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Abstract. This paper presentsMQDSS, the �rst signature scheme with
a security reduction based on the problem of solving a multivariate sys-
tem of quadratic equations (MQ problem). In order to construct this
scheme we give a new security reduction for the Fiat-Shamir transform
from a large class of 5-pass identi�cation schemes and show that a previ-
ous attempt from the literature to obtain such a proof does not achieve
the desired goal. We give concrete parameters for MQDSS and pro-
vide a detailed security analysis showing that the resulting instantiation
MQDSS-31-64 achieves 128 bits of post-quantum security. Finally, we
describe an optimized implementation of MQDSS-31-64 for recent Intel
processors with full protection against timing attacks and report bench-
marks of this implementation.

Keywords: post-quantum cryptography, Fiat-Shamir, 5-pass identi�ca-
tion scheme, vectorized implementation.

1 Introduction

Already since 1997, when Shor published a polynomial-time quantum algorithm
for factoring and discrete logarithms, it is known that an attacker equipped
with a su�ciently large quantum computer will be able to break essentially
all public-key cryptography in use today. More recently, various statements by
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physicists and quantum engineers indicate that they may be able to build such a
large quantum computer within the next few decades. For example, IBM's Mark
Ketchen said in 2012 �I'm thinking like it's 15 [years] or a little more. It's within
reach. It's within our lifetime. It's going to happen.�. In May this year, IBM
gave access to their 5-qubit quantum computer to researchers and announced
that they are expecting to scale up to 50�100 qubits within one decade [36].

It is still a matter of debate when and even if we will see a large quantum
computer that can e�ciently break, for example, RSA-4096 or 256-bit elliptic-
curve crypto. However, it becomes more and more clear that cryptography aim-
ing at long-term security can no longer discard the possibility of attacks by large
quantum computers in the foreseeable future. Consequently, NSA recently up-
dated their Suite B to explicitly emphasize the importance of a migration to
post-quantum algorithms [41] and NIST announced a call for submissions to a
post-quantum competition [40]. Submissions to this competition will be accepted
for post-quantum public-key encryption, key exchange, and digital signature.
The results presented in this paper fall into the last of these three categories:
post-quantum digital signature schemes.

Most experts agree that the most conservative choice for post-quantum sig-
natures are hash-based signatures with tight reductions in the standard model to
properties like second-preimage resistance of an underlying cryptographic hash
function. Unfortunately, the most e�cient hash-based schemes are stateful, a
property that makes their use prohibitive in many scenarios [39]. A reason-
ably e�cient stateless construction called SPHINCS was presented at Eurocrypt
2015 [6]; however, eliminating the state in this scheme comes at the cost of
decreased speed and increased signature size.

The second direction of research for post-quantum signatures are lattice-
based schemes. Various schemes have been proposed with di�erent security and
performance properties. The best performance is achieved by BLISS [23] (im-
proved in [22]) whose security reduction relies on the hardness of R-SIS and
NTRU, and is non-tight. Furthermore, the performance is achieved at the cost
of being vulnerable against cache-attacks as demonstrated in [33]. A more con-
servative approach is the signature scheme proposed by Bai and Galbraith in [3]
with improvements to performance and security in [17,2,1]. The security reduc-
tion to LWE in [2] is tight; a variant using the (more e�cient) ideal-lattice
setting was presented in [1]. However, these schemes either come with enormous
key and signature sizes (e.g. sizes in [2] are in the order of megabytes), or sizes
are reduced at the cost of switching to assumptions on lattices with additional
structure like NTRU, Ring-SIS, or Ring-LWE.

The third large class of post-quantum signature algorithms is based on the
hardness of solving large systems of multivariate quadratic equations, the so-
called MQ problem. For random instances this problem is NP-complete [30].
However, all schemes in this class that have been proposed with actual parame-
ters for practical use share two properties that often raise concerns about their
security: First, their security arguments are rather ad-hoc; there is no reduction
from the hardness of MQ. The reason for this is the second property, namely
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that these systems require a hidden structure in the system of equations; this
implies that their security inherently also relies on the hardness of the so-called
isomorphism-of-polynomials (IP) problem [42] (or, more precisely, the Extended
IP problem [19] or the similar IP with partial knowledge [51] problem). Time
has shown that IP in many of the proposed schemes actually relies on the Min-
Rank problem [16,28], and unfortunately, more than often, on an easy instance
of this problem. Therefore, many proposed schemes have been broken not by
targeting MQ, but by targeting IP (and thus exploiting the structure in the
system of equations). Examples of broken schemes include Oil-and-Vinegar [43]
(broken in [38]), SFLASH [14] (broken in [21]), MQQ-Sig [31] (broken in [27]),
(Enhanced) TTS [58,57] (broken in [52]), and Enhanced STS [53] (broken in
[52]). There are essentially only two proposals from the �MQ +IP� class of
schemes that are still standing: HFEv− variants [44,45] and Unbalanced Oil-
and-Vinegar (UOV)variants [37,20]. The literature does not, to the best of our
knowledge, describe any instantiation of those schemes with parameters that
achieve a conservative post-quantum security level.

Contributions of this paper. Obviously what one would want in the realm
of MQ-based signatures is a scheme that has a tight reduction to MQ in the
quantum-random-oracle model (QROM) or even better in the standard model,
and has small key and signatures sizes and fast signing and veri�cation algo-
rithms when instantiated with parameters that o�er 128 bits of post-quantum
security. In this paper we make a major step towards such a scheme. Speci�cally,
we present a signature system with a reduction fromMQ, a set of parameters
that achieves 128 bits of post-quantum security according to our careful post-
quantum security analysis, and an optimized implementation of this scheme.

This does not mean that our proposal is going quite all the way to the
desired scheme sketched above: our reduction is non-tight and in the ROM.
Furthermore, at the 128-bit post-quantum security level, the signature size is
40 952 bytes, which is comparable to SPHINCS [6], but larger than what lattice-
based schemes orMQ +IP schemes achieve. However, the scheme excels in key
sizes: it needs only 72 bytes for public keys and 64 bytes for private keys.

The basic idea of our construction is to apply a Fiat-Shamir transform to the
MQ-based 5-pass identi�cation scheme (IDS) that was presented by Sakumoto,
Shirai, and Hiwatari at Crypto 2011 [48]. In principle, this idea is not new; it
already appeared in a 2012 paper by El Yous� Alaoui, Dagdelen, Véron, Galindo,
and Cayrel [24]. In their paper they use the 5-pass IDS from [48] as one example
of a scheme with a property they call �n-soundness�. According to their proof
in the ROM, this property of an IDS guarantees that it can be used in a Fiat-
Shamir transform to obtain an existentially unforgeable signature scheme. They
give such a transform using the IDS from [48, Section 4.2].

One might think that choosing suitable parameters for precisely this trans-
form (and implementing the scheme with those parameters) produces the re-
sults we are advertising in this paper. However, we show that not only is the
construction from [24, Section 4.2] insecure (because it ignores the requirement
of an exponentially large challenge space), but also that the proof based on the
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n-soundness property does not apply to a corrected Fiat-Shamir transform of
the 5-pass IDS from [48]. The reason is that the n-soundness property does not
hold for this IDS. More than that, we show that any (2n + 1)-pass scheme for
which the n-soundness property holds can trivially be transformed into a 3-pass
scheme. This observation essentially renders the results of [24] vacuous, because
the declared contribution of that paper is to present �the �rst transformation
which gives generic security statements for SS derived from (2n+ 1)-pass IS�.

To solve these issues, we present a new proof in the ROM for Fiat-Shamir
transforms of a large class of 5-pass IDS, including the 5-pass scheme from [48].
This proof is of independent interest; it applies also, for example, to the IDS
from [11], [49] and (with minor modi�cations) to [46]. Equipped with this result,
we �x the signature scheme from [24] and instantiate the scheme with parame-
ters for the 128-bit post-quantum security level. We call this signature scheme
MQDSS and the concrete instatiation with the proposed parameters MQDSS-
31-64. Our optimized implementation of MQDSS-31-64 for Intel Haswell pro-
cessors takes 8 510 616 cycles for signing and 5 752 612 cycles for veri�cation;
key generation takes 1 826 612 cycles. These cycle counts include full protection
against timing attacks.

Organization of this paper. We start with some preliminaries in Section 2.
In Section 3, we recall the 5-pass IDS as introduced in [48]. We present our
theoretical results in Section 4. We discuss the problems with the result from [24]
in Subsection 4.1, and resolve them by providing a new proof in Subsection 4.3.
We present a description of the transformed 5-pass signature scheme and give a
security reduction for it in Section 5. In Section 6 we �nally present a concrete
instantiation and implementation thereof.

Availability of the software. We place all software described in this paper
into the public domain to maximize reusability of our results. The software is
available online at https://joostrijneveld.nl/papers/mqdss.

Acknowledgements. The authors would like to thank Marc Fischlin for helpful
discussions, the anonymous reviewers for valuable comments, Wen-Ding Li for his
contributions to the software, and Arno Mittelbach for the cryptocode package.

2 Preliminaries

In the following we provide basic de�nitions used throughout this work.

Digital signatures. The main target of this work are digital signature schemes.
These are de�ned as follows.

De�nition 2.1 (Digital signature scheme). A digital signature scheme Dss
is a triplet of polynomial time algorithms Dss = (KGen,Sign,Vf) de�ned as:

� The key generation algorithm KGen is a probabilistic algorithm that on input
1k, where k is a security parameter, outputs a key pair (sk, pk).
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� The signing algorithm Sign is a possibly probabilistic algorithm that on input
a secret key sk and a message M outputs a signature σ.

� The veri�cation algorithm Vf is a deterministic algorithm that on input a
public key pk, a message M and a signature σ outputs a bit b, where b = 1
indicates that the signature is accepted and b = 0 indicates a reject.

