaptively Se
ure Universal Samplers

Theorem 3 (Adaptively Se
ure Universal Samplers). If indistinguisha-

bility obfus
ation and one way fun
tions exist, then there exists an adaptively

se
ure universal sampler s
heme, a

ording to De�nition 4, in the Random Or-

a
le Model.

Our s
heme 
onsists of algorithms Setup and Sample, de�ned below. We rely

on inje
tive PRGs and indistinguishability obfus
ation.

� Setup(1λ, r) �rst samples PRF keys K1,K2,K
′
2 and then sets Sampler Pa-

rameters U to be an indistinguishability obfus
ation of the program Adaptive-

Samples

16

, Figure 3. The �rst three steps in the program look for �hidden

triggers� and extra
t an output if a trigger is found, the �nal step represents

the normal operation of the program (when no triggers are found).

The program takes as input a value u, where |u| = n2
and v where |v| = n,

su
h that u||v is obtained as the output of a random ora
le H on input d.
Here, n is the size of an iO of program

17 PK3
(Figure 4). As su
h, n will be

some �xed polynomial in the se
urity parameter λ. The key to our proof is

16

This program must be padded appropriately to maximum of the size of itself and

other 
orresponding programs in various hybrids, as des
ribed in the next se
tion.

17

Appropriately padded to the maximum of the size of itself and P ′
K3,p

∗

j
,d∗

j
in future

hybrids
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to instantiate the random ora
le H appropriately to generate the sample for

any input proto
ol des
ription d.

Denote by F
(n)
1 = {F 1,0

1 , F 1,1
1 , F 2,0

1 , F 2,1
1 . . . Fn,0

1 , Fn,1
1 } a sequen
e of 2n

pun
turable PRF's that ea
h take n-bit inputs and output n bits. For some

key sequen
e {K1,0
1 ,K1,1

1 ,K2,0
1 ,K2,1

1 . . .Kn,0
1 ,Kn,1

1 }, denote the 
ombined

key by K
(n)
1 . Then, on a n-bit input v1, denote the 
ombined output of

the fun
tion F
(n)
1 using key K

(n)
1 by F

(n)
1 (K

(n)
1 , v1). Note that the length of

this 
ombined output is 2n2
. Denote by F2 a pun
turable PRF that takes

inputs of (n2 + n) bits and outputs n1 bits, where n1 is the size of the key

K3 for the program PK3
in Figure 4. In parti
ular, n1 = λ. Denote by F ′

2 an-

other pun
turable PRF that takes inputs of (n2+n) bits and outputs n2 bits,

where n2 is the size of the randomness r used by the iO given the program

PK3
in Figure 4. Denote by F3 another pun
turable PRF that takes inputs

of ℓ bits and outputs m bits. Denote by PRG an inje
tive length-doubling

pseudo-random generator that takes inputs of n bits and outputs 2n bits.

Here m is the size of uniform randomness a

epted by d(·), k is the size of

samples generated by d(·).
� Sample(U, d) queries the random ora
le H to obtain (u, v) = H(d). It then

runs the program U generated by Setup(1λ) on input (u, v) to obtain as

output the obfus
ated program P . It now runs this program P on input d
to obtain the required samples.

Adaptive-Samples

Constants: PRF keys K
(n)
1 , K2,K

′
2.

Input: Program hash u = u[1], . . . , u[n], v.

1. Compute F1(K
(n)
1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).

2. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set

xi = 1 else set xi = ⊥
3. If x ∈ {0, 1}n (i.e. no ⊥s), output x.

4. Else set K3 = F2(K2, u|v), r = F2(K
′
2, u|v). Output P =

iO(PK3
; r) of the program

a PK3
of Figure 4.

a

Appropriately padded to the maximum of the size of itself and

P ′
K3,p

∗

j
,d∗

j
in future hybrids

Fig. 3: Program Adaptive-Samples

5.1 Overview of the Se
urity Game and Hybrids

We 
onvert any admissible adversary A - that is allowed to send any message

(RO, x) or (params, d) - and 
onstru
t a modi�ed adversary, su
h that whenever

A sends message (params, d), our modi�ed adversary sends message (RO, d) and
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PK3

Constant: PRF key K3.

Input: Program des
ription d.

1. Output d(F3(K3, d)). Re
all that d is a program des
ription whi
h

outputs k bits.

Fig. 4: Program PK3

then sends message (params, d). It su�
es to prove the se
urity of our s
heme

with respe
t to su
h modi�ed adversaries be
ause this modi�ed adversary is

fun
tionally equivalent to the admissible adversary. Be
ause the modi�ed ad-

versary always provides proto
ol des
ription d to the random ora
le, our proof

will not dire
tly deal with messages of the form (params, d) and it will su�
e to

handle only messages (RO, d) sent by the adversary.

