
Collapse-binding quantum commitments
without random oracles

Dominique Unruh

University of Tartu

Abstract. We construct collapse-binding commitments in the standard
model. Collapse-binding commitments were introduced in (Unruh, Euro-
crypt 2016) to model the computational-binding property of commitments
against quantum adversaries, but only constructions in the random oracle
model were known.

Furthermore, we show that collapse-binding commitments imply selected
other security definitions for quantum commitments, answering an open
question from (Unruh, Eurocrypt 2016).

Keywords: Quantum cryptography, commitments, hash functions.

1 Introduction

Commitment schemes are one of the most fundamental primitives in cryptography.
A commitment scheme is a two-party protocol consisting of two phases, the
commit and the open phase. The goal of the commitment is to allow the sender
to transmit information related to a message m during the commit phase in such
a way that the recipient learns nothing about the message (hiding property).
But at the same time, the sender cannot change his mind later about the
message (binding property). Later, in the open phase, the sender reveals the
message m and proves that this was indeed the message that he had in mind
earlier (by sending some “opening information” u). Unfortunately, it was shown
by [11] that the binding and hiding property of a commitment cannot both
hold with statistical (i.e., information-theoretical) security even when using
quantum communication. Thus, one typically requires one of them to hold only
against computationally-limited adversaries. Since the privacy of data should
usually extend far beyond the end of a protocol run, and since we cannot tell
which technological advances may happen in that time, we may want the hiding
property to hold statistically, and thus are interested in computationally binding
commitments. Unfortunately, computationally binding commitments turn out to
be a subtle issue in the quantum setting. As shown in [1], if we use the natural
analogue to the classical definition of computationally binding commitments
(called “classical-style binding”),1 we get a definition that is basically meaningless

1 This definition, called classical-style style binding in [16], roughly states, that it is com-
putationally hard to find a commitment c, two messages m 6= m′ and corresponding
valid opening informations u, u′.

(a)

A B

A B
A B

c

b/
M

/
U

(c)
A B

c

b/
M

(b)

A B

A measure B
A B

c

b/
M

/
U

(d)
A measure B

c

b/
M

Fig. 1: For collapse-binding commitments, (a) and (b) should be indistinguishable, i.e.,
Pr[b = 1] negligibly close in both cases. For collapsing hash functions, (c) and (d) should
be indistinguishable.

(the adversary can open the commitment to whatever message he wishes). [16]
suggested a new definition, “collapse binding” commitments, that better captures
the idea of computationally binding commitments against quantum adversaries.
This definition was shown to perform well in security proofs that use rewinding.2
(They studied classical non-interactive commitments, i.e., all exchanged messages
are classical, but the adversary is quantum.)

We describe basic idea of “collapse-binding” commitments: When committing
to a message m using a commitment c, it should be impossible for a quantum
adversary to produce a superposition of different messages m that he can open
to. Unfortunately, this requirement is too strong to achieve (at least for an
statistically hiding commitment).3 Instead, we require something slightly weaker:
Any superposition of different messages m that the adversary can open to
should look like it is a superposition of only a single message m. Formally, if the
adversary produces a classical commitment c, and a superposition of openings
m,u in registersM,U , the adversary should not be able to distinguish whetherM
is measured in the computational basis or not measured. That is, for all quantum-
polynomial-time A,B, the circuits (a) and (b) in Figure 1 are indistinguishable
(assuming A only outputs superpositions that contain only valid openings).

[16] showed that collapse-binding commitments avoid various problems of
other definitions of computationally binding commitments in the quantum setting.
In particular, they compose in parallel and are well suited for proofs that involve
rewinding (e.g., when constructing zero-knowledge arguments of knowledge).

2 We do not claim that they will work in every rewinding-based proof, but [16] showed
their usefulness in the construction of arguments of knowledge. The proof of their
construction did involve the quantum rewinding techniques from [17] and [14].

3 The adversary can initialize a register M with the superposition of all messages, run
the commit algorithm in superposition, and measure the resulting commitment c.
Then M will still be in superposition between many different messages m which the
adversary can open c to.

2

[16] further showed that in the quantum random oracle model, collapse-
binding, statistically hiding commitments can be constructed. However, they left
open two big questions:
– Can collapse-binding commitments be constructed in the standard model?

That is, without the use of random oracles?
– One standard minimum requirement for commitments (called “sum-binding”

in [16]) is that for quantum-polynomial-time A, p0 + p1 ≤ 1 + negligible
where pb is the probability that A opens a commitment to b when he learns
b only after the commit phase. Surprisingly, [16] left it open whether the
collapse-binding property implies the sum-binding property.

First contribution: collapse-binding commitments in the standard
model. We show that collapse-binding commitments exist in the standard
model. More precisely, we construct a non-interactive, classical commitment in
the public parameter model (i.e., we assume that some parameters are globally
fixed), for arbitrarily long messages (the length of the public parameters and
the commitment itself do not grow with the message length), statistically hiding,
and collapse-binding. The security assumption is the existence of lossy trapdoor
functions [13] with lossiness rate > 1

2 , or alternatively that SIVP and GapSVP
are hard for quantum algorithms to approximate within Õ(dc) factors for some
constant c > 5.

The basic idea of our construction is the following: In [16], it was shown
that statistically hiding, collapse-binding commitments can be constructed from
“collapsing” hash functions (using a classical construction from [6,9]). A function
H is collapsing if an adversary that outputs h and a superposition M of H-
preimages of h cannot distinguish whether M is measured or not. That is, the
circuits (c) and (d) in Figure 1 should be indistinguishable. So all we need to
construct is a collapsing hash function in the standard model.

To do so, we use a lossy trapdoor function (we do not actually need the
trapdoor part, though). A lossy function Fs : A → B is parametrized by a
public parameter s. There are two kinds of parameters, which are assumed to
be indistinguishable: We call s lossy if |imF | � |A|, that is, if its image is very
sparse. We call s injective if Fs is injective.

If s is injective, then it is easy to see that Fs is collapsing: There can be only
one preimage of Fs on register M , so measuring M will not disturb M . But since
lossy and injective s are indistinguishable, it follows that Fs is also collapsing for
lossy s. Note, however, that Fs is not yet useful on its own, because its range
B is much bigger than A, while we want a compressing hash functions (output
smaller than input).

However, for lossy s, |imFs| � |A|. Let hr : B → C be a universal hash
function, indexed by r, with |imFs| � |C| � |A|. We can show that with
overwhelming probability, hr is injective on imFs, for suitable choice of C.
Hence hr is collapsing (on imFs). The composition of two collapsing functions is
collapsing, thus H(r,s) := hr ◦ Fs is collapsing for lossy s. (Note that imFs is not
an efficiently decidable set. Fortunately, we can construct all our reductions such
that we never need to decide that set.)

3

Thus far, we have found a collapsing H(r,s) : A→ C that is compressing. But
we need something stronger, namely a collapsing hash function {0, 1}∗ → C, i.e.,
applicable to arbitrary long inputs. A well-known construction (in the classical
setting) is the Merkle-Damgård construction, that transforms a compressing
collision-resistant function H into a collision-resistant one with domain {0, 1}∗.
We prove that the Merkle-Damgård construction also preserves the collapsing
property. (This proof is done by a sequence of games that each measure more
and more about the hashed message m, each time with a negligible probability
of being noticed due to the collapsing property of Hk.) Applying this result to
H(r,s), we get a collapsing hash function MD(r,s) : {0, 1}∗ → C. And from this,
we get collapse-binding commitments.

We present our results with concrete security bounds, and our reductions
have only constant factors in the runtime, and the security level only has an
O(message length) factor.

We stress that the security proof for the Merkle-Damgård construction has
an additional benefit: It shows that existing hash function like SHA-2 [12] are
collapsing, assuming that the compression function is collapsing (which in turn
is suggested by the random oracle results in [16]). Since we claim that collapsing
is a desirable and natural analogue to collision-resistance in the post-quantum
setting, this gives evidence for the post-quantum security of SHA-2.

Second contribution: Collapse-binding implies sum-binding. In the clas-
sical setting, it relatively straightforward to show that a computationally binding
bit commitment satisfies the (classical) sum-binding condition. Namely, assume
that the adversary breaks sum-binding, i.e., p0 + p1 ≥ 1 + non-negligible. Then
one runs the adversary, lets him open the commitment as m = 0 (which succeeds
with probability p0), then rewinds the adversary, and lets him open the same
commitment as m = 1 (which succeeds with probability p1). So the probabil-
ity that both runs succeed is at least p0 + p1 − 1 ≥ non-negligible, which is a
contradiction to the computational binding property.

Since collapse-binding commitments work well with rewinding, one would
assume that a similar proof works using the quantum rewinding technique from
[14]. Unfortunately, existing quantum rewinding techniques do not seem to work.

To show that a collapse-binding commitment is sum-binding, another proof
technique is needed. The basic idea is, instead of simulating two executions
of the adversary (opening m = 0 and opening m = 1) after each other, we
perform the two executions in superposition, controlled by a register M , initially
in state |+〉. This entangles M with the execution of the adversary and thus
disturbs M . It turns out that the disturbance of M is greater if we measure
which bit the adversary opens than if we do not. This allows us to distinguish
between measuring and not measuring, breaking the collapse-binding property.

The same proof technique can be used to show that a collapse-binding string
commitment satisfies the generalization of sum-binding presented in [3]. (In
this case we have to use a superposition of a polynomial-number of adversary
executions.)

4

Possibly the technique of “rewinding in superposition” used here might be a
special case of a more general new quantum rewinding technique (other than
[17,14]), we leave this as an open question.

