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Abstract. We revisit the question of constructing public-key encryption
and signature schemes with security in the presence of bounded leakage
and tampering memory attacks. For signatures we obtain the first con-
struction in the standard model; for public-key encryption we obtain the
first construction free of pairing (avoiding non-interactive zero-knowledge
proofs). Our constructions are based on generic building blocks, and, as
we show, also admit efficient instantiations under fairly standard number-
theoretic assumptions.
The model of bounded tamper resistance was recently put forward by
Damgård et al. (Asiacrypt 2013) as an attractive path to achieve secu-
rity against arbitrary memory tampering attacks without making hard-
ware assumptions (such as the existence of a protected self-destruct or
key-update mechanism), the only restriction being on the number of al-
lowed tampering attempts (which is a parameter of the scheme). This
allows to circumvent known impossibility results for unrestricted tamper-
ing (Gennaro et al., TCC 2010), while still being able to capture realistic
tampering attacks.
Keywords: public-key encryption, signatures, related-key attacks, tam-
pering, leakage

1 Introduction

Motivated by the proliferation of memory tampering attacks and fault injec-
tion [11,13,46], a recent line of research—starting with the seminal work of Bel-
lare and Kohno [8] on the related-key attack (RKA) security of blockciphers—
aims at designing cryptographic primitives that provably resist such attacks.
Briefly, memory tampering attacks allow an adversary to modify the secret key
of a targeted cryptographic scheme, and later violate its security by observing
the effect of such changes at the output. In practice such attacks can be imple-
mented by several means, both in hardware and software.

This paper is focused on designing public-key primitives—i.e., public-key
encryption (PKE) and signature schemes—with provable security guarantees
against memory tampering attacks. In this setting, the modified secret key might
be the signing key of a certification authority or of an SSL server, or the decryp-
tion key of a user. Informally, security of a signature scheme under tampering



attacks can be cast as follows. The adversary is given a target verification key
vk and can observe signatures of adaptively chosen messages both under the
original secret key sk and under related keys sk ′ = T (sk), derived from sk by
applying efficient tampering functions T chosen by the adversary; the goal of the
adversary is to forge a signature on a “fresh message” (i.e., a message not asked
to the signing oracle) under the original verification key. Tamper resistance of
PKE schemes under chosen-ciphertext attacks (CCA) can be defined similarly,
the difference being that the adversary is allowed to observe decryption of adap-
tively chosen ciphertexts under related secret keys sk ′, and its goal is now to
violate semantic security.

Unrestricted tampering. The best we could hope for would be, of course, to al-
low the adversary to make any polynomial number of arbitrary, efficiently com-
putable, tampering queries. Unfortunately, this type of “unrestricted tampering”
is easily seen to be impossible without making further assumptions, as observed
for the first time by Gennaro et al. [29]. The attack of [29] is simple enough to
recall it here. The first tampering attempt defines sk ′1 to be equal to sk with
the first bit set to zero, so that verifying a signature under sk ′1 essentially allows
to learn the first bit b1 of the secret key with overwhelming probability. The
second tampering attempt defines sk ′2 to be equal to sk with the second bit set
to zero, and with the first bit equal to b1, and so on. This way each tampering
attempt can be exploited to reveal one bit of the secret key, yielding a total
security breach after s(κ) queries, where s(κ) is the bit-length of the secret key
as a function of the security parameter.3

A possible way out to circumvent such an attack is to rely on the so-called
self-destruct feature: Find a way how to detect tampering with high probability,
and completely erase the memory or “blow-up the device” whenever tampering is
detected. While this is indeed a viable approach, it has some shortcomings (at it
can, e.g., be exploited for carrying out denial-of-service attacks), and so finding
alternatives is an important research question. One natural such alternative is
to simply restrict the power of the tampering functions T , in such a way that
carrying out the above attack simply becomes impossible. This approach led
to the design of several public-key primitives resisting an arbitrary polynomial
number of restricted tampering attempts. All these schemes share the feature
that the secret key belongs to some finite field, and the set of allowed modifi-
cations consist of all linear or affine functions, or all polynomials of bounded
degree, applied to the key [7,54,10].

Bounded tampering. Unfortunately, the approach of restricting the tampering
class only offers a partial solution to the problem; the main reason for this is
that it is not a priori clear how the above mentioned algebraic relations capture
realistic tampering attacks (where, e.g., a chip is shot with a laser). Motivated

3 A similar attack works for PKE schemes, and more generally for a large class of
cryptographic primitives that can be tested for malfunctioning [29]; one can also
make the above attack completely stateless.
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by this shortcoming, in a recent work, Damgård et al. [18] suggested the model
of bounded tampering, where one assumes an upper-bound τ ∈ N on the total
number of tampering attempts the adversary is allowed to ever make; apart from
this, and from the fact that the tampering functions T should be efficiently com-
putable, there is no further restriction on the adversarial tampering. Arguably,
such form of tamper-proof security is sufficient to capture realistic attacks in
which tampering might anyway destroy the device under attack or it could be
detected by auxiliary hardware countermeasures; moreover, this model allows to
analyze the security of cryptographic primitives already “in the wild,” without
the need to modify the implementation to include, e.g., a self-destruct feature.

An important parameter in the model of bounded tampering is the so-called
tampering rate ρ(κ) := τ(κ)/s(κ) defined to be the ratio between the number
of allowed tampering attempts and the size s(κ) of the secret key in bits. The
attack of Gennaro et al. [29] shows that necessarily ρ(κ) ≤ 1− 1/p(κ) for some
polynomial p(·). The original work of [18] shows how to obtain signature schemes
and PKE schemes tolerating linear tampering rate ρ(κ) = O(1/κ). However, the
signature construction relies on the so-called Fiat–Shamir heuristic [28], whose
security can only be proven in the random oracle model; the PKE construc-
tion can be instantiated in the standard model, but requires an untamperable
common reference string (CRS), being based on (true simulation-extractable)
non-interactive zero-knowledge (NIZK) [20].

In a follow-up work [19], the same authors show that resilience against
bounded tampering can be obtained via a generic transformation yielding tam-
pering rate ρ(κ) = O(1/

3
√
κ2); however, the transformation only gives a weaker

form of security against non-adaptive (or semi-adaptive [19]) tampering attacks.

1.1 Our Contribution

In this work we improve the current state of the art on signature schemes and
PKE schemes provably resisting bounded memory tampering. In the case of
signatures, we obtain the first constructions in the standard model based on
generic building blocks; as we argue, this yields concrete signature schemes tol-
erating tampering rate ρ(κ) = O(1/κ) under standard complexity assumptions
such as the Symmetric External Diffie-Hellman (SXDH) [52,12] and the Deci-
sional Linear (DLIN) [53,35] assumptions. In the case of PKE, we obtain a direct,
pairing-free, construction based on certain hash-proof systems [17], yielding con-
crete PKE schemes tolerating tampering rate ρ(κ) = O(1/κ) under a particular
instantiation of the Refined Subgroup Indistinguishability (RSI) assumption [45].

More precisely, we show that already existing schemes can be proved secure
against bounded tampering. We do not view this as a limitation of our result,
as it confirms the perspective that the model of bounded tamper resilience al-
lows to make statements about cryptographic primitives already used “in the
wild” (that might have already been implemented and adopted in applications).
Additionally, our security arguments are non-trivial, requiring significant modi-
fications to the original proofs (more on this below). In what follows we explain
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our contributions and techniques more in details. We refer the reader to Table 1
for a summary of our results and a comparison with previous work.

Reference Type Attack Class Model Tampering Rate Assumption
BCM11 [7] Sig./PKE Linear Standard ∞ DDHI [1]
Wee12 [54] PKE Linear Standard ∞ BDDH/LWE

BPT12 [10] Sig./PKE Affine Random Oracle ∞ BDH
Polynomial Standard ∞ EDBDH

DFMV13 [18] Sig. Any Random Oracle O(1/κ) DLOG/Factoring
PKE Any Standard O(1/κ) SXDH/DLIN

BMT14 [9]
Affine Standard ∞ DLOG

Sig. Exponentiation Standard ∞ RSA
Addition Standard ∞ LWE

DFMV15 [19] Sig./PKE Any Standard† O(1/
3
√
κ2) OWF/TDP

JW15 [37] Sig./PKE Poly-size Circuits Standard ∞ OWF/TDP
QLY+15 [51] Sig./PKE Polynomial Standard ∞ DDH/DCR
Ours § 3 Sig. Any Standard O(1/κ) SXDH/DLIN
Ours § 4 PKE Any Standard O(1/κ) RSI

Table 1. Comparing known constructions of public-key primitives with security
against related-key attacks (without self-destruct and key updating mechanisms). The
value “∞” under the column “tampering rate” means that the scheme supports an
arbitrary polynomial number of tampering queries. † Only achieves security against
non-adaptive tampering.

Signatures. We prove that the leakage-resilient signature scheme by Dodis et
al. [20] is secure against bounded tampering attacks. The scheme of [20] satisfies
the property that it remains unforgeable even given bounded leakage on the
signing key. The main idea for showing security against bounded tampering, is
to reduce tampering to leakage. Notice that this is non-trivial, because in the
tampering setting the adversary is allowed to see polynomially many signatures
corresponding to each of the tampered secret keys (which are at most τ), and
this yields a total amount of key-dependent information which is much larger
than the tolerated leakage.

