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Abstract. Homomorphic authenticators (HAs) enable a client to au-
thenticate a large collection of data elements m1, . . . ,mt and outsource
them, along with the corresponding authenticators, to an untrusted server.
At any later point, the server can generate a short authenticator vouch-
ing for the correctness of the output y of a function f computed on
the outsourced data, i.e., y = f(m1, . . . ,mt). Recently researchers have
focused on HAs as a solution, with minimal communication and interac-
tion, to the problem of delegating computation on outsourced data. The
notion of HAs studied so far, however, only supports executions (and
proofs of correctness) of computations over data authenticated by a sin-
gle user. Motivated by realistic scenarios (ubiquitous computing, sensor
networks, etc.) in which large datasets include data provided by multiple
users, we study the concept of multi-key homomorphic authenticators. In
a nutshell, multi-key HAs are like HAs with the extra feature of allowing
the holder of public evaluation keys to compute on data authenticated
under different secret keys. In this paper, we introduce and formally de-
fine multi-key HAs. Secondly, we propose a construction of a multi-key
homomorphic signature based on standard lattices and supporting the
evaluation of circuits of bounded polynomial depth. Thirdly, we provide
a construction of multi-key homomorphic MACs based only on pseudo-
random functions and supporting the evaluation of low-degree arithmetic
circuits. Albeit being less expressive and only secretly verifiable, the lat-
ter construction presents interesting efficiency properties.

1 Introduction

The technological innovations offered by modern IT systems are changing the
way digital data is collected, stored, processed and consumed. As an example,
think of an application where data is collected by some organizations (e.g., hos-
pitals), stored and processed on remote servers (e.g., the Cloud) and finally
consumed by other users (e.g., medical researchers) on other devices. On one
hand, this computing paradigm is very attractive, particularly as data can be
shared and exchanged by multiple users. On the other hand, it is evident that
in such scenarios one may be concerned about security: while the users that col-
lect and consume the data may trust each other (up to some extent), trusting
the Cloud can be problematic for various reasons. More specifically, two main
security concerns to be addressed are those about the privacy and authenticity
of the data stored and processed in untrusted environments.



While it is widely known that privacy can be solved in such a setting using,
e.g., homomorphic encryption [27], in this work we focus on the orthogonal prob-
lem of providing authenticity of data during computation. Towards this goal, our
contribution is on advancing the study of homomorphic authenticators (HAs), a
cryptographic primitive that has been the subject of recent work [32,9,26,30].

Homomorphic Authenticators. Using an homomorphic authenticator (HA)
scheme a user Alice can authenticate a collection of data items m1, . . . ,mt using
her secret key, and send the authenticated data to an untrusted server. The server
can execute a program P on the authenticated data and use a public evaluation
key to generate a value σP,y vouching for the correctness of y = P(m1, . . . ,mt).
Finally, a user Bob who is given the tuple (P, y, σP,y) and Alice’s verification key
can use the authenticator to verify the authenticity of y as output of the program
P executed on data authenticated by Alice. In other words, Bob can check that
the server did not tamper with the computation’s result. Alice’s verification key
can be either secret or public. In the former case, we refer to the primitive as
homomorphic MACs [26,11], while in the latter we refer to it as homomorphic
signatures [9]. One of the attractive features of HAs is that the authenticator
σP,y is succinct, i.e., much shorter than P’s input size. This means that the
server can execute a program on a huge amount of data and convince Bob of
its correctness by sending him only a short piece of information. As discussed
in previous work (e.g., [26,5,30]), HAs provide a nice solution, with minimal
communication and interaction, to the problem of delegating computations on
outsourced data, and thus can be preferable to verifiable computation (more
details on this comparison appear in Section 1.2).

Our Contribution: Multi-Key Homomorphic Authenticators. Up to
now, the notion of HAs has inherently been single-key, i.e., homomorphic com-
putations are allowed only on data authenticated using the same secret key. This
characteristic is obviously a limitation and prevents HA schemes from suiting
scenarios where the data is provided (and authenticated) by multiple users. Con-
sider the previously mentioned example of healthcare institutions which need to
compute on data collected by several hospitals or even some remote-monitored
patients. Similarly, it is often required to compute statistics for time-series data
collected from multiple users e.g., to monitor usage data in smart metering, clin-
ical research or to monitor the safety of buildings. Another application scenario
is in distributed networks of sensors. Imagine for instance a network of sensors
where each sensor is in charge of collecting data about air pollution in a certain
area of a city, it sends its data to a Cloud server, and then a central control unit
asks the Cloud to compute on the data collected by the sensors (e.g., to obtain
the average value of air pollution in a large area).

A trivial solution to address the problem of computing on data authenticated
by multiple users is to use homomorphic authenticators in such a way that all
data providers share the same secret authentication key. The desired functional-
ity is obviously achieved since data would be authenticated using a single secret
key. This approach however has several drawbacks. The first one is that users
need to coordinate in order to agree on such a key. The second one is that in
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such a setting there would be no technical/legal way to differentiate between
users (e.g., to make each user accountable for his/her duties) as any user can
impersonate all the other ones. The third and more relevant reason is that shar-
ing the same key exposes the overall system to way higher risks of attacks and
makes disaster recovery more difficult: if a single user is compromised the whole
system is compromised too, and everything has to be reinitialized from scratch.

In contrast, this paper provides an innovative solution through the notion of
multi-key homomorphic authenticators (multi-key HAs). This primitive guaran-
tees that the corruption of one user affects the data of that user only, but does
not endanger the authenticity of computations among the other (un-corrupted)
users of the system. Moreover, the proposed system is dynamic, in the sense that
compromised users can be assigned new keys and be easily reintegrated.

1.1 An Overview of Our Results

Our contribution is mainly threefold. First of all, we elaborate a suitable defini-
tion of multi-key HAs. Second, we propose the first construction of a multi-key
homomorphic signature (i.e., with public verifiability) which is based on stan-
dard lattices and supports the evaluation of circuits of bounded polynomial
depth. Third, we present a multi-key homomorphic MAC that is based only on
pseudorandom functions and supports the evaluation of low-degree arithmetic
circuits. In spite of being less expressive and only secretly verifiable, this last
construction is way more efficient than the signature scheme. In what follows,
we elaborate more on our results.
Multi-Key Homomorphic Authenticators: What are they? At a high
level, multi-key HAs are like HAs with the additional property that one can exe-
cute a program P on data authenticated using different secret keys. In multi-key
HAs, Bob verifies using the verification keys of all users that provided inputs
to P. These features make multi-key HAs a perfect candidate for applications
where multiple users gather and outsource data. Referring to our previous ex-
amples, using multi-key HAs each sensor can authenticate and outsource to the
Cloud the data it collects; the Cloud can compute statistics on the authenticated
data and provide the central control unit with the result along with a certificate
vouching for its correctness.

An important aspect of our definition is a mechanism that allows the verifier
to keep track of the users that authenticated the inputs of P, i.e., to know
which user contributed to each input wire of P. To formalize this mechanism,
we build on the model of labeled data and programs of Gennaro and Wichs [26]
(we refer the reader to Section 3 for details). In terms of security, multi-key
HAs allow the adversary to corrupt users (i.e., to learn their secret keys); yet
this knowledge should not help the adversary in tampering with the results of
programs which involve inputs of honest (i.e., uncorrupted) users only. Our model
allows to handle compromised users in a similar way to what occurs with classical
digital signatures: a compromised user could be banned by means of a certificate
revocation, and could easily be re-integrated via a new key pair.3 Thinking of

3 Here we mean that this process does not add more complications than the ones
already existing for classical digital signatures (e.g., relying on PKI mechanisms).
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the sensor network application, if a sensor in the field gets compromised, the
data provided by other sensors remains secure, and a new sensor can be easily
introduced in the system with new credentials.

Finally, we require multi-key homomorphic authenticators to be succinct in
the sense that the size of authenticators is bounded by some fixed polynomial
in (λ, n, log t), where λ is the security parameter, n is the number of users con-
tributing to the computation and t is the total number of inputs of P. Although
such dependence on n may look undesirable, we stress that it is still meaningful
in many application scenarios where n is much smaller than t. For instance, in
the application scenario of healthcare institutions a few hospitals can provide a
large amount of data from patients.

A Multi-Key Homomorphic Signature for All Circuits. After setting
the definition of multi-key homomorphic authenticators, we proceed to construct
multi-key HA schemes. Our first contribution is a multi-key homomorphic sig-
nature that supports the evaluation of boolean circuits of depth bounded by a
fixed polynomial in the security parameter. The scheme is proven secure based
on the small integer solution (SIS) problem over standard lattices [36], and toler-
ates adversaries that corrupt users non-adaptively.4 Our technique is inspired by
the ones developed by Gorbunov, Vaikuntanathan and Wichs [30] to construct
a (single-key) homomorphic signature. Our key contribution is on providing a
new representation of the signatures that enables to homomorphically compute
over them even if they were generated using different keys. Furthermore, our
scheme enjoys an additional property, not fully satisfied by [30]: every user can
authenticate separately every data item mi of a collection m1, . . .mt, and the
correctness of computations is guaranteed even when computing on not-yet-full
datasets. Although it is possible to modify the scheme in [30] for signing data
items separately, the security would only work against adversaries that query the
whole dataset. In contrast, we prove our scheme to be secure under a stronger
security definition where the adversary can adaptively query the various data
items, and it can try to cheat by pretending to possess signatures on data items
that it never queried (so-called Type 3 forgeries). We highlight that the scheme
in [30] is not secure under the stronger definition (with Type 3 forgeries) used in
this paper, and we had to introduce new techniques to deal with this scenario.
This new property is particularly interesting as it enables users to authenticate
and outsource data items in a streaming fashion, without ever having to store
the whole dataset. This is useful in applications where the dataset size can be
very large or not fixed a priori.

A Multi-Key Homomorphic MAC for Low-Degree Circuits. Our sec-
ond construction is a multi-key homomorphic MAC that supports the evaluation
of arithmetic circuits whose degree d is at most polynomial in the security param-
eter, and whose inputs come from a small number n of users. For results of such
computations the corresponding authenticators have at most size s =

(
n+d
d

)
.5

4 Precisely, our “core” scheme is secure against adversaries that make non-adaptive
signing queries; this is upgraded to adaptive security via general transformations.