We prove via a sequen
e of hybrids, that algorithms Setup and Sample satisfy

the se
urity requirements of De�nition 4 in the Random Ora
le Model. Hybrid0

orresponds to the real world in the se
urity game des
ribed above. Suppose the

adversary makes q(λ) queries to the random ora
le H, for some polynomial q(·).
The argument pro
eeds via the sequen
e Hybrid0,Hybrid1,1,Hybrid1,2, . . .Hybrid1,13,
Hybrid2,1, . . .Hybrid2,13 . . .Hybridq(λ),13, ea
h of whi
h we prove to be indistin-

guishable from the previous one. We de�ne Hybrid0 ≡ Hybrid0,13 for 
onvenien
e.

The �nal hybrid Hybridq(λ),13 
orresponds to the ideal world in the se
urity game

des
ribed above, and 
ontains (impli
itly) des
riptions of SimUGen, SimRO as re-

quired in De�nition 4. For brevity, we only des
ribe Hybrid0 and Hybrids,13 for

a generi
 s ∈ q(λ) in this se
tion. We also give a short overview of how the se-

quen
e of hybrids progresses. The 
omplete sequen
e of hybrids along with 
om-

plete indistinguishability arguments, beginning with Hybrid0 and then Hybrids,1,

Hybrids,2, . . .Hybrids,13 for a generi
 s ∈ [q(λ)], 
an be found in the next se
tions.

In the following experiments, the 
hallenger 
hooses PRF keys K
(n)
1 ,K2 and

K ′
2 for PRFs F

(n)
1 , F2 and F ′

2. Ea
h hybrid is an experiment that takes input 1λ.
The output of any hybrid experiment denotes the output of the adversary upon

termination. Changes between hybrids are denoted using red underlined font.

Hybrid0 :

� The 
hallenger pads the program Adaptive-Samples in Figure 3 to be the

maximum of the size of itself and all 
orresponding programs (Adaptive-

Samples: 2, Adaptive-Samples: 3) in other hybrids. Next, he sends the ob-

fus
ation of the program in Figure 3 to the adversary.

� Set j = 0. While the adversary queries the RO, in
rement j and repeat:

1. Let the adversary query the random ora
le on proto
ol des
ription d∗j .

2. The 
hallenger sets the output of the RO, (u∗
j , v

∗
j )← {0, 1}

n2+n
.

� The adversary then outputs a single bit b′.
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Hybrids,13 :

� The 
hallenger pads the program Adaptive-Samples in Figure 5 appropri-

ately

18

and sends an iO of the program to the adversary.

� Set j = 0. While the adversary queries the RO, in
rement j and repeat:

1. Let the adversary query the random ora
le on proto
ol des
ription d∗j .
2. If j ≤ s, the 
hallenger sets the output of the random ora
le, v∗j ← {0, 1}

n
.

He sets K3 ← {0, 1}
n, e′ ← {0, 1}n. He queries the ora
le to obtain the

sample p∗j and sets g = iO(P ′
K3,p

∗

j
,d∗

j
, e′) (See Figure 7).

For all b ∈ {0, 1} and i ∈ [1, n], he sets (y∗1,0, y
∗
1,1), . . . , (y

∗
n,0, y

∗
n,1)

= F1(K
(n)
1 , v∗j ), u

∗
j [i] = y∗i,gi , where gi is the ith bit of g.

3. If j > s, 
hallenger sets the RO output, (u∗
j , v

∗
j )← {0, 1}

n2+n
.

� The adversary then outputs a single bit b′.

Adaptive-Samples

Constants: PRF keys K
(n)
1 , K2,K

′
2.

Input: Program hash u = u[1], . . . , u[n], v.

1. Compute F1(K
(n)
1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).

2. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set

xi = 1 else set xi = ⊥
3. If x ∈ {0, 1}n (i.e. no ⊥s), output x.

4. Else set K3 = F2(K2, u|v), r = F2(K
′
2, u|v). Output iO(PK3

; r)
of the program

a PK3
of Figure 6.

a

Appropriately padded to the maximum size of itself and P ′
K3,p

∗

j
,d∗

j

Fig. 5: Program Adaptive-Samples

PK3

Constant: PRF key K3. Input: Program des
ription d.

1. Output d(F3(K3, d)).

Fig. 6: Program PK3

Note that Hybridq(λ),13 is the Ideal World and it des
ribes how SimUGen and

SimRO work in the �rst and se
ond bullet points above, respe
tively.