On the necessity of public parameters. Our commitment scheme assumes
the existence of public parameters. This raises the question whether these are nec-
essary. We argue that it would be unlikely to be able to construct non-interactive,
statistically hiding, computationally binding commitments without public pa-
rameters (not even only classically secure ones) from standard assumptions other
than collision-resistant or collapsing hash functions. Namely, such a commitment
can always be broken by a non-uniform adversary. (Because the adversary could
have a commitment and two valid openings hardcoded.) Could there be a such a
commitment secure only against uniform adversaries, based on some assumption
X? That is, a uniform adversary breaking the commitment could be transformed
into an adversary against assumption X. All cryptographic proof techniques that
we are aware of would then also transform a non-uniform adversary breaking
the commitment into a non-uniform adversary breaking X. Since a non-uniform
adversary breaking the commitment always exists, it follows that X must be
an assumption that cannot be secure against non-uniform adversaries. The only
such assumptions that we are aware of are (unkeyed) collision-resistant and
collapsing hash functions.4 Thus it is unlikely that there are non-interactive,
statistically hiding, computationally binding commitments without public pa-
rameters based on standard assumptions different from those two. (We are aware
that the above constitutes no proof, but we consider it a strong argument.) We
know how to construct such commitments from collapsing hash functions [16].
We leave it as an open problem whether such commitments can be constructed
from collision-resistant hash functions.

Of course, it might be possible to have interactive statistically-hiding collapse-
binding commitments. In fact, our construction can be easily transformed into a
two-round scheme by letting the recipient choose the public parameters. This
does not affect the collapsing property (because for that property we assume the
recipient to be trusted), nor the statistical hiding property (because the proof
of hiding did not make any assumptions about the distribution of the public
parameters).

Related work. Security definitions for quantum commitments were studied
in a number of works: What we call the “sum-binding” definition occurred
implicitly and explicitly in different variants in [2,11,7,4]. Of these, [11] showed
the impossibility of statistically satisfying that definition (thus breaking [2]).
[7] gave a construction of a statistically hiding commitment based on quantum
one-way permutations (their commitment sends quantum messages). [4] gives
statistically secure commitments in the multi-prover setting. [3] generalizes the
sum-binding definition for string commitments, arriving at a computational-

4 By unkeyed hash function, we mean a function that depends only on the security
parameter. Such a function might be collision-resistant against uniform adversaries,
but not against non-uniform ones.

5

binding definition we call CDMS-binding. (Both sum-binding and CDMS-binding
are implied by collapse-binding as we show in this paper.) [5] gives another
definition of computational-binding (called Q-binding in [16]; see there for a
discussion of the differences to collapse-binding commitments). They also show
how to construct Q-binding commitments from sigma-protocols. (Both their
assumptions and their security definition seem incomparable to ours; finding out
how their definition relates to ours is an interesting open problem.) [18] gives
a statistical binding definition of commitments sending quantum messages and
shows that statistically binding, computationally hiding commitments (sending
quantum messages) can be constructed from pseudorandom permutations (and
thus from quantum one-way functions, if the results from [10] hold in the quantum
setting, as is claimed, e.g., in [19]). [16] gave the collapse-binding definition that we
achieve in this paper; they showed how to construct statistically hiding, collapse-
binding commitments in the random oracle model. [1] showed that classical-style
binding does not exclude that the adversary can open the commitment to any
value he chooses. [16] generalized this by showing that this even holds for certain
natural constructions based on collision-resistant hash functions.

Organization. In Section 2, we give some mathematical preliminaries and
cryptographic definitions. In Section 3, we recall the notions of collapse-binding
commitments and collapsing hash functions, with suitable extensions to model
public parameters and to allow for more refined concrete security statements. We
also state some known or elementary facts about collapse-binding commitments
and collapsing hash functions there. In Section 4 we show that the Merkle-
Damgård construction allows us to get collapsing hash functions with unbounded
input length from collapsing compression functions. In Section 5 we show how
to construct collapsing hash functions from lossy functions (or from lattice
assumptions). Combined with existing results this gives us statistically hiding,
collapse-binding commitments for unbounded messages, interactive and non-
interactive. In Section 6 we show that collapse-binding implies the existing
definitions of sum-binding and CDMS-binding. In the full version [15] we give
proofs for getting concrete security bounds. Those proofs use the same techniques
as the proofs in this paper, but are somewhat less readable due to additional
calculations and indices.

2 Preliminaries

Given a function f : X → Y , let im f = f(X) denote the image of f .
Given a distribution D on a countable set X, let suppD denote the support

of D, i.e., the set of all values that have non-zero probability. The statistical
distance between two distributions or random variables X,Y with countable
range is defined as 1

2

∑
a

∣∣Pr[X = a]− Pr[Y = a]
∣∣.

Let λ denote the empty word.
We assume that all algorithms and parameters depend on an integer η > 0,

the security parameter (unless a parameter is explicitly called “constant”). We
will keep this dependence implicit (i.e., we write A(x) instead of A(η, x) for an

6

algorithm A, and ` instead of `(η) for an integer parameter `). When calling an
adversary (quantum-)polynomial-time, we mean that the runtime is polynomial
in η.

We do not specify whether our adversaries are uniform or non-uniform. (I.e.,
whether the adversary’s code may depend in an noncomputable way on the
security parameter.) All our results hold both in the uniform and in the non-
uniform case.

Definition 1 (Universal hash function). A universal hash function is a
function family hr : X → Y (with r ∈ R) such that for any x, x′ ∈ X with x 6= x′,
we have Pr[hr(x) = hr(x

′) : r
$← R] = 1/|Y |.

We define lossy functions, which are like lossy trapdoor functions [13], except
that we do not require the existence of a trapdoor.

Definition 2 (Lossy functions). A collection of (`, k)-lossy functions consists
of a PPT algorithm SF and polynomial-time computable deterministic function
Fs on {0, 1}` and a message space Mk such that:
– Existence of injective keys: There is a distribution Dinj such that for any
s ∈ suppDinj we have that Fs is injective. (We call such a key s injective.)

– Existence of lossy keys: There is a distribution Dlossy such that for any
s ∈ suppDlossy we have that |imFs| ≤ 2`−k. (We call such a key s lossy.)

– Hard to distinguish injective from lossy: For any quantum-polynomial-time
adversary A, the advantage

∣∣Pr[A(s) = 1 : s ← Dinj] − Pr[A(s) = 1 : s ←
Dlossy]

∣∣ is negligible.
– Hard to distinguish lossy from S: For any quantum-polynomial-time adversary
A, the advantage

∣∣Pr[A(s) = 1 : s ← Dlossy] − Pr[A(s) = 1 : s ← SF]
∣∣ is

negligible.
The parameter k is called the lossiness of Fs.

This is a weakening of the definition of lossy trapdoor functions from [13].
Our definition does not require the existence of trapdoors, and also does not
require that lossy or injective keys can be efficiently sampleable. (We only require
that keys that are indistinguishable from both lossy and injective keys can be
sampled efficiently using SF .)

If k/` ≥ K for some constant K, and ` ∈ ω(log η), we say that the lossy
function has lossiness rate K.

Any “almost-always lossy trapdoor function” (Sldtf , Fldtf , F
−1
ldtf) in the sense

of [13] is a lossy function in the sense of Definition 2.5
[13] shows that for any constant K < 1, there is an almost-always lossy

trapdoor function with lossiness rate K based on the LWE assumption for
5 To see that, let Dinj be the distribution of the first output (i.e., discarding the
trapdoor) of the injective key sampler Sldtf(η, 1) conditioned on outputting an
injective key. Let Dlossy be the distribution of the first output of the lossy key sampler
Sldtf(η, 0) conditioned on outputting a lossy key. Let SF return the first output of
Sldtf(η, 0) (or Sldtf(η, 1)). Let Fk(x) := Fldtf(k, x). For those choices, it is easy to see
that (SF , Fk) satisfies Definition 2.

7

suitable parameters. [13] further shows that almost-always (`, k)-lossy trapdoor
functions with lossiness rate K exist if SIVP and GapSVP are hard for quantum
algorithms to approximate within Õ(dc) factors, where c = 2+ 3

2(1−K) + δ for any
desired δ > 0. The same thus holds for lossy functions in our sense. Furthermore,
the construction from [13] has keys that are indistinguishable from uniformly
random, hence we can choose SF to simply return s $← {0, 1}`s for suitable `s.6

3 Collapse-binding commitments and collapsing hash
functions

We reproduce the relevant results from [16] here. Note we have extended the
definitions in two ways: We include a public parameter k ← P. And we give
additional equivalent definitions for a more refined treatment of the concrete
security of commitments.

Commitments. A commitment scheme consists of three algorithms
(P, com, verify). k ← P chooses the public parameter. (c, u) ← com(k,m) pro-
duces a commitment c for a message m, and also returns opening information u to
be revealed later. ok ← verify(k, c,m, u) checks whether the opening information
u is correct for a given commitment c and message m (if so, ok = 1, else ok = 0).

Definition 3 (Collapse-binding). For algorithms (A,B), consider the follow-
ing games:

Game1 : k ← P, (S,M,U, c)← A(k), m←M(M), b← B(S,M,U)

Game2 : k ← P, (S,M,U, c)← A(k), b← B(S,M,U)

Here S,M,U are quantum registers. M(M) is a measurement of M in the
computational basis.

We call an adversary (A,B) c.b.-valid for verify iff for all k,
Pr[verify(k, c,m, u) = 1] = 1 when we run (S,M,U, c) ← A(k) and measure
M in the computational basis as m, and U in the computational basis as u.
6 This is not explicitly mentioned in [13], but can be seen as follows: [13] constructs a
matrix encryption scheme whose ciphertexts are pairs of matrices (A,C′) over Zq for
a suitable prime q. We can see those ciphertexts as a tuple s′ ∈ Zn

q for some n. The
proof of Lemma 6.2 in [13, full version] shows that the matrix encryption scheme
produces ciphertexts that are indistinguishable from uniformly random s′

$← Zn
q .

The lattice-based lossy trapdoor function from [13] uses a ciphertext of that lossy
encryption scheme as its key. Thus a key is indistinguishable from s′

$← Zn
q . Hence

we can choose SF to simply return a uniformly random s′
$← Zn

q .
To get an SF that returns s $← {0, 1}`s instead, we let SF choose s ∈ {0, . . . , 2`−1}n

and set s′i := si mod q. For sufficiently large `, this changes the distribution of s′

only by a negligible amount. Then s can be encoded as an `s-bitstring with `s := n`.
(Since this way of sampling s′i is “oblivious”, i.e., given s′i we can efficiently find
randomness si that leads to that s′i, the security of the lossy function is not affected
by outputting si as the key instead of s′i.)