We now explain how to overcome this obstacle. The scheme exploits a so-
called leakage-resilient hard relation R; such a relation satisfies the property
that, given a statement y generated together with a witness x, it is unfeasible
to compute a witness x∗ for (x∗, y) ∈ R; moreover the latter holds even given
bounded leakage on x. The verification key of the signature scheme consists of a
random y, while the secret key is equal to x, where (x, y) is a randomly generated
pair belonging to the relation R. In order to sign a messagem, one simply outputs
a non-interactive zero-knowledge proof of knowledge π of x, where the message
m is used as a label in the proof. Verification of a signature can be done by
verifying the accompanying proof.
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In the security proof, by the zero-knowledge property, we can replace real
proofs with simulated proofs. Moreover, by the proof of knowledge property, we
can actually extract a valid witness x∗ for (x∗, y) from the adversarial forgery
π∗; note that, since the forger gets to see simulated proofs, the extractability
requirement must hold even after seeing proofs generated via the zero-knowledge
simulator. Finally, we can transform a successful forger for the signature scheme
into an adversary breaking the underlying leakage-resilient relation; the trick is
that the reduction can leak the statement y′ corresponding to any tampered
witness x′ = T (x), which allows to simulate an arbitrary polynomial number
of signature queries corresponding to x′ by running several independent copies
of the zero-knowledge simulator upon input y′. Thus bounded tamper resilience
follows by bounded leakage resilience.

A subtle technicality in the above argument is that the statement y′ must
be efficiently computable as a function of x′. We call a relation R satisfying
this property a complete relation. As we define it, completeness additionally
requires that any derived witness x′ = T (x) is a witness for a valid statement y′
(i.e., (x′, y′) ∈ R); importantly this allows us to argue that simulated proofs are
always for true statements, which leads to practical instantiations of the scheme.
When we instantiate the signature scheme, of course, we need to make sure that
the underlying relation meets our completeness requirement. Unfortunately, this
is not directly the case for the constructions given in [20], but, as we show,
such a difficulty can be overcome by carefully twisting the instantiation of the
underlying relations.

Public-key encryption. Next, we prove that the PKE scheme by Qin and Liu [49]
is secure against bounded tampering. The scheme is based on a variant of the
classical Cramer-Shoup paradigm for constructing CCA-secure PKE [16,17].
Specifically, the PKE scheme combines a universal hash-proof system (HPS)
together with a one-time lossy filter (OTLF) used to authenticate the cipher-
text; the output of a randomness extractor is then used in order to mask the
message in a one-time pad fashion. Since the OTLF is unkeyed, the secret key
simply consists of the private evaluation key of the HPS, which makes it easier
to analyze the security of the PKE scheme in the presence of memory tamper-
ing. The bulk of our proof is, indeed, to show that HPS with certain parameters
already satisfy bounded tamper resilience.

More in details, every HPS is associated to a set C of ciphertexts and a subset
V ⊂ C of so-called valid ciphertexts, together with (the description of) a keyed
hash function with domain C. The hash function can be both evaluated privately
(using a secret evaluation key) and publicly (on ciphertexts in V, and using a
public evaluation key). The main security guarantee is that for any C ∈ C\V the
output of the hash function upon input C is unpredictable even given the public
evaluation key. In the construction of [49] a ciphertext consists of an element
C ∈ V, from which we derive an hash value K which serves for two purposes: (i)
To extract a random pad via a seeded extractor, used to mask the plaintext; (ii)
To authenticate the ciphertext by producing an encoding Π of K via the OTLF.
The decryption algorithm first derives the value K using the secret evaluation
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key for the HPS, and then it uses this value to unmask the plaintext provided
that the value Π can be verified correctly (otherwise decryption results in ⊥).

In the reduction, the OTLF encoding will be programmed in such a way that,
for all ciphertexts asked to the decryption oracle, the encoding is an injective
function. This implies that, in order to create a ciphertext with a correct en-
coding Π, one has to know the underlying hash value K. To prove (standard)
CCA security, one argues that all decryption queries with values C ∈ V do not
reveal any additional information about the secret key, since the corresponding
value K could be computed via the public evaluation procedure; as for decryp-
tion queries with values C ∈ C \ V, the corresponding value K is unpredictable,
and therefore the decryption oracle will output ⊥ with overwhelming probability
which, again, does not reveal any additional information about the secret key.

The scenario in the case of tampering is more complicated. Consider a decryp-
tion oracle instantiated with a tampered secret key sk ′ = T (sk). A decryption
query containing a value C ∈ V might now reveal some information about the
secret key; however, as we show, this information can be simulated by leaking
the public key pk ′ corresponding to sk ′. Decryption queries containing values
C ∈ C \ V are harder to simulate. This is because the soundness property of the
HPS only holds for a uniformly chosen evaluation key, while sk ′, clearly, is not
uniform. To overcome this obstacle we distinguish two cases:

– In case the value T (sk) has low entropy, such a value does not reveal too
much information on the secret key, and thus, at least intuitively, even if the
decryption does not output ⊥ the resulting plaintext should not decrease
the entropy of the secret key by too much;

– In case the value T (sk) has high entropy, we argue that it is safe to use this
key within the HPS, i.e. we show that the soundness of the HPS is preserved
as long as the secret key hash high entropy (even if it is not uniform).

With the above in mind, the security proof is similar to the ones in [44,49].

Trading tampering and leakage. Since our security arguments essentially reduce
bounded tampering to bounded leakage (by individuating a short secret-key-
dependent hint that allows to simulate polynomially many tampering queries
for a given modified key), the theorems we get show a natural tradeoff between
the obtained bounds for leakage and tamper resistance.

In particular, our results nicely generalizes previous work, in that we obtain
the same bounds as in [20,49] by plugging τ = 0 in our theorem statements.

1.2 Related Work

Bounded leakage. The signature scheme of Dodis et al. [20] generalizes and im-
proves a previous construction by Katz and Vaikuntanathan [39]. Similarly, the
PKE construction by Qin and Liu builds upon the seminal work of Naor and
Segev [44]; the scheme was further improved in [50].
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Related-key security. Related-key security was first studied in the context of sym-
metric encryption [8,43,30,3,2]. With time a number of cryptographic primitives
with security against related-key attacks have emerged, including pseudoran-
dom functions [6,40,4,1], hash functions [31], identity-based encryption [7,10],
public-key encryption [7,54,10,42], signatures [7,10,9], and more [51,37,15].

All the above works achieve security against an unbounded number of re-
stricted tampering attacks (typically, algebraic relations). Kalai, Kanukurthi,
and Sahai [38], instead, show how to achieve security against unrestricted tam-
pering without self-destruct, by assuming a protected mechanism to update the
secret key of certain public-key cryptosystems (without modifying the corre-
sponding public key).

Non-malleable codes. An alternative approach to achieve tamper-proof security
of arbitrary cryptographic primitives against memory tampering is to rely on
so-called non-malleable codes. While this solution yields security against an un-
bounded number of tampering queries, it relies on self-destruct and moreover it
requires to further assume that the tampering functions are restricted in granu-
larity (see, e.g., [22,41,25]) and/or computational complexity [26,37,5].

Tamper-proof computation. A related line of work (starting with [36,27]), finally,
aims at constructing secure compilers protecting against tampering attacks tar-
geting the computation carried out by a cryptographic device (typically in the
form of boolean and arithmetic circuits).

2 Preliminaries

2.1 Notation

Notation. For a, b ∈ R, we let [a, b] = {x ∈ R : a ≤ x ≤ b}; for a ∈ N we let
[a] = {1, 2, . . . , a}. If x is a string, we denote its length by |x|; if X is a set,
|X | represents the number of elements in X . When x is chosen randomly in X ,
we write x←$ X . When A is an algorithm, we write y←$ A(x) to denote a run
of A on input x and output y; if A is randomized, then y is a random variable
and A(x; r) denotes a run of A on input x and randomness r. An algorithm
A is probabilistic polynomial-time (PPT) if A is randomized and for any input
x, r ∈ {0, 1}∗ the computation of A(x; r) terminates in at most poly(|x|) steps.

Throughout the paper we let κ ∈ N denote the security parameter. We say
that a function ν : N → R is negligible in the security parameter κ if ν(κ) =
κ−ω(1). For two ensembles X = {Xκ}κ∈N and Y = {Yκ}κ∈N, we write X ≡ Y
if they are identically distributed, X ≈s Y to denote that the corresponding
distributions are statistically close, and X ≈c Y to denote that the two ensembles
are computationally indistinguishable.

Languages and relations. A decision problem related to a language L ⊆ {0, 1}∗
requires to determine if a given string y is in L or not. We can associate to any
NP -language L a polynomial-time recognizable relation R ⊆ {0, 1}∗ × {0, 1}∗
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defining L itself, i.e. L = {y : ∃x s.t. (x, y) ∈ R} for |x| 6 poly(|y|). The string y
is called theorem, and the string x is called a witness for membership of y ∈ L.

Random variables. The min-entropy of a random variable X, defined over a set
X , is H∞(X) := − log maxx∈X P [X = x], and it measures how X can be pre-
dicted by the best (unbounded) predictor. The average conditional min-entropy
of a random variable X given a random variable Y and conditioned on an event
E is defined as H̃∞(X|Y, E) := − log(Ey←$ Y

[
2−H∞(X|Y=y,E)

]
). We rely on the

following basic facts.

Lemma 1 ([21]). Let X,Y and Z be random variables. If Y has at most 2`

possible values, then H̃∞(X|Y,Z) > H̃∞(X,Y|Z)− ` > H̃∞(X|Z)− `.

Lemma 2. Let X,Y,Z be random variables such that Y = f(X,Z) for an
efficiently computable function f . Then H̃∞(X|Y,Z, E) > H̃∞(X|Z, E) − β,
where the event E is defined as {∀z : H∞(Y|Z = z) 6 β}.

Proof. Let A be the best predictor for X, given Y and Z and conditioned on the
event E. Consider the predictor A′ that upon input Z first samples an indepen-
dent copy X′ of the random variable X and then runs A upon input f(X′,Z).
Note that the event E holds for the inputs given to A′, therefore the probability
that f(X′,Z) = f(X,Z) is bounded above by 2−β . This implies the lemma. ut

2.2 Public-Key Encryption

A public-key encryption (PKE) scheme is a tuple of algorithms PKE = (Setup,
Gen,Enc,Dec) defined as follows. (1) Algorithm Setup takes as input the secu-
rity parameter and outputs public parameters pub ∈ {0, 1}∗; all algorithms are
implicitly given pub as input. (2) Algorithm Gen takes as input the security pa-
rameter and outputs a public/secret key pair (pk , sk); the set of all secret keys is
denoted by SK and the set of all public keys by PK. (3) The randomized algo-
rithm Enc takes as input the public key pk , a message m ∈M, and randomness
r ∈ R, and outputs a ciphertext c = Enc(pk ,m; r); the set of all ciphertexts is
denoted by C. (4) The deterministic algorithm Dec takes as input the secret key
sk and a ciphertext c ∈ C, and outputs m = Dec(sk , c) which is either equal to
some message m ∈M or to an error symbol ⊥.

