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Abstract. We introduce a new class of protocols called Proofs of Work or Knowl-
edge (PoWorKs). In a PoWorK, a prover can convince a verifier that she has
either performed work or that she possesses knowledge of a witness to a pub-
lic statement without the verifier being able to distinguish which of the two has
taken place. We formalize PoWorK in terms of three properties, completeness,
f -soundness and indistinguishability (where f is a function that determines the
tightness of the proof of work aspect) and present a construction that transforms
3-move HVZK protocols into 3-move public-coin PoWorKs. To formalize the
work aspect in a PoWorK protocol we define cryptographic puzzles that adhere
to certain uniformity conditions, which may also be of independent interest. We
instantiate our puzzles in the random oracle (RO) model as well as via construct-
ing “dense” versions of suitably hard one-way functions.
We then showcase PoWorK protocols by presenting a number of applications.
We first show how non-interactive PoWorKs can be used to reduce spam email
by forcing users sending an e-mail to either prove to the mail server they are
approved contacts of the recipient or to perform computational work. As op-
posed to previous approaches that applied proofs of work to this problem, our
proposal of using PoWorKs is privacy-preserving as it hides the list of the re-
ceiver’s approved contacts from the mail server. Our second application, shows
how PoWorK can be used to compose cryptocurrencies that are based on proofs
of work (“Bitcoin-like”) with cryptocurrencies that are based on knowledge rela-
tions (these include cryptocurrencies that are based on “proof of stake”, and oth-
ers). The resulting PoWorK-based cryptocurrency inherits the robustness prop-
erties of the underlying two systems while PoWorK-indistinguishability ensures
a uniform population of miners. Finally, we show that PoWorK protocols imply
straight-line quasi-polynomial simulatable arguments of knowledge and based
on our construction we obtain an efficient straight-line concurrent 3-move statis-
tically quasi-polynomial simulatable argument of knowledge.
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1 Introduction

We introduce a new class of prover verifier protocols where the prover wishes to con-
vince the verifier that it is either in possession of a witness to a publicly known state-
ment or that it has invested a certain amount of computational effort. A Proof of Work
or Knowledge (PoWorK) enables the prover to achieve this objective while at the same
time ensuring that the verifier is incapable of distinguishing which way the prover has
followed : performing the work or exploiting her knowledge of the witness.

At an intuitive level a PoWorK protocol is a disjunction of a proof of work and
a proof of knowledge. Proofs of knowledge are a fundamental notion in cryptography
[GMR85] with a very wide array of applications in the design of cryptographic pro-
tocols. They have been studied extensively, both in terms of efficient constructions,
e.g., [Sch89], as well as in terms of their composability with themselves or within
larger protocols, see e.g., [CDS94, DNS98, CGGM00, Can01, CF01, Pas03, Pas04].
Proofs of work on the other hand, were first introduced in [DN92], further studied in
[RSW96, Bac97, JB99, DGN03, CMSW09], and were primarily applied as a denial of
service network or spam protection mechanism; recently they have also found impor-
tant applications in building decentralized cryptocurrencies (notably Bitcoin [Nak08]
but also many others).

In an interactive proof protocol, we are interested primarily in two basic properties,
soundness and zero-knowledge, that represent the adversarial objectives of the prover
and the verifier respectively: the prover must not be able to convince the verifier of false
statements while the verifier should not extract any knowledge from interacting with
the prover beyond what can be inferred by the public statement. An important class of
prover verifier protocols is the 3-move honest-verifier zero knowledge (HVZK) proto-
cols. They are three-move protocols that are “public-coin”, i.e., the verifier in the second
move merely selects a random value (that is drawn independently to the statement of
the prover’s first move) and submits it to the prover. 3-move HVZK protocols capture
a very wide class of practical proofs of knowledge (including Schnorr’s identification
scheme [Sch89]) but also all languages in NP can be shown with a (computational)
HVZK protocol via reduction to e.g., the Hamilton cycle protocol [Blu87]. The class of
Σ-protocols possesses very useful properties including being closed under conjunction
and disjunction operations [CDS94].

Given the above, one may construct a PoWorK protocol for a languageL as follows:
the verifier samples a cryptographic puzzle, puz, and submits it to the prover. The prover
provides a commitment ψ and shows that she either possesses a witness w showing that
the statement x belongs to L or that the commitment ψ contains a solution to puz. It
is easy to prove that this is a general four-move protocol that implements a PoWorK
for any language L and any cryptographic puzzle. On the other hand, it is known that
for zero-knowledge proofs, two-round protocols do not exist for non-trivial languages
[GO94] and this result remains true even if the zero-knowledge property is relaxed to
O(λlog

c(λ))-simulatability [Pas03], in the sense that only languages decidable in quasi-
polynomial time may have two-round quasi-polynomial-time simulatable protocols.
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1.1 Our results.

We define and construct efficient three-move PoWorK protocols as well as relevant cryp-
tographic puzzles. Morerover, we demonstrate how PoWorK can instantiate systems
that reduce email spam while preserving user privacy, how they are useful in compo-
sition of cryptocurrency systems and how they can give rise to concurrent simulatable
protocols. In more details:

Definition of PoWorKs. Our formalization entails two definitions, f -soundness and
(statistical) indistinguishability. In f -soundness we require that any prover that has run-
ning time (in number of steps) less than a specified parameter calibrated according to
the function f of the running time of the puzzle solver, it is guaranteed to lead to a
knowledge extractor. The importance of the function f is to provide a safe running time
upper bound under which the complete protocol execution is successful only via an
(a-priori) knowledge of the witness. Indistinguishability on the other hand, ensures that
a malicious verifier is incapable of discerning whether the prover performs the proof
of work or possesses the knowledge of the witness. We note that timing issues are not
taken into account in our model (i.e., we assume that the prover always takes the same
amount of time to finish no matter which one of the two strategies it follows). What
we do care about though, is that the prover who performs a proof of work spends at
least a certain amount of computational resources. Note that indistinguishability eas-
ily implies witness indistinguishability [FS90], and thus any PoWorK is also a witness
indistinguishable protocol.

PoWorK Constructions. We present a three-move public-coin protocol instantiating a
PoWorK given any 3-move HVZK protocol with special soundness. Our protocol trans-
formation preserves the structure and round complexity of the given 3-move HVZK
protocol. Observe that the verifier cannot simply provide a puzzle challenge since this
would violate the public-coin characteristic of the protocol. To achieve our construction
we require puzzle generation algorithms that have a suitable uniformity characteristics,
specifically, we require that the domain of puzzles (the “puzzle space”) and the chal-
lenge space of the 3-move HVZK protocol are statistically very close (in terms of the
distributions induced by the puzzle sample algorithm and the verifier in the protocol).
Given such suitable puzzle distribution we present a protocol where the prover is capa-
ble of generating a puzzle solution on the fly (utilizing the verifier’s public coins) and
solve it, if she wishes. To establish the practicality of our approach we also construct
puzzles that are “dense” within {0, 1}l and hence consistent with the challenge space
of many natural 3-move HVZK protocols. Our dense puzzle based PoWorK construc-
tion has the characteristic that is black-box with respect to the underlying puzzle system
(which is suitable for puzzles whose security is argued, say, in the RO model).

Definition and instantiations of puzzles. We give formal definitions of cryptographic
puzzle systems PuzSys that are easy to generate, hard to solve, and easy to verify. We
define additional properties like density and amortization resistance and we give two
instantiations. Our first instantiation utilizes the random oracle model [BR93] while the
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second relies on complexity assumptions. More specifically, we use Universal One Way
Hash Function families (UOWHF) [NY89] to build extractors with special properties,
invoking a variant of leftover hash lemma [Dod05]. We then combine this special ex-
tractor with suitably hard one-way functions to obtain our second puzzle instantiation;
we present an instantiation of this methodology for the discrete-logarithm problem. As
an intermediate result, which may be of independent interest, we show how to convert
any arbitrary oneway function to a “dense” oneway function over {0, 1}`(λ) for some
`(·) and security parameter λ ∈ Z+ (cf. Theorem 3).

Our puzzle definitions are close in spirit to previous formalizations [RSW96, WJHF04,
CMSW09, MMV11, BGJ+16] with the following distinctions. In [CMSW09] the hard-
ness of a puzzle is defined as a monotonically increasing function that maps the run-
ning time of an adversary to the success rate of solving the puzzle. Contrary to this,
our definition, motivated by our proof of knowledge application, imposes a sharp time
threshold, below which the success rate of solving a puzzle becomes negligible. Also,
contrary to time-lock puzzles [RSW96, WJHF04, MMV11, BGJ+16], we do not re-
strict the parallelizability of our puzzles as such feature does not hurt (and may even
be desirable) in the PoWorK context. Parallelizable puzzles, like the ones we are focus-
ing on here, have become very popular by their applications to cryptocurrencies. The
requirement there is that the puzzle solver should spend a minimum of computational
resources to find a solution to the puzzle (and may or may not choose to parallelize).

Applications. Generally speaking, PoWorKs can be used in applications where we
would like to allow access to either “registered” or “approved” users (who know a wit-
ness) or to every user who is willing to invest computational effort. The key property
of PoWorKs is that they enhance privacy since they do not leak the type of user (i.e.
approved or not) to the entity that verifies access. A nice illustration of this type of ap-
plication of PoWorKs is in regard to reducing spam email. Dwork and Naor proposed
using proofs of work to control spam e-mails [DN92]. The gist of the idea is that every
non-approved contact of a receiver would have to perform some work (i.e. invest com-
putational effort) in order to send her an email. A downside of the method is that the
mail server has to maintain an updated list of “approved-contacts” for every user; this
can be a privacy concern for the users (not to mention the cost of updating the approved
contacts database). We show how by using PoWorK’s, one can still enforce the non-
approved senders to perform work while preserving user privacy, since the mail server
(who acts as a PoWorK verifier) will not be able to distinguish between approved and
non-approved contacts because of PoWorK indistinguishability property.