8

A commitment scheme is collapse-binding iff for any quantum-polynomial-
time adversary (A,B) that is c.b.-valid for verify,

∣∣Pr[b = 1 : Game1]− Pr[b = 1 :

Game2]
∣∣ is negligible.

The only difference to the definition from [16] is that we have introduced
a public parameter k chosen by P. The proofs in [16] are not affected by this
change.

For stating concrete security results (i.e., with more specific claims about the
runtimes and advantages of adversaries than “polynomial-time” and “negligible”),
we could simply call

∣∣Pr[b = 1 : Game1] − Pr[b = 1 : Game2]
∣∣ the advantage of

the adversary (A,B). However, we find that we get stronger results if we directly
specify the advantage of an adversary that attacks t commitments simultaneously.7
This leads to the following definition of advantage. (A reader only interested in
asymptotic results may ignore this definition. The main body of this paper will
provide statements and proofs with respect to the simpler asymptotic definitions.
Concrete security proofs are given in the full version [15].)

Definition 4 (Collapse-binding – concrete security). For algorithms
(A,B), consider the following games:

Game1 : k ← P, (S,M1, . . . ,Mt, U1, . . . , Ut, c1, . . . , ct)← A(k),

m1 ←M(M1), . . . , mt ←M(Mt),

b← B(S,M1, . . . ,Mt, U1, . . . , Ut)

Game2 : k ← P, (S,M1, . . . ,Mt, U1, . . . , Ut, c1, . . . , ct)← A(k),

b← B(S,M1, . . . ,Mt, U1, . . . , Ut)

Here S,M1, . . . ,Mt, U1, . . . , Ut are quantum registers.M(Mi) is a measurement
of Mi in the computational basis.

We call an adversary (A,B) t-c.b.-valid for verify iff for
all k, Pr[∀i. verify(k, ci,mi, ui) = 1] = 1 when we run
(S,M1, . . . ,Mt, U1, . . . , Ut, c1, . . . , ct) ← A(k) and measure all Mi in the
computational basis as mi, and all Ui in the computational basis as ui.

For any adversary (A,B), we call
∣∣Pr[b = 1 : Game1]−Pr[b = 1 : Game2]

∣∣ the
collapse-binding-advantage of (A,B) against (P, com, verify).

Lemma 5. A commitment scheme (P, com, verify) is collapse-binding iff for
any polynomially-bounded t, and any quantum-polynomial-time adversary (A,B)
that is t-c.b.-valid for verify, the collapse-binding-advantage of (A,B) against
(P, com, verify) is negligible.
7 We could simply analyze all schemes for adversaries that attack a single commitment
at a time, and then invoke the parallel composition theorem from [16] to get the
advantage when attacking t commitments. That theorem will then introduce a factor t
in the advantage. ([16] states the theorem without concrete security bounds, but they
are easily extracted from the proof.) In contrast, a direct analysis for t commitments
may give better bounds, since the advantages we get in this paper do not depend on
t.

9

This follows from the parallel composition theorem from [16].

In [16], two different definitions of collapse-binding were given. The second
definition does not require an adversary to be valid (i.e., to output only valid
openings) but instead measures whether the adversary’s openings are valid. We
restate the equivalence here in the public parameter setting, the proof is essentially
unchanged.

Lemma 6 (Collapse-binding, alternative characterization). For a com-
mitment scheme (P, com, verify), and for algorithms (A,B), consider the following
games:

Game1 : k ← P, (S,M,U, c)← A(k), ok ← Vc(M,U), x←Mok (M), b← B(S,M,U)

Game2 : k ← P, (S,M,U, c)← A(k), ok ← Vc(M,U), b← B(S,M,U)

Here Vc is a measurement whether M,U contains a valid opening. Formally
Vc is defined through the projector

∑
m,u

verify(k,c,m,u)=1
|m〉〈m| ⊗ |u〉〈u|. Mok is a

measurement of M in the computational basis if ok = 1, and does nothing if
ok = 0 (i.e., it sets m := ⊥ and does not touch the register M).

(P, com, verify) is collapse-binding iff for all polynomial-time adversaries
(A,B),

∣∣Pr[b = 1 : Game1]− Pr[b = 1 : Game2]
∣∣ is negligible.

Hash functions. A hash function is a pair (P, Hk) of a parameter sampler P
and a function Hk : X → Y for some range X and domain Y . Hk is parametric
in the public parameter k ← P. (Typically, Y consists of fixed length bitstrings,
and X consists of fixed length bitstrings or {0, 1}∗.)

Definition 7 (Collapsing). For algorithms A, B, consider the following games:

Game1 : k ← P, (S,M, h)← A(k), m←M(M), b← B(S,M)

Game2 : k ← P, (S,M, h)← A(k), b← B(S,M)

Here S,M are quantum registers.M(M) is a measurement of M in the compu-
tational basis.

For a family of sets Mk, we call an adversary (A,B) valid on Mk for Hk iff
for all k, Pr[Hk(m) = c ∧ m ∈ Mk] = 1 when we run (S,M, h) ← A(k) and
measure M in the computational basis as m. If we omit “on Mk”, we assume
Mk to be the domain of Hk.

A function H is collapsing (on Mk) iff for any quantum-polynomial-time
adversary (A,B) that is valid for Hk (on Mk),

∣∣Pr[b = 1 : Game1]− Pr[b = 1 :

Game2]
∣∣ is negligible.

In contrast to [16] we have added the public parameter k. Furthermore, we
have extended the definition to allow to specify the set Mk of messages the
adversary is allowed to use. This extra expressiveness will be needed for stating
some intermediate results.

Analogously to case of commitments, we give a definition of advantage for a
t-session adversary to get more precise results.

10

Definition 8 (Collapsing – concrete security). For algorithms A, B, and
an integer t, consider the following games:

Game1 : k ← P, (S,M1, . . . ,Mt, h1, . . . , ht)← A(k),

m1 ←M(M1), . . . , mt ←M(Mt),

b← B(S,M1, . . . ,Mt)

Game2 : k ← P, (S,M1, . . . ,Mt, h1, . . . , ht)← A(k),

b← B(S,M1, . . . ,Mt)

Here S,M1, . . . ,Mt are quantum registers. M(Mi) is a measurement of Mi in
the computational basis.

For a family of sets Mk, we call an adversary (A,B) t-valid on Mk for
Hk iff for all k, Pr[∀i. Hk(mi) = ci ∧ mi ∈ Mk] = 1 when we run
(S,M1, . . . ,Mt, h1, . . . , ht) ← A(k) and measure all Mi in the computational
basis as mi. If we omit “on Mk”, we assume Mk to be the domain of Hk.

We call adv :=
∣∣Pr[b = 1 : Game1] − Pr[b = 1 : Game2]

∣∣ the collapsing-
advantage of (A,B) against (P, Hk).

Lemma 9. A hash function (P, Hk) is collapsing (on Mk) iff for any
polynomially-bounded t, and any quantum-polynomial-time adversary (A,B) that
is t-valid for Hk (on Mk), the collapsing-advantage of (A,B) against (P, Hk) is
negligible.

This follows from the parallel composition theorem for hash functions from
[16].

Constructions of commitments. In [16] it was shown that the statistically
hiding commitment from Halevi and Micali [9] (which is almost identical to
the independently and earlier discovered commitment by Damgård, Pedersen,
and Pfitzmann [6]) is collapse-binding, assuming a collapsing hash function. We
restate their results with respect to public parameters, the proofs are essentially
unchanged.

Definition 10 (Unbounded Halevi-Micali commitment [9]). Let (P, Hk)
with Hk : {0, 1}∗ → {0, 1}` be a hash function. Let L := 6`+4. Let hr : {0, 1}L →
{0, 1}` with r ∈ {0, 1}`r be an universal hash function.

We define the unbounded Halevi-Micali commitment (P, comHMu , verifyHMu)
as:
– P is the same parameter sampler as in (P, Hk).
– comHMu(k,m): Pick r ∈ {0, 1}`r and u ∈ {0, 1}L uniformly at random,
conditioned on hr(u) = Hk(m).8 Compute h := Hk(u). Let c := (h, r).
Return commitment c and opening information u.

8 In general, this can be computationally hard. However, should hr be a universal hash
function where this is hard, one can replace hr by h′(r,t) defined as h′(r,t)(x) := t⊕hr(x).
This function is still a universal hash function, and sampling r, t, u is easy.

11

– verifyHMu(k, c,m, u) with c = (h, r): Check whether hr(u) = Hk(m) and
h = Hk(u). If so, return 1.

We define the statistical hiding property in the public parameter model. We
use an adaptive definition where the committed message may depend on the
public parameter.

Definition 11 (Statistically hiding). Fix a commitment (P, com, verify) and
an adversary (A,B). Let

pb := Pr[b′ = 1 : k ← P, (S,m0,m1)← A(k), (c, u)← com(k,mb), b
′ ← B(S, c)].

We call |p0 − p1| the hiding-advantage of (A,B). We call (P, com, verify) statis-
tically hiding iff for any (possibly unbounded) (A,B), the hiding-advantage is
negligible.

Theorem 12 (Security of the unbounded Halevi-Micali commitment).
(P, comHMu , verifyHMu) is statistically hiding and collapse-binding.

Miscellaneous facts. These simple facts will be useful throughout the paper.

Lemma 13. Let Mk be a family of sets. Assume that
Pr[Hk is not injective on Mk : k

$← P] is negligible. Then (P, Hk) is col-
lapsing on Mk.

Lemma 14. Fix hash functions (P, fk) and (P, gk) with the same P and with
polynomial-time computable fk. If (P, fk) is collapsing and (P, gk) is collapsing
on im fk, then (P, gk ◦ fk) is collapsing.

Lemma 15. If P1 and P2 are computationally indistinguishable, and (P1, Hk)
is collapsing, then (P2, Hk) is collapsing.