18

To the maximum of the size of itself and all 
orresponding programs in the other

hybrids.
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P ′
K3,p

∗

j
,d∗

j

Constants: PRF key K3{d
∗
j}, d

∗
j , p

∗
j . Input: Program des
ription d.

1. If d = d∗j output p∗j .

2. Else output d(F3(K3, d)).

Fig. 7: Program P ′
K3,p

∗

j
,d∗

j

From Hybrid
s−1,13

to Hybrid
s,13

.

We now outline a series of sub-hybrids from Hybrids−1,13 to Hybrids,13 for a

generi
 s ∈ [1, q], where we program the universal sampler U to output external

parameters on the sth query of the adversary. Our proof 
omprises of two main

steps: the �rst step 
onsists in hardwiring a fresh single-use program into the

random ora
le output for the sth query � this is done by �rst hardwiring values

into the obfus
ated program, then 
hanging the output of the random ora
le,

and then un-hardwiring these values from the obfus
ated program.

On
e this is done, the se
ond step 
omprises of hardwiring the external pa-

rameters into this single-use program. The 
omplete hybrids and indistinguisha-

bility arguments are in the next subse
tion.

First step. Hybrids,1 : Let the sth random ora
le query of the adversary be on

input d∗s. We �rst use pun
tured programming to hardwire 
omputation 
orre-

sponding to input d∗s into the Adaptive-Samples program.

To do this, in Hybrids,1 the 
hallenger pi
ks v∗s uniformly at random as the

output of the random ora
le on input d∗s. He sets (y∗1,0, y
∗
1,1, . . . y

∗
n,0, y

∗
n,1) =

F1(K
(n)
1 , v∗s ). Then, for all b ∈ {0, 1}, i ∈ [n] he sets z∗i,b = PRG(y∗i,b). Next, he

adds a 
he
k at the beginning of the main program su
h that for v = v∗s , if u[i] =
z∗i,b, the program sets xi = b. The program Adaptive-Samples of Hybrids−1,13 is

repla
ed by the program Adaptive-Samples:2 illustrated in Figure 8. This is in-

distinguishable from the previous hybrid by the se
urity of indistinguishability

obfus
ation, be
ause the programs Adaptive-Samples and Adaptive-Samples: 2

are fun
tionally equivalent.

Hybrids,2 : In Hybrids,2, the output of PRF F1 on input v∗s is repla
ed with ran-

dom. That is for all b ∈ {0, 1}, i ∈ [n], he sets yi,b
$

← {0, 1}
n
. This hybrid is

indistinguishable from Hybrids,1 by se
urity of the pun
turable PRF.

Hybrids,3 : Next, the string z∗ is set uniformly at random. That is, for ea
h

i ∈ [n], b ∈ {0, 1}, instead of setting z∗i,b = PRG(y∗i,b), the 
hallenger sets

z∗i,b
$

← {0, 1}
2λ
. This hybrid is indistinguishable from Hybrids,2 by se
urity of

the PRG. Note that this step �dea
tivates� the extra 
he
k we had added in

Hybrids,1, be
ause with overwhelming probability, z∗ will lie outside the image
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Adaptive-Samples: 2

Constants: v∗s , PRF key K
(n)
1 {v∗s}, K2,K

′
2, z∗i,b for i ∈ [1, n]

and b ∈ {0, 1}
Input: Program hash u = u[1], . . . , u[n], v.

1. If v = v∗s then for i = 1, . . . , n do

If PRG(u[i]) = z∗i,0 let xi = 0, if PRG(u[i]) = z∗i,1 xi = 1, else xi = ⊥.

Go to step 4.

2. Compute F1(K
(n)
1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).

3. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set

xi = 1 else set xi = ⊥
4. If x ∈ {0, 1}n (i.e. no ⊥s), output x.

5. Else set K3 = F2(K2, u|v), r = F2(K
′
2, u|v). Output iO(PK3

; r)
of the program

a PK3
of Figure 6.

a

Appropriately appended to the maximum of the size of itself and

P ′
K3,p

∗

j
,d∗

j

Fig. 8: Program Adaptive-Samples: 2

of the PRG.

Hybrids,4 : On
e this is done, for u∗
s and v∗s both �xed uniformly at random

as random ora
le response to query d∗s, in Hybrids,4 the 
hallenger sets e =
F2(K2, u

∗
s|v

∗
s ), e

′ = F ′
2(K

′
2, u

∗
s|v

∗
s ), g = iO(Pe, e

′) and adds an initial 
he
k in

the main program: if input u = u∗
s and v = v∗s , then output g and exit. Simulta-

neously, the 
hallenger pun
tures the keys K2 and K ′
2 in the main program. The

modi�ed program Adaptive-Samples: 3 is depi
ted in Figure 9. At this point,

we have hardwired Adaptive-Samples: 3 to output g on input values (u∗
s, v

∗
s ),

obtained from the RO on input d∗s. This is indistinguishable from Hybrids,3 by

the se
urity of indistinguishability obfus
ation, be
ause the programs Adaptive-

Samples: 3 and Adaptive-Samples: 2 are fun
tionally equivalent.