Correctness. We say that PKE satisfies correctness if for all pub←$ Setup(1κ)
and (pk , sk)←$ Gen(1κ) we have that P[Dec(sk ,Enc(pk ,m)) = m] = 1 (where
the randomness is taken over the internal coin tosses of algorithm Enc).

BLT Security. We now turn to defining indistinguishability under chosen-cipher-
text attacks (IND-CCA) in the bounded leakage and tampering (BLT) setting.
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Experiment Expblt−cca
PKE,A (κ, `, τ):

pub←$ Setup(1κ)
(pk , sk)←$ Gen(1κ)
b←$ {0, 1}; Q ← ∅; j ← 1
sk ′0 ← sk ; (∀i ∈ [τ ])sk ′i ← ⊥; c∗ ← ⊥
(m0,m1)← ADec∗(·,·),O`sk (·),O

τ
sk (·)(pk)

c∗←$ Enc(pk ,mb)

b′ ← ADec∗(0,·)(c∗)
Return

(b′ = b) ∧ (|m0| = |m1|) ∧ (c∗ 6∈ Q)

Oracle Dec∗(i, c):
If i 6∈ [0, τ ]

Return ⊥
Else if sk ′i = ⊥

Return ⊥
Else

If c∗ 6= ⊥
Q ← Q∪ {c}

Return Dec(sk ′i, c)

Oracle O`sk (L):
Return L(sk)

Oracle Oτsk (T ):
sk ′j = T (sk)
j ← j + 1

Fig. 1: Experiment defining BLT-IND-CCA security of PKE .

Definition 1. For κ ∈ N, let ` = `(κ) and τ = τ(κ) be parameters. We say that
PKE = (Setup,Gen,Enc,Dec) is (τ, `)-BLT-IND-CCA if for all PPT adversaries
A there exists a negligible function ν : N→ [0, 1] such that∣∣∣∣P [Expblt-cca

PKE,A(κ, `, τ) = 1
]
− 1

2

∣∣∣∣ ≤ ν(κ),

where the experiment Expblt-cca
PKE,A(κ, `, τ) is defined in Figure 1.

A few remarks on the definition are in order. In the specification of the BLT-IND-
CCA security experiment, oracle O`sk takes as input (arbitrary polynomial-time
computable) functions L : SK → {0, 1}∗, and returns L(sk) for a total of at most
` bits. In a similar fashion, oracle Oτsk takes as input (arbitrary polynomial-time
computable) functions T : SK → SK, and defines the i-th tampered secret key
as sk ′i = T (sk); the oracle accepts at most τ queries. Oracle Dec∗ can be used to
decrypt arbitrary ciphertexts c under the i-th tampered secret key (or under the
original secret key), provided that c is different from the challenge ciphertext.

Notice that A is not allowed to tamper with or leak from the secret key after
seeing the challenge ciphertext. As shown in [18] this restriction is necessary
already for the case (τ, `) = (1, 0). Finally, we observe that in case (τ, `) = (0, 0)
we get, as a special case, the standard notion of IND-CCA security. Similarly,
for τ = 0 and ` > 0, we obtain as a special case the notion of “semantic security
against a-posteriori chosen-ciphertext `-key-leakage attacks” from [44].

2.3 Signatures

A signature scheme is a tuple of algorithms SIG = (Setup,Gen,Sign,Vrfy) spec-
ified as follows. (1) Algorithm Setup takes as input the security parameter and
outputs public parameters pub ∈ {0, 1}∗; all algorithms are implicitly given pub
as input. (2) Algorithm Gen takes as input the security parameter and outputs
a public/secret key pair (vk , sk); the set of all signing keys is denoted by SK.
(3) The randomized algorithm Sign takes as input the signing key sk , a message
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m ∈ M, and randomness r ∈ R, and outputs a signature σ := Sign(sk ,m; r)
on m. (4) The deterministic algorithm Vrfy takes as input the verification key
vk and a pair (m,σ), and outputs a decision bit (indicating whether (m,σ) is a
valid signature with respect to vk).

Correctness. We say that SIG satisfies correctness if for all messages m ∈ M
and for all pub←$ Setup(1κ) and (vk , sk) ← Gen(1κ), algorithm Vrfy(vk ,m,
Sign(sk ,m)) outputs 1 with all but negligible probability (over the coin tosses of
the signing algorithm).

BLT Security. We now define what it means for a signature scheme to be existen-
tially unforgeable against chosen-message attacks (EUF-CMA) in the bounded
leakage and tampering (BLT) setting.

Experiment Expblt-cma
SIG,A (κ, `, τ):

pub←$ Setup(1κ)
(vk , sk)←$ Gen(1κ)
Q ← ∅; j ← 1
sk ′0 ← sk ; (∀i ∈ [τ ])sk ′i ← ⊥
(m∗, σ∗)← ASign∗(·,·),O`sk (·),O

τ
sk (·)(vk)

Return
(Vrfy(vk ,m∗, σ∗) = 1) ∧ (m∗ 6∈ Q)

Oracle Sign∗(i,m):
If i 6∈ [0, τ ]

Return ⊥
Else if sk ′i = ⊥

Return ⊥
Else
Q ← Q∪ {m}
Return Sign(sk ′i,m)

Oracle O`sk (L):
Return L(sk)

Oracle Oτsk (T ):
sk ′j = T (sk)
j ← j + 1

Fig. 2: Experiment defining BLT-EUF-CMA security of SIG.

Definition 2. For κ ∈ N, let ` = `(κ) and τ = τ(κ) be parameters. We say
that SIG = (Setup,Gen,Sign,Vrfy) is (τ, `)-BLT-EUF-CMA if for all PPT ad-
versaries A there exists a negligible function ν : N→ [0, 1] such that

P
[
Expblt-cma

SIG,A (κ, `, τ) = 1
]
≤ ν(κ),

where the experiment Expblt-cma
SIG,A (κ, `, τ) is defined in Figure 2.

The syntax of oracles O`sk and Oτsk is the same as before. Oracle Sign∗ can
be used to sign arbitrary messages m under the i-th tampered signing key sk ′i =
T (sk), or under the original signing key sk ; the goal of the adversary is to forge
a signature on a “fresh” message, i.e. a message that was never queried to oracle
Sign∗. Note that for (τ, `) = (0, 0) we obtain the standard notion of existential
unforgeability under chosen-message attacks. Similarly, for τ = 0 and ` > 0, we
obtain the definition of leakage-resilient signatures [39].
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3 Signatures

In this section we give a generic construction of signature schemes with BLT-
EUF-CMA in the standard model. In particular, we show that the construction
by Dodis et al. [20] is already resilient to bounded leakage and tampering attacks.

3.1 The Scheme of Dodis, Haralambiev, Lòpez-Alt, and Wichs

The signature scheme is based on the following ingredients.

Hard relations. A leakage-resilient hard relation [20].

Definition 3. A relation R is an `-leakage-resilient hard relation, with witness
space X and theorem space Y, if the following requirements are met.

Samplability: There exists a PPT algorithm SamR such that for all pairs
(x, y)←$ SamR(1κ) we have (x, y) ∈ R, with x ∈ X and y ∈ Y.

Verifiability: There exists a PPT algorithm that decides if a given pair (x, y)
satisfies (x, y) ∈ R.

Completeness: There exists an efficient deterministic function ξ that given as
input any x ∈ X returns y = ξ(x) ∈ Y such that (x, y) ∈ R.

Hardness: For all PPT adversaries A there exists a negligible function ν : N→
[0, 1] such that

P
[
(x∗, y) ∈ R : (x, y)←$ SamR(1κ);x∗←$ AO

`
x(·)(y)

]
≤ ν(κ),

where the probability is taken over the random coin tosses of SamR and
A, and where oracle O`x(·) takes as input efficiently computable functions
L : X → {0, 1}∗ and returns L(x) for a total of at most ` bits.

NIZK. A true-simulation extractable non-interactive zero-knowledge (tSE NIZK)
argument system NIZK = (I,P,V) for the relation R, supporting labels [20].
Recall that a NIZK argument system supporting labels has the following syn-
tax: (i) Algorithm I takes as input the security parameter κ ∈ N and generates
a common reference string (CRS) crs ←$ I(1κ). (ii) Algorithm P takes as input
the CRS, a label λ ∈ {0, 1}∗, and some pair (x, y) ∈ R, and returns a proof
π←$ Pλ(crs, x, y). (iii) Algorithm V takes as input the CRS, a label λ ∈ {0, 1}∗,
and some pair (x, π), and returns a decision bit Vλ(crs, y, π). Moreover:

Definition 4. We say that NIZK = (I,P,V) is a tSE NIZK for the relation R,
supporting labels, if the following requirements are met.

Correctness: For all pairs (x, y) ∈ R and for all labels λ ∈ {0, 1}∗ we have
that Vλ(crs, y,Pλ(crs, x, y)) = 1 with overwhelming probability over the coin
tosses of P, V, and over the choice of crs ←$ I(1κ).
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Unbounded zero-knowledge: There exists a PPT simulator S := (S1,S2)
such that for all PPT adversaries A the following quantity is negligible:4∣∣∣∣P [b = b′ :

b←$ {0, 1}; (crs, tk)←$ S1(1κ); (x, y, λ)←$ A(crs, tk)
π0←$ Pλ(crs, x, y);π1←$ Sλ2 (tk , y); b′←$ A(crs, tk , πb)

]
− 1

2

∣∣∣∣ .
True-simulation extractability: There exists a PPT extractor K such that

for all PPT adversaries A the following quantity is negligible:

P

 (λ∗ 6∈ Q) ∧ (Vλ
∗
(crs, y∗, π∗) = 1)

∧((x∗, y∗) 6∈ R)
:

(crs, tk)←$ S1(1κ)
(y∗, π∗, λ∗)←$ AOS2,τ

(·,·,·)(crs)

x∗←$ Kλ
∗
(tk , y∗, π∗)

,
where oracle OS2,τ takes as input tuples (xi, yi, λi) and returns the same as
Sλi2 (tk , yi) as long as (xi, yi) ∈ R (and ⊥ otherwise), and Q is the set of all
labels λi asked to oracle OS2,τ .