4 Security of Merkle-Damgård hashes
For this section, fix a hash function (P, Hk) with Hk : {0, 1}`in → {0, 1}`out
and `in > `out . Let `block := `in − `out . Fix some bitstring iv ∈ {0, 1}`out (may
depend on the security parameter). Fix a message space M with |M| ≥ 2 (e.g.,
M = {0, 1}∗). Fix a function pad : M→ ({0, 1}`block)∗.
Definition 16 (Iterated hash). We define the iterated hash IHk :
({0, 1}`block)∗ → {0, 1}`out as IHk(λ) := iv for the empty word λ and IHk(m‖m′) :=
Hk(IHk(m)‖m′) for m ∈ ({0, 1}`block)∗ and m′ ∈ {0, 1}`block .
Definition 17 (Merkle-Damgård). We call pad a Merkle-Damgård padding
iff pad is injective and for any x, y ∈M with x 6= y, we have that pad(x) is not
a suffix of pad(y) (in other words, pad(M) is a suffix code).9

We define the Merkle-Damgård construction MDk : M → {0, 1}`out by
MDk := IHk ◦ pad .
9 Commonly, stronger conditions are placed on pad , see, e.g., [8, Def. 8.7]. However,
“suffix-code” and “injective” turns out to be sufficient. For example, the padding using
in SHA-256 [12] is a Merkle-Damgård padding for M = {0, 1}≤264−1 according to
our definition.

12

Note that IHk and MDk depend on the choice of Hk, iv , and pad , but we
leave this dependence implicit for brevity.

Lemma 18 (Security of iterated hash). Let M̃ ⊆ ({0, 1}`block)∗ be a suffix
code with |M̃| ≥ 2. If (P, Hk) is a polynomial-time computable collapsing hash
function, then (P, IHk) is collapsing on M̃.

We sketch the idea of the proof: What we have to show is that, if the adversary
classically outputs IHk(m), we can measure m on register M without the adver-
sary noticing. We show this by successively measuring more and more information
about the message m on M , each time noting that the additional measurement
is not noticed by the adversary. First, measuring IHk(m) does not disturb M
because IHk(m) is already known. Note that IHk(m) = Hk(IHk(m

′)‖m) for
m =: m′‖m. Thus, we have measured the image of IHk(m′)‖m under Hk. Since
Hk is collapsing, we know that, once we have measured the hash of a value, we
can also measure that value itself without being noticed. Thus we can measure
IHk(m

′)‖m (this value will be called step0(m) in the full proof). Now we use
the same argument again: IHk(m′) = Hk(IHk(m

′′)‖m′) for m′ =: m′′‖m′. Since
we know classically IHk(m

′), we can measure IHk(m
′′)‖m′ (this value will be

called step1(m)). Now we already have measured the two last blocks m′‖m of m
without being noticed. We can continue this way, until we have all of m. Since in
each step, the adversary did not notice the measurement, he will not notice if we
measure all of m.

There is one hidden problem in the above argument: We claimed that given
IHk(m

′), we have that IHk(m′) = Hk(IHk(m
′′)‖m′). This is only correct if m′ is

not empty! So, the above measurement procedure will implicitly measure whether
m′ is empty (and similarly for the values m′′ etc. that are measured afterwards).
Such a measurement might disturb the state. Here the assumption comes in that
M̃ is a suffix code. Namely, since we know m such that m = m′‖m, we can tell
whether m ∈ M̃ (then m′ must be empty) or m /∈ M̃ (then m′ cannot be empty).
Thus we already know whether m′ is empty, and measuring this information will
not disturb the state. Similarly, we deduce from m′‖m whether m′′ is empty, etc.

We now give the formal proof:

Proof of Lemma 18. Assume a polynomial-time adversary (A,B) that is valid for
IHk on M. Let Game1 and Game2 be the games from Definition 7 for adversary
(A,B). Let

ε :=
∣∣Pr[b = 1 : Game1]− Pr[b = 1 : Game2]

∣∣. (1)

We will need to show that ε is negligible.
We have λ /∈ M̃. (λ denotes the empty word.) Otherwise, we would have

M̃ = {λ} since M̃ is a suffix code, which contradicts |M̃| ≥ 2.
For a multi-block message m ∈ ({0, 1}`block)∗, let |m| denote the number of

`block -bit blocks in m. (I.e., |m| is the bitlength of m divided by `block .) Let mi

denote the i-th block of m, and let m−i denote the i-th block from the end (i.e.,
m−i = m|m|−i+1). Let m≥−i denote all the blocks in m starting from m−i (i.e.,
m≥−i consists of the last i blocks of m). Let m<−i denote the blocks before m−i.
(I.e., m = m<−i ‖m≥−i for i ≤ |m|.)

13

Let B be a polynomial upper bound on the number of blocks in the message
m output by A on register M .

For a function f , letMf (M) denote a measurement that, given a register M
that contains values |m〉 in superposition, measures f(m), but without measuring
more information than that. Formally,Mf is a projective measurement consisting
of projectors Py (y ∈ im f) with Py =

∑
m:f(m)=y|m〉〈m|.

For m ∈ M̃, we define

partiali(m) :=

{
(⊥,m) (if |m| ≤ i)
(IHk(m<−i),m≥−i) (if |m| > i)

(The function partiali also depends on k, but we leave that dependence implicit.)
Intuitively, partiali(m) represents a partial evaluation of IHk(m), with the last i
blocks not yet processed.

Note that partiali(m) always contains enough information to compute IHk(m).
And the larger i is, the more about m is revealed. In fact, learning partial0(m) is
equivalent to learning IHk(m), and learning partialB(m) is equivalent to learning
m as the following easy to verify facts show:

Fact 1 partial0(m) = (IHk(m), λ) for all m ∈ M̃.

Fact 2 partialB(m) = (⊥,m) for all m ∈ M̃ with |m| ≤ B.

We will need one additional auxiliary function stepi, defined by stepi(m) :=
IHk(m<−(i+1))‖m−(i+1) for |m| ≥ i + 1. (And stepi(m) := ⊥ if |m| ≤ i.)
Intuitively, stepi(m) is the input to last call of Hk when computing partiali(m).
The following facts are again easy to verify using the definition of partiali, stepi,
and IHk:

Fact 3 If partiali(m) = (h, s) and h 6= ⊥, then Hk(stepi(m)) = h.

Fact 4 From (partiali(m), stepi(m)) one can compute partiali+1(m) and
vice versa. Formally: there are functions f , g such that for all m ∈
M̃, f(partiali(m), stepi(m)) = partiali+1(m) and g(partiali+1(m)) =
(partiali(m), stepi(m)).

In a sense, partiali(m) interpolates between the knowledge of only IHk(m)
(case i = 0), and full knowledge of m (case i = B). (Cf. Facts 1, 2.) We make
this more formal by defining the following hybrid game for i = 0, . . . , B:

Gamehybi : k ← P, (S,M, h)← A(k),

(h′, s)←Mpartiali(M),

b← B(S,M).

(HereMpartiali isMf as defined above with f := partiali.)
Consider Gamehyb0 . By assumption, (A,B) is valid for IHk on M̃, so we have

that the register M contains superpositions of states |m〉 with IHk(m) = hj

14

and m ∈ M̃. By Fact 1, this implies that the measurement Mpartial0(M) will
always yield the outcome (h′, s) = (h, λ). Hence the measurementMpartial0(M)

has a deterministic outcome. Thus, the probability of b = 1 in Gamehyb0 does not
change if we omit the measurements y ←Mpartiali(M). Thus

Pr[b = 1 : Gamehyb0] = Pr[b = 1 : Game2]. (2)

Consider GamehybB . By assumption, A outputs only states on M which are
superpositions of |m〉 with m ∈ M̃ and |m| ≤ B. Thus, by Fact 2, (h′, s) ←
MpartialB (M) is a complete measurement in the computational basis. Hence

Pr[b = 1 : GamehybB] = Pr[b = 1 : Game1]. (3)

From (1,2,3), we get∣∣Pr[b = 1 : Gamehyb0]− Pr[b = 1 : GamehybB]
∣∣ = ε. (4)

For i = 0, . . . , B we now define an adversary (A∗i , B
∗) against Hk.

Algorithm A∗i (k) runs:
– (S∗,M∗, h∗)← A(k).
– (h′, s)←Mpartiali(M

∗).
– Initialize M with |0`in 〉.
– If h′ 6= ⊥:
• Apply Ustepi to M

∗,M .
• h := h′.

– If h′ = ⊥:
• Let h := Hk(0

`in).
– Let S := S∗,M∗, h′, i. (That is, all those registers and classical values are

combined into a single register S.)
– Return (S,M, h).

Here Ustepi refers to the unitary transformation |x〉|y〉 7→ |x〉|y ⊕ stepi(x)〉. See
the left dashed box in Figure 2 for a circuit-representation of A∗i .

Algorithm B∗(S,M) runs:
– Let S∗,M∗, h′, i := S.
– If h′ 6= ⊥: apply Ustepi to M

∗,M .
– Run b← B(S∗,M∗).
– Return b.

See the left dashed box in Figure 2 for a circuit-representation of B∗.

Claim. (A∗i , B
∗) is valid.

We show this claim: After the measurement (h′, s)←Mpartiali(M
∗), we have

that M∗ contains a superposition of |m〉 with partiali(m) = (h′, s). If h′ = ⊥,
then A∗i initializes M with |0`in 〉 and sets h := Hk(0

`in). Thus in this case, M
trivially contains a superposition of |m〉 with Hk(m) = h. If h′ 6= ⊥, then by
Fact 3, M∗ contains a superposition of |m〉 with Hk(stepi(m)) = h′ = h. Then

15

(h′, i) (h′, i)

P A B

A Mpartiali Ustepi Ustepi B

Ustepi M Ustepi

h′, or Hk(0) if h′ = ⊥

A B

Ustepi Ustepi

h∗

b
M∗ M∗

(h′, s)

S∗ S∗

M∗ M∗

M|0`in 〉

S

h

(if h′ 6= ⊥) (if h′ 6= ⊥)(Gamei1

only)

m

k

A∗i B∗

Fig. 2: The adversary (A∗i , B
∗) in games Gamei1 and Gamei2. Depicted is Gamei1. Gamei2

is derived by omitting the measurementM in the middle.