Our second application is related to cryptocurrencies based on blockchains to main-
tain the ledger of transactions. These systems can be naturally divided by the mech-
anism they use to produce the next block in the blockchain as follows: first there are
“puzzle-based” ones, (e.g., Bitcoin [Nak08] and many others that followed5), and then
there are “knowledge-based” ones, that include those6 that use “proof-of-stake”, “proof-
of-activity” or other type of consensus mechanism that relies e.g., on a public-key in-
frastructure, e.g., [BLMR14, DM16, Maz15]). We demonstrate how given two cryp-

5 E.g., Litecoin, Dogecoin, Ethereum, Dashcoin, etc.
6 E.g., Peercoin, NXT, Nushares, Faircoin etc.
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tocurrencies C1, C2 of each type, one can use PoWorK to fuse them into a single cryp-
tocurrency C with the following properties: (i) in C, the miners that perform C1-type of
mining are indistinguishable from those that perform C2-type of mining, (ii) C would
reach consensus in the sense of persistence of transactions in the ledger under the con-
junction of the conditions that systems C1, C2 would do, (iii) C would satisfy liveness
under the disjunction of the conditions that systems C1, C2 would do.7 PoWorK-based
cryptocurrencies that fuse the knowledge-based and the puzzle-based approach have
novel features in the context of cryptocurrencies: for instance, by composing a regu-
lar Bitcoin-like cryptocurrency C1 with a centralized cryptocurrency C2 supported by
a single authority, we get a cryptocurrency C that resembles Bitcoin but has a trusted
authority with a trapdoor that enables it to regulate and normalize the block produc-
tion rate. Such systems may offer a more attractive solution for nation-states or central
banks that wish to issue centralized cryptocurrencies, however they do not want to be
constantly involved with block production and they prefer to leave ledger maintenance
to the public, while retaining the ability to issue blocks in case of an emergency situation
(e.g., many miners go offline due to a software problem). The PoWorK indistinguisha-
bility property is critically useful in this setting, since it enables the regulation of the
block production rate made by the trusted party to be indistinguishable to everyone,
thus ensuring that the trusted party’s involvement will be unnoticed and hence will have
no impact to the economy that the cryptocurrency supports.

Our third application relates to zero-knowledge protocols and concerns quasi-poly-
nomial time straight-line simulatable arguments of knowledge. This class of protocols
was introduced by [Pas03] and was motivated by the construction of concurrent zero-
knowledge proofs in the plain model (as opposed to using a “setup” assumption). In
[Pas03] a four-move argument of knowledge was presented that is quasi-polynomial
time simulatable. We show that any suitable PoWorK protocol (see Theorem 1 for the
precise formulation) implies quasi-polynomial time straight-line simulatable arguments
of knowledge. Given our 3-move PoWorK construction, this immediately yields a 3-
round protocol in this setting which is optimal in terms of efficiency (round complexity
is optimal and computational overhead is just two exponentiations for prover and veri-
fier in total when using the elliptic curves from [BHKL13]); we note that a similar result
in terms of rounds can be obtained via a different route, specifically, via the efficient OR
composition with an input-delayedΣ-protocol as recently observed in [CPS+16], how-
ever the resulting complexity overhead would be at least 5 exponentiations for prover
and verifier in total when instantiated using discrete logarithms.

Roadmap. The rest of this paper is organized as follows. In Section 2, we provide ba-
sic notation, and formalize cryptographic puzzles, the additional properties of dense
samplable puzzles and the property of amortization resistance, as well as the notion of
PoWorKs by defining completeness, f -soundness and indistinguishability. In Section
3, we present our efficient dense puzzle based construction built upon an arbitrary 3-
move special sound HVZK protocol for a language L and some puzzle system, and
prove that our construction achieves f -soundness and indistinguishability. In the same

7 For definitions of properties like liveness and persistence of the ledger we refer to e.g.,
[GKL15, BMC+15].
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section, we present two dense puzzle instantiations. Finally, in Section 4, we describe
the applications of PoWorKs. Namely, (i) a method to reduce the amount of spam email
while preserving the privacy of the receiver, (ii) the composition of knowledge-based
and puzzle-based cryptocurrencies that gives rise to PoWorK-based cryptocurrencies,
(iii) an efficient 3-move straight-line concurrent statistically λpoly(log λ)-simulatable ar-
gument of knowledge as defined in [Pas03, Pas04].

Alternative PoWorK constructions. In the full version of this work [BKZZ15] we pro-
vide a second PoWorK construction based on the Lapidot-Shamir 3-move special sound
computationally special HVZK protocol [LS90], which is less efficient than the dense
puzzle based construction but works for all puzzle systems; note that this construction is
not black-box with respect to the puzzle and depending on the puzzle may not be public-
coin. A third way to construct PoWorK’s can be derived from the recent efficient OR
composition technique that was introduced in [CPS+16] that can be used with “input-
delayed” Σ-protocols, where the statement need not be determined ahead of time. It is
easy to see that in the case a puzzle accepts an “input-delayed” Σ proof of knowledge
of the puzzle solution (e.g., a puzzle based on discrete-logarithms), a third possible con-
struction method for PoWorK’s is facilitated. We stress however that these alternative
methods for constructing PoWorK’s do not combine well with puzzles based on hash
functions and thus may be of only theoretical interest in the context of our primitive.

2 Definitions

We start by setting the notation to be used in the rest of the paper. By λ we denote
the security parameter and by negl(·) the property that a function is negligible in some

parameter. Let z $← Z denote the uniformly at random selection of z from space Z and
∆[X,Y] the statistical distance of random variables (or distributions) X,Y. Composi-
tion of functions is denoted by ◦.

Let 〈P(y) ↔ V〉(x, z) denote the interaction between a prover P and a verifier
V on common input x, auxiliary input z, and P’s private input y. For an algorithm B
that is part of an interactive protocol let viewB and outputB denote the views and the
output of B respectively. Let StepsB(x) be the number of steps (i.e. machine/operation
cycles) executed by algorithm B on input x, and StepsP(〈P(y) ↔ V〉(x, z)) be the
number of steps of P , when interacting on inputs x, y, z8. IfRL is a witness relation for
the language L ∈ NP (i.e. RL polynomial-time-decidable and (x,w) ∈ RL implies
that |w| ≤ poly(|x|)), we define the set of witnesses for the membership x ∈ L as
RL(x) = {w : (x,w) ∈ RL}.

2.1 Cryptographic Puzzles

Roughly speaking, a cryptographic puzzle should be easy to generate, hard to solve,
and easy to verify. Given a specific security parameter λ, we denote the puzzle space

8 In this work we focus on parallelizable puzzles so counting in number steps as opposed to
actual running time is more intuitive.
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as PSλ, the solution space as SSλ, and the hardness space as HSλ. We first define
puzzles with a minimum set of properties, and then add extra properties that are useful
in our constructions.

Definition 1. A puzzle system PuzSys = (Sample,Solve,Verify) consists of the follow-
ing four algorithms:

– Sample(1λ, h) is a probabilistic puzzle instance sampling algorithm. On input the
security parameter 1λ and a hardness factor h ∈ HSλ, it outputs a puzzle instance
puz ∈ PSλ.

– Solve(1λ, h, puz) is a probabilistic puzzle solving algorithm. On input the security
parameter 1λ, a hardness factor h ∈ HSλ and a puzzle instance puz ∈ PSλ, it
outputs a potential solution soln ∈ SSλ.

– Verify(1λ, h, puz, soln) is a deterministic puzzle verification algorithm. On input
the security parameter 1λ, a hardness factor h ∈ HSλ, a puzzle instance puz ∈
PSλ and a potential solution soln ∈ SSλ it outputs true or false.

Subsequently, we define the following properties for a puzzle system.

Completeness: We say that a puzzle system PuzSys is complete, if for every h ∈ HSλ:

Pr

[
puz← Sample(1λ, h); soln← Solve(1λ, h, puz) :
Verify(1λ, h, puz, soln) = false

]
= negl(λ).

Note that the number of steps that Solve takes to run is monotonically decreasing in
the hardness factor h and may exponentially depend on λ, while Verify should run in
polynomial time in λ.

g-Hardness: We say that a puzzle system PuzSys is g-hard for some function g, if for
every adversary A, for every auxiliary tape z ∈ {0, 1}∗ and for every h ∈ HSλ:

Pr

puz← Sample(1λ, h); soln← A(z, 1λ, h, puz) :
Verify(1λ, h, puz, soln) = true∧
∧StepsA(z, 1λ, h, puz) ≤ g(StepsSolve(1λ, h, puz))

 = negl(λ).

Dense Samplable Puzzles. In addition to the standard puzzle definition, for our PoWorK
construction in Section 3 we need puzzles that can be sampled by just generating ran-
dom strings (i.e. the puzzle instances should be “dense” over {0, 1}`(λ,h) for some
function ` and λ, h ∈ Z+). Formally it holds that for some function ` in λ and h,

∆[Sample(1λ, h),U`(λ,h)] = negl(λ),

where U`(λ,h) stands for the uniform distribution over {0, 1}`(λ,h). For such puzzles
we will require some additional properties. First there should be a puzzle sampler that
outputs a valid solution together with puz:

– SampleSol(1λ, h) is a probabilistic solved puzzle instance sampling algorithm. On
input the security parameter 1λ and a hardness factor h ∈ HSλ, it outputs a puzzle
instance and solution pair (puz, soln) ∈ PSλ × SSλ.
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Correctness of Sampling: We say that a puzzle system PuzSys is correct with respect
to sampling, if for every h ∈ HSλ, we have that:

Pr
[
(puz, soln)← SampleSol(1λ, h) : Verify(1λ, h, puz, soln) = false

]
= negl(λ).

Efficiency of Sampling: We say SampleSol is efficient with respect to the puzzle g-
hardness, if for every λ ∈ Z+, h ∈ HSλ and puz ∈ PSλ, we have that:

StepsSampleSol(1
λ, h)) < g(StepsSolve(1

λ, h, puz)).

Statistical Indistinguishability: We define the following two probability distributions

Ds,λ,h
def
=
{
(puz, soln)← SampleSol(1λ, h)

}
and

Dp,λ,h
def
=
{
puz← Sample(1λ, h), soln← Solve(1λ, h, puz) : (puz, soln)

}
.

We say a PuzSys is statistically indistinguishable, if for every λ ∈ Z+ and h ∈ HSλ:

∆[Ds,λ,h,Dp,λ,h] = negl(λ).