For correctness of a Dss, we require that for all k ∈ N, (sk, pk) ← KGen(1k), all
messages M and all signatures σ ← Sign(sk,M), we get Vf(pk,M, σ) = 1, i.e.,
that correctly generated signatures are accepted.

Existential Unforgeability under Adaptive Chosen Message Attacks.
The standard security notion for digital signature schemes is existential unforge-
ability under adaptive chosen message attacks (EU-CMA) [32] which is de�ned
using the following experiment. By Dss(1k) we denote a signature scheme with
security parameter k.

Experiment Expeu-cma

Dss(1k)(A)
(sk, pk)← KGen(1k),

(M?, σ?)← ASign(sk,·)(pk), with A's queries {(Mi)}Qs1 .

Return 1 i� Vf(pk,M?, σ?) = 1 and M? 6∈ {Mi}Qs1 .

For the success probability of an adversary A in the above experiment we
write

Succeu-cma

Dss(1k) (A) = Pr
[
Expeu-cma

Dss(1k)(A) = 1
]
.

A signature scheme is called EU-CMA-secure if any PPT adversary has only
negligible success probability:

De�nition 2.2 (EU-CMA). Let k ∈ N, Dss a digital signature scheme as de-
�ned above. We call Dss EU-CMA-secure if for all Qs, t = poly(k) the maximum
success probability InSeceu-cma

(
Dss(1k); t, Qs

)
of all possibly probabilistic classi-

cal adversaries A running in time ≤ t, making at most Qs queries to Sign in the
above experiment, is negligible in k:

InSeceu-cma
(
Dss(1k); t, Qs

) def
= max

A
{Succeu-cma

Dss(1k) (A)} = negl(k) .

Identi�cation Schemes. An identi�cation scheme (IDS) is a protocol that
allows a prover P to convince a veri�er V of its identity. More formally this is
covered by the following de�nition.

De�nition 2.3 (Identi�cation scheme). An identi�cation scheme consists of
three probabilistic, polynomial-time algorithms IDS = (KGen,P,V) such that:

� the key generation algorithm KGen is a probabilistic algorithm that on input
1k, where k is a security parameter, outputs a key pair (sk, pk).

� P and V are interactive algorithms, executing a common protocol. The prover
P takes as input a secret key sk and the veri�er V takes as input a public key
pk. At the conclusion of the protocol, V outputs a bit b with b = 1 indicating
�accept� and b = 0 indicating �reject�.
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For correctness of the scheme we require that for all k ∈ N and all (pk, sk) ←
KGen(1k) we have Pr [〈P(sk),V(pk)〉 = 1] = 1, where 〈P(sk),V(pk)〉 refers to the
common execution of the protocol between P with input sk and V on input pk.

In this work we are only concerned with passively secure identi�cation schemes.
We de�ne security in terms of two properties: soundness and honest-veri�er zero-
knowledge.

De�nition 2.4 (Soundness (with soundness error κ)). Let k ∈ N, IDS =
(KGen,P,V) an identi�cation scheme. We say that IDS is sound with soundness
error κ if for every PPT adversary A,

Pr

[
(pk, sk)← KGen(1k)〈
A(1k, pk),V(pk)

〉
= 1

]
≤ κ+ negl(k) .

Of course, the goal is to obtain an IDS with negligible soundness error. This can
be achieved by running r rounds of the protocol for an r that ful�lls κr = negl(k).

For the following de�nition we need the notion of a transcript. A transcript of
an execution of an identi�cation scheme IDS refers to all the messages exchanged
between P and V and is denoted by trans(〈P(sk),V(pk)〉).

De�nition 2.5 ((statistical) Honest-veri�er zero-knowledge). Let k ∈ N,
IDS = (KGen,P,V) an identi�cation scheme. We say that IDS is statistical
honest-veri�er zero-knowledge if there exists a probabilistic polynomial time al-
gorithm S, called the simulator, such that the statistical distance between the
following two distribution ensembles is negligible in k:{

(pk, sk)← KGen(1k) : (sk, pk, trans(〈P(sk),V(pk)〉))
}{

(pk, sk)← KGen(1k) : (sk, pk,S(pk))
}
.

3 Sakumoto et al. 5-pass IDS scheme

In [48], Sakumoto et al. proposed two new identi�cation schemes, a 3-pass and a
5-pass IDS, based on the intractability of theMQ problem. They showed that
assuming existence of a non-interactive commitment scheme that is statistically
hiding and computationally binding, their schemes are statistical zero knowledge
and argument of knowledge, respectively. They further showed that the parallel
composition of their protocols is secure against impersonation under passive
attack. Let us quickly recall the basics of the construction.

Let x = (x1, . . . , xn) and let MQ(n,m,Fq) denote the family of vecto-
rial functions F : Fnq → Fmq of degree 2 over Fq: MQ(n,m,Fq) = {F(x) =

(f1(x), . . . , fm(x))|fs(x) =
∑
i,j a

(s)
i,j xixj +

∑
i b

(s)
i xi, s ∈ {1, . . . ,m}}. The func-

tion G(x,y) = F(x+ y)− F(x)− F(y) is called the polar form of the function
F. TheMQ problemMQ(F,v) is de�ned as follows:

Given v ∈ Fmq �nd, if any, s ∈ Fnq such that F(s) = v.
The decisional version of this problem is NP -complete [30]. It is widely be-

lieved that theMQ problem is intractable, i.e., that given F←RMQ(n,m,Fq),
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P V

r0, t0 ←R Fnq , e0 ←R Fmq
r1 ← s− r0

c0 ← Com(r0, t0, e0)

c1 ← Com(r1,G(t0, r1) + e0) (c0, c1)

α←R Fqα

t1 ← αr0 − t0

e1 ← αF(r0)− e0
resp1 = (t1, e1)

ch2 ←R {0, 1}ch2
If ch2 = 0, resp2 ← r0

Else resp2 ← r1
resp2

If ch2 = 0, Parse resp2 = r0, check

c0
?
= Com(r0, αr0 − t1, αF(r0)− e1)

Else Parse resp2 = r1, check

c1
?
= Com(r1, α(v− F(r1))−G(t1, r1)− e1)

Fig. 1. Sakumoto et al. 5-pass IDS

s←R Fnq and v = F(s) there does not exist a PPT adversary A that outputs a
solution s′ to theMQ(F,v) problem with non-negligible probability.

The novelty of the approach of Sakumoto et al. [48] is that unlike previous
public key schemes, their solution provably relies only on theMQ problem (and
the security of the commitment scheme), and not on other related problems in
multivariate cryptography such as the Isomorphism of Polynomials (IP) problem
[42], the related Extended IP [19] and IP with partial knowledge [51] problems or
the MinRank problem [16,28]. The key for this is the introduction of a technique
to split the secret using the polar form G(x,y) of a system of polynomials F(x).

In essence, with their technique, the secret s is split into s = r0+ r1, and the
public v = F(s) can be represented as v = F(r0) + F(r1) +G(r0, r1). In order
for the polar form not to depend on both shares of the secret, r0 and F(r0) are
further split as αr0 = t0+ t1 and αF(r0) = e0+e1. Now, due to the linearity of
the polar form it holds that αv = (e1+αF(r1)+G(t1, r1))+(e0+G(t0, r1)), and
from only one of the two summands, represented by (r1, t1, e1) and (r1, t0, e0),
nothing can be learned about the secret s. The 5-pass IDS is given in Figure 1
where (pk, sk) = (v, s)← KGen(1k).

Sakumoto et al. [48] proved that their 5-pass scheme is statistically zero
knowledge when the commitment scheme Com is statistically hiding which im-
plies (honest-veri�er) zero knowledge. Here we prove the soundness property of
the scheme5.

Theorem 3.1. The 5-pass identi�cation scheme of Sakumoto et al. [48] is sound
with soundness error 1

2 +
1
2q when the commitment scheme Com is computation-

ally binding.
5 Sakumoto et al. [48] also sketched a proof that their 5-pass protocol is argument of
knowledge when Com is computationally binding. Our security arguments rely on
the weaker notion of soundness, therefore we include an appropriate proof.
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Proof. One can show that there exists an adversary C that can cheat with prob-
ability 1

2 +
1
2q (See the full version [13]). What we want to show now is that there

cannot exist a cheater that wins with signi�cantly higher success probability as
long as theMQ problem is hard and the used commitment is computationally
binding.

Towards a contradiction, suppose there exists a malicious PPT cheater C
such that it holds that ε := Pr[

〈
C(1k,v),V(v)

〉
= 1]− ( 12 +

1
2q ) =

1
P (k) . for some

polynomial function P (k). We show that this implies that there exists a PPT
adversary A with access to C that can either break the binding property of Com
or can solve theMQ problemMQ(F,v).
A can achieve this if she can obtain four accepting transcripts from C with

same internal random tape, equation system F, and public key v, such that for
two di�erent α there are two transcripts for each α with di�erent ch2. This is done
by rewinding C and feeding it with all possible combinations of α ∈ [0, q−1] and
ch2 ∈ {0, 1}. That way we obtain 2q di�erent transcripts. Now, per assumption
C produces an accepting transcript with probability 1

2 + 1
2q + ε. Hence, with

non-negligible probability ε we get at least q+2 accepting transcripts. A simple
counting argument gives that there has to be a set of four transcripts ful�lling the

above conditions. Let these transcripts be ((c0, c1), α
(i), (t

(i)
1 , e

(i)
1 ), ch

(i)
2 , resp

(i)
2 ),

where α(1) = α(2) 6= α(3) = α(4), t
(1)
1 = t

(2)
1 6= t

(3)
1 = t

(4)
1 , e

(1)
1 = e

(2)
1 6=

e
(3)
1 = e

(4)
1 , ch

(1)
2 = ch

(3)
2 = 0, ch

(2)
2 = ch

(4)
2 = 1, resp

(1)
2 = r

(1)
0 , resp

(3)
2 = r

(3)
0 ,

resp
(2)
2 = r

(2)
1 , resp

(4)
2 = r

(4)
1 . Since the commitment (c0, c1) is the same in all

four transcripts, we have

Com(r
(1)
0 , α(1)r

(1)
0 − t

(1)
1 , α(1)F(r

(1)
0 )− e(1)1 ) =

Com(r
(3)
0 , α(3)r

(3)
0 − t

(3)
1 , α(3)F(r

(3)
0 )− e(3)1 )

(1)

Com(r
(2)
1 , α(2)(v− F(r(2)1 ))−G(t

(2)
1 , r

(2)
1 )− e(2)1 ) =

Com(r
(4)
1 , α(4)(v− F(r(4)1 ))−G(t

(4)
1 , r

(4)
1 )− e(4)1 )

(2)

If any of the arguments of Com on the left-hand side is di�erent from the one on
the right-hand side in (1) or in (2), then we get two di�erent openings of Com,
which breaks its computationally binding property.