A∗ initializes M with |0`in 〉 and applies Ustepi to M
∗,M . Thus after that, M is

in a superposition of |m〉 with Hk(m) = hj . Concluding, in both cases M is in
a superposition of |m〉 with Hk(m) = h, thus (A∗i , B

∗) is valid and the claim
follows.

Let Gamei1 denote Game1 from Definition 7, but with adversary (A∗i , B
∗) and

hash function (P, Hk). Analogously Gamei2. Figure 2 depicts both games.

Claim. Pr[b = 1 : Gamei2] = Pr[b = 1 : Gamehybi].

We show this claim: In Gamei2, no measurement occurs between the invocation
of Ustepi by A

∗
i and the invocation of Ustepi by B

∗. (Cf. Figure 2.) Since Ustepi is
an involution, those two invocations cancel out. Thus only the invocations of P,
A,Mpartiali , and B remain. This is exactly Gamehybi . This shows the claim.

Claim. Pr[b = 1 : Gamei1] = Pr[b = 1 : Gamehybi+1].

We show the claim: Note that in Gamei1, after the measurementMpartiali , on
the registers M∗,M , we have the following sequence of operations if h′ 6= ⊥:

M is initialized with |0`in 〉. Ustepi is applied to M∗,M . M is measured in the
computational basis (outcome m). Ustepi is applied to M∗,M . M is discarded.

This is equivalent to just executing m←Mstepi(M
∗).

Furthermore, if h = ⊥, then the sequence of operations is simply: Initialize
M with |0`in 〉. Measure M . Discard M . This is equivalent to doing nothing. And
doing nothing is equivalent to m←Mstepi(M

∗) in case h′ = ⊥. (Because in that
case, M∗ is in a superposition of |m〉 with |m| ≤ i, and thus stepi(m) = ⊥, and
hence the outcome ofMstepi is deterministic.)

Thus Gamei1 is equivalent to the following Gamei1∗ (in the sense that Pr[b = 1]
is the same in both games):

Gamei1∗ : k ← P, (S∗,M∗, h∗)← A(k),

(h′, s)←Mpartiali(M
∗), m←Mstepi(M

∗),

b← B(S∗,M∗).

16

By Fact 4, measurementsMpartiali(M
∗) andMstepi(M

∗) have the same effect
on M∗ asMpartiali+1

(M∗). (The measurement outcome may be different, but we
do not use the measurement outcome in our games.) Thus Gamei1∗ is equivalent
to Gamei1∗∗ (in the sense that Pr[b = 1] is the same in both games):

Gamei1∗∗ : k ← P, (S∗,M∗, h∗)← A(k),

(h′, s)←Mpartiali+1
(M∗),

b← B(S∗,M∗).

But Gamei1∗∗ is the same as Gamehybi+1, except that S,M, h are renamed to
S∗,M∗, h∗. Hence Pr[b = 1] is the same in Gamei1 and Gamehybi+1, the claim
follows.

Let A∗ pick i $← {0, . . . , B − 1} and then run A∗i . From Figure 21, it follows
that (A∗, B∗) is valid, too. Let Game∗1 denote Game1 from Definition 7, but with
adversary (A∗, B∗) and hash function (P, Hk). Analogously Game∗2.

Since (P, Hk) is collapsing by assumption, and (A∗, B∗) is valid and
polynomial-time, we have that ε∗ :=

∣∣Pr[b = 1 : Game∗1]− Pr[b = 1 : Game∗2]
∣∣ is

negligible.
Then we have:

ε∗ =
∣∣Pr[b = 1 : Game∗1]− Pr[b = 1 : Game∗2]

∣∣
=

1

B

∣∣∣B−1∑
i=0

Pr[b = 1 : Gamei1]−
B−1∑
i=0

Pr[b = 1 : Gamei2]
∣∣∣

(∗)
=

1

B

∣∣∣B−1∑
i=0

Pr[b = 1 : Gamehybi+1]−
B−1∑
i=0

Pr[b = 1 : Gamehybi]
∣∣∣

=
1

B

∣∣∣Pr[b = 1 : GamehybB]− Pr[b = 1 : Gamehyb0]
∣∣∣ (4)
=

ε

B
.

Here (∗) follows from Claims 21 and 21.
Since ε∗ is negligible, ε = Bε∗ is negligible. �

Theorem 19 (Security of Merkle-Damgård). Assume that pad is a
polynomial-time computable Merkle-Damgård padding. If (P, Hk) is a polynomial-
time computable collapsing hash function, (P,MDk) is collapsing.

A concrete security statement is given in Theorem 20.

Proof. Since pad is a Merkle-Damgård padding, we have that pad is injective
and im pad is a suffix code. Since the domain of pad is M, and |M| ≥ 2 by
assumption, |im pad | ≥ 2. Thus by Lemma 18, (P, IHk) is collapsing on im pad .

Since pad is injective, (P, pad) is collapsing by Lemma 13.
Since MDk = IHk ◦ pad , by Lemma 14, (P,MDk) is collapsing. �

17

Concluding, we also state Theorem 19 in its concrete security variant. Let
τH denote an upper bound on the time needed for evaluating Hk. Let τpad(`)
denote an upper bound on the time for computing pad(m) for |m| ≤ `. Let
`pad(`) denote an upper bound on |pad(m)| for |m| ≤ `. (|·| refers to the length
in bits.)

Theorem 20 (Concrete security of Merkle-Damgård). Assume that pad
is a Merkle-Damgård padding.

Let (A,B) be a τ -time adversary, t-valid for MDk on M, with collapsing-
advantage ε against (P,MDk).

Then there is a (τ + O(tτpad(`A) + t`pad(`A)τH/`block))-time adversary
(A∗, B∗), t-valid for Hk, with collapsing-advantage ≥ ε`block/`pad(`A) against
(P, Hk).

5 Collapsing hashes in the standard model
In the following, let (SF , Fs) be am (`in , k)-lossy function with Fs : {0, 1}`in →
{0, 1}`mid . Let hr : {0, 1}`mid → {0, 1}`out be a universal hash function (with key
r ∈ {0, 1}`seed). Let Dinj and Dlossy be as in Definition 2.

We will often write F(r,s) and h(r,s) for Fs and hr to unify notation (one of
the parameters will be silently ignored in this case).

Construction 1 (Collapsing compression function) We define the param-
eter sampler Pinj to return (r, s) with r $← {0, 1}`seed , s ← Dinj . We define the
parameter sampler Plossy to return (r, s) with r $← {0, 1}`seed , s ← Dlossy . We
define the parameter sampler PH to return (r, s) with r $← {0, 1}`seed , s← SF .

We define the hash function H(r,s) : {0, 1}`in → {0, 1}`out by H(r,s) := h(r,s) ◦
F(r,s).

Note that we are mainly interested in the case where `out < `in . Otherwise,
H(r,s) could simply be chosen to be an injective function which is always collapsing
(Lemma 13).

Furthermore, note that Pinj and Plossy are not necessarily polynomial-time.
The final construction will use PH , but we need Pinj and Plossy to state inter-
mediate results.

Lemma 21. If (SF , Fs) is a lossy function, then (Plossy , F(r,s)) is collapsing.

Proof. For (r, s) ← Pinj , F(r,s) is always injective. Hence by Lemma 13,
(Pinj , F(r,s)) is collapsing.

Since (SF , Fs) is a lossy function, we have that Dinj and Dlossy are computa-
tionally indistinguishable. Hence Pinj and Plossy are computationally indistin-
guishable.

Thus by Lemma 15, (Plossy , F(r,s)) is collapsing. �

Lemma 22. If (SF , Fs) is a lossy function with lossiness rate K, and if
`out/`in ≥ c > 2 − 2K for some constant c, (Plossy , h(r,s)) is collapsing on
imF(r,s).

18

Proof. We first compute the probability that h(r,s) is not injective on imF(r,s).

Pr[h(r,s) is not injective on imF(r,s) : (r, s)← Plossy]
(∗)
=
∑
s

Pr[Dlossy = s] Pr[h(r,s) is not injective on imF(r,s) : r
$← {0, 1}`seed]

≤
∑
s

Pr[Dlossy = s]
∑

x,y∈imFs
x 6=y

Pr[h(r,s)(x) = h(r,s)(y) : r
$← {0, 1}`seed]

(∗∗)

≤
∑
s

Pr[Dlossy = s]
∑

x,y∈imFs
x 6=y

1

2`out

(∗∗∗)

≤
∑
s

Pr[Dlossy = s]
(2`in−k)2

2`out

= 22`in−2k−`out =: ε. (5)

Here (∗) uses the fact that (r, s)← Plossy is the same as r $← {0, 1}`seed , s← Dlossy .
And (∗∗) is by definition of universal hash functions. And (∗∗∗) follows from the
fact that for any s in the support of Dlossy , imFs = imF(r,s) has size at most
2`in−k (recall that k is the lossiness of Fs).

Since (SF , Fs) has lossiness rate K, we have k ≥ K`in by definition, and `in
is superlogarithmic. Remember that `out/`in ≥ c. Then

ε = 22`in−2k−`out ≤ 22`in−2K`in−c`in = 2(2−2K)`in−c`in = 2−d`in

for d := c− (2− 2K).

Since by assumption, c and K are constants and c > 2 − 2K, we have that
d > 0 is a constant. Since `in is superlogarithmic, this implies that ε ≤ 2−d`in is
negligible.

From (5) and Lemma 13, we then have that (Plossy , h(r,s)) is collapsing on
imF(r,s). �

Theorem 23. If (SF , Fs) is a polynomial-time computable lossy function with
lossiness rate K, and if `out/`in ≥ c > 2 − 2K for some constant c, then
(PH , H(r,s)) is collapsing.

Proof. By Lemma 21, (Plossy , F(r,s)) is collapsing. By Lemma 22, (Plossy , h(r,s))
is collapsing on imF(r,s). By Construction 1, H(r,s) = h(r,s) ◦ F(r,s). Thus, by
Lemma 14, (Plossy , H(r,s)) is collapsing.