5 Note that s can be bounded by poly(n) for constant d, or by poly(d) for constant n.
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Notably, the authenticator’s size is completely independent of the total number
of inputs of the arithmetic circuit. Compared to our multi-key homomorphic
signature, this construction is only secretly verifiable (i.e., Bob has to know the
secret verification keys of all users involved in the computation) and supports
a class of computations that is less expressive; also its succinctness is asymp-
totically worse. In spite of these drawbacks, our multi-key homomorphic MAC
achieves interesting features. From the theoretical point of view, it is based on
very simple cryptographic tools: a family of pseudorandom functions. Thus, the
security relies only on one-way functions. On the practical side, it is particularly
efficient: generating a MAC requires only one pseudo-random function evaluation
and a couple of field operations; homomorphic computations boil down to addi-
tions and multiplications over a multi-variate polynomial ring Fp[X1, . . . , Xn].

1.2 Related Work

Homomorphic MACs and Signatures. Homomorphic authenticators have
received a lot of attention in previous work focusing either on homomorphic sig-
natures (publicly verifiable) or on homomorphic MACs (private verification with
a secret key). The notion of homomorphic signatures was originally proposed
by Johnson et al. [32]. The first schemes that appeared in the literature were
homomorphic only for linear functions [8,14,15,23,13] and found important ap-
plications in network coding and proofs of retrievability. Boneh and Freeman [9]
were the first to construct homomorphic signatures that can evaluate more than
linear functions over signed data. Their scheme could evaluate bounded-degree
polynomials and its security was based on the hardness of the SIS problem
in ideal lattices in the random oracle model. A few years later, Catalano et
al. [16] proposed an alternative homomorphic signature scheme for bounded-
degree polynomials. Their solution is based on multi-linear maps and bypasses
the need for random oracles. More interestingly, the work by Catalano et al. [16]
contains the first mechanism to verify signatures faster than the running time of
the verified function. Recently, Gorbunov et al. [30] have proposed the first (lev-
eled) fully homomorphic signature scheme that can evaluate arbitrary circuits
of bounded polynomial depth over signed data. Some important advances have
been also achieved in the area of homomorphic MACs. Gennaro and Wichs [26]
have proposed a fully homomorphic MAC based on fully homomorphic encryp-
tion. However, their scheme is not secure in the presence of verification queries.
More efficient schemes have been proposed later [11,5,12] that are secure in the
presence of verification queries and are more efficient at the price of supporting
only restricted homomorphisms. Finally, we note that Agrawal et al. [1] consid-
ered a notion of multi-key signatures for network coding, and proposed a solution
which works for linear functions only. Compared to this work, our contribution
shows a full-fledged framework for multi-key homomorphic authenticators, and
provides solutions that address a more expressive class of computations.

Verifiable Computation. Achieving correctness of outsourced computations
is also the aim of verifiable delegation of computation (VC) [29,25,18,6,37,20].
In this setting, a client wants to delegate the computation of a function f on
input x to an untrusted cloud-server. If the server replies with y, the client’s
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goal is to verify the correctness of y = f(x) spending less resources than those
needed to execute f . As mentioned in previous work (e.g., [26,30]) a crucial
difference between verifiable computation and homomorphic authenticators is
that in VC the verifier has to know the input of the computation – which can be
huge – whereas in HAs one can verify by only knowing the function f and the
result y. Moreover, although some results of verifiable computation could be re-
interpreted to solve scenarios similar to the ones addressed by HAs, results based
on VC would still present several limitations. For instance, using homomorphic
authenticators the server can prove correctness of y = f(x) with a single message,
without needing any special encoding of f from the delegator. Second, HAs come
naturally with a composition property which means that the outputs of some
computations on authenticated data (which is already authenticated) can be
fed as input for follow-up computations. This feature is of particular interest
to parallelize and or distribute computations (e.g., MapReduce). Emulating this
composition within VC systems is possible by means of certain non-interactive
proof systems [7] but leads to complex statements and less natural realizations.
A last advantage is that by using HAs, clients can authenticate various (small)
pieces of data independently and without storing previously outsourced data.
In contrast, most VC systems require clients to encode the whole input in ‘one
shot’, and often such encoding can be used in a single computation only.

Multi-Client Verifiable Computation. Another line of work, closely related
to ours is that on multi-client verifiable computation [17,31]. This primitive,
introduced by Choi et al. [17], aims to extend VC to the setting where inputs
are provided by multiple users, and one of these users wants to verify the result’s
correctness. Choi et al. [17] proposed a definition and a multi-client VC scheme
which generalizes that of Gennaro et al. [25]. The solution in [17], however, does
not consider malicious or colluding clients. This setting was addressed by Gordon
et al. in [31], where they provide a scheme with stronger security guarantees
against a malicious server or an arbitrary set of malicious colluding clients.

It is interesting to notice that in the definition of multi-client VC all the
clients but the one who verifies can encode inputs independently of the function
to be later executed on them. One may thus think that the special case in
which the verifier provides no input yields a solution similar to the one achieved
by multi-key HAs. However, a closer look at the definitions and the existing
constructions of multi-client VC reveals three main differences. (1) In multi-
client VC, in order to prove the correctness of an execution of a function f , the
server has to wait a message from the verifier which includes some encoding of
f . This is not necessary in multi-key HAs where the server can directly prove
the correctness of f on previously authenticated data with a single message and
without any function’s encoding. (2) The communication between the server
and the verifier is at least linear in the total number of inputs of f : this can be
prohibitive in the case of computations on very large inputs (think of TBytes of
data). In contrast, with multi-key HAs the communication between the server
and the verifier is proportional only to the number of users, and depends only
logarithmically on the total number of inputs. (3) In multi-client VC an encoding
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of one input can be used in a single computation. Thus, if a user wants to first
upload data on the server to later execute many functions on it, then the user
has to provide as many encodings as the number of functions to be executed.
In contrast, multi-key HAs allow one to encode (i.e., authenticate) every input
only once and to use it for proving correctness of computations an unbounded
number of times.

2 Preliminaries

We collect here the notation and basic definitions used throughout the paper.

Notation. The Greek letter λ is reserved for the security parameter of the
schemes. A function ε(λ) is said to be negligible in λ (denoted as ε(λ) = negl(λ))
if ε(λ) = O(λ−c) for every constant c > 0. When a function can be expressed
as a polynomial we often write it as poly(·). For any n ∈ N, we refer to [n] as
[n] := {1, . . . , n}. Moreover, given a set S, the notation s ←$ S stays for the
process of sampling s uniformly at random from S.

Definition 1 (Statistical Distance). Let X,Y denote two random variables
with support X ,Y respectively; the statistical distance between X and Y is defined
as SD(X,Y ) := 1

2 (
∑
u∈X∪Y | Pr[X = u]−Pr[Y = u] |). If SD(X,Y ) = negl(λ),

we say that X and Y are statistically close and we write X
stat
≈ Y .

Definition 2 (Entropy [19]). The min-entropy of a random variable X is de-
fined as H∞(X) :=−log

(
maxx Pr[X = x]

)
. The (average-) conditional min-entropy

of a random variable X conditioned on a correlated variable Y is defined as

H∞(X | Y ) :=−log
(

E
y←Y

[
maxx Pr[X = x | Y = y]

])
. The optimal probability of an

unbounded adversary guessing X when given a correlated value Y is 2−H∞(X|Y ).

Lemma 1 ([19]). Let X,Y be arbitrarily random variables where the support
of Y lies in Y. Then H∞(X | Y ) ≥ H∞(X)− log(| Y |).

3 Multi-Key Homomorphic Authenticators

In this section, we present our new notion of Multi-Key Homomorphic Authen-
ticators (multi-key HAs). Intuitively, multi-key HAs extend the existing notions
of homomorphic signatures [9] and homomorphic MACs [26] in such a way that
one can homomorphically compute a program P over data authenticated using
different secret keys. For the sake of verification, in multi-key HAs the verifier
needs to know the verification keys of all users that provided inputs to P. Our
definitions are meant to be general enough to be easily adapted to both the case
in which verification keys are public and the one where verification keys are se-
cret. In the former case, we call the primitive multi-key homomorphic signatures
whereas in the latter case we call it multi-key homomorphic MACs.

As already observed in previous work about HAs, it is important that an
authenticator σP,y does not authenticate a value y out of context, but only as the
output of a program P executed on previously authenticated data. To formalize
this notion, we build on the model of labeled data and programs of Gennaro and
Wichs [26]. The idea of this model is that every data item is authenticated under

7



a unique label `. For example, in scenarios where the data is outsourced, such
labels can be thought of as a way to index/identify the remotely stored data. A
labeled program P, on the other hand, consists of a circuit f where every input
wire i has a label `i. Going back to the outsourcing example, a labeled program
is a way to specify on what portion of the outsourced data one should execute a
circuit f . More formally, the notion of labeled programs of [26] is recalled below.

Labeled Programs [26]. A labeled program P is a tuple (f, `1, . . . , `n), such
that f : Mn →M is a function of n variables (e.g., a circuit) and `i ∈ {0, 1}∗
is a label for the i-th input of f . Labeled programs can be composed as follows:
given P1, . . . ,Pt and a function g :Mt →M, the composed program P∗ is the
one obtained by evaluating g on the outputs of P1, . . . ,Pt, and it is denoted
as P∗ = g(P1, . . . ,Pt). The labeled inputs of P∗ are all the distinct labeled
inputs of P1, . . .Pt (all the inputs with the same label are grouped together and
considered as a unique input of P∗). Let fid :M→M be the identity function
and ` ∈ {0, 1}∗ be any label. We refer to I` = (fid, `) as the identity program
with label `. Note that a program P = (f, `1, . . . , `n) can be expressed as the
composition of n identity programs P = f(I`1 , . . . , I`n).

Using labeled programs to identify users. In our notion of multi-key
homomorphic authenticators, one wishes to verify the outputs of computations
executed on data authenticated under different keys. A meaningful definition of
multi-key HAs thus requires that the authenticators are not out of context also
with respect to the set of keys that contributed to the computation. To address
this issue, we assume that every user has an identity id in some identity space ID,
and that the user’s keys are associated to id by means of any suitable mechanism
(e.g., PKI). Next, in order to distinguish among data of different users and to
identify to which input wires a certain user contributed, we assume that the
label space contains the set ID. Namely, in our model a data item is assigned
a label ` := (id, τ), where id is a user’s identity, and τ is a tag; this essentially
identifies uniquely a data item of user id with index τ . For compatibility with
previous notions of homomorphic authenticators, we assume that data items
can be grouped in datasets, and one can compute only on data within the same
dataset. In our definitions, a dataset is identified by an arbitrary string ∆.6

Definition 3 (Multi-Key Homomorphic Authenticator). A multi-key ho-
momorphic authenticator scheme MKHAut consists of a tuple of PPT algorithms
(Setup, KeyGen, Auth, Eval, Ver) satisfying the following properties: authenti-
cation correctness, evaluation correctness, succinctness and security. The five
algorithms work as follows:
Setup(1λ). The setup algorithm takes as input the security parameter λ and out-

puts some public parameters pp. These parameters include (at least) descrip-
tions of a tag space T , an identity space ID, the message space M and a set
of admissible functions F . Given T and ID, the label space of the scheme

6 Although considering the dataset notion complicates the definition, it also provides
some benefits, as we illustrate later in the constructions. For instance, when veri-
fying for the same program P over different datasets, one can perform some pre-
computation that makes further verifications cheap.
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is defined as their cartesian product L := ID × T . For a labeled program
P = (f, `1, . . . , `t) with labels `i := (idi, τi) ∈ L, we use id ∈ P as com-
pact notation for id ∈ {id1, . . . , idt}. The pp are input to all the following
algorithms, even when not specified.