(τ, k)-Amortization Resistance. For certain applications it is important that the puzzle
is not amenable to amortization. We say that a g-hard puzzle system, PuzSys, is (τ, k)-
amortization resistant if for every adversaryA, for every auxiliary tape z ∈ {0, 1}∗ and
for every h ∈ HSλ:

Pr


∀1 ≤ i ≤ k : puzi ← Sample(1λ, h);
{soln1, . . . , solnk} ← A(z, 1λ, h, {puz1, . . . , puzk}) :(
∀1 ≤ i ≤ k : Verify(1λ, h, puzi, solni) = true

)
∧

∧
(
StepsA(z, 1

λ, h, {puz1}ki=1) ≤ τ
(∑k

i=1 g(StepsSolve(1
λ, h, puzi))

))
 = negl(λ).

Informally, (τ, k)-amortization resistance implies a lower bound on the hardness preser-
vation against adversaries that attempt to benefit from solving vectors of puzzles of
length k.

2.2 Definition of PoWorK

In a PoWorK, the prover P may interact with the verifier V by running in either of the
two following modes: (a) the Proof of Knowledge (PoK) mode, where P convinces V
that she knows a witness for some statement x, or (b) the Proof of WorK (PoW) mode,
where P makes calls to the puzzle solving algorithm to solve a certain puzzle. For some
language in NP and a fixed puzzle system PuzSys, we define PoWorK to satisfy: (i)
completeness, (ii) f -soundness (for some “computation-scaling” function f ) and (iii)
indistinguishability, as follows:

Definition 2 (PoWorK). Let L be a language inNP and RL be a witness relation for
L. Let PuzSys = (Sample,Solve,Verify) be a puzzle system anf f be a function. We say
that (P,V) is an f -sound Proof of Work or Knowledge (PoWorK) for L and PuzSys, if
the following properties are satisfied:
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(i). Completeness: for every x ∈ L ∩ {0, 1}poly(λ) , w ∈ RL(x), z ∈ {0, 1}∗ and
every hardness factor h ∈ HSλ, it holds that

(i.a) Pr[outV ← 〈P(w)↔ V〉(x, z, h) : outV = accept] > 1− 1/poly(λ)
and

(i.b) Pr[outV ← 〈PSolve(1λ,h,·) ↔ V〉(x, z, h) : outV = accept] > 1−1/poly(λ) .

(ii). f -Soundness: For every x ∈ {0, 1}poly(λ), y, z ∈ {0, 1}∗, every hardness factor
h ∈ HSλ and prover P∗ define by πx,y,z,h,λ the probability

Pr

[
puz← Sample(1λ, h); outV ← 〈P∗(y)↔ V〉(x, z, h) : (outV = accept

)
∧StepsP∗(〈P∗(y)↔ V〉(x, z, h)) ≤ f(StepsSolve(1λ, h, puz))

]
.

f -Soundness holds if there are non-negligible functions s, q such that for any P∗,
there exists a PPT witness-extraction algorithm K such that for any λ ∈ N, x ∈
{0, 1}poly(λ), y, z ∈ {0, 1}∗, h ∈ HSλ, if πx,y,z,h,λ ≥ s(λ) (representing the
knowledge error), then

Pr[KP
∗
(x, y, z, h) ∈ RL(x)] ≥ q(λ) .

(iii). Statistical (resp. Computational) Indistinguishability: for every x ∈ L∩{0, 1}poly(λ),
w ∈ RL(x), z ∈ {0, 1}∗, for every hardness factor h ∈ HSλ and for every veri-
fier (resp. PPT verifier) V∗ , the following two random variables are statistically
(resp. computationally) indistinguishable:

DV
∗

PoK
def
= {viewV∗ ← 〈P(w)↔ V∗〉(x, z, h)}

DV
∗

PoW
def
=
{
viewV∗ ← 〈PSolve(1λ,h,·) ↔ V∗〉(x, z, h)

}
.

Intuitively, soundness is related to the hardness of solving a presumably hard crypto-
graphic puzzle. The hardness threshold T is set to be the (probabilistic) computational
complexity (in number of steps) of the puzzle solver, when the latter is provided some
output of the puzzle sampling algorithm, scaled to some function f . According to Def-
inition 2, any prover who does not know a witness, cannot convince the verifier in
less than f(T ) steps with some good probability. Observe that in the definition of f -
soundness, the convincing capability of the prover is limited by the hardness of solving
puzzle challenges. This implies that in an f -sound protocol, provers who do not know
(per the knowledge extractor) are forced to “work” in order to convince the verifier. The
indistinguishability property of PoWorKs implies that a (potentially malicious) verifier
cannot distinguish the running mode (PoK or PoW) that P follows.

3 The Dense Puzzle Based PoWorK Construction

In this section, we show how to transform an arbitrary 3-move, public coin, special
sound, honest verifier zero-knowledge (SS-HVZK) into a 3-move public-coin PoWorK.
Our construction is lightweight and requires dense samplable puzzle systems that we
formalized in Section 1. In our full version [BKZZ15] we provide a second construc-
tion which is less efficient, non-black-box on the puzzle, but it works for all puzzle
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systems and may not be public-coin (depending on the puzzle). For both constructions,
we consider a puzzle system PuzSys that achieves completeness and g-hardness for
some function g : N −→ R+. In addition, for dense samplable puzzle systems, we
require correctness, efficient samplability, and statistical indistinguishability.

3.1 Preliminaries

The puzzle, solution and hardness spaces are denoted by PSλ,SSλ,HSλ, as in Sec-
tion 2.1. Our PoWorK protocols are interactive proofs between a prover P and a verifier
V , denoted by (P,V).

The challenge space of our dense puzzle based construction (P,V), denoted by
CSλ, is determined by the security parameter λ. From an algebraic point of view, CSλ
is set to be a group with operation ⊕, where performing ⊕ and inverting an element
should be efficient. For the first construction, we require thatPSλ ⊆ CSλ. For instance,
we may set CSλ as the group

(
GF(2`(λ),⊕

)
, where `(λ) is the length of the challenges

and⊕ is the bitwise XOR operation. Of course, one may select a different setting which
could be tailor made to the algebraic properties of the underlying primitives.

Let ChSampler be the algorithm that samples a challenge from CSλ. For a fixed
security parameter, we define the following random variables (r.v.):

– The challenge sampling r.v. Cλ,h
def
= ChSampler(1λ, h).

– The puzzle sampling r.v. Pλ,h
def
= {puz← Sample(1λ, h) : puz}.

Finally, we denote by x⊕D (resp. DInv) the r.v. of performing⊕ on some fixed x ∈ CSλ
and an element y sampled from r.v. D (resp. inverting an element sampled from D). The
r.v. D⊕ x is defined similarly. Formally,

x⊕D
def
= {y ← D : x⊕ y}, D⊕ x def

= {y ← D : y ⊕ x}, DInv def= {y ← D : −y}.

3.2 The Dense Puzzle Based Compiler

We now provide a detailed description of our protocol (P,V), which can be viewed as
a compiler that can transform a SS-HVZK protocol Π = (P1Π ,P2Π ,VerΠ) for L ∈
NP and a g-hard puzzle system PuzSys into a 3-move PoWorK. The resulting PoWorK
protocol achieves Θ(g)-hardness and statistical indistiguishability. From a syntax point
of view, our compiler will set the challenge space of the PoWorK CSλ to be equal to
CSΠ . We denote by SimΠ the HVZK simulator of Π .

The protocol (P,V) can be executed in either of the two following modes:

1. Proof of Knowledge (PoK) mode: P has a witness w ∈ RL(x) as private input.
In order to prove knowledge of w to V , P runs P1Π and P2Π as described by the
original SS-HVZK protocol, with the difference that instead of providing P2Π with
the challenge c from V directly, P runs the puzzle sampler algorithm to receive a
pair of a puzzle and its solution, (puz, soln), computes the value c̃ = c ⊕ puz and
runs P2Π with challenge c̃.
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2. Proof of Work (PoW) mode: P has no private input and tries to convince V that
it has performed a minimum amount of computational “work” (i.e. at least some
expected number of steps). To achieve this, P runs SimΠ to simulate a transcript
of the original SS-HVZK protocol. Then, it receives the challenge c from V and
computes the value puz = (−c)⊕ c̃. It runs the Solve algorithm on input puz, and if
puz is a puzzle in PSλ (which, as we argue later, must occur with high probability),
then it obtains a solution soln of puz, except for some negligible error.

The verification mechanism, must be the same for both modes, so that indistin-
guishability can be achieved. Namely, the verifier checks that: (i) the relation c̃ = c⊕puz
holds, (ii) the transcript of the SS-HVZK protocol is accepting and (iii) the prover has
output a correct pair of a puzzle puz and some solution soln of puz. The protocol (P,V)
is presented in detail in Figure 1.

Statement: x ∈ L ∩ {0, 1}poly(λ).
Prover’s private input: w ∈ RL(x).

P: (ã, φ1)← P1Π(w, x).
P → V: ã.
P ← V: c← ChSampler(1λ, h);

P : • sample a puzzle-solution pair
(puz, soln)← SampleSol(1λ, h);
• set c̃ = c⊕ puz;
• execute r̃ ← P2Π(φ1, c̃);

P → V: c̃, r̃, puz, soln.

Verification:

1. c̃ = c⊕ puz.
2. VerΠ(x, ã, c̃, r̃) = 1.
3. Verify(1λ, h, puz, soln) = true.

(a) Knowing the witness (PoK)

Statement: x ∈ L ∩ {0, 1}poly(λ).
Prover’s private input: −

P : • execute (ã, c̃, r̃)← SimΠ(x);
P → V: ã.
P ← V: c← ChSampler(1λ, h);
P : • set puz = (−c)⊕ c̃;
• compute a puzzle solution
soln← Solve(1λ, h, puz);

P → V: c̃, r̃, puz, soln.

Verification:

1. c̃ = c⊕ puz.
2. VerΠ(x, ã, c̃, r̃) = 1.
3. Verify(1λ, h, puz, soln) = true.