The signature scheme. Consider now the following signature scheme SIG =
(Setup,Gen,Sign,Vrfy), based on a relation R, and on a non-interactive argument
system NIZK = (I,P,V) for R, supporting labels.

– Setup(1κ): Sample crs ←$ I(1κ) and return pub := (crs, R). (Recall that all
algorithms implicitly take pub as input.)

– Gen(1κ): Run (x, y)←$ SamR(1κ) and define vk := y and sk := x.
– Sign(sk ,m): Compute π←$ Pm(crs, x, ξ(x)) and return σ := π; note that

the message m is used as a label in the argument system, and that the value
y = ξ(x) can be efficiently computed as a function of x.

– Vrfy(vk ,m, σ): Parse (vk , σ) as vk := y and σ := π, and output the same as
Vm(crs, y, π).

Theorem 1. For κ ∈ N, let ` := `(κ), `′ := `′(κ), τ := τ(κ), and n := n(κ) be
parameters. Assume that R is an `′-leakage-resilient hard relation with theorem
space Y := {0, 1}n, and that NIZK is a tSE NIZK for R. Then the signature
scheme SIG described above is (`, τ)-BLT-EUF-CMA with `+ (τ + 1) · n ≤ `′.

3.2 Security Proof

We consider a sequence of mental experiments, starting with the initial game
Expblt-cma

SIG,A (κ, `, τ) which for simplicity we denote by G0.

Game G0. This is exactly the game of Definition 2, where the signature scheme
SIG is the scheme described in the previous section. In particular, upon
input the i-th tampering query Ti the modified secret key x′i = Ti(x) is
computed. Hence, the answer to a query (i,m) to oracle Sign∗ is computed by
parsing pub = (crs, R), computing the statement y′i = ξ(x′i) corresponding
to x′i, and outputting σ := π where π←$ Pm(crs, x′i, y

′
i).

4 Strictly speaking we should quantify the definition over all adversaries returning
pairs (x, y) ∈ R; alternatively, we can slightly abuse notation and assume that both
P and S2 return ⊥ if that is not the case.
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Game G1. We change the way algorithm Setup generates the CRS. Namely,
instead of sampling crs ←$ I(1κ) we now run (crs, tk)←$ S1(1κ) and addi-
tionally we replace the proofs output by oracle Sign∗ by simulated proofs,
i.e., π←$ S2(tk , y′i) where y′i = ξ(x′i).

Game G2. We change the winning condition of the previous game. Namely,
the game now outputs one if and only if π∗ is valid w.r.t. y (as before) and
additionally (x∗, y) ∈ R where the value x∗ is computed from the proof π∗
running the extractor K of the underlying argument system.

We now establish a series of lemmas, showing that the above games are compu-
tationally indistinguishable. The first lemma states that G0 and G1 are indis-
tinguishable, down to the unbounded zero-knowledge property of the argument
system.

Lemma 3. For all PPT adversaries A there exists a negligible function ν0,1 :
N→ [0, 1] such that |P [G0(κ) = 1]− P [G1(κ) = 1]| ≤ ν0,1(κ).

Proof. We prove a stronger statement, namely that G0(κ) ≈c G1(κ). By con-
tradiction, assume that there exists a PPT distinguisher D0,1 and a polynomial
p0,1(·) such that, for infinitely many values of κ ∈ N, we have that D0,1 dis-
tinguishes between game G0 and game G1 with probability at least 1/p0,1(κ).
Let q ∈ poly(κ) be the number of signature queries asked by D0,1. For an index
j ∈ [q + 1] consider the hybrid game Hj that answers the first j − 1 queries as
in game G0 and all subsequent queries as in game G1. Note that H1 ≡ G1 and
Hq+1 ≡ G0.

By a standard hybrid argument, we have that there exists an index j∗ ∈
[q] such that D0,1 tells apart Hj∗ and Hj∗+1 with non-negligible probability
1/q · 1/p0,1(κ). We build a PPT adversary A0,1 that (using distinguisher D0,1

and knowledge of j∗ ∈ [q]) breaks the non-interactive zero-knowledge property
of the argument system. A formal description of A0,1 follows.

Adversary A0,1:
– Receive (crs, tk) from the challenger, where (crs, tk)←$ S1(1κ).
– Run (x, y)←$ SamR(1κ), set pub := (crs, R), vk := y, x′0 ← x, x′i ←
⊥ for all i ∈ [τ ], and send (pub, vk) to D0,1.

– Upon input a leakage query L return L(x) to D0,1; upon input a
tampering query T , set x′i = T (x).

– Upon input the j-th signature query of type (i,m), if i 6∈ [0, τ ] or
x′i = ⊥, answer with ⊥. Otherwise, proceed as follows:
• If j ≤ j∗ − 1, return σ←$ Pm(crs, x′i, ξ(x

′
i)) to D0,1.

• Else, if j = j∗, forward (x′i, ξ(x
′
i),m) to the challenger, receiving

back a proof πb; return σ := πb to D0,1.
• Else, if j ≥ j∗ + 1, forward σ←$ Sm2 (tk , ξ(x′i)) to D0,1.

– Output whatever D outputs.

For the analysis, note that the only difference between game Hj∗ and game
Hj∗+1 is on how the j∗-th signature query is answered. In particular, in case
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the hidden bit b in the definition of non-interactive zero-knowledge equals zero,
A0,1’s simulation produces exactly the same distribution as inHj∗ , and otherwise
A0,1’s simulation produces exactly the same distribution as in Hj∗+1. Hence,
A0,1 breaks the NIZK property with non-negligible advantage 1/q · 1/p0,1(κ), a
contradiction. This concludes the proof. ut

The second lemma states that G1 and G2 are indistinguishable, down to the
true-simulation extractability property of the argument system.

Lemma 4. For all PPT adversaries A there exists a negligible function ν1,2 :
N→ [0, 1] such that |P [G1(κ) = 1]− P [G2(κ) = 1]| ≤ ν1,2(κ).

Proof. We prove a stronger statement, namely that G1(κ) ≈c G2(κ). Define
the following “bad event” Bad , in the probability space of game G1: The event
becomes true if the adversarial forgery (m∗, σ∗ := π∗) is valid (i.e., the proof π∗
is valid w.r.t. statement y and label m∗), but running the extractor K(tk , ·, ·) on
(y, π∗) yields a value x∗ such that (x∗, y) 6∈ R.

Notice that G1(κ) and G2(κ) are identically distributed conditioning on
Bad not happening. Hence, by a standard argument, it suffices to bound the
probability of provoking event Bad by all PPT adversaries A. By contradiction,
assume that there exists a PPT adversary A1,2 and a polynomial p1,2(·) such
that, for infinitely many values of κ ∈ N, we have that A1,2 provokes event
Bad with probability at least 1/p1,2(κ). We build an adversary A′ that (using
A1,2) breaks true-simulation extractability of the argument system. A formal
description of A′ follows.

Adversary A′:
– Receive crs from the challenger, where (crs, tk)←$ S1(1κ).
– Sample (x, y)←$ SamR(1κ), set pub := (crs, R), vk := y, x′0 ← x,
x′i ← ⊥ (for all i ∈ [τ ]), and forward (pub, vk) to A1,2.

– Upon input a leakage query L return L(x) to A1,2; upon input a
tampering query T , set x′i = T (x).

– Upon input the j-th signature query of type (i,m), if i 6∈ [0, τ ] or
x′i = ⊥, answer with ⊥. Otherwise, forward (x′i, ξ(x

′
i),m) to the

challenger obtaining a proof π as a response, and return σ := π to
A1,2.

– Whenever A1,2 returns a pair (m∗, σ∗), define π∗ := σ∗ and output
(y, π∗,m∗).

For the analysis, we note that A′ perfectly simulates signature queries. In
fact, by completeness of the underlying relation, the pair (x′i, ξ(x

′
i)) is always

in the relation R, and thus the proof π obtained by the reduction is always for
a true statement and has exactly the same distribution as in game G1. As a
consequence, A1,2 will provoke event Bad with probability 1/p1,2(κ), and thus
the pair (y, π∗) output by the reduction violates the tSE property of the non-
interactive argument with non-negligible probability 1/p1,2(κ). This finishes the
proof. ut
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Finally, we show that the advantage of any PPT adversary in game G2 must
be negligible, otherwise one could violate the hardness of the underlying leakage-
resilient relation.

Lemma 5. For all PPT adversaries A there exists a negligible function ν2 :
N→ [0, 1] such that P [G2 = 1] ≤ ν2(κ).

Proof. By contradiction, assume there exists a PPT adversary A2 and a poly-
nomial p2(·) such that, for infinitely many values of κ ∈ N, adversary A2 makes
game G2 output 1 with probability at least 1/p2(κ). We construct a PPT ad-
versary A′′ (using A2) breaking hardness of the leakage-resilient relation R. A
description of A′′ follows.

Adversary A′′:
– Receive y from the challenger, where (x, y)←$ SamR(1κ).
– Sample (crs, tk)←$ S1(1κ), set pub := (crs, R), y′i ← ⊥ (for all i ∈

[τ ]), vk := y, and forward (pub, vk) to A2.
– Define the leakage function Lξ(x) := ξ(x) and forward Lξ to the

target leakage oracle O`x, obtaining a value y′0.
– Upon input a leakage query L, forward L to the target leakage oracle
O`x and return to A2 the answer received from the oracle.