KeyGen(pp). The key generation algorithm takes as input the public parameters
and outputs a triple of keys (sk, ek, vk), where sk is a secret authentication
key, ek is a public evaluation key and vk is a verification key which could be
either public or private.7

Auth(sk, ∆, `,m). The authentication algorithm takes as input an authentication
key sk, a dataset identifier ∆, a label ` = (id, τ) for the message m, and it
outputs an authenticator σ.

Eval(f, {(σi,EKSi)}i∈[t]). The evaluation algorithm takes as input a t-input func-
tion f :Mt −→M, and a set {(σi,EKSi)}i∈[t] where each σi is an authen-
ticator and each EKSi is a set of evaluation keys.8

Ver(P, ∆, {vkid}id∈P ,m, σ). The verification algorithm takes as input a labeled
program P = (f, `1, . . . , `t), a dataset identifier ∆, the set of verification
keys {vkid}id∈P corresponding to those identities id involved in the program
P, a message m and an authenticator σ. It outputs 0 (reject) or 1 (accept).

Authentication Correctness. Intuitively, a Multi-Key Homomorphic Au-
tenticator has authentication correctness if the output of Auth(sk, ∆, `,m) ver-
ifies correctly for m as the output of the identity program I` over the dataset
∆. More formally, a scheme MKHAut satisfies authentication correctness if for
all public parameters pp←Setup(1λ), any key triple (sk, ek, vk) ← KeyGen(pp),
any label ` = (id, τ) ∈ L and any authenticator σ ← Auth(sk, ∆, `,m), we have
Ver(I`, ∆, vk,m, σ) outputs 1 with all but negligible probability.

Evaluation Correctness. Intuitively, this property says that running the
evaluation algorithm on signatures (σ1, . . . , σt) such that each σi verifies for mi

as the output of a labeled program Pi over the dataset ∆, it produces a signa-
ture σ which verifies for f(m1, . . . ,mt) as the output of the composed program
f(P1, . . . ,Pt) over the dataset ∆. More formally, let us fix the public parame-
ters pp←Setup(1λ), a set of key triples {(skid, ekid, vkid)}id∈ĨD for some ˜ID ⊆ ID, a
dataset ∆, a function g :Mt →M, and any set of program/message/authentica-
tor triples {(Pi,mi, σi)}i∈[t] such that Ver(Pi, ∆, {vkid}id∈Pi ,mi, σi) = 1 for all
i ∈ [t]. Let m∗ = g(m1, . . . ,mt), P∗ = g(P1, . . . ,Pt), and σ∗ = Eval(g, {(σi,
EKSi)}i∈[t]) where EKSi = {ekid}id∈Pi . Then, Ver(P∗, ∆, {vkid}id∈P∗ ,m∗, σ∗) = 1
holds with all but negligible probability.

Succinctness. A multi-key HA is said to be succinct if the size of every au-
thenticator depends only logarithmically on the size of a dataset. However, we

7 As mentioned earlier, the generated triple (sk, ek, vk) will be associated to an iden-
tity id ∈ ID. When this connection becomes explicit, we will refer to (sk, ek, vk) as
(skid, ekid, vkid).

8 The motivation behind the evaluation-keys set EKSi is that, if σi authenticates
the output of a labeled program Pi, then EKSi = {ekid}id∈Pi should be the set of
evaluation keys corresponding to identities involved in the computation of Pi.
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allow authenticators to depend on the number of keys involved in the compu-
tation. More formally, let pp←Setup(1λ), P = (f, `1, . . . , `t) with `i = (idi, τi),
{(skid, ekid, vkid) ← KeyGen(pp)}id∈P , and σi ← Auth(skidi , ∆, `i,mi) for all i ∈
[t]. A multi-key HA is said to be succinct if there exists a fixed polynomial p such
that |σ| = p(λ, n, log t) where σ = Eval(g, {(σi, ekidi)}i∈[t]) and n = |{id ∈ P}|.
Remark 1. Succinctness is one of the crucial properties that make multi-key HAs
an interesting primitive. Without succinctness, a trivial multi-key HA construc-
tion is the one where Eval outputs the concatenation of all the signatures (and
messages) given in input, and the verifier simply checks each message-signature
pair and recomputes the function by himself. Our definition of succinctness,
where signatures can grow linearly with the number of keys but logarithmically
in the total number of inputs, is also non-trivial, especially when considering set-
tings where there are many more inputs than keys (in which case, the above triv-
ial construction would not work). Another property that can make homomorphic
signatures an interesting primitive is privacy—context-hiding—as considered in
prior work. Intuitively, context-hiding guarantees that signatures do not reveal
information on the original inputs. While we leave the study of context-hiding
for multi-key HAs for future work, we note that a trivial construction that is
context-hiding but not succinct can be easily obtained with the additional help
of non-interactive zero-knowledge proofs of knowledge: the idea is to extend the
trivial construction above by requiring the evaluator to generate a NIZK proof of
knowledge of valid input messages and signatures that yield the public output.
In this sense, we believe that succinctness is the most non-trivial property to
achieve in homomorphic signatures, and this is what we focus on in this work.

Security. Intuitively, our security model for multi-key HAs guarantees that
an adversary, without knowledge of the secret keys, can only produce authenti-
cators that were either received from a legitimate user, or verify correctly on the
results of computations executed on the data authenticated by legitimate users.
Moreover, we also give to the adversary the possibility of corrupting users. In
this case, it must not be able to cheat on the outputs of programs that get inputs
from uncorrupted users only. In other words, our security definition guarantees
that the corruption of one user affects the data of that user only, but does not
endanger the integrity of computations among the other (un-corrupted) users
of the system. We point out that preventing cheating on programs that involve
inputs of corrupted users is inherently impossible in multi-key HAs, at least if
general functions are considered. For instance, consider an adversary who picks
the function (x1 + x2 mod p) where x1 is supposed to be provided by user Al-
ice. If the adversary corrupts Alice, it can use her secret key to inject any input
authenticated on her behalf and thus bias the output of the function at its will.

The formalization of the intuitions illustrated above is more involved. For
a scheme MKHAut we define security via the following experiment between a
challenger C and an adversary A (HomUF-CMAA,MKHAut(λ) ):
Setup. C runs Setup(1λ) to obtain the public parameters pp that are sent to A.
Authentication Queries A can adaptively submit queries of the form (∆, `,m),

where ∆ is a dataset identifier, ` = (id, τ) is a label in ID × T and m ∈ M
are messages of his choice. C answers as follows:

10



– If (∆, `,m) is the first query for the dataset ∆, C initializes an empty list
L∆ = ∅ and proceeds as follows.

– If (∆, `,m) is the first query with identity id, C generates keys (skid, ekid,
vkid) ←$ KeyGen(pp) (that are implicitly assigned to identity id), gives
ekid to A and proceeds as follows.

– If (∆, `,m) is such that (`,m) /∈ L∆, C computes σ` ←$ Auth(skid, ∆, `,m)
(note that C has already generated keys for the identity id), returns σ`
to A, and updates the list L∆ ← L∆ ∪ (`,m).

– If (∆, `,m) is such that (`, ·) ∈ L∆ (which means that the adversary had
already made a query (∆, `,m′) for some message m′), then C ignores
the query.

Verification Queries A is also given access to a verification oracle. Namely,
the adversary can submit a query (P, ∆,m, σ), and C replies with the output
of Ver(P, ∆, {vkid}id∈P ,m, σ).

Corruption The adversary has access to a corruption oracle. At the beginning
of the game, the challenger initialises an empty list Lcorr = ∅ of corrupted
identities; during the game, A can adaptively query identities id ∈ ID. If
id /∈ Lcorr, then C replies with the triple (skid, ekid, vkid) (that is generated
using KeyGen if not done before) and updates the list Lcorr ← Lcorr ∪ id. If
id ∈ Lcorr, then C replies with the triple (skid, ekid, vkid) assigned to id before.

Forgery In the end, A outputs a tuple (P∗, ∆∗,m∗, σ∗). The experiment out-
puts 1 if the tuple returned byA is a forgery (defined below), and 0 otherwise.

Definition 4 (Forgery). Consider an execution of HomUF-CMAA,MKHAut(λ)
where (P∗, ∆∗,m∗, σ∗) is the tuple returned by the adversary in the end of the ex-
periment, with P∗ = (f∗, `∗1, . . . , `

∗
t ). This is a forgery if Ver(P∗, ∆∗, {vkid}id∈P∗ ,

m∗, σ∗) = 1, for all id ∈ P∗ we have that id /∈ Lcorr (i.e., no identity involved in
P∗ is corrupted), and either one of the following properties is satisfied:

Type 1: L∆∗ has not been initialized during the game (i.e., the dataset ∆∗ was
never queried).

Type 2: For all i ∈ [t], ∃(`∗i ,mi) ∈ L∆∗ , but m∗ 6= f∗(m1, . . . ,mt) (i.e., m∗

is not the correct output of P∗ when executed over previously authenticated
messages).

Type 3: There exists a label `∗ such that (`∗, ·) /∈ L∆∗ (i.e., A never made a
query with label `∗).

We say that a HA scheme MKHAut is secure if for every PPT adversary A, its
advantage AdvHomUF-CMA

MKHAut,A (λ) = Pr[HomUF-CMAA,MKHAut(λ) = 1] is negligible.

Remark 2 (Comparison with previous security definitions). Our security notion
can be seen as the multi-key version of the one proposed by Gennaro and Wichs
in [26] (in their model our Type 3 forgeries are called ‘Type 1’ as they do not
consider multiple datasets). We point out that even in the special case of a
single key, our security definition is stronger than the ones used in previous
work [9,23,16,30] (with the only exception of [26]). The main difference lies in
our definition of Type 3 forgeries. The intuitive idea of this kind of forgeries
is that an adversary who did not receive an authenticated input labeled by a

11



certain `∗ cannot produce a valid authenticator for the output of a computation
which has `∗ among its inputs. In [9,30] these forgeries were not considered at
all, as the adversary is assumed to query the dataset always in full. Other works
[23,11,16] consider a weaker Type 3 notion, which deals with the concept of
“well defined programs”, where the input wire labeled by the missing label `∗ is
required to “contribute” to the computation (i.e., it must change its outcome).
The issue with such a Type 3 definition is that it may not be efficient to test if an
input contributes to a function, especially if the admissible functions are general
circuits. In contrast our definition above is simpler and efficiently testable since
it simply considers a Type 3 forgery one where the labeled program P∗ involves
an un-queried input.