If they are the same in both (1) and (2), then from (1):

(α(1) − α(3))r
(1)
0 = t

(1)
1 − t

(3)
1 and (α(1) − α(3))F(r

(1)
0 ) = e

(1)
1 − e

(3)
1
,

and from (2): (α(2) − α(4))(v− F(r(2)1 )) = G(t
(2)
1 − t

(4)
1 , r

(2)
1 ) + e

(2)
1 − e

(4)
1 .

Combining the two,

(α(2) − α(4))(v− F(r(2)1 )) = (α(2) − α(4))G(r
(1)
0 , r

(2)
1 ) + (α(2) − α(4))F(r

(1)
0 ),

and since α(2) 6= α(4) we get v = F(r
(2)
1 ) +G(r

(1)
0 , r

(2)
1 ) +F(r

(1)
0 ), i.e, r

(1)
0 + r

(2)
1

is a solution to the givenMQ problem. ut

We will look into the inner workings of the IDS in more detail in Section 5,
where we also introduce the related 3-pass scheme.
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4 Fiat-Shamir for 5-pass identi�cation schemes

For several intractability assumptions, the most e�cient IDS are �ve pass, i.e.
IDS where a transcript consists of �ve messages. Here, e�ciency refers to the size
of all communication of su�cient rounds to make the soundness error negligible.
This becomes especially relevant when one wants to turn an IDS into a signature
scheme as it is closely related to the signature size of the resulting scheme.

In [24], the authors present a Fiat-Shamir style transform for (2n + 1)-pass
IDS ful�lling a certain kind of canonical structure. To provide some intuition, a
�ve pass IDS is called canonical in the above sense if P starts with a commitment
com1, V replies with a challenge ch1, P sends a �rst response resp1, V replies
with a second challenge ch2 and �nally P returns a second response resp2. Based
on this transcript, V then accepts or rejects. The authors of [24] also present a
security reduction for signature schemes derived from such IDS using a security
property of the IDS which they call special n-soundness. Intuitively, this property
says that given two transcripts that agree on all messages but the last challenge
and possibly the last response, one can extract a valid secret key.

In this section we �rst show that any (2n + 1)-pass IDS that ful�lls the
requirements of the security reduction in [24] can be converted into a 3-pass
IDS by letting P choose all but the last challenge uniformly at random himself.
The main reason this is possible is the special n-soundness. On the other hand,
we argue that existing 5-pass schemes in the literature do not ful�ll special n-
soundness and prove it for the 5-passMQ-IDS from [48]. Hence, they can neither
be turned into 3-pass schemes, nor does the security reduction from [24] apply.
Afterwards we give a security reduction for a less generic class of 5-pass IDS
which covers many 5-pass IDS, including [11], [49] and [46]. In particular, it
covers the 5-passMQ scheme from [48].

4.1 The El Yous� et al. proof

Before we can make any statement about IDS that fall into the case of [24] we
have to de�ne the target of our analysis. A canonical (2n + 1)-pass IDS is an
IDS where the prover and the veri�er exchange n challenges and replies. More
formally:

De�nition 4.1 (Canonical (2n+1)-pass identi�cation schemes). Let k ∈
N, IDS = (KGen,P,V) a (2n + 1)-pass identi�cation scheme with n challenge
spaces Cj , 0 < j ≤ n. We call IDS a canonical (2n+1)-pass identi�cation scheme
if the prover can be split into n+1 subroutines P = (P0, . . . ,Pn) and the veri�er
into n+ 1 subroutines V = (ChS1, . . . ,ChSn,Vf) such that

� P0(sk) computes the initial commitment com sent as the �rst message.
� ChSj , j ≤ n computes the j-th challenge message chj ←R Cj, sampling a

random element from the j-th challenge space.
� Pi(sk, trans2i), 0 < i ≤ n computes the i-th response of the prover given

access to the secret key and trans2i, the transcript so far, containing the �rst
2i messages.
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� Vf(pk, trans), upon access to the public key and the whole transcript outputs
V's �nal decision.

The de�nition implies that a canonical (2n + 1)-pass IDS is public coin. The
public coin property just says that the challenges are sampled from the respective
challenge spaces using the uniform distribution.

El Yous� et al. propose a generalized Fiat-Shamir transform that turns a
canonical (2n + 1)-pass IDS into a digital signature scheme. The algorithms of
the obtained signature scheme make use of the IDS algorithms as follows. The
key generation is just the IDS key generation. The signature algorithm simulates
an execution of the IDS, replacing challenge chj by the output of a hash function
(that maps into Cj) that takes as input the concatenation of the message to be
signed and all 2(j − 1) + 1 messages that have been exchanged so far. The sig-
nature just contains the messages sent by P. The veri�cation algorithm uses the
signature and the message to be signed to generate a full transcript, recomputing
the challenges using the hash function. Then the veri�cation algorithm runs Vf
on the public key and the computed transcript and outputs its result.

El Yous� et al. give a reduction for the resulting signature scheme if the used
IDS is honest-veri�er zero-knowledge and ful�lls special n-soundness de�ned
below. The latter is a generalization of special soundness. Intuitively, special
n-soundness says that given two transcripts that agree up to the second-to-last
response but disagree on the last challenge, one can extract the secret key.

De�nition 4.2 (Special n-soundness). A canonical (2n+1)-pass IDS is said
to ful�ll special n-soundness if there exists a PPT algorithm E, called the extrac-
tor, that given two accepting transcripts trans = (com, ch1, resp1, . . . , respn−1,
chn, respn) and trans′ = (com, ch1, resp1, . . . , respn−1, ch

′
n, resp

′
n) with chn 6= ch′n

as well as the corresponding public key pk, outputs a matching secret key sk for
pk with non-negligible success probability.

The common special soundness for canonical (3-pass) IDS is hence just special
1-soundness. Please note that El Yous� et al. de�ne special n-soundness for the
resulting signature scheme which in turn requires the used IDS to provide special
n-soundness. We decided to follow the more common approach, de�ning the
soundness properties for the IDS.

From (2n+1) to three passes. We now show that every canonical (2n+1)-
pass IDS that ful�lls special n-soundness can be turned into a canonical 3-pass
IDS ful�lling special soundness.

Theorem 4.3. Let IDS = (KGen,P,V) be a canonical (2n + 1)-pass IDS that
ful�lls special n-soundness. Then, the following 3-pass IDS IDS′ = (KGen,P ′,V ′)
is canonical and ful�lls special soundness.

IDS′ is obtained from IDS by just moving ChSj , 0 < j < n, (i.e. all but
the last challenge generation algorithm) from V to P: P ′ computes com′ =
(com, ch1, resp1, . . . , respn−1, chn−1) using P0, . . . ,Pn−1 and ChS1, . . . ,ChSn−1.
After P ′ sent com′, V ′ replies with ch′1 ← ChSn(1

k). P ′ computes resp′1 ←
Pn(sk, trans2n) and V ′ veri�es the transcript using Vf.

10



Proof. Clearly, IDS′ is a canonical 3-pass IDS. It remains to prove that it is
honest-veri�er zero-knowledge and that it ful�lls special soundness. The latter
is straight forward as two transcripts for IDS′, that ful�ll the conditions in the
soundness de�nition, can be turned into two transcripts for IDS ful�lling the
conditions in the n-soundness de�nition, splitting com′ = (com, ch1, resp1, . . . ,
respn−1, chn−1) into its parts. Consequently, we can use any extractor for IDS
as an extractor for IDS′ running in the same time and having the exact same
success probability.

Showing honest-veri�er zero-knowledge is similarly straight forward. A sim-
ulator S ′ for IDS′ can be obtained from any simulator S for IDS. S ′ just runs S
to obtain a transcript and regroups the messages to produce a valid transcript
for IDS′. Again, S ′ runs in essentially the same time as S and achieves the exact
same statistical distance. ut

The Sakumoto et al 5-pass IDS does not ful�ll special n-soundness. The
above result raises the question whether this property was overlooked and we
can turn all the 5-pass schemes in the literature into 3-pass schemes. This would
have the bene�t that we could use the classical Fiat-Shamir transform to turn
the resulting schemes into signature schemes.

Sadly, this is not the case. The reason is that the extractors for those IDS
need more than two transcripts. For example, the extractor for the 5-pass IDS
from [48] needs four transcripts such that they all agree on com. The transcripts
have to form two pairs such that in a pair the transcripts agree on ch1 but not
on ch2 and the two pairs disagree on ch1. The proof given by El Yous� et al. is
�awed. The authors miss that the two secret shares r0 and r1 obtained from two
di�erent transcripts do not have to be shares of a valid secret key. We now give
a formal proof.