– Upon input the i-th tampering query T , define the function LT,ξ(x) :=
ξ(T (x)), and forward LT,ξ to the target leakage oracle O`x; set the
value y′i equal to the answer obtained from the oracle.

– Upon input the j-th signature query of type (i,m), if i 6∈ [0, τ ] or
y′i = ⊥, answer with ⊥. Otherwise, run π←$ Sm2 (tk , y′i) and return
σ := π to A2.

– Whenever A1,2 returns a forgery (m∗, σ∗), define π∗ := σ∗ and output
x∗ such that x∗←$ Km

∗
(tk , y, π∗).

For the analysis, note that A′′ perfectly simulates signature queries. In fact, for
each tampering query T the reduction obtains the statement y′i corresponding to
x′i := T (x) via a leakage query; given this value a signature for key x′i is computed
by running the zero-knowledge simulator (as defined in G2). Moreover, the total
leakage asked by A′′ equals ` (as A2 leaks at most ` bits from the secret key)
plus n · τ (as for each tampering function T the reduction leaks n bits, and A2

makes at most τ such queries), plus n bits (as the value y′0 = ξ(x) is needed for
simulating signature queries w.r.t. the original secret key), and by assumption
`+(τ+1) ·n ≤ `′. Hence, A′′ breaks the hardness of the leakage-resilient relation
with non-negligible probability 1/p2(κ). This concludes the proof. ut

The proof of the theorem follows by combining the above lemmas.

3.3 Concrete Instantiations

We now explain how to instantiate the signature scheme from the previous sec-
tion using standard complexity assumptions. We need two ingredients: (i) A

15



leakage-resilient hard relation R; (ii) A tSE NIZK for the same relation R, sup-
porting labels. For the latter component, we rely on the construction due to
Dodis et al. [20] that allows to obtain a tSE NIZK for arbitrary relations, based
on a standard (non-extractable) NIZK for a related relation (see below) and an
IND-CCA-secure PKE scheme supporting labels.

Let PKE = (Setup,Gen,Enc,Dec) be an IND-CCA-secure PKE scheme sup-
porting labels, with message space X . Plugging in the construction from [20] a
signature has the form σ := (c, π), where c←$ Encλ(pk , x) and π is a standard
NIZK argument for the following derived relation:

R∗ := {((y, c, pk ,m), (x, r)) : (x, y) ∈ R ∧ c = Encm(pk , x; r)} . (1)

Diffie-Hellman Assumptions. In what follows, let G be a group with prime
order q and with generator g. Also, let G1, G2, GT be groups of prime order
q and e : G1 × G2 → GT be a non-degenerate, efficiently computable, bilinear
map.

Discrete Logarithm. Let g←$ G and x←$ Zq. The Discrete Logarithm (DL)
assumption holds in G if it is computationally hard to find x ∈ Zq given y =
gx ∈ G.

Decisional Diffie-Hellman. Let g1, g2←$ G and x1, x2, x←$ Zq. The Decisional
Diffie-Hellman (DDH) assumption holds in G if the following distributions are
computationally indistinguishable: (G, g1, g2, g

x1
1 , gx2

2 ) and (G, g1, g2, g
x
1 , g

x
2 ).

Symmetric External Diffie-Hellman. The Symmetric External Diffie-Hellman
(SXDH) assumption states that the DDH assumption holds in both G1 and G2.
Such an assumption is not satisfied in case G1 = G2, but it is believed to hold
in case there is no efficiently computable mapping between G1 and G2 [52,12].

D-Linear [53,35]. Let D ≥ 1 be a constant, and let g1, . . . , gD+1←$ G and
x1, . . . , xD←$ Zq. We say that theD-linear assumption holds inG if the following
distributions are computationally indistinguishable: (G, gx1

1 , . . . , gxDD , g
xD+1

D+1 ) and

(G, gx1
1 , . . . , gxDD , g

∑D
i=1 xi

D+1 ). Note that for D = 1 we obtain the DDH assumption,
and for D = 2 we obtain the so-called Linear assumption [53].

Construction based on SXDH. The first instantiation is based on the SXDH
assumption, working with asymmetric pairing based groups (G1,G2,GT ). The
construction below is similar to the one given in [20, Section C.2.2], except that
we had to modify the underlying hard relation, in that the one used by Dodis et
al. does not meet our completeness requirement.5

5 In particular, a pair (x, y) ∈ R is computed by sampling random exponents
r1, . . . , rN ←$ Zq and outputting xi := gri and y :=

∏N
i=1 g

ri
i , where g is a gen-

erator of G2 and g1, . . . , gN are generators of G1; thus, by the SXDH assumption, it
is hard to compute y given only x1, . . . , xN , without knowledge of the randomness
r1, . . . , rN .
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Hard relation: Let N ≥ 2, and g1, . . . , gN ←$ G1 be generators. The sam-
pling algorithm chooses a random x := (x1, . . . , xN )←$ GN2 and defines
y :=

∏N
i=1 e(gi, xi) ∈ GT . Notice that the relation satisfies completeness,

with mapping function ξ(·) defined by ξ(x) :=
∏N
i=1 e(gi, xi). In the full ver-

sion [24], we argue that this relation is leakage-resilient under the SXDH
assumption.

Lemma 6. Under the SXDH assumption in (G1,G2,GT ), the above defined
relation is an `-leakage-resilient hard relation for ` ≤ (N − 1) log q.

PKE: We use the Cramer-Shoup PKE scheme in G2 [16], optimized as de-
scribed in [20]. The public key consists of random generators (h1, h2, h3,1,
. . . , h3,N , h4, h5) of G2, and in order to encrypt x = (x1, . . . , xN ) ∈ GN2 under
label m ∈ {0, 1}∗ we return a ciphertext:

c := (c1, . . . , cN+3) = (hr1, h
r
2, h

r
3,1 · x1, . . . , h

r
3,N · xN , (h4 · ht5)r)

with r←$ Zq, and where t := H(c1|| · · · ||cN+2||m) is computed using a stan-
dard collision-resistant hash function.

NIZK: We use the Groth-Sahai proof system [32]. In order to prove that a given
pair x∗ := (x, r) and y∗ := (y, c, pk ,m) belongs to the relation of Eq. (1),
we first prove that (x, y) ∈ R. This requires to show satisfiability of a one-
sided pairing product equation, which can be done with a proof consisting of
2N+16 elements in G1 and 2 elements in Zq (under the SXDH assumption).
Next, we prove validity of a ciphertext which requires to show satisfiability
of a system of N+3 one-sided multi-exponentiation equations; the latter can
be done with a proof consisting of (N + 3) + 2N = 3N + 3 group elements
(under the SXDH assumption).

Corollary 1. Let (G1,G2,GT ) be asymmetric pairing based groups with prime
order q. Under the SXDH assumption there exists a signature scheme satisfying
BLT-EUFCMA with tampering rate ρ(κ) = O(1/κ). For N ≥ 2, the public key
consists of a single group element, the secret key consists of N group elements,
and a signature consists of 6N + 22 group elements and 2 elements in Zq.

Construction based on DLIN. The second instantiation is based on the
DLIN assumption, working with symmetric pairing based groups (G,GT ). The
construction below is similar to one of the instantiations given in [20, Section
C.2.3], except that we had to modify the underlying hard relation, in that the
one used by Dodis et al. does not meet our completeness requirement.

Hard relation: Let N ≥ 3, and g1, . . . , gN , g
′
1, . . . , g

′
N ←$ G be generators. The

sampling algorithm chooses a random x := (x1, . . . , xN )←$ G and defines
y1 :=

∏N
i=1 e(gi, xi) ∈ GT and y2 :=

∏N
i=1 e(g

′
i, xi). Notice that the rela-

tion satisfies completeness, with mapping function ξ(·) defined by ξ(x) :=

(
∏N
i=1 e(gi, xi),

∏N
i=1 e(g

′
i, xi)). In the full version [24], we argue that this

relation is leakage-resilient under the DLIN assumption.
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Lemma 7. Under the DLIN assumption in (G,GT ), the above defined rela-
tion is an `-leakage-resilient hard relation for ` ≤ (N − 2) log q.

PKE: We use the Linear Cramer-Shoup PKE scheme in G [53], optimized as de-
scribed in [20]. The public key consists of random generators (h0, h1, h2, h3,1,
. . . , h3,N , h4,1, . . . , h4,N , h5,1, h5,2, h6,1, h6,2) of G, and in order to encrypt
x = (x1, . . . , xN ) ∈ GN under label m ∈ {0, 1}∗ we return a ciphertext:

c := (c1, . . . , cN+4) = (hr1+r2
0 , hr11 , h

r2
2 , h

r1
3,1 · h

r2
4,1 · x1,

. . . , hr13,N · h
r2
4,N · xN , (h4,1 · ht5,1)r1 · (h4,2 · ht5,2)r2)

with r1, r2←$ Zq, and where t := H(c1|| · · · ||cN+3||m) is computed using a
standard collision-resistant hash function.

NIZK: We use again the Groth-Sahai proof system. In order to prove that a
given pair x∗ := (x, r) and y∗ := ((y1, y2), c, pk ,m) belongs to the relation of
Eq. (1), we first prove that (x, (y1, y2)) ∈ R. This requires to show satisfia-
bility of two one-sided pairing product equations, which can be done with a
proof consisting of 3N + 42 elements in G and 6 elements in Zq (under the
DLIN assumption). Next, we prove validity of a ciphertext which requires to
show satisfiability of a system of N+4 one-sided multi-exponentiation equa-
tions; the latter can be done with a proof consisting of 2(N+4)+3N = 5N+8
group elements (under the DLIN assumption).

Corollary 2. Let (G,GT ) be symmetric pairing based groups with prime or-
der q. Under the DLIN assumption there exists a signature scheme satisfying
BLT-EUFCMA with tampering rate ρ(κ) = O(1/κ). For N ≥ 3, the public key
consists of two group elements, the secret key consists of N group elements, and
a signature consists of 9N + 54 group elements and 6 elements in Zq.