Multi-Key Homomorphic Signatures. As previously mentioned, our defini-
tions are general enough to be easily adapted to either case in which verification
is secret or public. The only difference is whether the adversary is allowed to see
the verification keys in the security experiment. When the verification is public,
we call the primitive multi-key homomorphic signatures. More formally:

Definition 5 (Multi-Key Homomorphic Signatures). A multi-key homo-
morphic signature is a multi-key homomorphic authenticator in which verifica-
tion keys are also given to the adversary in the security experiment.

Note that making verification keys public also allows to slightly simplify the se-
curity experiment by removing the verification oracle (the adversary can run the
verification by itself). In the sequel, when referring to multi-key homomorphic
signatures we adapt our notation to the typical one of digital signatures, namely
we denote Auth(sk, ∆, `,m) as Sign(sk, ∆, `,m), and call its outputs signatures.

Non-Adaptive Corruption Queries. In our work, we consider a relaxation
of the security definition in which the adversaries ask for corruptions in a non-
adaptive way. More precisely, we say that an adversary A makes non-adaptive
corruption queries if for every identity id asked to the corruption oracle, id was
not queried earlier in the game to the authentication oracle or the verification
oracle. For this class of adversaries, it is easy to see that corruption queries
are essentially of no help as the adversary can generate keys on its own. More
precisely, the following proposition holds (see the full version [22] for the proof).

Proposition 1. MKHAut is secure against adversaries that do not make cor-
ruption queries if and only if MKHAut is secure against adversaries that make
non-adaptive corruption queries.

Weakly-Adaptive Secure multi-key HAs. In our work, we also consider a
weaker notion of security for multi-key HAs in which the adversary has to declare
all the queried messages at the beginning of the experiment. More precisely, we
consider a notion in which the adversary declares only the messages and the
respective tags that will be queried, for every dataset and identity, without,
however, needing to specify the names of the datasets or of the identities. In
a sense, the adversary A is adaptive on identities and dataset names, but not
on tags and messages. The definition is inspired by the one, for the single-key
setting, of Catalano et al. [16].
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To define the notion of weakly-adaptive security for multi-key HAs, we intro-
duce here a new experiment Weak-HomUF-CMAA,MKHAut, which is a variation of
experiment HomUF-CMAA,MKHAut (Definition 3) as described below.

Definition 6 (Weakly-Secure Multi-Key Homomorphic Authenticators).
In the security experiment Weak-HomUF-CMAA,MKHAut, before the setup phase,
the adversary A sends to the challenger C a collection of sets of tags Ti,k ⊆ T for
i ∈ [Qid] and k ∈ [Q∆], where Qid and Q∆ are, respectively, the total numbers
of distinct identities and datasets that will be queried during the game. Asso-
ciated to every set Ti,k, A also sends a set of messages {mτ}τ∈Ti,k . Basically
the adversary declares, prior to key generation, all the messages and tags that
it will query later on; however A is not required to specify identity and dataset
names. Next, the adversary receives the public parameters from C and can start
the query-phase. Verification queries are handled as in HomUF-CMAA,MKHAut.
For authentication queries, A can adaptively submit pairs (id, ∆) to C. The chal-
lenger then replies with a set of authenticators {στ}τ∈Ti,k , where indices i, k are
such that id is the i-th queried identity, and ∆ is the k-th queried dataset.

An analogous security definition of weakly-secure multi-key homomorphic sig-
natures is trivially obtained by removing a verification oracle.

In the full version of this paper, we present two generic transformations that
turn weakly secure multi-key homomorphic authenticator schemes into adaptive
secure ones. Our first transformation holds in the standard model and works
for schemes in which the tag space T has polynomial size, while the second one
avoids this limitation on the size of T but holds in the random oracle model.

4 Our Multi-Key Fully Homomorphic Signature

In this section, we present our construction of a multi-key homomorphic signa-
ture scheme that supports the evaluation of arbitrary circuits of bounded poly-
nomial depth. The scheme is based on the SIS problem on standard lattices, a
background of which is provided in the next section. Precisely, in Section 4.2 we
present a scheme that is weakly-secure and supports a single dataset. Later, in
Section 4.3 we discuss how to extend the scheme to handle multiple datasets,
whereas the support of adaptive security can be obtained via the applications of
our transformations as shown in [22].

4.1 Lattices and Small Integer Solution Problem

We recall here notation and some basic results about lattices that are useful to
describe our homomorphic signature construction.

For any positive integer q we denote by Zq the ring of integers modulo q. Ele-
ments in Zq are represented as integers in the range (− q2 ,

q
2 ]. The absolute value

of any x ∈ Zq (denoted with |x|) is defined by taking the modulus q representa-
tive of x in (− q2 ,

q
2 ], i.e., take y = x mod q and then set |x| = |y| ∈ [0, q2 ]. Vectors

and matrices are denoted in bold. For any vector u := (ui, . . . , un) ∈ Znq , its infin-
ity norm is ‖u‖∞ := maxi∈[n] |ui|, and similarly for a matrix A := [ai,j ] ∈ Zn×mq

we write ‖A‖∞ := maxi∈[n],j∈[m] |ai,j |.
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The Small Integer Solution Problem (SIS). For integer parameters n,m, q
and β, the SIS(n,m, q, β) problem provides to an adversary A a uniformly ran-
dom matrix A ∈ Zn×mq , and requires A to find a vector u ∈ Znq such that u 6= 0,
‖u‖∞ ≤ β, and A · u = 0. More formally,

Definition 7 (SIS [36]). Let λ ∈ N be the security parameter. For values n =
n(λ),m = m(λ), q = q(λ), β = β(λ), defined as functions of λ, the SIS(n,m, q, β)
hardness assumption holds if for any PPT adversary A we have

Pr
[
A · u = 0 ∧ u 6= 0 ∧ ‖u‖∞ ≤ β : A←$ Zn×mq ,u← A(1λ,A)

]
≤ negl(λ).

For standard lattices, the SIS problem is known to be as hard as solving certain
worst-case instances of lattice problems [2,33,36,35], and is also implied by the
hardness of learning with error (we refer any interested reader to the cited papers
for the technical details about the parameters).

In our paper, we assume that for any β = 2poly(λ) there are some n = poly(λ),
q = 2poly(λ), with q > β, such that for all m = poly(λ) the SIS(n,m, q, β) hardness
assumption holds. This parameters choice assures that hardness of worst-case
lattice problems holds with sub-exponential approximation factors.

Trapdoors for Lattices. The SIS problem is hard to solve for a random
matrix A. However, there is a way to sample a random A together with a
trapdoor such that SIS becomes easy to solve for that A, given the trapdoor.
Additionally, it has been shown that there exist “special” (non random) matrices
G for which SIS is easy to solve as well. The following lemma summarizes the
above known results (similar to a lemma in [10]):
Lemma 2 ([3,28,4,34]). There exist efficient algorithms TrapGen, SamPre, Sam
such that the following holds: given integers n ≥ 1, q ≥ 2, there exist some
m∗ = m∗(n, q) = O(n log q), βsam = βsam(n, q) = O(n

√
log q) such that for all

m ≥ m∗ and all k (polynomial in n) we have:

1. Sam(1m, 1k, q) → U samples a matrix U ∈ Zm×kq such that ‖U‖∞ ≤ βsam
(with probability 1).

2. For (A, td) ← TrapGen(1n, 1m, q), A′ ←$ Zn×mq , U ← Sam(1m, 1k, q), V :=

AU, V′ ←$ Zn×kq , U′ ← SamPre(A,V′, td), we have the following statistical
indistinguishability (negligible in n)

A
stat
≈ A′ and (A, td,U,V)

stat
≈ (A, td,U′,V′)

and U′ ← SamPre(A,V′, td) always satisfies AU′ = V′ and ‖U′‖∞ ≤ βsam.
3. Given n,m, q as above, there is an efficiently and deterministically com-

putable matrix G ∈ Zn×mq and a deterministic polynomial-time algorithm

G−1 that on input V ∈ Zn×kq (for any integer k) outputs R = G−1(V) such

that R ∈ {0, 1}m×k and GR = V.

4.2 Our Multi-Key Homomorphic Signature for Single Dataset

In this section, we present our multi-key homomorphic signature that supports
the evaluation of boolean circuits of bounded polynomial depth. Our construc-
tion is inspired by the (single-key) one of Gorbunov et al. [30], with the fun-
damental difference that in our case we enable computations over data signed
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using different secret keys. Moreover, our scheme is secure against Type 3 forg-
eries. We achieve this via a new technique which consists into adding to every
signature a component that specifically protects against this type of forgeries.
We prove the scheme to be weakly-secure under the SIS hardness assumption.

Parameters. Before describing the scheme, we discuss how to set the various
parameters involved. Let λ be the security parameter, and let d = d(λ) = poly(λ)
be the bound on the depth of the circuits supported by our scheme. We define
the set of parameters used in our scheme Par = {n,m, q, βSIS, βmax, βinit} in terms
of λ, d and of the parameters required by the trapdoor algorithm in Lemma 2:
m∗, βsam, where m∗ = m∗(n, q) := O(n log q) and βsam := O(n

√
log q). More

precisely, we set: βmax := 2ω(log λ)d; βSIS := 2ω(log λ)βmax; n = poly(λ); q =
O(2poly(λ)) > βSIS is a prime (as small as possible) so that the SIS(n,m′, q, βSIS)
assumption holds for all m′ = poly(λ); m = max{m∗, n log q + ω(log(λ))} =
poly(λ) and, finally, βinit := βsam = poly(λ).

Construction. The PPT algorithms (Setup,KeyGen,Sign,Eval,Ver) which de-
fine our construction of Multi-key Homomorphic Signatures work as follows:

Setup(1λ). The setup algorithm takes as input the security parameter λ and
generates the public parameters pp which include: the bound on the circuit
depth d (which defines the class F of functions supported by the scheme,
i.e., boolean circuits of depth d), the set Par = {n,m, q, βSIS, βmax, βinit},
the set U = {U ∈ Zm×mq : ‖U‖∞ ≤ βmax}, the set V = {V ∈ Zn×mq },
descriptions of the message space M = {0, 1}, the tag space T = [T], and
the identity space ID = [C], for integers T,C ∈ N. In this construction,
the tag space is of polynomial size, i.e., T = poly(λ) while the identity
space is essentially unbounded, i.e., we set C = 2λ. Also recall that T and
ID immediately define the label space L = ID × T . The final output is
pp = {d,Par,U ,V,M, T , ID}. We assume that these public parameters pp
are input of all subsequent algorithms, and often omit them from the input
explicitly.