(b) Doing work (PoW)

Fig. 1: The Dense Puzzle Based PoWorK Construction for fixed security parameter λ
and pre-determined hardness factor h ∈ HSλ, given a 3-move-SS-HVZK protocol Π
for language L and a dense samplable puzzle system PuzSys satisfying that PSλ ⊆
CSλ = CSΠ ; ChSampler is the challenge sampling algorithm over CSλ.

3.3 Security of the Dense Puzzle Based Construction.

In order to prove that our protocol satisfies soundness and indistinguishability, we need
to assume that the challenge and puzzle distributions satisfy some plausible properties
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and that the presumed g-hardness of the puzzle system dominates the step complexity
of the group operation and challenge sampling algorithms. In detail, we require that:

(A). The challenge and puzzle sampling distributions are statistically close.
(B). The challenge sampling distribution is (statistically) invariant to any group opera-

tion, i.e. (a) inverting a challenge sampled from CSλ and (b) performing ⊕ oper-
ations on some element x in CSλ = CSΠ and a sampled challenge. Observe that
these two assumptions imply that the puzzle sampling distribution is also (statisti-
cally) ⊕-invariant.

(C). With high probability, the number of steps needed for StepsSolve(1
λ, h, puz) to

solve a g-hard puzzle puz according to Pλ,h, scaled to the puzzle hardness function
g, is more than the number of steps of performing group operations (inversion and
⊕ operation), or sampling from CSλ.

(A). For every hardness factor h ∈ HSλ, the r.v. Cλ,h and Pλ,h are ε1-statistically close,
where ε1(·) is a negligible function.

(B). For every x ∈ CSλ and hardness factor h ∈ HSλ, the r.v. Cλ,h is ε2-statistically close to
the r.v. x⊕Cλ,h, Cλ,h ⊕ x and CInv

λ,h, where ε2(·) is a negligible function.
(C). There exists a constant κ < 1 and a negligible function ε3(·) s.t. for every hardness factor

h ∈ HSλ and every r, r′ ∈ CSλ

Pr[puz← Sample(1λ, h) : κ · g(StepsSolve(1λ, h, puz)) >
> StepsChSampler(1

λ, h) + StepsInv(r) + Steps⊕(r, r
′)] ≥ 1− ε3(λ),

where StepsInv, Steps⊕ denote the number of steps needed for inversion and group opera-
tion in CSλ.

Fig. 2: Assumptions for our Dense Puzzle Based PoWorK Construction, where Cλ,h

and Pλ,h are the challenge sampling and the puzzle sampling distributions respectively.

The assumptions described are stated formally in Figure 2. Assumptions (A) and
(B) can be met for meaningful distributions, widely used in cryptographic protocols.
For example, when Cλ,h and Pλ,h are close to uniform, it is straightforward that as-
sumption (A) holds. Moreover, since the uniform distribution is invariant under group
operations, we have that assumption (B) also holds. The assumption (C) is expected to
hold for any meaningful cryptographic puzzle construction. Indeed, if solving a puzzle
is believed to be hard (on average) within a bounded amount of steps T , then perform-
ing efficient tasks, such as group operations or sampling a challenge in the space where
this puzzle belongs must be feasible in a number of steps much less than T .

We prove that our dense puzzle based construction is a PoWorK, assuming (A),(B)
and (C), the g-hardness of PuzSys and the soundness and ZK properties of the origi-
nal SS-HVZK protocol. The soundness of our protocol is in constant relation with the
hardness of PuzSys.
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Theorem 1. Let L be a language inNP and letΠ = (P1Π ,P2Π ,VerΠ) be a special-
sound 3-move statistical HVZK protocol for L, where the challenge sampling distribu-
tion is uniform. Let PuzSys = (Sample,SampleSol,Solve,Verify) be a dense samplable
puzzle system that satisfies g-hardness for some function g. Define (P,V) as the pro-
tocol described in Figure 1 when built upon Π,PuzSys and assume that (A),(B),(C) in
Figure 2 hold. Then, (P,V) is a

(
(1− κ)/2

)
· g-sound PoWorK for L and PuzSys with

statistical indistiguishability, where κ is the constant defined in assumption (C).

Proof. Completeness. By the completeness of Π and the correctness of PuzSys, the
dense puzzle based PoWorK construction is complete in the case that P executes the
PoK mode of the protocol. Regarding the PoW mode, an honest execution of PuzSys is
incorrect, only if either of the two following cases is true:

(i). puz = (−c)⊕ c̃ ∈ CSλ \ PSλ, i.e. puz is not a puzzle. By assumptions (A), (B)
in Figure 2, this happens with negligible probability, since

∆[ Pλ,h,Cλ,h] ≤ ε1(λ) ∧∆[Cλ,h,C
Inv
λ,h ⊕ c̃] ≤ 2 · ε2(λ)⇒

⇒ ∆[Pλ,h,C
Inv
λ,h ⊕ c̃] ≤ ε1(λ) + 2 · ε2(λ),

where we applied (B) two times (one for inversion and one for ⊕ operation).
(ii). puz is a puzzle, but the puzzle solver algorithm Solve does not output a solution

for puz. Namely, we have that Verify(1λ, h, puz, soln) = false. By the complete-
ness property of PuzSys, this also happens with negligible probability.

Therefore, (P,V) achieves completeness with high probability, as required in Defini-
tion 2.(
(1− κ)/2

)
· g-Soundness. First, we make use of the special soundness PPT extractor

KΠ of Π to construct a knowledge extractor K that on input (x, y, z, h) and given the
code of an arbitrary prover P̂ , executes the following steps:

1. By applying standard rewinding, K interacts with P̂(y) for statement x and aux-
iliary input z, using two challenges c1, c2 sampled from Cλ,h and receives two
protocol transcripts 〈ã1, c1, (c̃1, r̃1, puz1, soln1)〉 and 〈ã1, c2, (c̃2, r̃2, puz2, soln2)〉.

2. K runs KΠ on input (x, 〈ã1, c̃1, r̃1〉, 〈ã1, c̃2, r̃2〉).
3. K returns the output of KΠ .

Since KΠ is a PPT algorithm, K also runs in polynomial time.

Assume that for some x ∈ {0, 1}poly(λ), y ∈ {0, 1}∗, z ∈ {0, 1}∗, h ∈ HSλ, there
exists a prover P∗ and a non-negligible function s(·) s.t

Pr[puz← Sample(1λ, h); outV ← 〈P∗(y)↔ V〉(x, z, h) : (outV = accept)∧
∧ StepsP∗(〈P∗(y)↔ V〉(x, z, h)) ≤

(
(1− κ)/2

)
· g(StepsSolve(1λ, h, puz))] ≥ s(λ).

We construct an algorithm W that makes use of P∗ to break the g-hardness of
PuzSys. The input thatW receives is 〈(x, y, z), 1λ, h, puz〉, where (x, y, z) is the auxil-
iary input and puz sampled from Sample(1λ, h). Then,W executes the following steps:
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1. It samples c1 by running ChSampler(1λ, h).
2. It interacts with P∗(y) for statement x, auxiliary input z, hardness factor h and

challenge c1. It receives the transcript 〈ã1, c1, (c̃1, r̃1, puz1, soln1)〉.
3. It computes the inverse of puz, denoted by (−puz).
4. It computes c2 = c̃1 ⊕ (−puz).
5. It rewinds P∗ at the challenge phase and provides P∗ with challenge c2. It receives

a second transcript 〈ã1, c2, (c̃2, r̃2, puz2, soln2)〉.
6. It returns the value soln2.

By the assumption for P∗ and the splitting Lemma, we have that when P∗ is chal-
lenged with two honestly selected c1, c2, it outputs two accepting transcripts by running
in no more than

(
(1 − κ)/2

)
· g(StepsSolve(1λ, h, puz)) steps with at least (s(λ)/2)2

probability. By Equal we denote the event that this happens and c̃1 = c̃2 holds. Ob-
viously, either Equal, or ¬Equal will occur with probability at least (s(λ)/2)2/2 =
s(λ)2/8.

Assume that Equal happens with at least s(λ)2/8 probability. We will show that this
case leads to a contradiction; namely,W will output a solution of puz while running in
no more than g(StepsSolve(1

λ, h, puz)) steps, hence breaking the g-hardness of PuzSys.
We observe that for any puz, if both transcripts generated by the interaction with

P∗ are accepting and the values c̃1, c̃2 are equal, then we have that(
c2 = c̃1 ⊕ (−puz)

)
∧ (c̃2 = c2 ⊕ puz2) ∧ (c̃1 = c̃2)⇒ puz2 =

(
− (−puz)

)
= puz,

where the second equality holds due to verification step 1. Therefore, it holds that

Verify(1λ, h, puz2, soln2) = true⇔ Verify(1λ, h, puz, soln2) = true. (1)

By the assumptions (A),(B) in Figure 2, we have that there are negligible functions
ε1(λ), ε2(λ) s.t. for any c̃1 that P∗ returns,

∆[c̃1 ⊕CInv
λ,h, c̃1 ⊕PInv

λ,h] < 2ε1(λ) and ∆[Cλ,h, c̃1 ⊕CInv
λ,h] < 2ε2(λ),

where in the first and second inequality, we applied assumptions (A) and (B) respec-
tively two times (one for inversion and one for⊕ operation). Therefore, by the triangular
inequality we have that

∆[Cλ,h, c̃1 ⊕PInv
λ,h] < 2ε1(λ) + 2ε2(λ). (2)

Eq. (2) implies that the probability distribution of c2 = c̃1 ⊕ (−puz) thatW computes
is [2ε1(·) + 2ε2(·)]-statistically close to the challenge sampling distribution of V .

By construction, the running time ofW (in number of steps) is at most

2 · StepsP∗ (〈P∗(y)↔ V〉(x, z, h)) + Steps
(
((−puz)))+

+Steps(c̃1 ⊕ (−puz)) + StepsChSampler(1
λ, h).

By assumption (C) in Figure 2, there is a negligible function ε3(·) and a constant
κ < 1 s.t.