4 Public-Key Encryption

We give a construction of an efficient PKE scheme satisfying BLT-IND-CCA
security in the standard model. In particular, we prove that the PKE scheme of
Qin and Liu [49] is already resilient to bounded leakage and tampering attacks.

4.1 The Scheme of Qin and Liu

The encryption scheme is a twist of the well-known Cramer-Shoup paradigm for
CCA security [17], and is based on the following ingredients.

Hash-proof systems. An ε-universal hash-proof system (HPS) HPS = (Genhps,
Pub,Priv). Recall that a HPS has the following syntax: (i) Algorithm Genhps

takes as input the security parameter, and outputs public parameters pub :=
(aux , C,V,K,SK,PK, Λ(·) : C → K, µ : SK → PK) where aux might contain
additional structural parameters, and where Λsk is a hash function and, for any
sk ∈ SK, the function µ(sk) defines the action of Λsk over the subset V of
valid ciphertexts (i.e., Λsk is projective). Moreover the function Λsk is ε-almost
universal:
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Definition 5. A projective hash function Λ(·) is ε-almost universal, if for all
pk , C ∈ C \ V, and all K ∈ K, it holds that P [ΛSK(C) = K|PK = pk , C] 6 ε,
where SK is uniform over SK conditioned on PK = µ(SK).

(ii) Algorithm Pub takes as input a public key pk = µ(sk), a valid ciphertext
C ∈ V, and a witness w for C ∈ V, and outputs the value Λsk (C). (iii) Algorithm
Priv take as input the secret key sk and a ciphertext C ∈ C, and outputs the
value Λsk (C).

Definition 6. A hash-proof system HPS is ε-almost universal if the following
holds:

1. For all sufficiently large κ ∈ N, and for all possible outcomes of Genhps(1
κ),

the underlying projective hash function is ε(κ)-almost universal.
2. The underlying set membership problem is hard. Specifically, for any PPT

adversary A the following quantity is negligible:

Advsmp
HPS,A := |P[A(C,V, C0) = 1| C0←$ V)]

− P[A(C,V, C1) = 1| C1←$ C \ V)]|.

The lemma below directly follows from the definition of hash-proof system and
the notion of min-entropy.

Lemma 8. Let Λ(·) be ε-almost universal. Then for all pk and C ∈ C \ V it
holds that H∞(ΛSK(C)|PK = pk , C) > − log ε where SK is uniform over SK
conditioned on PK = µ(SK).

One-time lossy filters [49]. A One-Time Lossy Filter (OTLF) LF = (Genlf ,
Eval, LTag) is a family of functions LFφ,t(X) indexed by a public key φ and a
tag t. Recall that a OTLF has the following syntax: (i) Algorithm Genlf takes as
input the security parameter, and outputs a public key φ and a trapdoor key ψ.
The public key φ defines a tag space T := {0, 1}∗×Tc that contains two disjoint
subsets Tinj and Tloss and a domain space D. (ii) Algorithm Eval takes as input
φ, a tag t = (ta, tc) ∈ T (where we call ta the auxiliary tag and tc the core tag),
and X ∈ D, and outputs LFφ,t(X). (iii) Algorithm LTag takes as input ψ and an
auxiliary tag ta ∈ {0, 1}∗, and outputs a core tag tc such that t = (ta, tc) ∈ Tloss.

Definition 7. We say that LF = (Genlf ,Eval, LTag) is an `lf-OTLF with do-
main D if the following proprieties hold:

Lossiness: In case the tag t is injective (i.e., t ∈ Tinj), so is the function
LFφ,t(·) := Eval(φ, t, ·). In case t is lossy (i.e., t ∈ Tloss), then LFφ,t(·) has
image size at most 2`lf .

Indistinguishability: No PPT adversary A is able to distinguish lossy tags
from random tags, i.e. the following quantity is negligible:

Advind
LF,A :=

∣∣P [A(φ, (ta, t
0
c)) = 1

]
− P

[
A(φ, (ta, t

1
c)) = 1

]∣∣
where (φ, ψ)←$ Genlf(1

κ), ta←$ A(φ), t0c ←$ Tc and t1c ←$ LTag(ψ, ta).
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Evasiveness: No PPT adversary A is able to generate a non-injective tag even
given a lossy tag, i.e. the following quantity is negligible:

Advevasive
LF,A := P

 (t′a, t
′
c) 6= (ta, tc)

(t′a, t
′
c) ∈ T \ Tinj

:
(φ, ψ)←$ Genlf(1

κ);
ta←$ A(φ); tc←$ LTag(ψ, ta);

(t′a, t
′
c)←$ A(φ, (ta, tc))

.
Randomness extractors. An average-case strong randomness extractor.

Definition 8. An efficient function Ext : X × S → Y is an average-case (δ, ε)-
strong extractor if for all pair of random variables (X,Z), where X is defined
over a set X and H̃∞(X|Z) > δ, we have

(Z,S,Ext(X,S)) ≈ε (Z,S,U),

with S uniform over S and U uniform over Y.

The encryption scheme. Consider now the following PKE scheme PKE = (Setup,
Gen,Enc,Dec) with message space M := {0, 1}m, based on a HPS HPS =
(Genhps,Pub,Priv), on a OTLF LF = (Genlf ,Eval, LTag) with domain K, and on
an average-case strong extractor Ext : K × {0, 1}d → {0, 1}m.

– Setup(1κ): Sample pubhps := (aux , C,V,K,SK,PK, Λ(·), µ)←$ Genhps(1
κ)

and compute (φ, ψ)←$ Genlf(1
κ). Return pub := (pubhps, φ). (Recall that

all algorithms implicitly take pub as input.)
– Gen(1κ): Choose a random sk ←$ SK, define pk = µ(sk), and return (pk , sk).
– Enc(pk ,M): Sample C←$ V (with witness w), S←$ {0, 1}d, and a core tag
tc←$ Tc. Compute K := Pub(pk , C, w), Φ := Ext(K,S) ⊕ M , and Π :=
Eval(φ, (ta, tc),K) where ta := (C, S, Φ). Output Ĉ := (C, S, Φ,Π, tc).

– Dec(sk , Ĉ): Parse Ĉ := (C, S, Φ,Π, tc). Compute K̂ := Priv(sk , C) and check
if Eval(φ, t, K̂) = Π where t := ((C, S, Φ), tc). If the check fails, reject and
output ⊥; else output M := Φ⊕ Ext(K̂, S).

Theorem 2. Let κ ∈ N be the security parameter. Assume that HPS is ε-
almost universal, LF is an `lf-OTLF with domain K, and Ext is an average-case
(δ, ε′)-strong extractor for a negligible function ε′. Let s = s(κ) and p = p(κ) be
parameters such that s 6 log |SK| and p > log |PK| for any SK,PK generated
by Genhps(1

κ), and define α = − log ε and β = s− α.
For any δ 6 α− τ(p+ β+κ)− `lf − ` the PKE scheme PKE described above

is (τ, `)-BLT-IND-CCA with `+ τ(p+ β + κ) 6 α− `lf .

4.2 Security Proof

We consider a sequence of mental experiments, starting with the initial game
Expblt-cca

PKE,A(κ, `, τ) which for simplicity we denote by G0.
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Game G0. This is exactly the game of Definition 1, where PKE is the PKE
scheme described above. In particular, upon input the i-th tampering query
Ti the modified secret key sk ′i = Ti(sk) is computed (where sk is the original
secret key). Hence, the answer to a query (i, Ĉ) to oracle Dec∗ is computed
by parsing Ĉ := (C, S, Φ,Π, tc), computing K̂ := Priv(sk ′i, C), and checking
Π = Eval(φ, ((C, S, Φ), tc), K̂); if the check fails the answer is⊥ and otherwise
the answer is M := Φ⊕ Ext(K̂, S).

Game G1. We change the way the tag t∗c corresponding to the challenge ci-
phertext is computed, namely we now let t∗c ← LTag(ψ, t∗a) (i.e., the tag
t∗ = (t∗a, t

∗
c) ∈ Tloss is now lossy).

Game G2. We add an extra check to the decryption oracle. Namely, upon input
a decryption query (i, (C, S, Φ,Π, tc)) we check whether ta := (C, S, Φ) and
tc satisfy (ta, tc) = (t∗a, t

∗
c) (where t∗a and t∗c are the auxiliary and core tag

corresponding to the challenge ciphertext). If the check succeeds, the oracle
returns ⊥. Notice that t∗a and t∗c are initially set to ⊥, and remain equal to
⊥ until the challenge ciphertext is generated.

Game G3. We change the way the challenge ciphertext is computed. Namely,
we now compute the value K∗ as K∗ := Priv(sk, C∗).

Game G4. We change the way the challenge ciphertext is computed. Namely,
we now sample C∗ as C∗←$ C \ V.

Game G5. We add an extra check to the decryption oracle; the check is per-
formed only for decryption queries corresponding to tampered secret keys
(i.e., i ≥ 1). At setup, the experiment initializes an additional set Q′ ← ∅.
Denote by V the random variable containing all the answers from the de-
cryption and leakage oracles, and define the quantity

γi(κ) := H∞(SK′i|V = v, {SK′j = sk ′j}j∈Q′ , {PK′j = pk ′j}j∈[τ ]∪{0})

where we write SK′i for the random variable of the i-th tampered secret key
and PK′i for the random variable of the corresponding public key (by default
pk ′i = ⊥ if sk ′i is undefined and pk ′0 = pk).
Upon input a decryption query (i, (C, S, Φ,Π, tc)) such that i ≥ 1 we proceed
exactly as in G4 but, for all ciphertexts such that C ∈ C \ V, in case the
decryption oracle did not already return ⊥, we additionally check whether
γi(κ) ≤ β(κ) + log2 κ; if that happens, we add the index i to the set Q′ and
otherwise we do not modify Q′ and we additionally answer the decryption
query with ⊥.

Game G6. We change the way decryption queries corresponding to the original
secret key are answered. Namely, upon input a decryption query (0, (C, S,
Φ,Π, tc)) we proceed as in G5 but, in case C ∈ C \ V, we answer the query
with ⊥.