KeyGen(pp). The key generation algorithm takes as input the public param-
eters pp and generates a key-triple (sk, ek, vk) defined as follows. First, it
samples T random matrices V1, . . . ,VT ←$ V. Second, it runs (A, td) ←
TrapGen(1n, 1m, q) to generate a matrix A ∈ Zn×mq along with its trapdoor
td. Then, it outputs sk = (td,A,V1, . . . ,VT), ek = A, vk = (A,V1, . . . ,VT).
Note that it is possible to associate the key-triple to an identity id ∈ ID, when
we need to stress this explicitly we write (skid, ekid, vkid). We also observe that
the key generation process can be seen as the combination of two independent
sub-algorithms 9 KeyGen1 and KeyGen2, where {V1, . . .VT} ← KeyGen1(pp)
and (A, td)← KeyGen2(pp).

Sign(sk, `,m). The signing algorithm takes as input a secret key sk, a label
` = (id, τ) for the message m and it outputs a signature σ := (m, z, I,Uid,Zid)

9 This splitting will be used to extend our multi-key homomorphic signature scheme
from supporting a single dataset to support multiple datasets. This extension holds
in the standard model and is described in Section 4.3.
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where I = {id}, Uid is generated as Uid ← SamPre(A,V` − mG, td) (us-
ing the algorithm SamPre from Lemma 2), z = m and Zid = Uid. The
two latter terms are responsible for protection against Type 3 forgeries.
Although they are redundant for fresh signatures, their value will become
different from (m,Uid) during homomorphic operations, as we clarify later
on. More generally, in our construction signatures are of the form σ :=
(m, z, I, {Uid}id∈I, {Zid}id∈I) with I ⊆ ID and Uid,Zid ∈ U ,∀ id ∈ I.

Eval
(
f, {(σi,EKSi)}i∈[t]

)
. The evaluation algorithm takes as input a t-input func-

tion f : Mt −→ M, and a set of pairs {(σi,EKSi)}i∈[t] where each σi is a
signature and each EKSi is a set of evaluation keys. In our description be-
low we treat f as an arithmetic circuit over Zq consisting of addition and
multiplication gates.10 Therefore, we only describe how to evaluate homo-
morphically a fan-in-2 addition (resp. multiplication) gate as well as a unary
multiplication-by-constant gate.
Let g be a fan-in-2 gate with left input σL := (mL, zL, IL,UL,ZL) and right in-
put σR := (mR, zR, IR,UR,ZR). To generate the signature σ := (m, z, I,U,Z)
on the gate’s output one proceeds as follows. First set I = IL ∪ IR. Second,
“expand” UL := {Uid

L }id∈IL as:

Ûid
L =

{
0 if id /∈ IL
Uid

L if id ∈ IL
, ∀ id ∈ I .

where 0 denotes an (m×m)-matrix with all zero entries. Basically, we extend
the set to be indexed over all identities in I = IL ∪ IR by inserting zero
matrices for identities in I \ IL. The analogous expansion process is applied
to UR := {Uid

R}id∈IL , ZL := {ZL
id}id∈IR and ZR := {Zid

R}id∈IR , denoting the

expanded sets {Ûid
R}id∈I, {Ẑid

L }id∈I and {Ẑid
R}id∈I respectively.

Next, depending on whether g is an addition or multiplication gate one
proceeds as follows.

Addition gate. If g is additive, compute m = mL + mR, z = zL + zR,
U = {Uid}id∈I := {Ûid

L + Ûid
R}id∈I and Z = {Zid}id∈I := {Ẑid

L + Ẑid
R}id∈I.

If we refer to βL and βR as ‖UL‖∞ := max{‖Uid
L ‖∞ : id ∈ IL} and ‖UR‖∞ :=

max{‖Uid
R‖∞ : id ∈ IR} respectively, then for any fan-in-2 addition gate it

holds β := ‖U‖∞ = βL + βR. The same noise growth applies to Z.

Multiplication gate. If g is multiplicative, compute m = mL · mR, z =
zL + zR, define VL =

∑
id∈ IL

AidUid + mLG, set

U = {Uid}id∈I := {mRÛid
L + Ûid

R ·G−1(VL)}id∈I

and Z = {Zid}id∈I := {Ẑid
L + Ẑid

R}id∈I.
Letting βL and βR as defined before, then for any fan-in-2 multiplication gate
it holds β := ‖U‖∞ = |mR|βL+mβR, while the noise growth of Z is the same
as in the addition gate.

10 We point out that considering f as an arithmetic circuit over Zq is enough to describe
any boolean circuits consisting of NAND gates as NAND(m1,m2) = 1−m1 ·m2 holds
for m1,m2 ∈ {0, 1}.
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Multiplication by constant gate. Let g be a unary gate representing
a multiplication by a constant a ∈ Zq, and let its single input signature
be σR := (mR, zR, IR,UR,ZR). The output σ := (m, z, I,U,Z) is obtained by
setting m = a ·mR ∈ Zq, z = zR, I = IR, Z = ZR, and U = {Uid}id∈I where,
for all id ∈ I, Uid = a ·Uid

R or, alternatively, Uid = Uid
R ·G−1(a ·G). In the

first case, the noise parameter becomes β := ‖U‖∞ = |a|βL (thus a needs to
be small), whereas in the second case it holds β := ‖U‖∞ ≤ mβL, which is
independent of a’s size.

Ver(P, {vkid}id∈P ,m, σ). The verification algorithm takes as input a labeled pro-
gram P = (f, `1, . . . , `n), the set of the verification keys {vkid}id∈P of users
involved in the program P, a message m and a signature σ = (m, z, I,U,Z).
It then performs three main checks and outputs 0 if at least one check fails,
otherwise it returns 1.
Firstly, it checks if the list of identities declared in σ corresponds to the ones
in the labels of P: I = {id : id ∈ P} (1)

Secondly, from the circuit f (again seen as an arithmetic circuit) and the
values {V`1 , . . . ,V`t} contained in the verification keys, it computes two
values V∗ and V+ proceeding gate by gate as follows. Given as left and right
input matrices V∗L,V

∗
R (resp. V+

L ,V
+
R ), at every addition gate one computes

V∗ = V∗L + V∗R (resp. V+ = V+
L + V+

R ); at every multiplication gate one
computes V∗ = V∗RG−1V∗L (resp. V+ = V+

L +V+
R ). Every gate representing

a multiplication by a constant a ∈ Zq, on input V∗R (resp. V+
R ) outputs

V∗ = a·V∗R (resp. V+ = V+
R ). Note that the computation of V+ is essentially

the computation of a linear function V+ =
∑t
i=1 γi ·V`i , for some coefficients

γi that depend on the structure of the circuit f .
Thirdly, the verification algorithm parses U = {Uid}id∈I and Z = {Zid}id∈I
and checks:

‖U‖∞ ≤ βmax and ‖Z‖∞ ≤ βmax (2)∑
id∈I

AidUid + m ·G = V∗ (3)∑
id∈I

AidZid + z ·G = V+ (4)

Finally, it is worth noting that the computation of the matrices V∗ and V+

can be precomputed (or performed offline), prior to seeing the actual signa-
ture σ. In the multiple dataset extension of Section 4.3 this precomputation
becomes particularly beneficial as the same V∗,V+ can be re-used every
time one wants to verify for the same labeled program P (i.e., one can verify
faster, in an amortized sense, than that of running f).

In the following paragraphs, we analyse succinctness and security of the proposed
construction; for what regards correctness we just give an intuition and refer the
interested reader to the full version of this paper available in [22].
Noise Growth and Succinctness. First we analyse the noise growth of the
components U,Z in the signatures of our MKHSig construction. In particular
we need to show that when starting from “fresh” signatures, in which the noise
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is bounded by βinit, and we apply an admissible circuit, then one ends up with
signatures in which the noise is within the allowable amount βmax.

An analysis similar to the one of Gorbunov et al. [30] is applicable also to our
construction whenever the admissible functions are boolean circuits of depth d
composed only of NAND gates.

Let us first consider the case of the U component of the signatures. At every
NAND gate, if ‖UL‖∞, ‖UR‖∞ ≤ β, the noise of the resulting U is at most
(m+ 1)β. Therefore, if the circuit has depth d, the noise of the matrix U at the
end of the evaluation is bounded by ‖U‖∞ ≤ βinit · (m+ 1)d ≤ 2O(log λ)d ≤ βmax.
For what regards the computation performed over the matrices Z, we observe
that we perform only additions (or identity functions) over them. This means
that at every gate of any f , the noise in the Z component at most doubles. Given
that we consider depth-d circuits we have that ‖Z‖∞ ≤ βinit · 2d ≤ 2O(log λ)+d ≤
βmax. Finally, by inspection one can see that the size of every signature σ on a
computation’s output involving n users is at most (1 + 2d + nλ + 2nβmax) that
is O(n · p(λ)) for some fixed polynomial p(·).

Authentication Correctness. This is rather simple and follows from the
noise growth property mentioned above and by observing that equation AidUid +

mG = V` = V∗ holds by construction.

Evaluation Correctness. Evaluation correctness follows from two main
facts: the noise growth mentioned earlier, and the preservation of the invariant∑

id∈I AidUid + mG = V∗. At every gate, it is easy to see that the expansion of
U still preserves the invariant for both left and right inputs. For additive gates,
assuming validity of the inputs, i.e., VL =

∑
id∈IL

AidU
id
L +mLG (and similarly VR)

and by construction of Uid = Uid
L +Uid

R , one obtains
∑

id∈IL∪IR
AidUid+(mL+mR)G =

VL + VR = V∗. For what regards multiplicative gates, by construction of every
Uid we obtain

∑
id∈I AidUid + mG :=

∑
id∈I Aid(mRÛ

id
L + Ûid

RG
−1(VL)) + (mLmR)G.

Grouping by mR and applying the definition of VL, the equation can be rewritten

as mRVL+
(∑

id∈I Aid Ûid
R

)
G−1(VL). If now we write mRVL as mRGG−1(VL) and we

group by G−1(VL), we get
[(∑

id∈IR
AidU

id
R

)
+ mRG

]
G−1(VL) = V∗, where the last

equation follows from the definitions of VR and V∗. Correctness of computations
over the matrices Z is quite analogous.

Security. The following theorem states the security of the scheme MKHSig.