Since (SF , Fs) is a lossy function, Dlossy and SF are computationally indis-
tinguishable. Hence Plossy and PH are computationally indistinguishable. Hence
by Lemma 15, (PH , H(r,s)) is collapsing. �

Theorem 24. Assume `in > `out . Let MD(r,s) be the Merkle-Damgård construc-
tion applied to H(r,s) (using a Merkle-Damgård padding pad).

If (SF , Fs) is a polynomial-time computable lossy function with lossiness rate
K, and hr is polynomial-time computable, and if `out/`in ≥ c > 2− 2K for some
constant c, then (PH ,MD(r,s)) is collapsing.

19

Proof. By Theorem 23, (PH , H(r,s)) is collapsing. Then by Theorem 19,
(PH ,MD(r,s)) is collapsing. �

Theorem 25. Assume `in > `out . Let MD(r,s) be the Merkle-Damgård construc-
tion applied to H(r,s). Let (comHMu , verifyHMu) denote the unbounded Halevi-
Micali commitment using MD(r,s).

If (SF , Fs) is a polynomial-time computable lossy function with lossiness
rate K, and hr is polynomial-time computable, and if `out/`in ≥ c > 2 − 2K
for some constant c, then (PH , comHMu , verifyHMu) is statistically hiding and
collapse-binding.

Proof. By Theorem 24, (PH ,MD(r,s)) is collapsing. Then by Theorem 12,
(PH , comHMu , verifyHMu) is statistically hiding and collapse-binding. �

Note that if K > 1
2 , we have 2− 2K < 1. Then hr, c can always be chosen to

satisfy the conditions of Theorem 24 and Theorem 25 (namely `out/`in ≥ c >
2− 2K and `in > `out).

For completeness, we now give the concrete security variant of Theorem 25
here. Let τF denote the time needed for evaluating F(r,s). Let τh denote the
time needed for evaluating h(r,s). Let τ ′h denotes an upper bound on the time
needed for computing the universal hash function from Definition 10. For a given
adversary (A,B), let `A be a upper bound on the length of each message output
by A on the registers Mi (cf. Definition 8).

Theorem 26. Assume `in > `out . Let MD(r,s) be the Merkle-Damgård construc-
tion applied to H(r,s). Let (comHMu , verifyHMu) denote the unbounded Halevi-
Micali commitment using MD(r,s).

Then any adversary against (PH , comHMu , verifyHMu) has hiding-advantage
≤ 2−`out−1.

Let (A,B) be a τ -time adversary t-c.b.-valid for verify with collapsing-
advantage ε against (PH , comHMu , verifyHMu).

Then there are (τ+O(tτpad (`A)+t`pad (`A)(τF+τh)/(`in−`out)+`seed+tτ ′h))-
time adversaries C1, . . . , C6, such that C1, C2, C3 distinguish SF and Dlossy with
some advantages ε1, ε2, ε3, and C4, C5, C6 distinguish Dinj and Dlossy with some
advantages ε4, ε5, ε6, and ε ≤ (22`in−2k−`out + 2

∑6
i=1 εi) ·

`pad (`A)
(`in−`out) .

By using existing constructions of lossy functions, we further get:

Theorem 27. If SIVP and GapSVP are hard for quantum algorithms to ap-
proximate within Õ(dc) factors for some c > 5, then there is a collapsing hash
function with domain {0, 1}∗ and codomain {0, 1}`out for some `out , as well as a
non-interactive, statistically hiding, collapse-binding commitment schemes with
message space {0, 1}∗.

Furthermore, the hash function and the commitment scheme can be chosen
such that their parameter sampler P returns a uniformly random bitstring.

20

Proof. [13] shows that almost-always lossy trapdoor functions with lossiness
rate K < 1 exist if SIVP and GapSVP are hard for quantum algorithms to
approximate within Õ(dc) factors, where c = 2 + 3

2(1−K) + δ for any desired
δ > 0. Almost-always lossy trapdoor functions are in particular lossy functions.
If c > 5, we can chose some constant K > 1

2 such that c = 2 + 3
2(1−K) + δ

for some δ > 0. Thus there is a lossy function with constant lossiness rate
K > 1

2 . Hence by Theorem 24 and Theorem 25 there are a collapsing hash
function (PH , H(r,s)) and a non-interactive collapse-binding statistically hiding
commitment (PH , comHMu , verifyHMu).

PH returns (s, r) with s← SF and r $← {0, 1}`seed . Furthermore, as discussed
after Definition 2, the lossy function (SF , Fs) can be chosen such that SF returns
uniformly random keys s. In that case PH returns a uniformly random bitstring.
�

Interactive commitments without public parameters. The above text
analyzed non-interactive commitments using public parameters. We refer to the
introduction for the reason why it is unlikely that we can get rid of the public
parameters in the non-interactive setting. However, in the interactive setting, we
get the following result:

Theorem 28. If lossy function with lossiness rate K > 1
2 exist, or if SIVP and

GapSVP are hard for quantum algorithms to approximate within Õ(dc) factors
for some c > 5, then there is a collapse-binding10 statistically-hiding commitment
scheme with two-round commit phase and non-interactive verification, without
public parameters.

Proof. Let (PH , comHMu , verifyHMu) be the commitment scheme analyzed above.
We construct an interactive commitment scheme as follows: To commit to

a message m, the recipient runs k ← PH and sends k to the committer. Then
the committer computes (c, u)← comHMu(k,m) and sends c. To open to m, the
committer sends u, and the verifier checks whether verifyHMu(k, c,m, u) = 1.

It is easy to see that if (PH , comHMu , verifyHMu) is collapse-binding, so is the
resulting interactive scheme. (In the collapse-binding game, the verifier is honest.
Hence it is equivalent whether the verifier or PH picks k.)

In general, having the verifier pick k may break the hiding property of the com-
mitment. However, the proof of the hiding property of (PH , comHMu , verifyHMu)
(in the full version) reveals that that commitment is statistically hiding for any
choice of k. Thus the interactive commitment is statistically hiding. �

6 Collapse-binding implies sum-binding

For the remainder of this section, let (P, com, verify) be a commitment scheme
with message space {0, 1}. (I.e., a bit commitment.)

10 We refer to [16] for the definition of “collapse-binding” for interactive commitments.

21

A very simple and natural definition of the binding property for bit commit-
ment schemes is the following one (it occurred implicitly and explicitly in different
variants in [2,11,7,3,4]): If an adversary produces a commitment c, and is told
only afterwards which bit m he should open it to, then p0 + p1 ≤ 1 + negligible.
Here p0 is the probability that he successfully opens the commitment to m = 0,
and p1 analogously. This definition is motivated by the fact that a perfectly
binding commitment trivially satisfies p0 + p1 ≤ 1 + negligible.

Definition 29 (Sum-binding). For any adversary (C0, C1) and m ∈ {0, 1},
let

pm(C0, C1) := Pr[verify(k, c,m, u) = 1 : k ← P, (S, c)← C0(k), u← C1(S,m)].

Here S is a quantum register, and c a classical value. We call adv := p0+p1−1 the
sum-binding-advantage of (C0, C1). (With adv := 0 if the difference is negative.)

A commitment is sum-binding iff for any quantum-polynomial-time (C0, C1),
adv is negligible.

Unfortunately, this definition seems too weak to be useful (see [16] for more
discussion), but certainly it seems that the sum-binding property is a minimal
requirement for a bit commitment scheme. Yet, it was so far not known whether
collapse-binding bit commitments are sum-binding. In this section, we will show
that collapse-binding bit commitments are sum-binding, thus giving additional
evidence that collapse-binding is a sensible definition.

Proof attempt using rewinding. Before we prove our result, we first explain
why existing approaches (i.e., rewinding) do not give the required result.

First, the classical case as a warm up. Assume a classical adversary with
p0 + p1 = 1 + ε for non-negligible ε. We then break the classical computational-
binding property as follows: Run the adversary to get c. Then ask him to provide
an opening u for m = 0. Then rewind him to the state where he produced c.
Then ask him to provide an opening u′ for m = 1. The probability that u is
valid is p0, the probability that u′ is valid is p1. From the union bound, we get
that the probability that both are valid is at least p0 + p1 − 1 = ε.11 But that
means that the adversary has non-negligible probability ε of finding c,m,m′, u, u′
with m 6= m′ and u, u′ being valid openings for m,m′. This contradicts the
classical-style binding property.

Now what happens if we try to use rewinding in the quantum case to show
that collapse-binding implies sum-binding? If we use the rewinding technique
from [14], the basic idea is the following:

Run the adversary to get a commitment c (i.e., (S, c) ← C0(k)). Run the
adversary to get an opening u for m = 0 (i.e., run u← C1(S, 0)). Here we assume
w.l.o.g. that C1 is unitary. Measure u. Run the inverse of the unitary C1(S, 0).
Run the adversary to get an opening u′ for m = 1 (i.e., run u← C1(S, 1)).
11 Namely, Pr[u invalid] = 1 − p0, Pr[u′ invalid] = 1 − p1. Hence

Pr[u invalid or u′ invalid] ≤ (1 − p0) + (1 − p1). Thus Pr[u, u′ valid] ≥
1−

(
(1− p0) + (1− p1)

)
= p0 + p1 − 1.

22

To get a contradiction, we need to show that with non-negligible probability
u and u′ are both valid openings. While u will be valid with probability p0, there
is nothing we can say about u′. This is because measuring u will disturb the state
of the adversary so that C1(S, 1) may return nonsensical outputs. [14] shows
that if there is only one valid u, then rewinding works. But there is nothing that
guarantees that there is only one valid u.12 At this point the rewinding-based
proof fails.

Collapse-binding implies sum-binding. We now formally state and prove
the main result of this section with a technique different from rewinding. (But
possibly this is a new rewinding technique under the hood.)

Theorem 30. If (P, com, verify) is collapse-binding, then (P, com, verify) is sum-
binding.