Game G7. We change the way the challenge ciphertext is computed. Namely,
we now sample Φ∗←$ {0, 1}m. Notice that the challenge ciphertext is now
independent of the message being encrypted.
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Next, we turn to showing that the above defined games are indistinguishable.
In what follows, given a ciphertext Ĉ = (C, S, Φ,Π, tc), we say that Ĉ is valid if
C ∈ V (i.e., if C is a valid ciphertext for the underlying HPS).

Lemma 9. For all PPT adversaries A there exists a negligible function ν0,1 :
N→ [0, 1] such that |P [G0(κ) = 1]− P [G1(κ) = 1]| ≤ ν0,1(κ).

Proof. We prove a stronger statement, namely that G0(κ) ≈c G1(κ). By contra-
diction, assume there exists a PPT distinguisher D0,1 and a polynomial p0,1(·)
such that, for infinitely many values of κ ∈ N, we have that D0,1 distinguishes
between G0 and G1 with probability at least ≥ 1/p0,1(κ). We construct an ad-
versary A0,1 breaking the indistinguishability property of the underlying OTLF
LF . At the beginning, adversary A0,1 receives the evaluation key φ from its own
challenger, and simulates the entire experiment G0 with D0,1 by sampling all
other parameters by itself; notice that this can be done because G0 does not de-
pend on the secret trapdoor ψ. Whenever D0,1 outputs (M0,M1), adversary A0,1

samples t∗a as defined in G0 and returns t∗a to its own challenger. Upon receiving
a value t∗c from the challenger, A0,1 embeds t∗c in the challenge ciphertext, and
keeps simulating all queries done by D0,1 as before. Finally, A0,1 outputs the
same as D0,1.

We observe that A0,1 perfectly simulates the decryption oracle (which is
identical in both G0 and G1). Moreover, depending on the challenge tag t∗c
being random or lossy, the distribution of the challenge ciphertext produced by
A0,1 is identical to that of eitherG0 orG1. Thus, A0,1 retains the same advantage
as that of D0,1. This concludes the proof. ut

Lemma 10. G1 ≡ G2.

Proof. Notice that G1 and G2 only differ in how decryption queries such that
(ta, tc) = (t∗a, t

∗
c) are answered. Clearly, such queries are answered identically in

the two games for all decryption queries before the generation of the challenge
ciphertext. As for decryption queries after the challenge ciphertext has been
computed, we distinguish two cases: (i) Π = Π∗, and (ii) Π 6= Π∗. In case
(i) we get that Ĉ = Ĉ∗, and thus both games return ⊥. In case (ii), note that
G1 checks whether Π = Eval(φ, (t∗a, t

∗
c),Priv(sk ′i, C

∗)) and thus it returns ⊥
whenever Π 6= Π∗. Hence, the two games are identically distributed. ut

Lemma 11. G2 ≡ G3.

Proof. The difference between G2 and G3 is only syntactical, as Priv(sk , C∗) =
K∗ = Pub(pk , C∗, w) by correctness of the underlying HPS. ut

Lemma 12. For all PPT adversaries A, there exists a negligible function ν3,4 :
N→ [0, 1] such that |P [G3(κ) = 1]− P [G4(κ) = 1]| ≤ ν3,4(κ).

Proof. We prove a stronger statement, namely that G3(κ) ≈c G4(κ). By contra-
diction, assume there exists a PPT distinguisher D3,4 and a polynomial p3,4(·)
such that, for infinitely many values of κ ∈ N, we have that D3,4 distinguishes
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between G3 and G4 with probability at least ≥ 1/p3,4(κ) . We construct a
PPT adversary A3,4 solving the set membership problem of the underlying HPS.
A3,4 receives as input pubhps and a challenge C∗ such that either C∗←$ V or
C∗←$ C \V. Hence, A3,4 perfectly simulates the challenger for D3,4, by sampling
all required parameters by itself, and embeds the value C∗ in the challenge ci-
phertext. In case C∗←$ V we get exactly the same distribution as in G3, and
in case C∗←$ C \ V we get exactly the same distribution as in G4. Hence, A3,4

retains the same advantage as that of D3,4. This finishes the proof. ut

For the j-th query (i, Ĉ) to the decryption oracle, such that Ĉ = (C, S, Φ,Π,
tc), we let Inj j be the event that the corresponding core tag tc is injective. We
also define Inj :=

∧
j∈[q] Inj j where q ∈ poly(κ) is the total number of decryption

queries asked by the adversary.

Lemma 13. For all PPT adversaries A there exists a negligible function ν4 :
N→ [0, 1] such that: |P [G4(κ) = 1]− P [G4(κ) = 1|Inj ]| ≤ ν4(κ).

Proof. The lemma follows by a simple reduction to the evasiveness property of
the OTLF LF . By contradiction, assume there exists a PPT adversary A4 and
a polynomial p4(·) such that |P [G4(κ) = 1]− P [G4(κ) = 1|Inj ]| ≥ 1/p4(κ) for
infinitely many values of κ ∈ N. This implies:

1/p4(κ) ≤ |P [G4(κ) = 1]− P [G4(κ) = 1|Inj ]| ≤ P [Inj ].

We build a PPT adversary B4 with non-negligible advantage in the evasiveness
game. The adversary B4 receives as input a public key φ for the OTLF and
perfectly simulates a run of game G4 for A4 by sampling all parameters by
itself. After A4 returns (M0,M1), adversary B4 samples t∗a as defined in G4,
and forwards t∗a to its own challenger. Upon receiving t∗c from the challenger, B4

embeds t∗c in the challenge ciphertext for A4.
Let Q be the list of decryption queries made by A4. At the end of the simula-

tion, adversary B4 picks uniformly at random a ciphertext Ĉ = (C, S, Φ, tc) from
the list Q and outputs the tuple (ta := (C, S, Φ), tc). Clearly, the advantage of B4

in the evasiveness game is equal to the probability of event Inj happening times
the probability of guessing one of the ciphertexts containing a non-injective tag.
Let q(κ) ∈ poly(κ) be the total number of decryption queries made by A4. We
have obtained,

Advevasive
LF,B4

(κ) ≥ P [Inj ]/q(κ) ≥ 1/q(κ) · 1/p4(κ),

which is a non-negligible quantity. This concludes the proof. ut

From now on, all of our arguments will be solely information-theoretic, and hence
we do not mind if the remaining experiments will no longer be efficient.

Lemma 14. For all (possibly unbounded) adversaries A making polynomially
many decryption queries, there exists a negligible function ν4,5 : N→ [0, 1] such
that |P [G4(κ) = 1|Inj ]− P [G5(κ) = 1|Inj ]| ≤ ν4,5(κ).
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Proof. Recall that G4 and G5 differ only in the way decryption queries are
handled. In particular, upon input a query (i, (C, S, Φ,Π, tc)) such that i ≥ 1
and C ∈ C \V, the decryption oracle in G5 checks whether γi(κ) 6 β(κ)+log2 κ.
In case that happens, G5 proceeds identically to G4 and additionally updates
the set Q′ by including the index i; otherwise G5 answers the query with ⊥.
Intuitively, the set Q′ keeps track of the tampered secret keys that did not
return ⊥ upon input an invalid ciphertext; the variable γi(κ), instead, measures
the conditional min-entropy of the i-th tampered secret key conditioned on all
values returned by the decryption and leakage oracles, all tampered secret keys
within the set Q′, and all public keys corresponding to the tampered secret keys
generated so far.

It follows that the distribution of the two games differ only in case the
adversary makes a decryption query (i, (C, S, Φ,Π, tc)) such that: (i) γi(κ) >
β(κ) + log2 κ; (ii) C ∈ C \ V; (iii) Π = Eval(φ, (ta, tc),Priv(sk ′i, C)). Let Bad be
the event that any (possibly unbounded) adversary makes a decryption query as
above. Clearly,

|P [G4(κ) = 1|Inj ]− P [G5(κ) = 1|Inj ]| ≤ P [Bad |Inj ].

For all j ∈ [q], let Bad j be the event that Bad happens for the j-th decryption
query, which as usual we denote by (i, (C, S, Φ,Π, tc))). Since we are conditioning
on Inj , we have that there exists a unique value K that is the pre-image of Π
under function Eval(φ, (ta, tc), ·). Thus, by averaging over all the possible views
for the adversary, we obtain:

P [Bad j |Inj ] = P
[
Priv(SK′i, C)) = K

]
=
∑
v,pk

P [V = v,PK = pk ] · P
[
Priv(SK′i, C)) = K|V = v,PK = pk

]
6
∑
v,pk

P [V = v,PK = pk ] · 2−H∞(Priv(SK′i,C)|V=v,PK=pk).

Define the set SK∗K,C := {sk : Priv(sk , C) = K ∧ pk = µ(sk)}. We can write:

2−H∞(Priv(SK′i,C)|V=v,PK=pk)

= max
K

P
[
Priv(SK′i, C) = K|V = v,PK = pk

]
= max

K
P
[
SK′i ∈ SK

∗
K,C |V = v,PK = pk

]
6 max
K,sk ′i

|SK∗K,C | · P
[
SK′i = sk ′i|V = v,PK = pk

]
= max

K
|SK∗K,C | · 2−H∞(SK′i|V=v,PK=pk)

= max
K

|SK∗K,C |
|SK|

· |SK| · 2−H∞(SK′i|V=v,PK=pk)

6 ε · |SK| · 2−H∞(SK′i|V=v,PK=pk) 6 ε · |SK| · 2−β(κ)−log2 κ = 2− log2 κ,
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where in the last line we used the ε-almost universality of the underlying HPS,
together with the fact that γi(κ) > β(κ) + log2 κ. Finally, by a union bound
over all decryption queries, we obtain that there exists a negligible function
ν4,5 : N → [0, 1] such that P [Bad |Inj ] 6 q · 2− log2 κ ≤ ν4,5(κ), which concludes
the proof of the lemma. ut

Lemma 15. For all (possibly unbounded) adversaries A, there exists a negligible
function ν5,6 : N → [0, 1] such that |P [G5(κ) = 1|Inj ]− P [G6(κ) = 1|Inj ]| ≤
ν5,6(κ).