Theorem 4.4. The 5-pass identi�cation scheme from [48] does not ful�ll special
n-soundness if the computationalMQ-problem is hard.

Proof. We prove this by showing that there exist pairs of transcripts, ful�lling
the special n-soundness criteria that can be generated by an adversary without
knowledge of the secret key simulating just two executions of the protocol. As
a key pair for the MQ-IDS is a random instance of the MQ problem, special
n-soundness of the 5-passMQ-IDS would imply that theMQ problem can be
solved in probabilistic polynomial time.

Towards a contradiction, assume there exists a PPT extractor E against the
5-passMQ-IDS that ful�lls De�nition 4.2. We show how to build a PPT solver
A for theMQ problem. Given an instance of theMQ problem v, A sets pk = v
which is a valid public key for theMQ-IDS. Next, A computes two transcripts
as follows. A samples a random α ∈ Fq and random s, r0, t0 ∈ Fnq , e0 ∈ Fmq ,
and computes r1 ← s− r0, and t1 ← αr0 − t0. Then A simulates two successful
protocol executions, one for ch2 = 0, one for ch2 = 1. To do so, A impersonates
P and replaces the �rst challenge with α and the second with 0 in the �rst run
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and 1 in the second run. In addition, A uses the knowledge of α to compute the
commitments as:

c0 ← Com(r0, t0, e0), and c1 ← Com(r1, α(v−F(r1))−G(t1, r1)−αF(r0)+e0).

Then A computes e1 ← αF(r0) − e0 and sets the second commitment in both
runs to (t1, e1). For ch2 = 0, A sets resp = r0, and for ch2 = 1, A sets resp = r1.

Now, the �rst transcript (when ch2 = 0) is valid, since t0 = αr0 − t1 and
e0 = αF(r0) − e1. The second transcript (when ch2 = 1) is also valid as a
straight forward calculation shows. Finally, A feeds the transcripts to E and
outputs whatever E outputs. A has the same success probability as E and runs
in essentially the same time. As E is a PPT algorithm per assumption, this
contradicts the hardness of the computationalMQ problem. ut

Clearly, we can also use A to deal with a parallel execution of many rounds
of the scheme. A similar situation arises for all the 5-pass IDS schemes that we
found in the literature.

4.2 A Fiat-Shamir transform for most (2n + 1)-pass IDS

By now we have established that we are currently lacking security arguments
for signature schemes derived from (2n+ 1)-pass IDS. We now show how to �x
this issue for most (2n + 1)-pass IDS in the literature. As most of these IDS
are 5-pass schemes that follow a certain structure, we restrict ourselves to these
cases. There are some generalizations that are straight-forward and possible to
deal with, but they massively complicate accessibility of our statements.

We will consider a particular type of 5-pass identi�cation protocols where
the length of the two challenges is restricted to q and 2.

De�nition 4.5 (q2 -Identi�cation scheme). Let k ∈ N. A q2 -Identi�cation
scheme IDS(1k) is a canonical 5-pass identi�cation scheme where for the chal-
lenge spaces C1 and C2 it holds that |C1| = q and |C2| = 2. Moreover, the
probability that the commitment com takes a given value is negligible (in k),
where the probability is taken over the random choice of the input and the used
randomness.

To keep the security reduction below somewhat generic, we also need a prop-
erty that de�nes when an extractor exists for a q2-IDS. As we have seen special
n-soundness is not applicable. Hence, we give a less generic de�nition.

De�nition 4.6 (q2-Extractor).We say that a q2-Identi�cation scheme IDS(1k)
has a q2-extractor if there exists a PPT algorithm E, the extractor, that given

a public key pk and four transcripts trans(i) = (com, ch
(i)
1 , resp

(i)
1 , ch

(i)
2 , resp

(i)
2 ),

i ∈ {1, 2, 3, 4}, with

ch
(1)
1 = ch

(2)
1 6= ch

(3)
1 = ch

(4)
1 , ch

(1)
2 = ch

(3)
2 6= ch

(2)
2 = ch

(4)
2 , (3)

valid with respect to pk, outputs a matching secret key sk for pk with non-
negligible success probability (in k).
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In what follows, let IDSr = (KGen,Pr,Vr) be the parallel composition of
r rounds of the identi�cation scheme IDS = (KGen,P,V). As the schemes we
are concerned with only achieve a constant soundness error, the construction
below uses a polynomial number of rounds to obtain an IDS with negligible
soundness error as intermediate step. We denote the transcript of the j-th round
by transj = (comj , ch1,j , resp1,j , ch2,j , resp2,j).

Construction 4.7 (Fiat-Shamir transform for q2 -IDS). Let k ∈ N the se-
curity parameter, IDS = (KGen,P,V) a q2-Identi�cation scheme that achieves
soundness with soundness error κ. Select r, the number of (parallel) rounds of
IDS, such that κr = negl(k), and that the challenge spaces of the composition
IDSr, Cr1,C

r
2 have exponential size in k. Moreover, select cryptographic hash func-

tions H1 : {0, 1}∗ → Cr1 and H2 : {0, 1}∗ → Cr2. The q2-signature scheme q2-
Dss(1k) derived from IDS is the triplet of algorithms (KGen,Sign,Vf) with:

� (sk, pk)← KGen(1k),
� σ = (σ0, σ1, σ2) ← Sign(sk,m) where σ0 = com ← Pr0 (sk), h1 = H1(m,σ0),
σ1 = resp1 ← Pr1 (sk, σ0, h1), h2 = H2(m,σ0, h1, σ1), and σ2 = resp2 ←
Pr2 (sk, σ0, h1, σ1, h2).

� Vf(pk,m, σ) parses σ = (σ0, σ1, σ2), computes the values h1 = H1(m,σ0),
h2 = H2(m,σ0, h1, σ1) as above and outputs Vr(pk, σ0, h1, σ1, h2, σ2).

Correctness of the scheme follows immediately from the correctness of IDS.

4.3 Security of q2-signature schemes.

We now give a security reduction for the above transform in the random oracle
model assuming that the underlying q2-IDS is honest-veri�er zero-knowledge,
achieves soundness with constant soundness error, and has a q2-extractor. More
speci�cally, we prove the following theorem:

Theorem 4.8 (EU-CMA security of q2-signature schemes). Let k ∈ N,
IDS(1k) a q2-IDS that is honest-veri�er zero-knowledge, achieves soundness with
constant soundness error κ and has a q2-extractor. Then q2 -Dss(1k), the q2-
signature scheme derived applying Construction 4.7 is existentially unforgeable
under adaptive chosen message attacks.

In the following, we model the functions H1 and H2 as independent random
oracles O1 and O2. To proof Theorem 4.8, we proceed in several steps. Our proof
builds on techniques introduced by Pointcheval and Stern [47]. As the reduction
is far from being tight, we refrain from doing an exact proof as it does not
buy us anything but a complicated statement. We �rst recall an important tool
from [47] called the splitting lemma.

Lemma 4.9 (Splitting lemma [47]). Let A ⊂ X × Y , such that
Pr[A(x, y)] > ε. Then, there exists Ω ⊂ X, such that

Pr[x ∈ Ω] > ε/2, and Pr[A(a, y)|a ∈ Ω] > ε/2.
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We now present a forking lemma for q2-signature schemes. The lemma shows
that we can obtain four valid signatures which contain four valid transcripts of
the underlying IDS, given a successful key-only adversary. Moreover, these four
traces ful�ll a certain requirement on the challenges (here the related parts of
the hash function outputs) that we need later.

Lemma 4.10 (Forking lemma for q2-signature schemes). Let k ∈ N,
Dss(1k) a q2-signature scheme with security parameter k. If there exists a PPT
adversary A that can output a valid signature message pair (m,σ) with non-
negligible success probability, given only the public key as input, then, with non-
negligible probability, rewinding A a polynomial number of times (with same ran-
domness) but di�erent oracles, outputs 4 valid signature message pairs (m,σ =

(σ0, σ
(i)
1 , σ

(i)
2 ), i ∈ {1, 2, 3, 4}, such that for the associated hash values it holds

that

h
(1)
1,j = h

(2)
1,j 6= h

(3)
1,j = h

(4)
1,j , h

(1)
2,j = h

(3)
2,j 6= h

(2)
2,j = h

(4)
2,j , (4)

for some round j ∈ {1, . . . , r}.

Proof. To prove the Lemma we need to show that we can rewind A three times
and the probability that A succeeds in forging a (di�erent) signature in all four
runs is non-negligible. Moreover, we have to show that the signatures have the
additional property claimed in the Lemma, again with non-negligible probability.

Let ω ∈ Rw be A's random tape with Rw the set of allowable random tapes.
During the attack A may ask polynomially many queries (in the security param-
eter k) Q1(k) and Q2(k) to the random oracles O1 and O2. Let q1,1, q1,2, . . . ,
q1,Q1

and q2,1, q2,2, . . . , q2,Q2
be the queries to O1 and O2, respectively. More-

over, let (r1,1, r1,2, . . . , r1,Q1) ∈ (Cr1)
Q1 and (r2,1, r2,2, . . . , r2,Q2) ∈ (Cr2)

Q2 the
corresponding answers of the oracles.

Towards proving the �rst point, we assume that A also outputs h1, h2 with
the signature and a signature is considered invalid if those do not match the
responses of O1 and O2, respectively. This assumption is without loss of gen-
erality as we can construct such A from any A′ that does not output h1, h2.
A just runs A′ and given the result queries O1 and O2 for h1, h2 and outputs
everything. Clearly A succeeds with the same success probability as A′ and runs
in essentially the same time, making just one more query to each RO.