Pr[puz← Sample(1λ, h) : κ · g(StepsSolve(1λ, h, puz)) < StepsChSampler(1
λ, h)+

+Steps((−puz)) + Steps(c̃1 ⊕ (−puz))] ≤ ε3(λ).
(3)
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When Equal occurs, then it holds that

StepsP∗(〈P∗(y)↔ V〉(x, z, h)) ≤
(
(1− κ)/2

)
· g(StepsSolve(1λ, h, puz)),

hence by the assumption for P∗ and Eq. (2), (3), the probability that the running time
ofW is bounded by

StepsW(1λ, (x, y, z), h, puz) ≤
≤ 2 · StepsP∗(〈P∗(y)↔ V〉(x, z, h)) + κ · g(StepsSolve(1λ, h, puz)) ≤
≤ (2 ·

(
(1− κ)/2

)
) · g(StepsSolve(1λ, h, puz)) + κ · g(StepsSolve(1λ, h, puz)) =

= g(StepsSolve(1
λ, h, puz)),

is at least Pr[Equal]−
(
2ε1(λ)+2ε2(λ)+ε3(λ)

)
. By Eq. (1) ,(2), (3), and the assumption

Pr[Equal] ≥ s(λ)2/8, we have that for auxiliary tape (x, y, z) and hardness factor h:

Pr


puz← Sample(1λ, h);
soln∗ ←W(1λ, (x, y, z), h, puz) :
Verify(1λ, h, puz, soln∗) = true ∧
∧StepsW(1λ, (x, y, z), h, puz)
≤ g(StepsSolve(1λ, h, puz))

 ≥ s(λ)2/8− (2ε1(λ) + 2ε2(λ) + ε3(λ)
)
,

which contradicts to the g-hardness of PuzSys, as s(λ)2/8−
(
2ε1(λ)+2ε2(λ)+ε3(λ)

)
is

a non-negligible function. Therefore, it holds that Pr[Equal] ≤ s(λ)2/8 which implies

Pr[¬Equal] ≥ s(λ)2/8. (4)

By the construction of K and the special soundness property of Π , we have that
K will return a witness for x whenever KΠ is provided with different c̃1, c̃2. Define
q(λ) = s(λ)2/8. By Eq. (4), when K is given oracle access to P∗ it holds that

Pr[KP
∗
(x, y, z, h) ∈ RL(x)] = Pr[¬Equal] ≥ q(λ).

Thus, we conclude that our protocol is
(
(1− κ)/2

)
· g-sound.

Statistical Indistinguishability. Assume that the protocol described in Figure 1 does
not satisfy the PoWorK indistinguishability property in Definition 2. Then, for some
(x, z, h) there exists a verifier V∗ that w.l.o.g. outputs a single bit and can distinguish
between:

DV
∗

PoK = {viewV∗ ← 〈P(w)↔ V∗〉(x, z, h)} and

DV
∗

PoW =
{
viewV∗ ← 〈PSolve(1λ,h,·) ↔ V∗〉(x, z, h)

}
.

with non-negligible advantage η(λ).
In the following, we will show that if such a V∗ exists, then we can construct an ad-

versary B who breaks the statistical (auxiliary input) HVZK property of the underlying
3-move protocol Π = (P1Π ,P2Π ,VerΠ). This means that B can distinguish between:

DΠ =
{
(ã, φ1)← P1Π(w, x); c̃

$← CSΠ ; r̃ ← P2Π(φ1, c̃) : (ã, c̃, r̃)
}

and

DSim = {(ã, c̃, r̃)← SimΠ(x, (z, h)) : (ã, c̃, r̃)}

15



with some non-negligible advantage η′(λ), where (z, h) is the auxiliary input. Namely,
B takes as input (x, (z, h), (ã, c̃, r̃)), and works as follows:

1. Invokes V∗ with input x, z, h and first move message ã.
2. V∗ responds back with his challenge c.
3. B computes puz = (−c) ⊕ c̃ and runs Solve on input (1λ, h, puz) to receive back

soln.
4. B sends (c̃, r̃, puz, soln) to V∗.
5. B returns V∗’s output b∗.

By construction of B, what is left to argue is that puz = (−c) ⊕ c̃ and soln ←
Solve(1λ, h, puz) are indistinguishable from a pair (puz′, soln′) that was picked by
SampleSol(1λ, h). We stusy the following two cases:

1. B’s input is sampled according to DΠ : By the assumption (B) in Figure 2 and for
any c returned by V∗, we have that:

∆[Cλ,h,C
Inv
λ,h ⊕ c̃] < 2ε2(λ),

where we applied (B) two times (one for inversion and one for ⊕ operation). By
assumption (A), we have that

∆[Cλ,h,Pλ,h] < ε1(λ).

By the triangular inequality, we have that for the distribution of puz = (−c)⊕ c̃, it
holds that

∆[Pλ,h,C
Inv
λ,h ⊕ c̃] < ε1(λ) + 2ε2(λ).

By the statistical indistinguishability property of PuzSys (Definition 1), we have
that the distribution {soln ← Solve(1λ, h, puz) : soln} is ε4(λ)-statistically close
to the distribution {(soln′, puz′)← SampleSol(1λ, h) : soln′}, for some negligible
function ε4. Consequently, the probability distribution of puz that B computes is
[ε1(λ) + 2ε2(λ) + ε4(λ)]-statistically close to the puzzle sampling distribution.

2. B’s input is sampled according to DSim: in this case, it is straightforward that B
simulates perfectly the PoW mode of the PoWorK protocol.

By the above and given that the probability of success of V∗ is at least η(λ), we
have that∣∣Pr[(ã, c̃, r̃)← DΠ : B(x, (z, h), ã, c̃, r̃) = 1]−

− Pr[(ã, c̃, r̃)← DSim : B(x, (z, h), ã, c̃, r̃) = 1]
∣∣ ≥

≥
∣∣∣(Pr[viewV∗ ← DV

∗

PoK : V∗(viewV∗) = 1]− (ε1(λ) + 2ε2(λ) + ε4(λ))
)
−

− Pr[viewV∗ ← DV
∗

PoW : V∗(viewV∗) = 1]
∣∣∣ ≥

≥
∣∣∣Pr[viewV∗ ← DV

∗

PoK : V∗(viewV∗) = 1]−

− Pr[viewV∗ ← DV
∗

PoW : V∗(viewV∗) = 1]
∣∣∣− (ε1(λ) + 2ε2(λ) + ε4(λ))

)
≥

≥ η(λ)−
(
ε1(λ) + 2ε2(λ) + ε4(λ)

)
.
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Therefore, B is successful in breaking the statistical HVZK property of the un-
derlying 3-move SS-HVZK protocol with non-negligible advantage η′(λ) = η(λ) −(
ε1(λ) + 2ε2(λ) + ε4(λ)

)
. This leads us to the conclusion that the protocol in Figure 1

is a PoWorK with statistical indistinguishability.
ut

Remark. Theorem 1 can be extended to encompass the case where the protocol Π
to be compiled in the construction described in Figure 1 achieves T (λ)-computational
HVZK, i.e. it is HVZK for every verifier B which runs in T (λ) steps. Specifically, in the
indistinguishability proof the running time of the HVZK adversary B is (in number of
steps) bounded by:

StepsV∗(〈(P1Π ,P2Π)(w), VerΠ(c̃)〉(x, z, h))+
+StepsInv(c) + Steps⊕((−c), c̃) + StepsSolve(1

λ, h, puz).

Therefore, we can prove that if T (λ) is an asymptotically larger function than the time
of the puzzle solving algorithm, then our dense puzzle based construction achieves
computational indistinguishability.

3.4 Dense Puzzle Instantiation in the Random Oracle Model

We now instantiate a dense puzzle system in the random oracle model. For a given
security parameter λ, let O : {0, 1}∗ 7→ {0, 1}m be a random oracle, where m ≥ λ/2.
Our dense puzzle system is described in Figure 3.

Theorem 2. Let λ ∈ Z+ be the security parameter. Define PSλ = {0, 1}λ, SSλ =

{0, 1}λ, and HSλ = [log2 λ, λ/4]. Let O be a random oracle mapping from {0, 1}∗ to
{0, 1}m, where m ≥ λ/2. For any h ∈ HSλ, the puzzle system PuzSys described in
Figure 3 is correct, complete with Solve’s running time 2h+2 log λ, efficiently samplable,
statistically indistinguishable, and g-hard, where g(T ) = T 1/c, for any constant c > 2.
In addition, for any k that isO(2λ/8), PuzSys is (id(·), k)-amortization resistant, where
id(·) is the identity function.

Proof. Please see the full version [BKZZ15].

3.5 Dense Puzzle Instantiation From Complexity Assumptions

In this section, we show how to construct a puzzle system whose puzzle instance distri-
bution is statistically close to the uniform distribution (over {0, 1}m(λ)) without random
oracles. The main challenge is, given an arbitrary oneway function ψ : X 7→ Y , to build
another oneway function with uniform output distribution (on random inputs) while still
maintaining its onewayness. As an intuition, we would like to first map the output of
the given oneway function from Y to {0, 1}` using an efficient injective map (which is
usually the bit representation of y ∈ Y), and then apply a strong extractor on it. Let
Ext : {0, 1}` × {0, 1}d 7→ {0, 1}m be a strong extractor as defined at Definition 3.
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Define PSλ = {0, 1}λ, SSλ = {0, 1}λ, and HSλ = [log2 λ, λ/4]. Let H(·) :=
LSBλ/2(O(·)), where LSBk stands for k least significant bits.

– Sample(1λ, h): Return puz← {0, 1}λ.
– SampleSol(1λ, h): Pick random x ← {0, 1}λ and y ← {0, 1}λ/2. Return puz =

(H(x, y), y) and soln = x.
– Solve(1λ, h, puz):
• Parse puz to (z, y); set soln = ⊥ and initialize an empty set X .
• For ctr =

{
1, . . . , 2h+2 log λ

}
:

Randomly pick x ← {0, 1}λ \X , and add x to X . Set soln = x if LSBh(z) =
LSBh(H(x, y)).

• Return soln.
– Verify(1λ, h, puz, soln): Parse puz to (z, y). Return true if and only if LSBh(z) =

LSBh(H(soln, y)).

Fig. 3: The Dense Puzzle System from the Random Oracle O.

Definition 3. Function Ext : {0, 1}` × {0, 1}d 7→ {0, 1}m is (t, ε)-strong extractor
if for any t-source X (over {0, 1}`), we have ∆[(S,Ext(X,S)), (S,Um)] ≤ ε, where
S ← {0, 1}d and Um ← {0, 1}m are drawn uniformly and independently of X .