An interesting open question is whether the converse holds. If so, this would
immediate give strong results for the parallel composition of sum-binding com-
mitments and their use in rewinding proofs (because all the properties of collapse-
binding commitments would carry over).

We give a proof sketch first: As we have seen, running two executions of
the adversary sequentially (first opening to m = 0, then opening to m = 1) via
rewinding is problematic because the second execution may not be successful any
more. Instead, we will run both executions at the same time in superposition:

Assume an adversary against sum-binding with non-negligible advantage ε.
We initialize a qubit M with |+〉 = 1√

2
|0〉 + 1√

2
|1〉. Then we let the adversary

commit ((S, c)← C0(k)), and then we run C1(S, 0) or C1(S, 1) in superposition,
controlled by the register M . This may entangle M with the rest of the system.
And we get openings for m = 0 and m = 1 in superposition on a register U . Now
if we measure whether U contains a valid opening for the message on register M ,
the answer will be yes with probability δ := p0+p1

2 = 1+ε
2 where p0, p1 are as in

Definition 29 (call this measurement Vc). Now, we either measure the register
M in the computational basis or we do not. And finally we apply the inverse of
C1(S, 0) or C1(S, 1) in superposition. And finally we measure whether M is still
in the state |+〉 (call this measurementM+).

We distinguish two cases: If we measure M in the computational basis,
then M = |0〉 or M = |1〉 afterwards. So the measurementM+ succeeds with
probability 1

2 . Hence the probability that both Vc andM+ succeed is δ
2 .

If we do not measureM in the computational basis, then we have the following
situation. The invocation C1(S, 0) or C1(S, 1) in superposition, together with the
measurement Vc, together with the uncomputation of C1(S, 0) or C1(S, 1) can
be seen as a single binary measurement Rc. Now if we have a measurement that

12 Collapse-binding commitments are rewinding-friendly, but this refers only to the
case where we wish to measure the opened message m. Roughly, collapse-binding
implies that measuring m does disturb the state more than measuring whether the
commitment was opened correctly or not, and in that case, the rewinding technique
from [14] applies. The [16] for example proofs using this technique.

23

succeeds with high probability, it cannot change the state much. Thus, the higher
the success probability δ of Rc, the more likely it is that M is still in state |+〉
andM+ succeeds. An exact computation reveals: the probability that both Rc
(a.k.a. Vc) andM+ succeed is δ2.

Thus the measurementM+ distinguishes between measuring and not mea-
suring M with non-negligible probability δ

2 − δ2 ≥ ε
4 . This contradicts the

collapse-binding property, the theorem follows.
We now give the full proof:

Proof of Theorem 30. Let (C0, C1) be an adversary in the sense of Definition 29
(against sum-binding). Let p0 := p0(C0, C1) and p1 := p1(C0, C1). We have to
show that the advantage ε := p0 + p1 − 1 is upper bounded by a negligible
function.

Without loss of generality, we can assume that C1 is unitary. More precisely,
C1(S,m) applies a unitary circuit Um to S, resulting in two output registers U
and E. Then he measures U in the computational basis and returns the outcomes
u.

With that notation, we can express the game from Definition 29 as the
following circuit (renaming the register S to S′ to avoid name clashes later):

P Co Um

m
$← {0, 1} Um M u

Um
k

c

S′ E

U (6)

(Here and in the following, M denotes a measurement in the computational
basis.) In that circuit, Pr[verify(k, c,m, u) = 1] = δ := 1

2 (1 + ε).
Let M denote a one-qubit quantum register, and define UM : |m〉M ⊗|Ψ〉S′ 7→

|m〉M ⊗ Um|Ψ〉S′ . That is, UM is a unitary with two input registers M,S′, and
three output registers M,U,E which is realized by applying U0 or U1 to S′,
depending on whether M is |0〉 or |1〉.

LetM+ be the binary measurement that checks whether registerM is in state
|+〉 = 1√

2
|0〉+ 1√

2
|1〉. Formally,M+ is defined by the projector P+ := |+〉〈+| on

M .
Recall that Vc from Lemma 6 is the measurement defined by the projector

Pc :=
∑

m,u
verify(k,c,m,u)=1

|m〉〈m| ⊗ |u〉〈u|.

We define an adversary (A,B) against the collapse-binding property of com
(using the alternative definition from Lemma 6). Algorithm A(k) performs the
following steps (see also Figure 3):
– Run (S′, c)← C0(k).
– Initialize a register M with |+〉.
– (M,U,E)← UM (M,S′). That is, apply UM to M,S′.
– S := E. (That is, we rename the register E.)
– Return (S,M,U, c).

Algorithm B(S,M,U) performs the following steps (see also Figure 3):
– E := S.

24

|+〉 UM U†M M+

P C0 UM Vc Mok U†M

UM Vc U†M

UM

Vc

U†M

E ES

k

M

S′ M M M M

M

S′

c ok m

U U U

b

A B

Fig. 3: Circuit describing Game1. Game2 can be derived by omittingMok . The adversary
algorithms A and B are depicted in the dashed boxes. (To avoid wires crossing gates,
the outgoing wires of UM are ordered E,M,U , not M,U,E as in the text.)

– (M,S′)← U†M (M,U,E).
– b←M+(Y).
– Return b.

Let Game1,Game2 refer to the games from Lemma 6 with adversary (A,B).
Figure 3 depicts those games as a quantum circuit.

We consider Game1 first. We are interested in computing the probability
p := Pr[b = 1 ∧ ok = 1] in this game. Observe that replacingMok byM (the
latter being the measurement in the computational basis, applied even when
ok = 0) does not change p. (BecauseMok andM behave differently only when
ok = 0.) Thus, replacingMok on M byM does not change p. Thus, we get the
following circuit:

|+〉 UM U†M M+

P C0 UM Vc M U†M

UM Vc U†M

UM
Vc

U†M

E E

k

M

S′ M

M

S′

c ok m b

U

M

U

(7)

and have

Pr[b = 1 ∧ ok = 1 : Circuit (7)] = Pr[b = 1 ∧ ok = 1 : Game1]. (8)

Note that M on M commutes with Vc and UM . So we can move M to the
beginning (right after initializing M with |+〉). But measuring |+〉 in the com-
putational basis yields a uniformly distributed bit m. And furthermore, if M
contains |m〉, then UM degenerates to Um on register S′, and M stays in state

25

|m〉 until the measurementM+. Thus we can simplify (7) as follows:

Um U†m |m〉 M+

P C0 Um |m〉 Vc U†m

Um Vc U†m

Um
Vc

U†m

m
$← {0, 1} E E

k S′ S′

c ok b

U U

M

M

(9)

We thus have

Pr[b = 1 ∧ ok = 1 : Circuit (7)] = Pr[b = 1 ∧ ok = 1 : Circuit (9)]. (10)

It is easy to see that

Pr[ok = 1 : Circuit (9)] = Pr[verify(k, c,m, u) = 1 : Circuit (6)] = δ.

Furthermore, in (9), b is independent of ok , and we have Pr[b = 1] = 1
2 by

definition ofM+. Thus

Pr[b = 1 ∧ ok = 1 : Game1]
(8),(10)
= Pr[b = 1 ∧ ok = 1 : Circuit (9)] =

δ

2
. (11)

We now consider Game2. This game is depicted in Figure 3 (when omitting the
measurementMok). We are interested in computing the probability q := Pr[b =
1 ∧ ok = 1] in this game. Recall that P+, Pc are the projectors describing the
measurementsM+, Vc. Thus, q = tr ρ where ρ is the final state of the following
circuit:

|+〉 UM U†M P+

P C0 UM Pc U†M

UM Pc U†M

UM
Pc

U†M

E E

k

M

S′ M

U

M

S′

c

U

M

=: Rc =: Q

State: ρ′ State: ρ

(12)

We abbreviate the product of the operators UM , Pc, U
†
M with Rc. Note that Rc

is a projector since Pc is a projector and UM is unitary. Let Q := P+ ⊗ idS′ .
Furthermore, let ρc be the state output by C0 on S′ conditioned on classical
output c (and let pc be the probability of that output). We can write ρc as ρc =∑
i pci|Ψci〉〈Ψci| for some normalized quantum states |Ψci〉 and some probabilities

pci with
∑
i pci = 1. Let |Ψ ′ci〉 := |+〉 ⊗ |Ψci〉. Let |Φci〉 := QRc|Ψ ′ci〉. With that

notation, we have ρ =
∑
c,i pcpci|Φci〉〈Φci| and

∑
c,i pcpci = 1. Hence q = tr ρ =∑

c,i pcpci
∥∥|Φci〉∥∥2.

26

Furthermore, if ρ′ is the state in circuit (12) after U†M , then it is easy to see
that tr ρ′ = δ (recall that δ is the success probability in (6)). We then have that
δ = tr ρ′ =

∑
c,i pcpci

∥∥Rc|Ψ ′ci〉∥∥2 =
∑
c,i pcpciδcf with δcf :=

∥∥Rc|Ψ ′ci〉∥∥2.
By definition of Q and |Ψ ′ci〉, we have that Q|Ψ ′ci〉 = |Ψ ′ci〉. Then

δci = 〈Ψ ′ci|Rc|Ψ ′ci〉 = 〈Ψ ′ci|QRc|Ψ ′ci〉 ≤
∥∥QRc|Ψ ′ci〉∥∥ =

∥∥|Φci〉∥∥.
Thus

q =
∑
c,i

pcpci
∥∥|Φci〉∥∥2 ≥∑

c,i

pcpciδ
2
ci

(∗)

≥
(∑
c,i

pcpciδci

)2
= δ2

Here (∗) uses Jensen’s inequality and the fact that
∑
c,i pcpci = 1.