Denote by F the event thatA outputs a valid message signature pair (m,σ(1) =

(σ0, σ
(1)
1 , σ

(1)
2 )) with the associated hash values h

(1)
1 , h

(1)
2 . Per assumption, this

event occurs with non-negligible probability, i.e., Pr[F] = 1
P (k) , for some polyno-

mial P (k). In addition, F implies h
(1)
1 = O1(m,σ0) and h

(1)
2 = O2(m,σ0, h

(1)
1 , σ

(1)
1 ).

As h
(1)
1 , h

(1)
2 are chosen uniformly at random from exponentially large sets Cr1,C

r
2,

the probability that A did not query O1 for h
(1)
1 and O2 for h

(1)
2 is negligible.

Hence, there exists a polynomial P ′ such that the event F′ that F occurs and A
queried O1 for h

(1)
1 and O2 for h

(1)
2 has probability Pr[F′] =

1

P ′(k)
.
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For the moment only consider the second oracle. As of the previous equation,
there exists at least one β 6 Q2 such that

Pr[F′ ∧ q2,β = (m,σ0, h
(1)
1 , σ

(1)
1 )] >

1

Q2(k)P ′(k)

where the probability is taken over the random coins of A and O2. Informally,
the following steps just show that the success of an algorithm with non-negligible
success probability cannot be conditioned on an event that occurs only with neg-
ligible probability (i.e. the outcome of the q2,β query landing in some negligible
subset).

Let B = {(ω, r2,1, r2,2, . . . , r2,Q2
)|ω ∈ Rw ∧ (r2,1, r2,2, . . . , r2,Q2

) ∈ (Cr2)
Q2 ∧

F′ ∧ q2,β = (m,σ0, h
(1)
1 , σ

(1)
1 )}, i.e., the set of random tapes and oracle responses

such that F′ ∧ q2,β = (m,σ0, h
(1)
1 , σ

(1)
1 ). This implies that there exists a non-

negligible set of �good� random tapes Ωβ ⊆ Rω for which A can provide a valid

signature and q2,β is the oracle query �xing h
(1)
2 . Applying the splitting lemma,

we get that

Pr[w ∈ Ωβ ] >
1

2Q2(k)P ′(k)

Pr[(ω, r2,1, r2,2, . . . , r2,Q2) ∈ B|w ∈ Ωβ ] >
1

2Q2(k)P ′(k)

Applying the same reasoning again we can derive from the later probability being
non-negligible that there exists a non-negligible subset Ωβ,ω of the �good� oracle
responses (r2,1, r2,2, . . . , r2,β−1) such that (ω, r2,1, r2,2, . . . , r2,Q2) ∈ B. Applying
the splitting lemma again, we get

Pr[(r2,1, . . . , r2,β−1) ∈ Ωβ,ω] >
1

4Q2(k)P ′(k)

Pr[(ω, r2,1, . . . , r2,Q2) ∈ B|(r2,1, . . . , r2,β−1) ∈ Ωβ,ω)] >
1

4Q2(k)P ′(k)

This means that rewinding A to the point where it made query q2,β and running
it with new, random r′2,β , . . . , r

′
2,Q2

has a non-negligible probability of A out-
putting another valid signature. Therefore, we can use A to �nd two valid signa-

ture message pairs with associated hash values (m,σ = (σ0, σ
(1)
1 , σ

(1)
2 ), h

(1)
1 , h

(1)
2 ),

(m,σ(2) = (σ0, σ
(2)
1 , σ

(2)
2 ), h

(2)
1 , h

(2)
2 ), with h

(1)
2 6= h

(2)
2 and such that (σ0, h

(1)
1 , σ

(1)
1 ) =

(σ0, h
(2)
1 , σ

(2)
1 ), with non-negligible probability.

We now rewind the adversary again using exactly the same technique as above
but now considering the queries to O1 and its responses. In the replay we change
the responses of O1 to obtain a third signature that di�ers from the previously
obtained ones in the �rst associated hash value. It can be shown that with non-
negligible probabilityA will output a third signature onm, σ(3) = (σ0, σ

(3)
1 , σ

(3)
2 ),

with associated hash values (h
(3)
1 , h

(3)
2 ) such that h

(3)
1 6= h

(2)
1 = h

(1)
1 .
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Finally, we rewind the adversary a third time, keeping the responses of O1

from the last rewind and focusing on O2 again. Again, with non-negligible prob-

ability A will produce yet another signature on m, σ(4) = (σ0, σ
(4)
1 , σ

(4)
2 ) with

associated hash values (h
(4)
1 , h

(4)
2 ) such that h

(4)
1 = h

(3)
1 and h

(4)
2 6= h

(3)
2 .

Summing up, rewinding the adversary three times, we can �nd four valid
signatures σ(1), σ(2), σ(3), σ(4) with the above property on the associated hash

values with non-negligible success probability
1

P (k)
for some polynomial P (k).

Let us denote this event by Eσ. So we have that Pr[Eσ] >
1

P (k)
.

What remains is to show that the obtained signatures satisfy the particular
structure from the lemma (Equation 4) with non-negligible probability.

Let H be the event that there exists a j ∈ {1, . . . , r} such that (4) is satis�ed.
We have that

Pr[Eσ∧H] = Pr[Eσ]−Pr[¬H∧Eσ]=Pr[Eσ]−Pr[¬H|Eσ]Pr[Eσ] >
1

P (k)
−Pr[¬H|Eσ]

We will now give a statistical argument why Pr[¬H|Eσ] is negligible.
As argued above, the hash values associated with the signatures must be

outcomes of the RO queries of A. During its �rst run, A can choose the �rst

hash value h
(1)
1 from his Q1 queries to O1 and the second hash value h

(1)
2 from

his Q2 queries to O2. The total number of possible combinations is Q1Q2. The

hash values associated with the second signature are h
(2)
1 = h

(1)
1 (as Eσ) and

h
(2)
2 . So, the �rst hash value is �xed and the second is chosen from a set of no

more than Q2 responses from O2. Following the same arguments, the hash pair
associated with the third signature is chosen from a set of size Q1Q2 and the one
associated with the fourth signature from a set of size Q2. The oracle outputs
are uniformly distributed within Cr1 and Cr2, respectively. Hence, the set of all
possible combinations of hash values that A could output has size

λ(k) ≤ Q1Q2 ·Q2 ·Q1Q2 ·Q2,

which is a polynomial in k as Q1 and Q2 are.
Recall C1 has size q and C2 size 2. The probability that the required pattern

did not occur in the four-tupel of challenges derived from random hash values
for one internal round j is

Pr[¬Hj ] = 1− Pr[Hj ] = 1− q − 1

22q
=

3q + 1

4q
.

The last follows from the fact that out of all 24q2 4-tuples ((α1, β1), (α1, β2),
(α2, β3), (α2, β4)) ∈ (C1 × C2)

4 exactly 22q(q − 1) satisfy α1 6= α2, β1 6= β2,
β3 6= β4. Hence, the probability that a random four-tuple of hash values does
not have a single internal round that satis�es (4) and hence ful�lls ¬H is

Pr[¬H] =
(
3q + 1

4q

)r
= negl(k) .
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According to Construction 4.7, the number of rounds r must be super-logarithmic
(in k), to ful�ll Cr2 being exponentially large (in k). Hence, the above is negligible
for random hash values.

Finally, we just have to combine the two results. The adversary can at most
choose out of a polynomially bounded number of four-tuples of hash pairs. Each
of these four-tuples has a negligible probability of ful�lling ¬H. Hence, the prob-
ability that all the possible combinations of query responses even contain a four-
tuple that does not ful�ll H is negligible. So, Pr[¬H|Eσ] = negl(k) , and hence,
the conditions from the lemma are satis�ed with non-negligible probability. ut

With Lemma 4.10 we can already establish unforgeability under key only attacks:

Corollary 4.11 (Key-only attack resistance). Let k ∈ N, IDS(1k) a q2-IDS
that achieves soundness with constant soundness error κ and has a q2-extractor.
Then q2 -Dss(1k), the q2-signature scheme derived applying Construction 4.7 is
unforgeable under key-only attacks.

A straight forward application of Lemma 4.10 allows to generate the four traces
needed to apply the q2-extractor. The obtained secret key can then be used to
violate soundness.

For EU-CMA security, we still have to deal with signature queries. The follow-
ing lemma shows that a reduction can produce valid responses to the adversarial
signature queries if the identi�cation scheme is honest-veri�er zero-knowledge.

Lemma 4.12. Let k ∈ N the security parameter, IDS(1k) a q2-IDS that is
honest-veri�er zero-knowledge. Then any PPT adversary B against the EU-CMA-
security of q2 -Dss(1k), the q2-signature scheme derived by applying Construc-
tion 4.7, can be turned into a key-only adversary A with the properties described
in Lemma 4.10. A runs in polynomial time and succeeds with essentially the
same success probability as B.

Proof. By construction. We show how to construct an oracle machine AB,S,O1,O2

that has access to B, an honest-veri�er zero-knowledge simulator S, and random
oracles O1,O2. A produces a valid signature for q2 -Dss(1k) given only a public
key running in time polynomial in k and achieving essentially the same success
probability (up to a negligible di�erence) as B.

Upon input of public key pk, A runs BO′1,O′2,Sign(pk) simulating the random
oracles (ROs) O′1,O′2, as well as the signing oracle Sign towards B. When B
outputs a forgery (m∗, σ∗), A just forwards it.

To simulate the ROs, A keeps two initially empty tables of query-response
pairs, one per oracle. Whenever B queries O′b, A �rst checks if the table for O′b
already contains a pair for this query. If such a pair exists, A just returns the
stored response. Otherwise, A forwards the query to its own Ob.