The new oneway function ψU : X × {0, 1}d 7→ {0, 1}m × {0, 1}d is defined
as ψU (x, s) = (Ext(ψ(x), s), s). According to LHL [HILL93], if H∞(x) ≥ m +
2 log(1/ε), then the output of ψU is at most ε-far from the uniform distribution over
{0, 1}m+d. However, in order to maintain its onewayness, we need an extra property of
the strong extractor – Target Collision Resistance (TCR), i.e. given x and s, it is compu-
tationally infeasible to find x′ such that x 6= x′ and Ext(x, s) = Ext(x′, s). We construct
TCR strong extractors from regular universal oneway hash functions (UOWHFs), ini-
tially proposed by Naor and Yung [NY89]. We first formally define the TCR property
for a strong extractor in Definition 4.

Definition 4. Let Ext : {0, 1}`(λ) × {0, 1}d(λ) 7→ {0, 1}m(λ) be a strong extractor. We
say Ext is target collision resistant if for all PPT adversaryA, the following probability:

Pr

[
x← A(1λ); s← {0, 1}d(λ) : x′ ← A(s) :
x, x′ ∈ {0, 1}`(λ) ∧ x 6= x′ ∧ Ext(x, s) = Ext(x′, s)

]
= negl(λ).

A stronger notion, collision resistant extractors, was introduced by Dodis [Dod05].
Collision resistant extractors were applied to construct perfectly oneway probabilistic
hash functions proposed [CMR98] in 2005. The construction of such collision resis-
tant extractors relies on a variant of leftover hash lemma proved by Dodis and Smith
[DS05]. Our observation is that in the same way that [Dod05] employ regular collision
resistant hash functions (CRHF) to derive collision resistant strong extractors, we can
use regular universal oneway hash function (UOWHF), to obtain TCR strong extrac-
tor. The notion of UOWHF was initially proposed by Naor and Yung [NY89] where
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they showed that UOWHFs can be constructed by composing oneway permutations
with (weakly) pairwise independent hash functions. Since then, many constructions of
UOWHFs have been proposed, assuming the existence of regular oneway functions
[SY90] or any oneway functions [Rom90, HHR+10].9

We would like to use H2n =
{
H(a,b)(x) = ax+ b|∀a 6= 0, a, b ∈ GF(2n)

}
as the

family of pairwise independent permutations and a regular UOWHF family Fλ to con-
struct our TCR strong extractors. Define F̂i(·) := (Fi(·), i), where Fi ∈ Fλ. Our TCR
strong extractor is constructed as Ext(x, (i, s)) = F̂i ◦ Hs(x). Note that regularity of
the UOWHFs is important to ensure that the output distribution of such strong extrac-
tors is close to the uniform distribution, as Fi(U`1(λ)) ≡ U`2(λ). On the other hand,
some UOWHF constructions give regular UOWHFs by default (i.e., the UOWHFs con-
structed by the oneway permutation based approach [NY89]).

Dense Oneway Functions and Dense Puzzles from Complexity Assumptions.
We apply a TCR strong extractor for our construction. The key to the construction will

be a “dense” oneway function: a oneway function is ε-dense oneway if its output distri-
bution is at most ε-far from Um for some m ∈ Z+. We now present a transformation
of a one-way function to a dense one-way function via the application of a TCR-strong
extractor. The TCR property will ensure that any attempt to invert the dense one-way
function will result to an inversion of the underlying one-way function. Formally we
prove the following.

Theorem 3. Let λ1, λ2 ∈ Z+ be the security parameters. Let ψλ1
: Xλ1

7→ Yλ1
be

an arbitrary oneway function, and define Hλ1
= H∞(ψλ1

(X)) for random variable X
drawn uniformly from Xλ1 . Assume there exists an efficient injective map ζλ1 : Yλ1 7→
{0, 1}`(λ2). If

Extλ2
(x, (s1, s2)) : {0, 1}`(λ2) × {0, 1}λ2+2·`(λ2) 7→ {0, 1}Hλ1−2 log(1/ε)−1

is a (Hλ1
, ε)-TCR strong extractor, then

ψUλ1,λ2
(x, s1, s2) = (Extλ2

(ζλ1
(ψλ1

(x)), (s1, s2)), s2)

is an ε-dense oneway function with range {0, 1}2·`(λ2)+Hλ1−2 log(1/ε)−1 and domain
Xλ1
× {0, 1}λ2+2·`(λ2).

Proof. Please see the full version [BKZZ15].

The above result paves the way for constructing dense puzzles from complexity as-
sumptions. Essentially, given a function with moderately hard characteristics making it
suitable for a puzzle, it is possible to transform it to a dense puzzle by applying a suit-
ably hard TCR extractor (“suitable” here means that breaking the TCR property should

9 We note that, on the contrary, CR strong extractors cannot be built from arbitrary oneway
functions, since Simon [Sim98] gave a black-box separation between CRHFs and oneway
functions.
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be harder than solving the puzzle). We now illustrate this methodology by applying it to
the discrete logarithm problem. More generally this methodology transforms any puz-
zle in the sense of Definition 1 to a dense puzzle (assuming again a suitably hard TCR
extractor).

The DLP Based Puzzle and Calibrating Its Hardness.
Consider the discrete logarithm problem (DLP) as the candidate oneway function

for our puzzle. Let G = 〈G〉 be some (multiplicative) cyclic group where the DLP is
hard, and G is a generator with order p, which is a λ1-bit prime. The oneway function
ψG : Zp 7→ G is defined as ψG(x) = Gx. It is shown by Shoup [Sho97] that any
probabilistic algorithm takes Ω(

√
p) steps to solve the DLP over generic groups. Anal-

ogously, [GJKY13] shows any probabilistic algorithm must take at least
√
2pε steps

to solve DLP with probability ε in the generic group model. To build a puzzle, we
would like to calibrate the hardness of the DLP by revealing the most significant bits
of the pre-image. For example, for a puzzle with hardness factorh ≤ bλ1−1

2 c, we pick
x ∈ {0, 1}h and y ∈ {0, 1}b(λ1−1)/2c uniformly at random, and set the puzzle as
(Extλ2

(ψG(x + 2h · y), (s1, s2)), s2, y). We assume the calibrated DLP is still moder-
ately hard with respect to the min-entropy of x. Note that a similar assumption was used
by Gennaro to construct a more efficient pseudo-random generator [Gen00]. It is easy
to see that this assumption holds for DLP in generic groups, i.e. given ψG(x + 2h · y)
and y, the best generic algorithm must take at least

√
2h+1ε steps to solve DLP with

probability ε. We note that this problem is closely related to leakage-resilient cryptog-
raphy [AM11, ADVW13].

On the other hand, due to the out-layer extractor, we cannot directly adopt any
known (generic) DLP algorithms, such as [GTY07, GPR13]. Instead, our puzzle solver
just exhaustively searches for a valid solution. There is a subtle caveat, namely the
expected running time of solving a puzzle with hardness factorh, i.e. x ← {0, 1}h is
designed to be 2h, whereas the TCR property of UOWHF is only guaranteed against
PPT adversaries with respect to λ2 (the security parameter of the UOWHF). To address
this issue, we introduce an additional assumption, that is the expected running time of
any adversary A (in number of steps) can break the TCR property of the underlying
UOWHF with non-negligible probability on x ← {0, 1}h is ω(2h/2), (i.e. breaking
TCR is expected to happen after the birthday paradox bound). The dense puzzle system
from DLP (combining with TCR strong extractors) is depicted in Figure 4.

Theorem 4. Let λ ∈ Z+ be the security parameter and h ∈ [log4 λ+log2 λ+1, log5 λ]

be the hardness factor. Let Extλ : {0, 1}λ × {0, 1}3λ 7→ {0, 1}λ+log4 λ be a TCR
strong extractor such that the expected running time of any adversary A that breaks
its TCR property with non-negligible probability on x ← {0, 1}h is ω(2h/2). Assume
ψG : Zp 7→ G is a hard DLP in generic groups such that the best generic algo-
rithm must take at least

√
2h+1ε steps to solve it with probability ε. The puzzle system

PuzSys = (Sample,SampleSol,Solve,Verify) described in Figure 4 is correct, com-
plete with Solve’s running time 2h, efficiently samplable, statistically indistinguishable,
and g-hard, where g(T ) = T 1/c for any constant c > 2. In addition, for any k that is

20



Define PSλ = {0, 1}7λ/2+log4 λ, SSλ = {0, 1}log
4 λ, and HSλ = [log4 λ + log2 λ +

1, log5 λ]. For the given λ, select a pre-defined Extλ : {0, 1}λ × {0, 1}3λ 7→ {0, 1}λ+log4 λ.
Set the DLP ψG : Zp 7→ G over the pre-defined elliptic curve, where p is λ-bit prime such that
there exists an efficient injective map ζ : G 7→ {0, 1}λ. (We will omit this map ζ in the rest of
the description for notation simplicity.)

– Sample(1λ, h): Return puz← {0, 1}7λ/2+log4 λ.
– SampleSol(1λ, h):
• Pick random s1 ← {0, 1}λ, s2 ← {0, 1}2λ, x← {0, 1}h and y ← {0, 1}λ/2.
• Return puz = (Extλ(ψG(x+ 2h · y), (s1, s2)), s2, y) and soln = x.

– Solve(1λ, h, puz):
• Parse puz to (z, s1, s2, y); set soln = ⊥ and initialize an empty set X .
• For ctr =

{
1, . . . , 2h

}
:

◦ Randomly pick x← {0, 1}h \X , and add x to X .
◦ Set soln = x if z = Extλ(ψG(x+ 2h · y), (s1, s2)).

• Return soln.
– Verify(1λ, h, puz, soln): Parse puz to (z, s1, s2, y). Return true if and only if z =

Extλ(ψG(soln+ 2h · y), (s1, s2)).

Fig. 4: The Dense Puzzle System From DLP.

O(2log
3 λ), PuzSys is (id(·), k)-amortization resistant, where id(·) is the identity func-

tion.

Proof. Please see the full version [BKZZ15].