Thus
Pr[b = 1 ∧ ok = 1 : Game2] = q ≥ δ2. (13)

Since Game1 and Game2 are identical unless ok = 1, we have that

Pr[b = 1 ∧ ok 6= 1 : Game1] = Pr[b = 1 ∧ ok 6= 1 : Game2]. (14)

Thus

Pr[b = 1 : Game2]− Pr[b = 1 : Game1]

=
(
Pr[b = 1 ∧ ok = 1 : Game2] + Pr[b = 1 ∧ ok 6= 1 : Game2]

)
−
(
Pr[b = 1 ∧ ok = 1 : Game1] + Pr[b = 1 ∧ ok 6= 1 : Game1]

)
(14)
= Pr[b = 1 ∧ ok = 1 : Game2]− Pr[b = 1 ∧ ok 6= 1 : Game1]

(13),(11)

≥ δ2 − δ

2
≥ ε

4
.

Thus ∣∣∣Pr[b = 1 : Game1]− Pr[b = 1 : Game2]
∣∣∣ ≥ ε

4
. (15)

Since (C0, C1) is polynomial-time adversary, (A,B) is polynomial-time. By
assumption, (P, com, verify) is collapse binding. Thus by Lemma 6, the rhs of
(15) is negligible. Hence ε is negligible. Since ε was the advantage of the adversary
(C0, C1) against the sum-binding property, it follows that (P, com, verify) is sum-
binding. �

6.1 CDMS-binding

For the remainder of this section, let (P, com, verify) be a commitment scheme
with message space {0, 1}`.

The sum-binding definition is restricted to bit commitments. In [3], a gen-
eralization of sum-binding definition is given. Intuitively, for any function f , if
the adversary produces a commitment c, then there should be at most one value
y such that the adversary can open c to a message m with f(m) = y. Slightly
more formally, we require that

∑
y p̃y ≤ 1+ negligible where p̃y is the probability

that the adversary (who gets y after producing the commitment c) manages to
open c to a message m with f(m) = y. Again, this definition is motivated by the
fact that perfectly binding commitments satisfy

∑
y p̃y ≤ 1. The definition can

be parametrized by specifying the set F of allowed functions f .

27

Definition 31 (CDMS-binding, following [3]). Let F be a family of func-
tions {0, 1}` → {0, 1}Λ.

For any adversary (C0, C1) and any y ∈ {0, 1}Λ, let

p̃y(C0, C1) := Pr[verify(k, c,m, u) = 1 ∧ f(m) = y :

k ← P, (S, c, f)← C0(k), (m,u)← C1(S, y)].

Here S is a quantum register, and c a classical value, and f a function in F
(represented as a Boolean circuit).

We call (C0, C1) F -CDMS-valid if it only outputs functions f ∈ F .
We call adv :=

∑
y∈{0,1}Λ p̃y(C0, C1)− 1 the F -CDMS-advantage of (C0, C1).

(With adv := 0 if the difference is negative.)
We call a commitment scheme F -CDMS-binding iff for all quantum-

polynomial-time F -CDMS-valid (C0, C1), the F -CDMS-advantage of (C0, C1)
is negligible.

We have somewhat modified the definition with respect to [3]: Namely, instead
of quantifying over all f ∈ F , we let the adversary choose f . This gives the
adversary additional power, because f may depend on the public parameter k,
but at the same time it also removes some power (because f needs to be efficiently
computed in our definition). For non-uniform adversaries, our definition implies
the one from [3].

Note that the sum-binding definition is a special case of the CDMS-binding
definition: A bit commitment is sum-binding iff it is F -binding where F contains
only the identity.

The following theorem is shown using a similar technique as Theorem 30. The
main difference is that we have to use a superposition of all possible values y,
instead of the superposition |+〉 of messages 0 and 1. Furthermore, the fact that
the adversary has free choice of m, subject to the condition f(m) = c introduces
additional technicalities, but these are solved in the full proof.

Theorem 32. If (P, com, verify) is collapse-binding, then (P, com, verify) is F -
CDMS-binding for any F ⊆ {0, 1}` → {0, 1}Λ with logarithmically-bounded Λ.

Note the condition that Λ is logarithmically-bounded. This condition is neces-
sary as the following example shows: Let com be a perfectly binding commitment,
except that with probability ε the adversary finds a secret that allows him to
open the commitment to any message. This small probability ε does not change
the fact that the commitment is collapse-binding (and arguably any reasonable
definition of computationally binding should tolerate such a negligible error).
However, an adversary that commits to 0, then gets y ∈ {0, 1}Λ, and then tries to
open to an arbitrary m with f(m) = y will succeed with probability p̃y = ε for all
y 6= f(0), and with probability p̃y = 1 for y = f(0). Hence

∑
y p̃y = 1+ (2Λ− 1)ε.

If Λ is superlogarithmic, then (2Λ − 1)ε will not necessarily be negligible. This
example shows that collapse-binding cannot imply CDMS-binding for superloga-
rithmic Λ and also indicates that probably CDMS-binding with superlogarithmic
Λ is not a reasonable definition of computationally binding. (Note: in [3], only

28

CDMS-binding with logarithmically-bounded Λ was used and is sufficient for
their OT protocol.)

Acknowledgements. We thank Dennis Hofheinz for discussions that led to the com-
mitment protocol from Construction 1. This work was supported by institutional
research funding IUT2-1 of the Estonian Ministry of Education and Research and by
the Estonian ICT program 2011-2015 (3.2.1201.13-0022).

References
1. Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. Quantum attacks on

classical proof systems (the hardness of quantum rewinding). In FOCS 2014, pages
474–483. IEEE, 2014. Preprint on IACR ePrint 2014/296.

2. G. Brassard, C. Crépeau, R. Jozsa, and D. Langlois. A quantum bit commitment
scheme provably unbreakable by both parties. In FOCS ’93, pages 362–371, Los
Alamitos, CA, USA, 1993. IEEE.

3. Claude Crépeau, Paul Dumais, Dominic Mayers, and Louis Salvail. Computational
collapse of quantum state with application to oblivious transfer. In TCC 2004,
volume 2951 of LNCS, pages 374–393. Springer, 2004.

4. Claude Crépeau, Louis Salvail, Jean-Raymond Simard, and Alain Tapp. Two
provers in isolation. In Dong Hong Lee and Xiaoyun Wang, editors, Asiacrypt 2011,
volume 7072 of LNCS, pages 407–430. Springer, 2011.

5. Ivan Damgård, Serge Fehr, and Louis Salvail. Zero-knowledge proofs and string
commitments withstanding quantum attacks. In Matt Franklin, editor, Crypto
2004, volume 3152 of LNCS, pages 254–272. Springer, 2004.

6. Ivan Damgård, Torben P. Pedersen, and Birgit Pfitzmann. On the existence of
statistically hiding bit commitment schemes and fail-stop signatures. J Cryptology,
10(3):163–194, 1997.

7. Paul Dumais, Dominic Mayers, and Louis Salvail. Perfectly concealing quantum bit
commitment from any quantum one-way permutation. In Eurocrypt 2000, volume
1807 of LNCS, pages 300–315. Springer, 2000.

8. Shafi Goldwasser and Mihir Bellare. Lecture notes on cryptography. http://cseweb.
ucsd.edu/~mihir/papers/gb.html, 2008. Summer course on cryptography, MIT,
1996-2008.

9. Shai Halevi and Silvio Micali. Practical and provably-secure commitment schemes
from collision-free hashing. In Neal Koblitz, editor, Crypto ’96, volume 1109 of
LNCS, pages 201–215. Springer, 1996.

10. Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudo-
random generator from any one-way function. SIAM J Computing, 28(4):1364–1396,
1999.

11. Dominic Mayers. Unconditionally Secure Quantum Bit Commitment is Impossible.
Physical Review Letters, 78(17):3414–3417, 1997. Online available at http://arxiv.
org/abs/quant-ph/9605044.

12. National Institute of Standards and Technology (NIST). Secure hash standard
(SHS). FIPS PUBS 180-4, 2015. doi:10.6028/NIST.FIPS.180-4.

13. Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications.
In STOC, pages 187–196, New York, NY, USA, 2008. ACM. Full version at
http://ia.cr/2007/279.

14. Dominique Unruh. Quantum proofs of knowledge. In Eurocrypt 2012, volume
7237 of LNCS, pages 135–152. Springer, April 2012. Full version is IACR ePrint
2010/212.

29

http://cseweb.ucsd.edu/~mihir/papers/gb.html
http://cseweb.ucsd.edu/~mihir/papers/gb.html
http://arxiv.org/abs/quant-ph/9605044
http://arxiv.org/abs/quant-ph/9605044
https://dx.doi.org/10.6028/NIST.FIPS.180-4
http://ia.cr/2007/279
http://eprint.iacr.org/2010/212
http://eprint.iacr.org/2010/212

15. Dominique Unruh. Collapse-binding quantum commitments without random oracles.
IACR ePrint 2016/508, 2016. Full version of this paper.

16. Dominique Unruh. Computationally binding quantum commitments. In Eurocrypt
2016, volume 9666 of LNCS, pages 497–527. Springer, 2016. Full version is IACR
ePrint 2015/361.

17. John Watrous. Zero-knowledge against quantum attacks. SIAM J. Comput.,
39(1):25–58, 2009. Online available at https://cs.uwaterloo.ca/~watrous/
Papers/ZeroKnowledgeAgainstQuantum.pdf.

18. Jun Yan, Jian Weng, Dongdai Lin, and Yujuan Quan. Quantum bit commitment
with application in quantum zero-knowledge proof (extended abstract). In ISAAC
2015, volume 9472 of LNCS, pages 555–565. Springer, 2015.

19. Mark Zhandry. How to construct quantum random functions. In FOCS 2013, pages
679–687, Los Alamitos, CA, USA, 2012. IEEE Computer Society. Online version is
IACR ePrint 2012/182.

30

http://eprint.iacr.org/2016/508
http://eprint.iacr.org/2015/361
http://eprint.iacr.org/2015/361
https://cs.uwaterloo.ca/~watrous/Papers/ZeroKnowledgeAgainstQuantum.pdf
https://cs.uwaterloo.ca/~watrous/Papers/ZeroKnowledgeAgainstQuantum.pdf
http://eprint.iacr.org/2012/182

	Introduction
	Preliminaries
	Collapse-binding commitments and collapsing hash functions
	Security of Merkle-Damgård hashes
	Collapsing hashes in the standard model
	Collapse-binding implies sum-binding
	CDMS-binding