As IDS is honest-veri�er zero-knowledge there exists a PPT simulator S that
upon input of a IDS public key generates a valid transcript that is indistin-
guishable of the transcripts generated by honest protocol executions. Whenever
B queries the signature oracle with message m, A runs S r times, to obtain r
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valid transcripts. A combines the transcripts to obtain a valid signature with
associated hashes σ = ((σ0, σ1, σ2), h1, h2). Before outputting σ, A checks if
the table for O′1 already contains an entry for query (m,σ0). If so, A aborts.
Otherwise, A adds the pair ((m,σ0), h1). Then, A checks the second table
for query (m,σ0, h1, σ1). Again, A aborts if it �nds such an entry and adds
((m,σ0, h1, σ1), h2), otherwise.

The probability that A aborts is negligible in k. When answering signature
queries, A veri�es that certain queries were not made before. Both queries con-
tain σ1 which takes any given value only with negligible probability. On the
other hand, the total number of queries that B makes to all its oracles is polyno-
mially bounded. Hence, the probability that one of the two queries was already
made before is negligible. If A does not abort, it perfectly simulates all oracles
towards B. Hence, B � and thereby A � succeeds with the same probability as
in the real EU-CMA game in this case. Hence, A succeeds with essentially the
same probability as B. ut

We now got everything we need to prove Theorem 4.8. The proof is a straight
forward application of the previous two lemmas.

Proof (of Theorem 4.8). Towards a contradiction, assume that there exists a
PPT adversary B against the EU-CMA-security of q2 -Dss succeeding with non-
negligible probability. We show how to construct a PPT impersonator C breaking
the soundness of IDS. Applying Lemma 4.12, C can construct a PPT key-only
forger A, with essentially the same success probability as B. Given a public key
for IDS (which is a valid q2 -Dss public key) C runsA as described in Lemma 4.10.
That way C can use A to obtain four signatures that per (4) lead four transcripts
as required by the q2-extractor E . Running E , C can extract a valid secret key
that allows to impersonate P with success probability 1.
C just runsA and E , two PPT algorithms. Consequently, C runs in polynomial

time. Also, A and E both have non-negligible success probability implying that
also C succeeds with non-negligible probability. ut

5 Our proposal

In the previous sections, we gave security arguments for a Fiat-Shamir trans-
form of 5-pass IDS that contain two challenges, from {0, . . . , q − 1} and {0, 1}
respectively, where q ∈ Z∗. In this section we apply the transform to the 5-pass
IDS from [48] (see Section 3). Before discussing the 5-pass scheme, which we dub
MQDSS, we �rst brie�y examine the signature scheme obtained by applying the
traditional Fiat-Shamir transform to the 3-pass IDS in [48], to obtain a baseline.
Then we give a generic description of MQDSS and prove it secure.

The IDS requires an MQ system F as input, potentially system-wide. We
could simply select one function F and de�ne it as a system parameter for all
users. Instead, we choose to derive it from a unique seed that is included in each
public key. This increases the size of pk by k bits, and adds some cost for seed
expansion when signing and verifying. However, selecting a single system-wide
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F might allow an attacker to focus their e�orts on a single F for all users, and
would require whoever selects this system parameter to convince all users of its
randomness (which is not trivial [5]). For consistency with literature, we still
occasionally refer to F as the `system parameter'.

Note that the signing procedure described below is slightly more involved
than is suggested by Construction 4.7. Where the transformed construction op-
erates directly on the message m, we �rst apply what is e�ectively a randomized
hash function. As discussed in [35], this extra step provides resilience against
collisions in the hash function at only little extra cost. A similar construction
appears e.g. in SPHINCS [6]. The digest (and thus the signature) is still derived
from m and sk deterministically.

5.1 Establishing a baseline using the 3-pass scheme over F2

In the interest of brevity, we will not go into the details of the derived signature
scheme here � instead, we refer to the full version of the paper [13].

For the 3-pass scheme, we select n = m = 256 over F2. This results in
signatures of 54.81KB, and a key pair of 64 bytes per key. We ran benchmarks
on a single 3.5GHz core of an Intel Core i7-4770K CPU, measuring 118 088 992
cycles for signature generation, 8 066 324 cycles for key generation and 82 650 156
cycles for signature veri�cation (or 33.7 ms, 2.30 ms and 23.6 ms, respectively).

5.2 The 5-pass scheme over F31

As can be seen from the results above, the plain 3-pass scheme over F2 is quite
ine�cient, both in terms of signature size and signing speed. This is a direct
consequence of the large number of variables and equations required to achieve
128 bits of post-quantum security usingMQ over F2, as well as the high number
of rounds required (see the full version [13] of the paper for an analysis). Using a
5-pass scheme over F31 allows for a smaller n and m, as well as a smaller number
of rounds. One might wonder why we do not consider di�erent �elds for the
3-pass scenario, instead. This turns out to be suboptimal: contrary to the 5-pass
scheme, this does not result in a knowledge error reduction, but does increase
the transcript size per round.

The MQDSS signature scheme. We now explicitly construct the functions
KGen, Sign and Vf in accordance with De�nition 2.1. Speci�c values for the
parameters that achieve 128 bit post-quantum security are given in the next
section. We start by presenting the parameters of the scheme in general.

Parameters. MQDSS is parameterized by a security parameter k ∈ N, and
m,n ∈ N such that the security level of the MQ instance MQ(n,m,F2) ≥ k.

The latter �x the description length of the equation system F, Flen = m· n·(n+1)
2 .

� Cryptographic hash functions H : {0, 1}∗ → {0, 1}k, H1 : {0, 1}2k → F31
r,

and H2 : {0, 1}2k → {0, 1}r.
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� two string commitment functions Com0 : F31
n×F31

n×F31
m → {0, 1}k and

Com1 : F31
n × F31

m → {0, 1}k,
� pseudo-random generators GSF : {0, 1}k → F31

Flen , GSK : {0, 1}k → F31
n,

and Gc : {0, 1}2k → F31
r·(2n+m).

Key generation. Given the security parameter k, we randomly sample a secret
key of k bits SK ←R {0, 1}k as well as a seed SF ←R {0, 1}k. We then select a
pseudorandom MQ system F from MQ(n,m,F31) by expanding SF . In total,

we must generate Flen = m · (n·(n+1)
2 + n) elements for F, to use as coe�cients

for both the quadratic and the linear monomials. We use the pseudorandom
generator GSF for this.

In order to compute the public key, we want to use the secret key as input for
theMQ function de�ned by F. As SK is a k-bit string rather than a sequence of
n elements from F31, we instead use it as a seed for a pseudorandom generator
as well, deriving SKF31

= GSK(SK). It is then possible to compute PKv =
F(SKF31

). The secret key sk = (SK,SF ) and the public key pk = (SF ,PKv)
require 2 · k and k + 5 ·m bits respectively, assuming 5 bits per F31 element.

Signing. The signature algorithm takes as input a message m ∈ {0, 1}∗ and
a secret key sk = (SK,SF ). Similarly as in the key generation, we derive F =
GSF (SF ). Then, we derive a message-dependent random value R = H(SK ‖ m),
where �‖� is string concatenation. Using this random value R, we compute the
randomized message digest D = H(R ‖ m). The value R must be included in
the signature, so that a veri�er can derive the same randomized digest.

As mentioned in De�nition 2.4, the core of the derived signature scheme
essentially consists of iterations of the IDS. We refer to the number of required
iterations to achieve the security level k as r (note that this should not be
confused with r0 and r1, which are vectors of elements of F31).

Given SK and D, we now compute Gc(SK,D) to produce (r(0,0), . . . , r(0,r),
t(0,0), . . . , t(0,r), e(0,0), . . . , e(0,r)). Using these values, we compute c(0,i) and
c(1,i) for each round i, as de�ned in the IDS. Recall that G(x,y) = F(x+ y)−
F(x)− F(y), and that Com0 and Com1 are string commitment functions:

c(0,i)=Com0(r(0,i), t(0,i), e(0,i)) and c(1,i)=Com1(r(1,i),G(t(0,i), r(1,i)) +e(0,i)).

As mentioned in [48], it is not necessary to include all 2r commitments in
the transcript. Instead, we include a digest over the concatenation of all com-
mitments σ0 = H(c(0,0)‖c(1,0)‖ . . . ‖c(0,r−1)‖c(1,r−1)). We derive the challenges6

αi ∈ F31 (for 0 ≤ i < r) by applying H1 to h1 = (D,σ0). Using these αi, the
vectors t(1,i) = αi ·r(0,i)−t(0,i) and e(1,i) = αi ·F(r(0,i))−e(0,i) can be computed.

Let σ1 = (t(1,0)‖e(1,0)‖ . . . ‖t(1,r−1)‖e(1,r−1)). We compute h2 by applying H2

to the tuple (D,σ0, h1, σ1) and use it as r binary challenges ch2,i ∈ {0, 1}.
Now we de�ne σ2 = (r(ch2,i,i), . . . , r(ch2,i,r−1), c1−ch2,i , . . . , c1−ch2,r−1

). Note
that here we also need to include the challenges c1−ch2,i that the veri�er cannot
recompute. We then output σ = (R, σ0, σ1, σ2) as the signature. At 5 bits per
F31 element, the size of the signature is (2 + r) · k + 5 · r · (2 · n+m) bits.