Remark. For notation simplicity, we let the puzzle space “independent” of the hardness
factor h, therefore we have to limit h within a small interval to ensure (i) ψG(x+2h ·y)
has enough entropy and (ii) it is infeasible to break the TCR property of the underlying
UOWHF within 2h/2 steps. In practice, for any desired h, we can always pick a suitable
Extλ : {0, 1}λ × {0, 1}3λ 7→ {0, 1}λ+h−log

2 λ−1.

3.6 Instantiation of the Dense Puzzle Based PoWorK

We instantiate our PoWorK protocol as described in Figure 1 by building it upon the
Schnorr identification scheme [Sch89] and the dense puzzle system instantiation in the
RO model10 (see Section 3.4). The description of our instantiation is presented in the
full version of this work [BKZZ15].

4 Applications

Below we present some practical and theoretical applications of our PoWorK. When
using PoWorK in practice we must ensure that the verifier cannot distinguish between
10 The construction using the DLP based puzzle system is similar. We chose to employ the RO

instantiation for simplicity in presentation.
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the two types of provers based on their response time. In Section 2.2 we argued that for
our indistinguishability proofs, P(w) (i.e. the prover who knows the witness) should
perform some idle steps so that his running time will be lower bounded by the time that
one would need to solve the puzzle. However, enforcing a real user to wait is not ideal.
Luckily though, the time needed for a prover who solves a puzzle (i.e., does not know
the witness) depends on his total computational power and on whether the puzzle is
parallelizable or not. Provers who own specialized hardware (e.g., based on ASICs) or
that have access to powerful computer clusters (in case that a puzzle is parallelizable)
might be able to solve the puzzle very fast – paying of course the relevant computation
cost. Thus, when applying PoWorK in practice, the time that takes a prover to respond
to a challenge is not a distinguishing factor: the prover might have as well solved the
puzzle in constant time by fully parallelizing its computation or alternatively, for the
case of non-interactive PoWorK’s the receiver may not know when the prover started
proof computation. Finally note that in any case, we do care that the prover has paid the
corresponding computational cost and he is not able to amortize a previous solution of
a puzzle to solve a new one.

4.1 Email Spam Application

Using proofs of work to reduce the amount of spam email was suggested back in 1992
by Dwork and Naor [DN92]. Their idea can be summarized in the following:

“If I don’t know you and you want to send me a message, then you must prove that you
spent, say, ten seconds of CPU time, just for me and just for this message” [DN92].

In their proposal there exists some special software11 that operates on behalf of the
receiver and checks whether the sender has properly computed the proof of work or the
sender is an approved (by the receiver) contact. The reason that this approach helps to
reduce spam is mainly economic: in order for spammers to send high volumes of emails
they would have to invest in powerful computational resources which makes spamming
non cost-effective.

A disadvantage of the method described above is that the list of the approved con-
tacts (i.e. email addresses) of the receiver has to be given to this special software/mail
server in order to check whether the sender belongs in this list or not - in which case
she will have to perform additional computation. This violates the privacy of the re-
ceiver who needs to reveal which of her contacts she considers to be approved and thus
allows them to send emails “for free”. Adopting our PoWorK protocol would give a
privacy preserving solution to the spam problem: given the indistinguishability feature
of PoWorK, the software/verifier does not need to know the approved list of contacts,
in fact it does not even need to know whether the incoming email is from an approved
contact or a non-approved user who successfully fulfilled the computational work.

Non-interactive PoWorKs. Sending an email should not require any extra communica-
tion between the sender and the mail server. Our 3-move PoWorK is public-coin, thus

11 This special software could for example run on the receiver’s mail server or be an independent
program running on the receiver’s side.
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can be turned into non-interactive by applying the Fiat-Shamir transformation [FS86].
Namely, the prover, instead of receiving a challenge from the verifier, hashes the first
move message a together with the context of the email and the email address of the re-
ceiver into c, and provides the verifier with the whole proof, π, which includes (a, c, r)
and the context of the email, in one round.

Multi-witness hard relation. In order for a user to approve a list of contacts she will have
to provide each one of them with a unique witness for the same statement (in order to
ensure indistinguishability). LetRL be a multi-witness hard relation with a trapdoor for
a language {x | ∃w : (x,w) ∈ RL}. A relation is said to be hard if for (x,w) ∈ RL, a
PPT adversary given x can only output w′ s.t. (x,w′) ∈ RL with negligible probability.
A multi-witness hard relation with a trapdoor is described by the following algorithms:
(a) a trapdoor generation algorithm sets a pair of a statement x and associated trapdoor
t: (x, t) ←GenT(RL), (b) an efficient algorithm GenW that on input x ∈ L and a
trapdoor t outputs a witness w such that (x,w) ∈ RL and, (c) a verification algorithm
1/0← Ver(RL, x, w) outputs 1 if (x,w) ∈ RL and 0 otherwise 12.

PoWorK based spam reducing system. Consider a PoWorK scheme as presented in
Figure 1 for a security parameter λ, a puzzle system PuzSys and a multi-witness hard
relation with a trapdoor RL as described above. A spam reducing system SRS consists
of the following algorithms:

– MailServerSetup(1λ): the mail server Smail on input the security parameter, λ, se-
lects the hardness of the puzzle system h ∈ HSλ.

– ReceiverSetup(1λ, h): user R (i.e. the receiver) runs (x, t)←GenT(RL and sends
x and her email address adR to the mail server (potentially signed together). The
trapdoor t is secretly stored byR.

– ApproveContact (t, x): in order for R to approve a sender S, it will run w ←
GenW(t, x) and will give w ∈ RL(x) to the sender (unique witnesses allow for
revocation). From now on, S can use w to send emails toR.

– SendEMail(w, h, x): a sender S with input the public parameters v, statement x ∈
L and with a private input w ∈ RL(x) ∪ {⊥}, prepares a PoWorK proof π =
(a, c, r). If S is an approved contact of R, then she will use the witness w to
perform the PoK side of PoWorK, while if R is not an approved contact (i.e. w =
⊥) she will have to execute the PoW side. To compute π non-interactively she will
fix c to beH(a,m), where a is the first message of PoWorK,m stands for the body
of the email13, and H is a hash. The rest of PoWorK is computed as before.

– ApproveEMail(h, x, π): is run by the mail server Smail who verifies π and outputs
0/1. If proof is π valid, then Smail forwards the enclosed email toR.

12 Examples of multi-witness hard relations with trapdoors are (a) the DL representation prob-
lem [Bra94, BF99] over prime order groups, (b) the representation problem in composite mod-
ular groups [ACJT00] which has constant size parameters in the number of adversarial parties.

13 We can assume that the email body also contains a time-stamp (or that the time-stamp is added
later by the mail server) and also includes (adS , adR) which are the sender/receiver email
addresses
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Note that our proposal, similar to [DN92, DGN03], requires to implement additional
protocols between the sender and the recipient (i.e. a change in the internet mail stan-
dards would be required). In the full version of this work [BKZZ15] we discuss some
interesting extensions of our protocol that address revocation, prevention of witness
sharing and solving “useful” puzzles.

Security. Although a formal definition and description of properties of an email system
is out of the scope of this paper, we do define and prove spam resistance and privacy.
Briefly, spam resistance guarantees that the mail server will allow an email message
to reach the recipient if and only if a valid proof (of work or knowledge) has been
attached. At the same time for a non-approved contact the number of valid proofs of
work prepared should not affect the time required to prepare a new one (similar to
puzzle amortization property). Privacy implies that the mail server cannot distinguish
whether the sender of a message is an approved contact of the recipient or not.

Definition 5. Let SRS be a spam reducing system built upon a PoWorK (P,V) for a
language L ∈ NP and a puzzle system PuzSys = (Sample,Solve,Verify). We define
spam resistance and privacy of SRS as follows:

(i). (σ, k)-Spam Resistance: We say that SRS is (σ, k)-spam resistant if there exists
a PPT witness-extraction algorithm K, such that for every hardness factor h ∈
HSλ, auxiliary tape z ∈ {0, 1}∗ and every adversary A, if for non-negligible
functions α1(·), α2(·):

Pr


(t, x)← ReceiverSetup(1λ, h);∀1 ≤ i ≤ k : puzi ← Sample(1λ, h);
{πi = (ai, ci, ri)}i∈[k] ← A(z, 1λ, h, x) :(
∀1 ≤ i ≤ k : ApproveEMail(h, x, πi) = 1

)
∧

∧(∀i 6= j ∈ [k] : πi 6= πj)∧
∧
(
StepsA(z, 1

λ, h, x) ≤ σ
(∑k

i=1 StepsSolve(1
λ, h, puzi)

))

 = α1(λ) ,

then Pr[KA(z, 1λ, h, x) ∈ RL(x)] = α2(λ) .
(ii). Privacy: We say that SRS is private, if for every hardness factor h ∈ HSλ, aux-

iliary tape z ∈ {0, 1}∗ and every adversarial mail server A, it holds that:∣∣∣∣∣Pr
[
(t, x)← ReceiverSetup(1λ, h);w ← ApproveContact(t, x);

π ← SendEMail(w, h, x) : A(z, h, x, π) = 1

]
−

− Pr

[
(t, x)← ReceiverSetup(1λ, h);

π ← SendEMail(⊥, h, x) : A(z, h, x, π) = 1

] ∣∣∣∣∣ = negl(λ) .

We prove the following theorem for a private spam reducing email system:

Theorem 5. Let SRS be a spam reducing system built upon dense puzzle-based PoWorK
(P,V) for a g-hard and (τ, k)-amortization resistant dense puzzle system PuzSys =
(Sample,Solve,Verify), where k is polynomial in λ, τ is an increasing function and g is
a subadditive function. LetH be a hash function with output domain equal to challenge
sampling space CSλ modeled as a random oracle. Assume that the worst-case running
time of Solve(1λ, ·, ·) is o(|CSλ|) and that (

√
τ ◦ g(Solve(1λ, ·, ·)) is super-polynomial

in λ. Then, the email system described above is private and (
√
τ ◦ g, k)-spam resistant.
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Proof. Please see the full version [BKZZ15].

Intuitively, the privacy holds because of the indistinguishability of PoWorK . The
(
√
τ ◦ g, k)-spam resistance property holds because of the soundness of PoWorK and

the amortization resistance of the underlying PuzSys.