Theorem 1. If the SIS(n,m·Qid, q, βSIS) hardness assumption holds, MKHSig =
(Setup,KeyGen,Sign,Eval,Ver) is a multi-key homomorphic signature weakly-
adaptive secure against adversaries that make signing queries involving at most
Qid different identities and that make non-adaptive corruption queries.

Proof. Note that we can deal with corruptions via our generic result of Propo-
sition 1. Therefore it is sufficient to prove the security against adversaries that
make no corruptions. Moreover, since this scheme works for a single dataset note
that Type 1 forgeries cannot occur.
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For the proof let us recall how the weakly-adaptive security experiment (Def-
inition 6) works for our multi-key homomorphic signature scheme MKHSig. This
is a game between an adversary A and a challenger C that has four main phases:

(1) A declares an integer Q representing the number of different identities that
it will ask in the signing queries. Moreover, for every i ∈ [Q] A sends to C a
set Ti ⊆ T := {τ1, . . . , τT} and a set of pairs {(mτ , τ)}τ∈Ti .

(2) C runs Setup(1λ) to obtain the public parameters and sends them to A.
(3) A adaptively queries identities id1, . . . , idQ. When C receives the query idi

it generates a key-triple (skidi , ekidi , vkidi) by running KeyGen(pp), and for
all labels ` = (idi, τ) such that τ ∈ Ti it runs σiτ←Sign(skidi , `,mτ ). Then C
sends to A: the public keys vkidi := (Aidi , {V`}τ∈T ) and ekidi := (Aidi), and
the signatures {σiτ}τ∈Ti .

(4) The adversary produces a forgery consisting of a labeled program P∗ = (f∗,
`∗1, . . . , `

∗
t ) where f∗ ∈ F , f∗ :Mt →M, a message m∗ and a signature σ∗.

A wins the non-adaptive security game if Ver(P∗, {vkid}id∈P∗ ,m∗, σ∗) = 1
and one of the following conditions holds:

Type 2 Forgery: there exist messages m`∗1
, . . . ,m`∗t

s.t. m∗ 6= f∗(m`∗1
, . . . ,m`∗t

)
(i.e., m∗ is not the correct output of P∗ when executed over previously signed
messages).

Type 3 Forgery: there exists at least one label `∗ = (id∗, τ∗) that was not
queried by A.

Consider a variation of the above game obtained modifying phase (3) as follows:
(3′) C picks an instance A ∈ Zn×m′q of the SIS(n,m′, q, βSIS) problem for m′ =

m ·Q = poly(λ), and parse A := (Aid1 | . . . |AidQ) ∈ Zn×m′q as the concatenation
of Q different blocks of n×m matrices.
Next, when C receives the i-th query idi from A, it does the following:

– it samples a matrix Uidi,τ ←$ U such that ‖Uidi,τ‖ ≤ βinit;
– for all ` := (idi, τ) with τ ∈ Ti, C computes V` = AidiUidi,τ + mτ ·G;
– for all ` := (idi, τ) with τ /∈ Ti, C computes V` = AidiUidi,τ + bi,τ ·G, where
bi,τ ←$ {0, 1}.

– C sends to A the public keys vkidi := (Aidi , {V`}τ∈T ) and ekidi := (Aidi),
along with signatures {σiτ}τ∈Ti where σiτ := (mτ ,mτ , I := {idi},Uidi,τ ,Uidi,τ ).

Clearly, if A is a uniformly random matrix so is each block {Aidi}i∈[Q].

Due to point (2) of Lemma 2, since (AidiUidi,τ ) is statistically indistinguish-
able from a random matrix, all the matrices V` generated in (3′) are statis-
tically close to the ones generated in (3). Thus, the two games are statisti-
cally indistinguishable. At this point we show that for every PPT adversary A
which produces a forgery in the modified game we can construct a PPT algo-
rithm B that solves the SIS(n,m ·Q, q, βSIS) problem. B receives an SIS instance
A := (Aid1 | . . . |AidQ) ∈ Zn×mQq and simulates the modified game to A by acting
exactly as the challenger C described above. Then, once A outputs its forgery,
according to the forgery’s type, B proceeds as described below.
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Type 2 Forgeries. Let (P∗ := (f∗, `∗1, . . . , `
∗
t ),m

∗, σ∗ := (m∗, z∗, I∗,U∗,Z∗))
be a Type 2 forgery produced by A in the modified game. Moreover let σ =
(m, z, I,U,Z) be the signature obtained by honestly applying Eval to the sig-
natures corresponding to labels `∗1, . . . , `

∗
t that were given to A. Parse U :=

{Uid}id∈I and notice that by the correctness of the scheme we have that m =
f∗(m`∗1

, . . . ,m`∗t
), I = {id : id ∈ P∗}, and

∑
id∈I AidUid + m ·G = V∗. Moreover,

by definition of Type 2 forgery recall that m∗ 6= f∗(m`∗1
, . . . ,m`∗t

) and that the
tuple satisfies verification. In particular, satisfaction of check (1) implies that
I = I∗, while check (3) means

∑
id∈I∗ AidU

∗
id +m∗ ·G = V∗ . Combining the two

equations above we obtain
∑

id∈I AidŨid = m̃ ·G, where m̃ = m − m∗ 6= 0 and,

for all id ∈ I, Ũid = U∗id −Uid ∈ U such that ‖Ũid‖∞ ≤ βmax. Notice that there

must exist at least one īd ∈ I for which Ũīd 6= 0.

Moreover, for all id ∈ {id1, . . . , idQ}\ I, define Ũid = 0 and set Ũ =

 Ũid1

.

.

.

ŨidQ

 ∈
ZmQ×mq . Then, we have AŨ = m̃ ·G.

Next B samples r ←$ {0, 1}mQ, sets s = Ar ∈ Znq , and computes r′ =
G−1(m̃−1 · s), so that r′ ∈ {0, 1}m and m̃ · Gr′ = s. Finally, B outputs u =
Ũr′ − r ∈ ZmQq . We conclude the proof by claiming that the vector u returned
by B is a solution of the SIS problem for the matrix A. To see this observe that

A(Ũr′ − r) = (AŨ)r′ −Ar = m̃ ·G ·G−1(m̃−1 · s)− s = 0 .

and ‖u‖∞ ≤ (2m+ 1)βmax ≤ βSIS.
It remains to show that u 6= 0. We show that this is the case (i.e., Ũr′ 6= r)

with overwhelming probability by using an entropy argument (the same ar-
gument used in [30]). In particular, this holds for any (worst case) choice of
A, Ũ, m̃, and only based on the random choice of r ←$ {0, 1}mQid . The intu-
ition is that, even if r′ = G−1(sm̂−1) depends on s = Ar, s is too small to
reveal much information about the random r. More precisely, we have that
H∞(r | r′) ≥ H∞(r | Ar) because r′ is chosen deterministically based on
s = Ar. Due to the Lemma 1, we have that H∞(r | Ar) ≥ H∞(r) − log(|S|),
where S is the space of all possible s. Since s ∈ Znq , |S| = qn, and then

log(|S|) = log(qn) = log((2logq)n) = n log((2log q)) = n log q. Regarding H∞(r),
since H∞(X) := −log

(
maxx Pr[X = x]

)
, we have H∞(r) = −log

(
2−mQ

)
=

mQ ≥ m. Then, H∞(r | r′) ≥ H∞(r) − log(S) ≥ m − n log q = ω(log λ).
Since we know that for random variables X,Y the optimal probability of an
unbounded adversary guessing X given the correlated value Y is 2−H∞(X|Y ),
then Pr[r = Ũr′] ≤ 2−H∞(r|r′) ≤ 2−ω(log λ) = negl(λ).

Type 3 Forgery. Let (P∗ := (f∗, `∗1, . . . , `
∗
t ),m

∗, σ∗ := (m∗, z∗, I∗,U∗,Z∗)) be
a Type 3 forgery produced by A in the modified game such that there exists
(at least) one label `∗j = (id∗, τ∗) such that id∗ = idi but τ∗ /∈ Ti.11 Actually,
without loss of generality we can assume that there is exactly one of such labels;

11 It is easy to see that the case in which id∗ is new would imply the generation of a new
Aid∗ , which would make the verification equations hold with negligible probability
(over the random choice of Aid∗).

20



if this is not the case, one could indeed redefine another adversary that makes
more queries until it misses only this one. Note that for such a tag τ∗ /∈ Ti, B
simulated Vidi,τ∗ = AUidi,τ∗ + bi,τ∗G for a randomly chosen bit bi,τ∗ ←$ {0, 1},
that is perfectly hidden from A.

By definition of Type 3 forgery, the tuple passes verification, and in particular
check (4)

∑
id∈I∗ AidZ

∗
id + z∗ ·G = V+ =

∑t
i=1 γi ·V`∗i

where the right hand side
of the equation holds by construction of the verification algorithm. Moreover,
let σ = (m, z, I,U,Z) be the signature obtained by honestly applying Eval to
the signatures corresponding to labels `∗1, . . . , `

∗
t ; in particular for the specific,

missing, label `∗j B uses the values Uidi,τ∗ , bi,τ∗ used to simulate Vidi,τ∗ . Parsing
Z := {Zid}id∈I, notice that by correctness it holds I = {id : id ∈ P∗} and∑

id∈I AidZid+z·G = V+ where z =
∑t
i=1,i6=j γimi+γjbi,τ∗ . Now, the observation

is that every γi ≤ 2d < q, i.e., γi 6= 0 mod q. Since bi,τ∗ is random and perfectly
hidden to A we have that with probability 1/2 it holds z 6= z∗.

Thus, if z 6= z∗, B combines the equalities on V+ to come up with an equation∑
id∈I AidZ̃id = z̃ · G where z̃ = z − z∗ 6= 0 mod q and, for all id ∈ I, Z̃id =

Z∗id − Zid ∈ U such that ‖Z̃id‖∞ ≤ βmax.

Finally, using the same technique as in the case of Type 2 forgeries, B can
compute a vector u that is a solution of SIS with overwhelming probability, i.e.,
Au = 0. Therefore, we have proven that if an adversary A can break the MKHSig
scheme with non negligible probability, then C can use such an A to break the
SIS assumption for A with non negligible probability as well.