Hybrids,5 : In this hybrid, the 
hallenger generates e uniformly at random instead

of the output of the pun
tured PRF F2.

Hybrids,6 : In this hybrid, the 
hallenger generates e′ uniformly at random in-

stead of the output of the pun
tured PRF F ′
2. This will be needed in the next

few hybrids when we start programming the single-use parameters.

Hybrids,7 : Sin
e the (bounded size) program Adaptive-Samples: 3 must remain

programmable for an unbounded number of samples, we now move the hard-

wired single-use paramters g from the Adaptive-Samples: 3 program to a hidden

trigger en
oding in the output of the random ora
le, u∗
s. Spe
i�
ally, this is done

by setting for all i ∈ [1, n], z∗i,gi = PRG(u∗
s[i]) in Hybrids,7. This is made possible
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Adaptive-Samples: 3

Constants: v∗s , u∗
s , g, PRF keys K

(n)
1 {v∗s}, K2{u

∗
s |v

∗
s}, K

′
2{u

∗
s |v

∗
s},

z∗i,b for i ∈ [1, n] and b ∈ {0, 1}
Input: Program hash u = u[1], . . . , u[n], v.

1. If u = u∗
s and v = v∗s output g and stop.

2. If v = v∗s then for i = 1, . . . , n do

If PRG(u[i]) = z∗i,0 let xi = 0, if PRG(u[i]) = z∗i,1 let xi = 1, else
xi = ⊥.

Go to step 4.

3. Compute F1(K
(n)
1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).

4. For i = 1, . . . , n, if u[i] = yi,0 set xi = 0 else if u[i] = yi,1 set

xi = 1 else set xi = ⊥
5. If x ∈ {0, 1}n (i.e. no ⊥s), output x.

6. Else set K3 = F2(K2, u|v), r = F2(K
′
2, u|v). Output iO(PK3

; r)
of the program

a PK3
of Figure 6.

a

Appropriately appended to the maximum of the size of itself and

P ′
K3,p

∗

j
,d∗

j

Fig. 9: Program Adaptive-Samples: 3

also by inje
tivity of the PRG. On
e u∗
s has been programmed appropriately to

en
ode the value g, hardwiring g into the program be
omes redundant, and it

is possible to repla
e Adaptive-Samples: 3 with the previous program Adaptive-

Samples: 2.

At this point, we 
an seal ba
k the pun
tured keys, un-hardwire g from the

program and return to the original program Adaptive-Samples in a sequen
e of

hybrids, Hybrids,8 to Hybrids,10 whi
h reverse our sequen
e of operations from

Hybrids,1 to Hybrids,3. More spe
i�
ally, Hybrids,8 involves generating z∗i,b for all
i ∈ [n], b ∈ {0, 1} as outputs of a PRG, and this is indistinguishable by se
urity of

the PRG. Then Hybrids,9 involves generating (y∗1,0, y
∗
1,1 . . . y

∗
n,0, y

∗
n,1 as the output

of F1(K
(n)
1 , v∗s ), and this is indistinguishable by se
urity of the pun
turable PRF.

At this point, hardwiring the z∗ values be
omes redundant, and it is possible

to go ba
k to program Adaptive-Samples, in Hybrids,10 arguing indistinguisha-

bility via indistinguishability obfus
ation.

Now, Hybrids,10 be
omes identi
al to Hybrids−1,13 ex
ept for a trapdoor that

has been programmed into the random ora
le output u∗
s, whi
h outputs spe
i�


sele
tive single-use parameters.

Se
ond Step. Now, it is straightforward (following the same sequen
e of hybrids

as the sele
tive single-use 
ase) to for
e the single-use parameters that were

programmed into u∗
s to output external parameters p∗s, in hybrids Hybrids,11

through Hybrids,13. Please refer to the full version for a more detailed proof.
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No honest sample violations. At this point, in the �nal hybrid, whenever the

adversary queries H on any input d, in the �nal hybrid we set (u, v) = H(d) to
output the externally spe
i�ed samples p∗s. Thus, the 
orre
tness requirement in

the ideal world is always met, and there are no honest sample violations a

ord-

ing to De�nition 4.
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