6 Note that the concatenation of all αi was previously referred to as ch1.
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Veri�cation. The veri�cation algorithm takes as input the message m, the sig-
nature σ = (R, σ0, σ1, σ2) and the public key PK = (SF ,PKv). As above, we
use R and m to compute D, and derive F from SF using GSF . As the signature
contains σ0, we can compose h1 and, consequentially, the challenge values αi for
all r rounds by using H1. Similarly, the values ch2,i are computed by applying
H2 to (D,σ0, h1, σ1). For each round i, the veri�er extracts vectors ti and ei
(which are always t(1,i) and e(1,i)) from σ1 and ri from σ2. Depending on ch2,i,
half of the commitments can now be computed:

if ch2,i = 0 c(0,i)= Com0(ri, α · ri − ti, α · F(ri)− ei)
if ch2,i = 1 c(1,i)= Com1(ri, α · (PKv − F(ri))−G(ti, ri)− ei)

Extracting the missing commitments c(1−ch2,i,i) from σ2, the veri�er now
computes σ′0 = H(c(0,0)‖c(1,0) . . . ‖c(0,r−1)‖c(1,r−1)). For veri�cation to succeed,
σ′0 = σ0 should hold.

5.3 Security of MQDSS

We now give a security reduction for MQDSS in the ROM. As our results from
the last section are non-tight we only prove an asymptotic statement. While this
does not su�ce to make any statement about the security of a speci�c parame-
ter choice, it provides evidence that the general approach leads a secure scheme.
Also, the reduction is in the ROM, not in the QROM, thereby limiting appli-
cability in the post-quantum setting. As already mentioned in the introduction,
we consider it important future work to strengthen this statement.

In the remainder of this subsection we prove the following theorem.

Theorem 5.1. MQDSS is EU-CMA-secure in the random oracle model, if

� the search version of theMQ problem is intractable,
� the hash functions H, H1, and H2 are modeled as random oracles,
� the commitment functions Com0 and Com1 are computationally binding,

computationally hiding, and the probability that their output takes a given
value is negligible in the security parameter,

� the pseudorandom generator GSF is modeled as random oracle, and
� the pseudorandom generators, GSK , and Gc have outputs computationally

indistinguishable from random.

To prove this theorem we would like to apply Theorem 4.8. However, The-
orem 4.8 was formulated for a slightly more generic construction. The point is
that we apply an optimization originally proposed in [50]. So, in our actual pro-
posal, the parallel composition of the IDS is slightly di�erent as, instead of the
commitments, only the hash of their concatenation is sent. Also, the last message
now contains the remaining commitments.

While we could have treated this case in Section 4, it would have limited the
general applicability of the result, as the above optimization is only applicable
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to schemes with a certain, less generic, structure. However, it is straightforward
to redo the proofs from Section 4 for the optimized scheme. When modeling
the hash function used to compress the commitments as RO, the arguments are
exactly the same with one exception. The proof of Lemma 4.12 uses that the
commitment scheme � and thereby the �rst signature element σ1 � only takes a
given value with negligible probability. Now this statement follows from the same
property of the commitment scheme and the randomness of the RO. Altogether
this leads to the following corollary:

Corollary 5.2 (EU-CMA security of q2-signature schemes). Let k ∈ N,
IDS(1k) a q2-IDS that is honest-veri�er zero-knowledge, achieves soundness with
constant soundness error κ and has a q2-extractor. Then opt - q2 -Dss(1k), the
optimized q2-signature scheme derived by applying Construction 4.7 and the op-
timization explained above, is existentially unforgeable under adaptive chosen
message attacks.

Based on this corollary we can now prove the above theorem.

Proof (of Theorem 5.1). Towards a contradiction, assume there exists an adver-
sary A that wins the EU-CMA game against MQDSS with non-negligible suc-
cess probability. We show that this implies the existence of an oracle machine
MA that solves theMQ problem, breaks a property of one of the commitment
schemes, or distinguishes the outputs of one of the pseudorandom generators
from random. We �rst de�ne a series of games and argue that the di�erence in
success probability of A between these games is negligible. We assume thatM
runs A in these games.

Game 0: Is the EU-CMA game for MQDSS.
Game 1: Is Game 0 with the di�erence that M replaces the outputs of GSK

by random bit strings.
Game 2: Is Game 1 with the di�erence thatM replaces the outputs of Gc by

random bit strings.
Game 3: Is Game 2 with the di�erence that M takes as additional input a

random equation system F. M simulates GSF towards A, programming
GSF such that it returns the coe�cients representing F upon input of SF
and uniformly random values on any other input.

Per assumption, A wins Game 0 with non-negligible success probability. Let's
call this ε. If the di�erence in A's success probability playing Game 0 or Game
1 was non-negligible, we could use A to distinguish the outputs of GSK from
random. The same argument applies for the di�erence between Game 1 and
Game 2, and Gc. Finally, the output distribution of GSF in Game 3 is the same
as in previous games. Hence, there is no di�erence for A between Game 2 and
Game 3. Accordingly, A's success probability in these two games is equal.

Now, Game 3 is exactly the EU-CMA game for the optimized q2 signature
scheme that is derived fromMQ - IDS, the 5-pass IDS from [48]. We obtain the
necessary contradiction if we can apply Corollary 5.2. For this, it just remains
to be shown that MQ - IDS is a q2-IDS that is honest-veri�er zero-knowledge,
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achieves soundness with constant soundness error κ and has a q2-extractor.
Clearly, MQ - IDS is a q2-IDS under the given assumptions on the commit-
ment schemes. Sakumoto et al. [48] show thatMQ - IDS is honest-veri�er zero-
knowledge. Theorem 3.1 shows thatMQ - IDS achieves soundness with constant
soundness error κ = q+1

2q . Finally, the proof of Theorem 3.1 provides a construc-
tion of a q2-extractor. ut

6 Instantiating the scheme

In this section, we provide a concrete instance ofMQDSS. We discuss a suitable
set of parameters to achieve the desired security level, discuss an optimized
software implementation, and present benchmark results.

Parameter choice and security analysis. For the 5-pass scheme, the sound-
ness error κ is a�ected by the size of q. This motivates a �eld choice larger than
F2 in order to reduce the number of rounds required. From an implementation
point of view, it is bene�cial to select a small prime, allowing very cheap mul-
tiplications as well as comparatively cheap �eld reductions. We choose F31 with
the intention of storing it in a 16 bit value � the bene�ts of which become clear
in the next subsection, where we discuss the required reductions.

We now consider the choice of MQ(n,m,F31), i.e. the parameters n and
m. There are several known generic classical algorithms for solving systems of
quadratic equations over �nite �elds, such as the F4 algorithm [25] and the F5
algorithm [26,4] using Gröbner basis techniques, the Hybrid Approach [10,9] that
is a variant of the F5 algorithm, or the XL algorithm [15,18] and variants [56].

Currently, for �elds Fq where q > 4, the best known technique for solving
overdetermined systems of equations over Fq is combining equation solvers with
exhaustive search. The Hybrid Approach [10,9] and the FXL variant of XL [56]
use this paradigm. Here we will analyze the complexity using the Hybrid ap-
proach. Note that the complexity for the XL family of algorithms is similar [59].

Roughly speaking, for an optimization parameter `, using the Hybrid ap-
proach one �rst �xes ` among the n variables, and then computes q` Gröbner
bases of the smaller systems in n − ` variables. Hence, the improvement over
the plain F5 algorithm comes from the proper choice of the parameter `. It has
been shown in [9] that the best trade-o� is achieved when the parameter ` is
proportional to the number of variables n, i.e when ` = τn.

Let 2 6 ω 6 3 be the linear algebra constant. The complexity of computing
a Gröbner basis of a system of m equations in n variables, m > n, using the F5
algorithm is given by

CF5(n,m) = O
((

m

(
n+ dreg(n,m)− 1

dreg(n,m)

))ω)
,

where dreg(n,m) is the degree of regularity of the system which can be approx-
imated as

dreg(n,m) ≈ (
m

n
− 1

2
−
√
m

n
(
m

n
− 1)) +O

(
n1/3

)
.
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For a �xed 0 < τ < 1, the complexity of the Hybrid approach is

CHyb(n,m, τ, dreg(n(1− τ),m)) = qτn · CF5(n(1− τ),m, dreg,τ (n(1− τ),m)).

It is well known (and can be seen from the complexity above) that the F5
algorithm as well as the Hybrid approach perform better when the number of
equations is bigger than the number of variables, so from this point of view there
is no incentive in choosing m > n. On the other hand, if m < n, then we can
simply �x n − m variables and reduce the problem to a smaller one, with m
variables. Therefore, in terms of classical security the best choice is m = n.

Following the analysis from [10,9], we calculated the best trade-o� for τ for
the family of functionsMQ(n, n,F31), when ω = 2.3. Asymptotically, τ → 0.16,
although for smaller values of n (e.g n = 32) we �nd τ = 0.13.

Since our goal is classical security of at least 128 bits, we need to choose
n ≥ 51, so that for any choice of the linear algebra constant 2 6 ω 6 3 the
Hybrid approach would need at least 2128 operations. Note that if we set the
more realistic value of ω = 2.3, the minimum is n = 45.

For implementation reasons, we choose n = 64. In particular, a multiple of
16 suggests e�cient register usage for vectorized implementations. In this case,
for ω = 2.3, the complexity of the Hybrid approach is ≈ 2177 and the best result
is obtained for τ = 0.14, which translates to �xing 9 variables in the system.

Regarding post-quantum security, at the moment there is no dedicated quan-
tum algorithm for solving systems of quadratic equations. Instead, we can use
Grover's search algorithm [34] to directly attack theMQ problem, or use Grover's
algorithm for the search part in a quantum implementation of the Hybrid method.
Note that the later requires an e�cient quantum implementation of the F5 al-
gorithm, that we will assume provides no quantum speedup over the classical
implementation.

Grover's algorithm searches for an item in a unordered list of sizeN = 2n that
satis�es a certain condition given in the form of a quantum black-box function
f : {0, 1}n → {0, 1}. If the condition is satis�ed for the i-th item, then f(i) = 1,
otherwise f(i) = 0. The complexity of Grover's algorithm is O(

√
N/M), where

M is the number of items in the list that satisfy the condition, i.e. the algorithm
provides a quadratic speed-up compared to classical search.