A Variant with Unbounded Tag Space in the Random Oracle Model. In
this section, we show that the construction of multi-key homomorphic signatures
of Section 4.2 can be easily modified in order to have short public keys and to
support an unbounded tag space T = {0, 1}∗. Note that once arbitrary tags are
allowed, the scheme also allows to handle multiple datasets for free. In fact, one
can always extend tags to include the dataset name, i.e., simply redefine each tag
τ as consisting of two substrings τ = (∆, τ ′) where ∆ is the dataset name and
τ ′ the actual tag. The idea of modifying the scheme to support an unbounded
tag space is simple and was also suggested in [30] for their construction. Instead
of sampling matrices {Vid,1, . . .Vid,T} in KeyGen, one can just choose a random

string rid ←$ {0, 1}λ and define every Vid,τ := Ĥ(rid, τ) where Ĥ : {0, 1}∗ → V is
a hash function chosen in Setup (modeled as a random oracle in the proof). In
all the remaining algorithms, every time one needs Vid,τ , this is obtained using

Ĥ.

For this modified scheme, we also provide an idea of how the security proof
of Theorem 1 has to be modified to account for these changes. The main change
is the simulation of hash queries, which is done as follows.

Before phase (1), where A declares its queries, B simply answers every query

Ĥ(r, τ) with a randomly chosen V ←$ V. Afterwards, once A has declared all
its queries, B chooses rid1 , . . . , ridQ ←$ {0, 1}λ and programs the random ora-

cle so that, for all τ ∈ Ti, Ĥ(ridi , τ) = Vidi,τ where Vidi,τ is the same matrix
generated in the phase (3) of the modified game. On the other hand, for all
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τ /∈ Ti, Ĥ(ridi , τ) = Vidi,τ where Vidi,τ = AidUidi,τ + bi,τG for a randomly cho-

sen Uidi,τ ←$ U . All other queries Ĥ(r, τ) where r 6= ridi ,∀i ∈ [Q] are answered
with random V ←$ V. With this simulation, it is not hard to see that, from A’s
forgery B can extract a solution for SIS (except for some negligible probability
that A guesses one of ridi before seeing it).

4.3 From a Single Dataset to Multiple Datasets

In this section, we present a generic transformation to convert a single-dataset
MKHSig scheme into a scheme that supports multiple datasets. The intuition be-
hind this transformation is similar to the one employed in [30] and implicitly used
in [16,13], except that here we have to use additional techniques to deal with
the multi-key setting. We combine a standard signature scheme NH.Sig (non-
homomorphic) with a single dataset multi-key homomorphic signature scheme
MKHSig′. The idea is that for every new dataset ∆, every user generates fresh
keys of the multi-key homomorphic scheme MKHSig′ and then uses the standard
signature scheme NH.Sig to sign the dataset identifier ∆ together with the gen-
erated public key. More precisely, in our transformation we assume to start with
(single-dataset) multi-key homomorphic signature schemes in which the key gen-
eration algorithm can be split into two independent algorithms: KeyGen1 that
outputs some public parameters related to the identity id, and KeyGen2 which
outputs the actual keys. Differently than [30], in our scheme the signer does not
need to sign the whole dataset at once, nor has to fix a bound N on the dataset
size (unless such a bound is already contained in MKHSig′).

In more details, let NH.Sig = (NH.KeyGen,NH.Sign,NH.Ver) be a standard
(non-homomorphic) signature scheme, and let MKHSig′ = (Setup′,KeyGen′,Sign′,
Eval′,Ver′) be a single-dataset multi-key homomorphic signature scheme. We
construct a multi-dataset multi-key homomorphic signature scheme MKHSig =
(Setup,KeyGen,Sign,Eval,Ver) as follows.

Setup(1λ). The setup algorithm samples parameters of the single-dataset multi-
key homomorphic signature scheme, pp′ ← Setup′(1λ), together with a de-
scription of a PRF F : K × {0, 1}∗ → {0, 1}ρ, and outputs pp = (pp′, F ).

KeyGen(pp). The key generation algorithm runs NH.KeyGen to get (pkNHid , skNHid ),
a pair of keys for the standard signature scheme. In addition, it runs KeyGen1

to generate user-specific public parameters ppid, and chooses a seed Kid for
the PRF F . The final output is the vector (skid, ekid, vkid): where skid =
(skNHid ,Kid), ekid = (ppid) and vkid = (pkNHid , ppid).

Sign(skid, ∆, `,m). The signing algorithm proceeds as follows. First it samples
the keys of the single-dataset multi-key homomorphic signature scheme by
feeding randomness FKid

(∆) to KeyGen2, i.e., it runs KeyGen2(pp;FKid
(∆)) to

obtain the keys (sk∆id , ek
∆
id , vk

∆
id ).12 The algorithm then runs σ′←Sign′(sk∆id ,

`,m), and uses the non-homomorphic scheme to sign the concatenation of the
public key vk∆id and the dataset identifier∆, i.e., σ∆id ← NH.Sign(skNHid , vk∆id |∆),

The output is the tuple σ := (I = {id}, σ′, par∆) where par∆ = {(ek∆id , vk
∆
id , σ

∆
id )}.

12 Here we assume that a ρ-bits string is sufficient, otherwise it can always be stretched
using a PRG.
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Note that the use of the PRF allows every signer (having the same Kid) to
generate the same keys of the scheme MKHSig′ on the same dataset ∆.

Eval(f, {(σi,EKSi)}i∈[t]). For each i ∈ [t], the algorithm parses every signature

as σi := (Ii, σ
′
i, par∆,i) with par∆,i = {ek∆id , vk

∆
id , σ

∆
id }id∈Ii , and sets EKS′i =

{ek∆id }id∈Ii . It computes σ′ ← Eval′(f, {σ′i,EKS
′
i}i∈[t]), defines I = ∪ti=1Ii and

par∆ = ∪ti=1par∆,i. The final output is σ = (I, σ′, par∆).
Ver(P, ∆, {vkid}id∈P ,m, σ). The verification algorithm begins by parsing the ver-

ification keys as vkid := (pkNHid , ppid) for each id ∈ I, and also the signature
as σ = (I, σ′, par∆) with par∆ = {(ek∆id , vk

∆
id , σ

∆
id )}id∈I. Then, it proceeds with

two main steps. First, for each id ∈ I, it verifies the standard signature σ∆id on
the public key of the single-dataset multi-key homomorphic scheme and the
given dataset, i.e., it checks whether NH.Ver(pkNHid , vk∆id |∆,σ∆id ) = 1,∀ id ∈ I.
If at least one of the previous equations is not satisfied, the algorithm re-
turns 0, otherwise it proceeds to the second check and returns the output of
Ver′(P, {ppid, vk

∆
id }id∈P ,m, σ′).

Authentication Correctness. Correctness of the scheme substantially fol-
lows from the correctness of the regular signature scheme NH.Sig, the single-
dataset multi-hey homomorphic scheme MKHSig′ and the PRF F .

Evaluation Correctness. Evaluation correctness follows directly from the
correctness of the evaluation algorithm Eval′ of the single-dataset MKHSig scheme,
the correctness of NH.Sig and of the PRF.

Security. Intuitively, the security of the scheme follows from two main obser-
vations. First, no adversary is able to fake the keys of the single-dataset multi-key
homomorphic signature scheme, due to the security of the standard signature
scheme and the property of pseudo-random functions. Secondly, no adversary can
tamper with the results of Eval for a specific dataset as this would correspond
to breaking the security of the single-dataset MKHSig′ scheme.

Theorem 2. If F is a secure pseudo-random function, NH.Sig is an unforgeable
signature scheme and MKHSig′ is a secure single-dataset multi-key homomorphic
signature scheme, then the MKHSig scheme for multiple datasets described in
Section 4.3 is secure against adversaries that make static corruptions of keys
and produce forgeries as in Definition 4.

The full proof of Theorem 2 is given in [22].

5 Our Multi-Key Homomorphic MAC from OWFs

In this section, we describe our construction of a multi-key homomorphic authen-
ticator with private verification keys and supporting the evaluation of low-degree
arithmetic circuits. More precisely, for a computation represented by an arith-
metic circuit of degree d and involving inputs from n distinct identities, the final
authenticator has size

(
n+d
d

)
, that is bounded by poly(n) (for constant d) or by

poly(d) (for constant n). Essentially, the authenticators of our scheme grow with
the degree of the circuit and the number of distinct users involved in the com-
putation, whereas their size remains independent of the total number of inputs
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/ users. This property is particularly desirable in contexts that involve a small
set of users each of which contributes with several inputs.

Although our multi-key homomorphic MAC supports less expressive compu-
tations than our homomorphic signatures of Section 4, the scheme comes with
two main benefits. First, it is based on a simple, general assumption: it relies
on pseudo-random functions and thus is secure only assuming existence of one-
way functions (OWF). Second, the scheme is very intuitive and efficient: fresh
MACs essentially consist only of two Fp field elements (where p is a prime of
λ bits) and an identity identifier; after evaluation, the authenticators consist of(
n+d
d

)
elements in Fp, and homomorphic operations are simply additions and

multiplications in the multi-variate polynomial ring Fp[X1, . . . , Xn].
We describe the five algorithms of our scheme MKHMac below. We note

that our solution is presented for single data set only. However, since it admits
labels that are arbitrarily long strings it is straight-forward to extend the scheme
for handling multiple data sets: simply redefine each tag τ as consisting of two
substrings τ = (∆, τ ′) where ∆ is the dataset name and τ ′ the actual tag.

Setup(1λ). The setup algorithm generates a λ-bit prime p and let the message
space be M := Fp. The set of identities is ID = [C] for some integer bound
C ∈ N, while the tag space consists of arbitrary binary strings, i.e., T =
{0, 1}∗. The set F of admissible functions is made up of all arithmetic circuits
whose degree d is bounded by some polynomial in the security parameter.
The setup algorithm outputs the public parameters pp which include the
descriptions of M, ID, T ,F as in Section 3, as well as the description of a
PRF family F : K×{0, 1}∗ → Fp with seed space K. The public parameters
define also the authenticator space. Each authenticator σ consists of a pair
(I, y) where I ⊆ ID and y is in the C-variate polynomial ring Fp[X1, . . . , XC].
More precisely, if C is set up as a very large number (e.g., C = 2λ) the
polynomials y can still live in some smaller sub-rings of Fp[X1, . . . , XC].

KeyGen(pp). The key generation algorithm picks a random x←$ F∗p, a PRF seed
K ←$ K, and outputs (sk, ek, vk) where sk = vk = (x,K) and ek is void.

Auth(sk, `,m). In order to authenticate the message m with label ` = (id, τ) ∈
ID × T , the authentication algorithm produces an authenticator σ = (I, y)
where I ⊆ ID and y ∈ Fp[Xid] ⊂ Fp[X1, . . . , XC]. The set I is simply {id}. The
polynomial y is a degree-1 polynomial in the variable Xid such that y(0) = m
and y(xid) = F (Kid, `). Note that the coefficients of y(Xid) = y0 + yidXid ∈
Fp[Xid] can be efficiently computed with the knowledge of xid by setting

y0 = m and yid = F (Kid,`)−m
xid

. Moreover, y can be compactly represented by
only giving the coefficients y0, yid ∈ Fp.