4.2 PoWorK-based Cryptocurrencies

Proofs of work is the basic primitive used in achieving the type of distributed consensus
required in cryptocurrencies, notably Bitcoin [Nak08] and many others that use the
same approach. The main idea is that a proof of work operation can be used to calibrate
the ability of parties to build a hash chain that contains transaction records, commonly
referred to as the blockchain.

An important feature of a blockchain is its decentralized nature. Given the view of a
participant (commonly referred to as a miner) that includes its view of the blockchain,
a fresh instance of a puzzle of a specified difficulty is created (which itself may depend
on the blockchain) and has to be solved in order to add another block in the chain.
Formally, the operation of a PoW-based miner as used in Bitcoin and numerous other
cryptocurrencies (such as Litecoin, Namecoin, Dogecoin) is as shown in Figure 5.

Let 〈B1, . . . , Bn〉 be the current blockchain where Bi is a tuple (ti, Ti, ui, πi) with ti a time-
stamp, Ti a set of transactions, ui = H(Bi−1) (for a hash function H) and πi is such that
Verify(1λ, hi, H(Bi), πi) = true. The hardness hi is calculated via a function operating on
the time-stamps as follows hi = HC(t1, . . . , ti−1). A new block Bn+1 is created as follows.

1. Collect transactions into a vector Tn+1.
2. Calculate hn+1 = HC(t1, . . . , tn).
3. Set puz = H(tn+1, Tn+1) where tn+1 is a current timestamp and run Solve(1λ, h, puz)

to produce a soln = πn+1.
4. If the above step is successful, broadcast Bn+1 = (tn+1, Tn+1, un+1, πn+1).

Fig. 5: Miner operation in a puzzle-based cryptocurrency (using a puzzle PuzSys =
(Sample,Solve,Verify) that is dense). HC(·) is the puzzle hardness calculation function
which depends on the timestamps of the blocks of the current blockchain.

Under certain assumptions about the network synchronicity and the hardness of the
proof, the above mechanism has been shown to be robust in the sense of satisfying
two properties, persistence (transactions remain stable in the “ledger”) and liveness
(all transactions are eventually inserted in the ledger) assuming that the honest parties
are above majority [GKL15]. Puzzle-based cryptocurrencies have also drawn a lot of
criticism due to the fact that they require a lot of natural resources (e.g., in [OM14] it is
reported that Bitcoin mining in 2014 already consumed as much energy as the needs of
the country of Ireland for electricity).
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This lead to the development of a number of systems that circumvent puzzles (in-
cluding, [DM16, BLMR14, Maz15] as well as Peercoin, DasHCoin, NXT, Nushares,
ACHCoin, Faircoin and others). These systems maintain a blockchain as well, how-
ever they rely on different mechanisms for producing blocks. We call them, generically,
“knowledge-based cryptocurrencies” since the production of a block is associated with
the production of a witness for a public-relation relation R which parameterizes the
system. Formally, we present the miner14 operation in Figure 6.

Let 〈B1, . . . , Bn〉 be the current blockchain where Bi is a tuple (ti, Ti, ui, πi), for ti, Ti, ui
defined as in Figure 5 and πi being a NIZK that shows xi ∈ {x | ∃w : (x,w) ∈ R}, where
xi = V (B1, . . . , Bi−1, ti, Ti) for i = 1, . . . , n. The miner, equipped with secret-key sk,
produces the next block as follows.

1. Collect transactions into a vector Tn+1.
2. Calculate the pair (xn+1, aux) ← V (B1, . . . , Bn, tn+1, Tn+1) where tn+1 is the cur-

rent time. Then calculate Wsk(xn+1, aux) = wn+1. If wn+1 6= ⊥ it holds that
(xn+1, wn+1) ∈ R.

3. If the above step is successful, compute a NIZK proof πn+1 for xn+1 using witnesswn+1.
4. Broadcast Bn+1 = (tn+1, Tn+1, un+1, πn+1).

Fig. 6: Miner operation in a knowledge-based cryptocurrency parameterized by relation
R. The function V (·), given the blockchain information, the current set of transactions
and the time-stamp produces a statement x, while the functionWsk(·) given a statement
produces a witness w so that (x,w) ∈ R.

A trivial way to construct a knowledge-based cryptocurrency would be to have a
a single trusted authority with a public and secret key pair, (pk, sk), acting as the sole
miner.15 At a time-step n+1, the function V (·) would set simply xn+1 = (tn+1, Tn+1,
un+1) and Wsk(xn+1) would produce a signature on xn+1 that would serve as πn+1

(there is no need for a NIZK). Another example of a knowledge-based cryptocur-
rency is NXT. On a high level, in this system each miner (called forger) has a digi-
tal signature public and secret key, (pk, sk), associated with her account. The function
V (B1, . . . , Bn, tn+1, Tn+1) (run by each miner), operates as follows: it parses Tn+1

to recover the public pk of the miner (note that it is always present in the transaction
collecting the fees). Then, based on the public-key pk and the blockchain B1, . . . , Bn
it determines how much currency is associated with the account that corresponds to
the public-key pk; this results in a time-window d ∈ R+ whose expectation is pro-
portionate to the amount of currency in the account (the more currency, the shorter the
expectation of d is; we omit the exact dependency in this high level description). The

14 Note that we use the term “miner” for symmetry. Miners are associated with puzzle based cryp-
tocurrencies and thus different terminology has been introduced in knowledge-based systems
including “mintettes”, “forgers” and others.

15 For instance, this would be a single “mintette” instantiation of [DM16].

26



function V (·) returns (xn+1, aux) with xn+1 = (tn+1, Tn+1, un) and aux = d. The
procedure Wsk(xn+1, d), will produce a signature w on the message (tn+1, Tn+1, un)
if tn+1 ≥ tn + d; else, it produces ⊥. Note that in this system no NIZK is employed,
one may just set πn+1 = w; however, the system would operate similarly if a NIZK was
employed to establish knowledge of a signature w on the message (tn+1, Tn+1, un).

We now show how to construct a PoWorK-based cryptocurrency derived from a
knowledge-based cryptocurrency C1 and a puzzle-based cryptocurrency C2 for a dense
puzzle, see Figure 7. The construction is straightforward: a new block can be added to
the blockchain by someone who can efficiently compute a proof πi using some secret
key or by someone who is computing a πi by performing computational work.

The properties of the composition are informally stated in the following (meta)-
theorem; the proof of the theorem follows from the properties of PoWorK and is similar
in spirit to the proof of Theorem 5. The formal statement and proof of the theorem
(that should also include a formalization of all relevant underlying properties of cryp-
tocurrencies, both in the puzzle-based and knowledge-based setting, e.g., in the sense
of [GKL15]) is out of scope for the present exposition.

Let 〈B1, . . . , Bn〉 be the current blockchain where Bi is a tuple (ti, Ti, ui, πi), for ti, Ti,
ui defined as in Figure 5 and πi being a non-interactive PoWorKthat demonstrates either the
solution of the puzzle puz = H(ti, Ti) with hardness hi = R(t1, . . . , ti−1) or that xi ∈ {x |
∃w : (x,w) ∈ R} where xi = V (B1, . . . , Bi−1, ti, Ti).

1. Collect transactions into a vector Tn+1.
2. If a secret-key sk is available, perform steps 2-3 of Figure 6 and follow the PoK direction

of PoWorK(cf. Figure 1), using the H(·) to compute the challenge of the verifier.
3. Else, perform steps 2-3 of Figure 5 and follow the PoW direction of PoWorK(cf. Figure 1)

using the H(·) to compute the challenge of the verifier.
4. Broadcast Bn+1 = (tn+1, Tn+1, un+1, πn+1).

Fig. 7: Miner operation in a PoWorK-based cryptocurrency parameterized by relation
R and PuzSys = (Sample,Solve,Verify). The functions V (·),Wsk(·) are as in Figure 5
and the function C(·) is as in Figure 6.

Theorem 6. (informally stated) The cryptocurrency C of Figure 7 is the composition
of a knowledge-based cryptocurrency C1 and a puzzle-based cryptocurrency C2 so that
(i) the population of miners of C1, C2 becomes a single set that is indistinguishable to
any adversary that controls a subset of miners of C, (ii) the persistence property of C is
upheld as long as the conditions for persistence of C1, C2 hold in conjunction. (iii) the
liveness property of C is upheld as long as the conditions for liveness of C1, C2 hold in
disjunction.
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4.3 PoWorKs as 3-move Straight-line Concurrent Simulatable Arguments of
Knowledge

In this section, we present a theoretical application of PoWorKs. Namely, we show that
any PoWorK protocol that satisfies a couple of reasonable assumptions, implies straight-
line concurrent (λpoly(log λ))-simulatable arguments of knowledge. Our application is
described at length in our full version [BKZZ15]. Here, we provide the statement of our
main result.

Theorem 7. Let L be a language inNP and let PuzSys be a puzzle system. Let (P,V)
be a 3-move f -sound PoWorK for L and PuzSys with statistical indistinguishability
such that for every hardness factor h ∈ HSλ, it holds that:

(i). Pr[puz← Sample(1λ, h) : f(StepsSolve(1
λ, h, puz)) ≤ λlog λ] = negl(λ).

(ii). The worst-case running time of Solve(1λ, h, ·) is λpoly(log λ) and P is a polyno-
mial time algorithm that makes oracle calls to Solve(1λ, h, ·).

Then, (P,V) is a 3-move straight-line concurrent statistically λpoly(log λ)-simulatable
argument of knowledge.

Remark. In practice, we can instantiate the dense puzzle with a DL function over a
dense elliptic curve [BHKL13] (without the need of an extractor). This means that we
can transform a 3-move proof/argument of knowledge to a concurrent one with min-
imal computational overhead – 1 exponentiation for the prover and 1 exponentiation
for the verifier. (cf. Fig. 1(a).) Note that a similar result in terms of rounds and with
similar assumptions (i.e. DL) can be obtained via the efficient OR composition with
an input-delayed Σ-protocol as recently observed in [CPS+16], however the resulting
complexity overhead would be at least 3 exponentiations for the prover and 2 exponen-
tiations for the verifier when the underlying Chameleon Σ-protocol is instantiated from
Schnorr’s protocol.
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