Proof. Let Bad be the event that the adversary submits a decryption query
(0, (C, S, Φ,Π, tc)) such that: (i) C ∈ C \ V; (ii) Π = Eval(φ, (ta, tc),Priv(sk , C)).
Similarly to the proof of the previous lemma, it suffices to bound the probability
of the event Bad conditioned on Inj . Denote by (0, (C, S, Φ,Π, tc)) the first
decryption query (w.r.t. the original secret key) that triggers event Bad . Recall
that the view of adversary A in a run of game G5 consists of its own coin tosses,
the public key pk , the answers to all queries to the decryption and leakage
oracles, and the challenge ciphertext Ĉ∗. In what follows, we write L for the
random variable corresponding to the leakage queries; furthermore, for an index
i ∈ [τ ], we denote with Di the random variable corresponding to all decryption
queries relative to the i-th tampered secret key. Note that we can partition Di

in two parts: D−i for all decryption queries (w.r.t. the i-th tampered secret key)
with an invalid ciphertext, and D+

i for all decryption queries (w.r.t. the i-th
tampered secret key) with a valid ciphertext. We also write W for the random
variable corresponding to the overall view in game G5.

As in the previous lemma, since we are conditioning on event Inj , it suffices
to analyze the conditional average min-entropy of Priv(SK, C) conditioned on
the adversarial view.

H̃∞(Priv(SK, C)|W)

> H̃∞(Priv(SK, C)|PK, {Di}i∈[τ ],L, Ĉ
∗) (2)

> H̃∞(Priv(SK, C)|PK, {Di}i∈[τ ])− `lf − ` (3)

= H̃∞(Priv(SK, C)|PK, {D+
i }i∈[τ ], {D−i }i∈Q′ ,Q

′)− `lf − ` (4)

> H̃∞(Priv(SK, C)|PK, {D+
i }i∈[τ ], {SK′i}i∈Q′ ,Q′)− `lf − `. (5)

Here, Eq. (2) uses the fact that the coin tosses of the adversary are independent
of SK, Eq. (3) follows by the chain rule for conditional average min-entropy (cf.
Lemma 1), Eq. (4) uses the fact that, by definition of G5, all decryption queries
for keys outside Q′ and with an invalid ciphertext are answered with ⊥, and
Eq. (5) follows by the fact that D−i is a deterministic function of SK′i.

Let Q′ = {i1, . . . , iq′}, as defined in game G5. Since the fact that sk iq′ ∈ Q
′

implies that H∞(SK′iq′ |W) 6 β(κ) + log2 κ, we can first apply Lemma 2 and
then Lemma 1 to obtain

H̃∞(Priv(SK, C)|PK, {D+
i }i∈[τ ], {SK′i}i∈Q′ ,Q′)

> H̃∞(Priv(SK, C)|PK, {D+
i }i∈[τ ], {SK′i}i∈Q′′ ,Q′′)− β(κ)− log2 κ− log |Q′|,
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where Q′′ := Q′\{iq′}. Notice to apply Lemma 2 we need to condition on sk iq′ ∈
Q′, however, such condition holds with probability 1 and by conditioning on a
sure event the min-entropy does not change. By iterating the above argument
for each key in Q′:

H̃∞(Priv(SK, C)|PK, {D+
i }i∈[τ ], {SK′i}i∈Q′ ,Q′) (6)

> H̃∞(Priv(SK, C)|PK, {D+
i }i∈[τ ])− τ · (β + log2 κ+ log τ),

and relying on the fact that the answer to decryption queries for a valid cipher-
text and w.r.t. index j ∈ [τ ] can be computed using the “tampered” projection
key pk ′i = µ(sk ′i), we obtain

H̃∞(Priv(SK, C)|PK, {D+
i }i∈[τ ]) > H̃∞(Priv(SK, C)|PK, {PK′i}i∈[τ ]) (7)

> α− τ · p,

where Eq. (7) follows by Lemma 1 and Lemma 8. Combining together Eq. (5),
Eq. (6), and Eq. (7), yields:

H̃∞(Priv(SK, C)|W) > α− τ · (p+ β + log2 κ+ log τ)− `lf − `.

It follows that the decryption oracle in game G5 does not reject the first invalid
ciphertext with probability at most ε ·2τ(p+β+log2 κ+log τ)+`lf+`. A generalization
of this argument implies that, for all j ∈ [q], the probability that the decryption
oracle does not reject the j-th decryption query of type (0, ·) containing an
invalid ciphertext is at most 2τ(p+β+log2 κ+log τ)+`lf+`/(1/ε− q(κ)). Finally, by a
union bound over the total number of decryption queries, there exists a negligible
function ν5,6 : N→ [0, 1] such that:

P [Bad |Inj ] ≤ q · 2τ(p+β+log2 κ+log τ)+`lf+`

1/ε− q
≤ ε · e−qε · 2τ(p+β+log2 κ+log τ)+`lf+`+log q

6 2−(α−qε(κ)−τ(p+β+log2 κ log τ)−`lf−`−log q)

≤ ν5,6(κ).

where the last inequality follows by the fact that α > `+ `lf + τ(p+ β + κ) and
additionally κ− log2 κ− log τ − log q/τ − qε/τ ∈ ω(log κ). ut

Lemma 16. For all (possibly unbounded) adversaries A, there exists a negligible
function ν6,7 : N → [0, 1] such that |P [G6(κ) = 1|Inj ]− P [G7(κ) = 1|Inj ]| ≤
ν6,7(κ).

Proof. We analyze the conditional average min-entropy of Priv(SK, C∗) condi-
tioned on the view of the adversary. By a previous argument, we can write:

H̃∞(Priv(SK, C∗)|W) > α− τ · (p+ β + log2 κ+ log τ)− `lf − `,

and thus the statement follows by our choice of parameters for the strong average-
case extractor. ut
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The statement of the theorem now follows by combining the above lemmas
together with the fact that in G7 the challenge ciphertext is independent of the
hidden bit b, and thus P [G7(κ)|Inj ] = 1/2 for all (even unbounded) adversaries.
This finishes the proof.

4.3 Concrete Instantiations

The ratio α−`−`lf
p+β plays an important role in evaluating the tampering rate of a

given instantiation. Ideally, we would like to have an HPS where α is as big as
possible while p and β = α−s are as small as possible. Below, we give an instan-
tiation based on the Refined Subgroup Indistinguishability (RSI) assumption.

Instantiation based on RSI. Let ξ ∈ N be a parameter. For security parameter
κ ∈ N, let p and q be primes of size respectively κ bits and ξ · κ bits and define
p̄ = 2pq+1. For this choice of parameters, we have that Z∗p̄ has a unique subgroup
of order N = pq. Denote by QRp̄ the set of quadratic residues modulo p̄; the
group QRp̄ can be decomposed as a direct product of Gp×Gq where Gp and Gq
are cyclic groups of prime order p and q (respectively).

For random x, y←$ Z∗p̄, one can show that, with overwhelming probability,
g = xq mod p̄ and h = yp mod p̄ are generators of Gp and Gq (respectively). Let
pubrsi := (QRp̄, p̄, g, h). The RSI assumption over QRp̄ states that for all PPT
adversary A the following quantity is negligible in the security parameter:∣∣P [A(pubrsi, g

x mod p̄) : x←$ Zp̄]− P
[
A(pubrsi, y) : y←$ QRp̄

]∣∣ .
The RSI assumption over QRp̄ is conjectured to hold if factoring N = pq is hard
[45]. We can derive a HPS as follow. We set C := QRp̄, V := Gp, SK := Zp̄,
and PK := Gp. Given a random secret key sk ←$ SK, the corresponding public
key pk is computed as µ(sk) := gsk mod p̄. Algorithm Pub, upon input C := gw

(where w is the witness for C ∈ V) and pk outputs pkw mod p̄. Algorithm Priv,
upon input C and sk , outputs Λsk (C) := Csk mod p̄. It was shown in [50] that
the above construction defines a 1/q-almost universal HPS based on the RSI
assumption. The work of [50] additionally presents a construction of a OTLF
achieving `lf := log p based on the RSI assumption.

Finally, by instantiating the average-case strong extractor using universal
hash functions as required by the left-over hash lemma [34] we note that the
PKE scheme allows to encrypt messages with bit-length m = O(ξκ−τκ−`−κ).
We obtain the following result:

Corollary 3. Let p̄ be as above. Under the RSI assumption over QRp̄, for any
ξ(κ) = ω(1), there exists a PKE scheme satisfying (τ, `)-BTL-IND-CCA with
tampering rate ρ(κ) = O(1/κ− `

ξ2κ ). The size of the secret key is Ω(ξκ), and the
PKE scheme allows to encrypt messages with bit-length m = O(ξκ− τκ− `−κ).
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5 Conclusions and Open Problems

We have shown new constructions of public-key cryptosystems with provable
security guarantees against bounded leakage and tampering attacks. The pro-
posed schemes are in the standard model, and can be instantiated efficiently
under standard complexity assumptions.

There are several interesting problems left open by our work. First, our con-
structions only achieve sub-optimal tampering rate ρ(κ) = O(1/κ), so it would
be interesting to find alternative constructions achieving optimal rate in the
standard model. Second, it would be interesting to combine related-key attacks
with related-randomness attacks [47,48], where the adversary might force a cryp-
tographic scheme to re-use (functions of) its own random coins; a promising idea
in this direction is to combine our leakage-to-tamper reduction to so called fully
leakage-resilient signatures [14,23], where the adversary can additionally leak on
the random coins of the signature algorithm. Third, it remains open how to
obtain CCA security for PKE against “after-the-fact” tampering and leakage,
where both tampering and leakage can still occur after the challenge ciphertext
is generated (in the spirit of [33]). Finally, one could try to come-up with new
hash-proof systems meeting the requirements needed for our PKE instantiation
under alternative hardness assumptions.
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