Eval(f, {σk}k∈[t]). Given a t-input arithmetic circuit f : Ftp → Fp, and the t
authenticators {σk := (Ik, yk)}k, the evaluation algorithm outputs σ = (I, y)
obtained in the following way. First, it determines all the identities involved
in the computation by setting I = ∪tk=1Ik. Then every polynomial yk is
“expanded” into a polynomial ŷk, defined on the variables Xid corresponding
to all the identities in I. This is done using the canonical embedding Fp[Xid :
id ∈ Ik] ↪→ Fp[Xid : id ∈ I]. It is worth noticing that the terms of ŷk that
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depend on variables in I r Ik have coefficient 0. Next, let f̂ : Fp[Xid : id ∈
I]t → Fp[Xid : id ∈ I] be the arithmetic circuit corresponding to the given

f , i.e., f̂ is the same as f except that additions (resp. multiplications) in
Fp are replaced by additions (resp. multiplications) over the polynomial ring

Fp[Xid : id ∈ I]. Finally, y is obtained as y = f̂(ŷ1, . . . , ŷt).
Ver(P, {vkid}id∈P ,m, σ). Let P = (f, `1, . . . , `t) be a labeled program where f is

a degree-d arithmetic circuit and every label is of the form `k = (idk, τk). Let
σ = (I, y) where I = {īd1, . . . , īdn} with īdi 6= īdj for i 6= j. The verification
algorithm outputs 1 (accept) if and only if the authenticator satisfies the
following three checks. Otherwise it outputs 0 (reject).

{īd1, . . . , īdn} = {id : id ∈ P}, (5)

y(0, . . . , 0) = m , (6)

y(xīd1 , . . . , xīdn) = f(F (Kid1 , `1), . . . , F (Kidt , `t)) . (7)

In the remainder of the section, we discuss the efficiency and succinctness of
our MKHMac and prove the correctness of our scheme. We conclude with the
security analysis of the proposed MKHMac scheme.

Succinctness. Let us consider the case of an authenticator σ which was ob-
tained after running Eval on a circuit of degree d and taking inputs from n
distinct identities. Note that every σ consists of two elements: a set I ⊆ [C] and
a polynomial y ∈ Fp[Xīd : īd ∈ I].

For the set I, it is easy to see that |I| = n and I can be represented with n logC
bits. The other part of the authenticator, y, is instead an n-variate polynomial in
Fp[Xīd1 , . . . , Xīdn ] of degree d. Since the circuit degree is d, the maximum number

of coefficients of y is
(
n+d
d

)
. More precisely, the total size of y depends on the

particular representation of the multi-variate polynomial y which is chosen for
implementation. In [22] we discuss some possible representations (further details
can also be found in [38]). For example, when employing the sparse representation
of polynomials, the size of y is bounded by O(nt log d) where t is the number
of non-zero coefficients in y (note that in the worst case, a polynomial y ∈
Fp[Xīd1 , . . . , Xīdn ] of degree d has at most t =

(
n+d
d

)
non-zero coefficients). Thus,

setting logC ≈ log p ≈ λ, we have that the size in bits of the authenticator σ is
|σ| ≤ λn+ λ

(
n+d
d

)
. Ignoring the security parameter, we have that |σ| = poly(n)

when d is constant, or |σ| = poly(d) when n is constant.

Efficiency of Eval. In what follows, we discuss the cost of computing additions
and multiplications over authenticators in our MKHMac scheme. Let σ(i) =
(I(i), y(i)), for i = 1, 2 be two authenticators and consider the operation σ =
Eval(g, σ(1), σ(2)) where g is a fan-in-2 addition or multiplication gate. In both
cases the set I of identities of σ = (I, y) is obtained as the union I = I(1) ∪ I(2)

that can be computed in time O(n), where n = |I|, assuming the sets I(1), I(2)

are ordered. Regarding the computation of y from y(1) and y(2), one has to first
embed each yi into the ring Fp[Xīd : īd ∈ I], and then evaluate addition (resp.
multiplication) over Fp[Xīd : īd ∈ I]. Again, the costs of these operations depend
on the adopted representation [38,24].
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Using the sparse representation of polynomials, expanding a y having t non-
zero coefficients into an n-variate polynomial ŷ requires time at most O(tn). To
give an idea, such expansion indeed consists simply into inserting zeros in the
correct positions of the exponent vectors of every non-zero monomial term of y.
On the other hand, the complexity of operations (additions and multiplications)
on polynomials using the sparse representation is usually estimated in terms of
the number of monomial comparisons. The cost of such comparisons depends on
the specific monomial ordering chosen, but is usually O(n log d), where n is the
total number of variables and d is the maximum degree. Given two polynomials
in sparse representation having t1 and t2 non-zero terms respectively, addition
costs about O(t1t2) monomial comparisons (if the monomial terms are stored
in sorted order the cost of addition drops to O(t1 + t2) ), while multiplication
requires to add (merge) t2 intermediate products of t1 terms each, and can be
performed with O(t1t2 log t2) monomial comparisons [24].

Correctness. Authentication Correctness. By construction, each fresh

authenticator σ = (I, y) of a message m labeled by ` := (id, τ) is of the form

I = {id} and y(Xid) := y0 + yidXid = m + F (Kid,`)−m
xid

Xid. Thus the set I satisfies

equation (5) since {id : id ∈ I`} = {id}. The two last verification checks (6) and
(7) are automatically granted for the identity program I` because y(0) = y0 = m

and y(xid) = m + F (Kid,`)−m
xid

xid = F (Kid, `).

Evaluation Correctness. The correctness of the Eval algorithm essentially
comes from the structure of the multi-variate polynomial ring. We provide the
detailed proof in the full version of the paper [22].
Security. In what follows we prove the security of our scheme against ad-
versaries that make static corruptions, and produce forgeries according to the
following restrictions.

Definition 8 (Weak Forgery). Consider an execution of the experiment de-
scribed in Section 3, HomUF-CMAA,MKHAut(λ) where (P∗, ∆∗,m∗, σ∗) is the tuple
returned by the adversary at the end of the experiment, with P∗ = (f∗, `∗1, . . . , `

∗
t ),

∆∗ a dataset identifier, m∗ ∈M and σ∗ an authenticator. First, we say that the
labeled program P∗ is well-defined on a list L if either one of the following two
cases occurs:

1. There exists i ∈ [t] such that (`∗i , ·) /∈ L (i.e., A never made a query with
label `∗i ), and f∗({mj}(`j ,mj)∈L∪{m̃j}(`j ,·)/∈L) outputs the same value for all
possible choices of m̃j ∈M;

2. L contains the tuples (`∗1,m1), . . . , (`∗t ,mt), for some messages m1, . . . ,mt.

Then we say that (P∗, ∆∗,m∗, σ∗) is a weak forgery if Ver(P∗, ∆∗, {vkid}id∈P∗ ,
m∗, σ∗) = 1 and either one of the following conditions is satisfied:

Type 1: L∆∗ was not initialized during the game (i.e., ∆∗ was never queried).
Type 2: P∗ is well-defined on L∆∗ but m∗ 6= f∗({mj}(`j ,mj)∈L∆∗ ∪ {0}`j /∈L∆∗ )

(i.e., m∗ is not the correct output of P∗ when executed over previously au-
thenticated messages).

Type 3: P∗ is not well-defined on L∆∗ .

26



Although Definition 8 is weaker than our Definition 4, we stress that the above
definition still protects the verifier from adversaries that try to cheat on the
output of a computation. In more details, the difference between Definition 8
and Definition 4 is the following: if f∗ has an input wire that has never been
authenticated during the game (a Type 3 forgery in Definition 4), but f∗ is
constant with respect to such input wire, then the above definition does not
consider it a forgery. The intuitive reason why such a relaxed definition still
makes sense is that “irrelevant” inputs would not help in any case the adversary
to cheat on the output of f∗. Definition 8 is essentially the multi-key version of
the forgery definition used in previous (single-key) homomorphic MAC works,
e.g., [11]. As discussed in [23] testing whether a program is well-defined may
not be doable in polynomial time in the most general case (i.e., every class of
functions). However, in [12] it is shown how this can be done efficiently via a
probabilistic test in the case of arithmetic circuits of degree d over a finite field
of order p such that d/p < 1/2. Finally, we notice that for our MKHMac Type 1
forgeries cannot occur as the scheme described here supports only one dataset.13

Theorem 3. If F is a pseudo-random function then the multi-key homomor-
phic MAC described in Section 5 is secure against adversaries that make static
corruptions of keys and produce forgeries as in Definition 8.

Note that we can deal with corruptions via our generic result of Proposition 1.
Therefore, it is sufficient to prove the security against adversaries that make no
corruptions. The proof is done via a chain of games following this (intuitive) path.
First, we rule out adversaries that make Type 3 forgeries. Intuitively, this can be
done as the adversary has never seen one of the inputs of the computation, and in
particular an input which can change the result. Second, we replace every PRF
instance with a truly random function. Note that at this point the security of the
scheme is information theoretic. Third, we change the way to answer verification
queries that are candidates to be Type 2 forgeries. Finally, we observe that in
this last game the adversary gains no information on the secret keys xi and thus
has negligible probability of making a Type 2 forgery. Due to space restrictions,
the detailed and formal proofs appear in only in the full version [22].

6 Conclusions

In this paper, we introduced the concept of multi-key homomorphic authentica-
tors, a cryptographic primitive that enables an untrusted third party to execute
a function f on data authenticated using different secret keys in order to ob-
tain a value certifying the correctness of f ’s result, which can be checked with
knowledge of corresponding verification keys. In addition to providing suitable
definitions, we also propose two constructions: one which is publicly verifiable

13 As noted at the beginning of the section the extension to multiple datasets is straight-
forward given that tags are arbitrary strings. When such extension is applied it is
easy to see that Type 1 forgeries are Type 3 ones in the underlying scheme.
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and supports general boolean circuits, and a second one that is secretly verifi-
able and supports low-degree arithmetic circuits. Although our work does not
address directly the problem of privacy, extensions of our results along this di-
rection are possible, and we leave the details to future investigation. A first
extension is defining a notion of context-hiding for multi-key HAs. Similarly to
the single key setting, this property should guarantee that authenticators do not
reveal non-trivial information about the computation’s inputs. The second ex-
tension has to do with preventing the Cloud from learning the data over which
it computes. In this case, we note that multi-key HAs can be executed on top
of homomorphic encryption following an approach similar to that suggested in
[21]. Finally, an interesting problem left open by our work is to find multi-key
HA schemes where authenticators have size independent of the number of users
involved in the computation.
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