First we will consider a direct application of Grover's algorithm on theMQ
problem in question. In this case, f should provide an answer whether a given
n-tuple x from Fn31 satis�es the system of equations F(x) = v. Since the domain
is not Boolean, we need to convert it one, so we get a domain of size n log 31.

To estimate the complexity of the algorithm, we need the number of solu-
tions M to the given system of equations. Determining the exact M requires
exponential time [54], but it was shown in [29] that the number of solutions of
a system of n equations in n variables follows the Poisson distribution with pa-
rameter λ = 1. Therefore the expected value is 1. Furthermore, the probability
that there are at least M solutions can be estimated as the tail probability of a

Poisson random variable P [X > M ] > (eλ)M

eλMM = 1
e (

e
M )M which is negligible in
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M . In practice, we can safely assume that M 6 4, since P [M > 5] > 2−8. In
total, Grover's algorithm takes O(2n log 31/2/4) ≈ 2156 operations.

As said earlier, we can also use a quantum version of the Hybrid approach
for m = n. In this case the complexity will be

CHyb,quantum(n, τ, dreg(n(1−τ), n)) =
√
qτn

M
·CF5(n(1−τ), n, dreg,τ (n(1−τ), n)).

Taking again M 6 4, the optimal value for the optimization parameter is τ =
0.39, which means we should �x 25 variables in the system. Hence, the quantum
version of the Hybrid method has a time complexity of ≈ 2139 operations.

To achieve EU-CMA for 128 bits of post-quantum security, we require that
kr ≤ 2−256, as an adversary could perform a preimage search to e�ectively
control the challenges. As κ = q+1

2q with q = 31, we need r = 269. To complete
the scheme, we instantiate the functions H, Com0 and Com1 with SHA3-256,
and use SHAKE-128 for H1, H2, GSF , Gc, and GSK [7]. In order to convert
between the output domain of SHAKE-128 and functions that map to vectors
over F31, we simply reject and resample values that are not in F31 (e�ectively
applying an instance of the second TSS08 construction from [55]).

We refer to this instance of the scheme as MQDSS-31-64.

Implementation. The central and most costly computation in this signature
scheme is the evaluation of F (and, by corollary, G). The signing procedure
requires one evaluation of each for every round, and the veri�er needs to compute
either F (if ch2 = 0) or both F and G (if ch2 = 1), for each round. Other than
these functions, the computational e�ort is made up of seed expansion, several
hash function applications and a small number of additions and subtractions.
For SHA3-256 and SHAKE-128, we rely on existing code from the Keccak Code
Package [8]. Clearly, the focus for an optimized implementation should be on the
MQ function. Previous work [12] has shown that modern CPUs o�er interesting
and valuable methods to e�ciently implement this primitive, in particular by
exploiting the high level of internal parallelism.

Compared to the binary 3-pass scheme, the implementation of the 5-pass
scheme over F31 presents more challenges. As F31 does not have closure under
regular integer multiplication and addition, results of computations need to be
reduced to smaller representations. To avoid having to this too frequently, we
generally represent �eld elements during computation as unsigned 16 bit values.
During speci�c parts of the computation, we vary this representation as needed.

The evaluation of F can roughly be divided in two parts: the generation of
all monomials, and computation of the resulting polynomials for known mono-
mials. Generating the quadratic monomials based on the given linear monomials
requires n · n+1

2 multiplications. For the second part, we require m · (n+n · n+1
2 )

multiplications to multiply the coe�cients of the system parameter with the
quadratic monomials, as well as a number of additions to accumulate all results.
As the second part is clearly more computationally intensive, the optimization
of this part is our primary concern. We describe an approach for the monomial
generation in the full version [13] of the paper.
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To e�ciently compute all polynomials for a given set of monomials, we keep
all required data in registers to avoid the cost of register spilling throughout
the computation. Given that n = m = 64, for this part of the computation
we represent the 64 F31 input values as 8 bit values and the resulting 64 F31

elements as 16 bit values, costing us 2 and 4 YMM registers respectively. The
coe�cients of F can be represented as a column major matrix with every column
containing all coe�cients that correspond to a speci�c monomial, i.e. one for
each output value. That would imply that every row of the matrix represents
one polynomial of F. In this representation, each result term is computed by
accumulating the products of a row of coe�cients with each monomial, which
is exactly the same as computing the product of the matrix F and the vector
containing all monomials. This allows us to e�ciently accumulate the output
terms, minimizing the required output registers.

In order to perform the required multiplications and additions as quickly as
possible, we heavily rely on the AVX2 instruction VPMADDUBSW. In one instruc-
tion, this computes two 8 bit SIMD multiplications and a 16 bit SIMD addition.
However, this instruction operates on 8 bit input values that are stored ad-
jacently. This requires a slight variation on the representation of F described
above: instead, we arrange the coe�cients of F in a column major matrix with
16 bit elements, each corresponding to two concatenated monomials.

When arranging reductions, we must strike a careful balance between pre-
venting over�ow and not reducing more often than necessary. As we make ex-
tensive use of VPMADDUBSW, which takes both a signed and an unsigned operand
to compute the quadratic monomials, we ensure that the input variables for
theMQ function are unsigned values (in particular: {0, . . . , 31}). For the coef-
�cients in the system parameter F, we can then freely assume the values are in
{−15, . . . , 15}, as these are the direct result of a pseudo-random generator. It
turns out to be e�cient to immediately reduce the quadratic monomials back
to {0, . . . , 31} when they are computed. When we now multiply such a product
with an element from the system parameter and add it to the accumulators, the
maximum value of each accumulator word will be at most7 64 · 31 · 15 = 29760.
As this does not exceed 32768, we only have to perform reductions on each
individual accumulator at the very end.

One should note that [12] approaches this problem from a slightly di�erent
angle. In particular, they accumulate each individual output element sequen-
tially, allowing them to keep the intermediate results in the 32 bit representation
that is the output of their combined multiplication and addition instructions.
This has the natural consequence of also avoiding early reductions.

Benchmark results. The MQDSS-31-64 implementation has been optimized
for large Intel processors, supporting AVX2 instructions. Benchmarks were car-
ried out on a single core of an Intel Core i7-4770K CPU, running at 3.5 GHz.

Signature and key sizes. The signature size of MQDSS-31-64 is considerably
smaller than that of the 3-pass scheme. The obvious factor in this is the decreased

7 This follows from the fact that we combine 64 such monomials in two YMM registers.
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ratio between the element size (which, in packed form, now require 64 · 5 = 320
bits each) and the number of rounds, resulting in a signature size of 2 · 256 +
269 · (256 + (5 · 3 · 64)) = 327 616 bits, or 40 952 bytes (39.99KB). The shape
of the keys does not change compared to 3-pass scheme, but since a vector of
�eld elements now requires 320 bits, the public key is 72 bytes. The secret key
remains 64 bytes.

Performance. As theMQ function is the most costly part of the computation,
parameters are chosen in such a way that its performance is maximized. The
required number of multiplications and additions (expressed as functions of n and
m) does not change dramatically compared to the 3-pass baseline8, but the actual
values n and m are only a quarter of what they were. As the relation between
n and m and the number of multiplications is quadratic for the monomials and
cubic for the system parameter masking, and we see only a linear increase in the
number of registers needed to operate on, the entire sequence of multiplications
and additions becomes much cheaper. This especially impacts operations that
involve the accumulators. As the representation allows us to keep reductions out
of this innermost repeated loop, we perform (only) 67·4

2 + 4 = 136 reductions9

throughout the main computation and 66 when preparing quadratic monomials.
As we were able to arrange the registers in such a way that they do not need
to rotate across multiple registers, we greatly reduce the number of rotations
required compared to the 3-pass scenario. Furthermore, we note that we use a
total of 67 · 16 · 4 = 4288 VPMADDUBSW instructions for the core computations.

For one iteration of the MQ function F, we measure 6 616 cycles (G is
slightly less costly, at 6 396 cycles). We measure a total of 8 510 616 cycles for
the complete signature generation. Key generation costs 1 826 612 cycles, and
veri�cation consumes 5 752 612 cycles. On the given platform, that translates
to roughly 2.43 ms, 0.52 ms and 1.64 ms, respectively. Veri�cation is expected
to require on average 3

2 calls to an MQ function per round, whereas signature
generation always requires two. This explains the ratio; note that both signer and
veri�er incur additional costs besides theMQ functions, e.g. for seed expansion.

In order to compare these results to the state of the art, we consider the
performance �gures reported in [12]. In particular, we examine the Rainbow(31,
24, 20, 20) instance, as the `public map' in this scheme is e�ectively the MQ
function over F31 with n = 64, as used above. The number of equations di�ers
(i.e. m = 40 as opposed to m = 64), but this can be approximated by normal-
izing linearly. In [12], the authors report a time measurement of 17.7µs, which
converts to 50 144 cycles on their 2.833 GHz Intel C2Q Q9550. After normaliz-
ing for m, this amounts to 80 230 cycles. Results from the eBACS benchmarking
project further show that running the Rainbow veri�cation function from [12]
on a Haswell CPU requires approximately 46 520 cycles (and thus 74 432 after
normalizing); veri�cation is dominated by the public map. Using their (by now

8 A slight di�erence is introduced by cancellation of the monomials in the F2 setting.
9 This follows from the fact that we need a total of 64+64·65

2·32 = 67 YMM registers worth
of space to store the monomials and perform 4 reductions after accumulating 2 YMM

monomials.
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arguably outdated) SSE2-based code to evaluate a public map with m = 64
consumes 60 968 cycles on our Intel Core i7-4770K. All of these results provide
con�dence in the fact that our implementation, which makes extensive use of
AVX2 instructions, is performing in line with expectations.
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