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Abstract. In this article we focus on constructing an algorithm that automatizes
the generation ofLPN solving algorithms from the considered parameters. When
searching for an algorithm to solve anLPN instance, we make use of the existing
techniques and optimize their use. We formalize anLPN algorithm as a path in a
graphG and our algorithm is searching for the optimal paths in this graph. Our
results bring improvements over the existing work, i.e. we improve the results
of the covering code from ASIACRYPT’14 and EUROCRYPT’16. Furthermore,
we propose concrete practical codes and a method to find good codes.

1 Introduction

The Learning Parity with Noise (LPN) problem can be seen as a noisy system
of linear equations in the binary domain. More specifically,we have a secrets
and an adversary that has access to anLPN oracle which provides him tuples of
uniformly distributed binary vectorsvi and the inner product betweensandvi to
which some noise was added. The noise is represented by a Bernoulli variable
with a probabilityτ to be 1. The goal of the adversary is to recover the secrets.
TheLPN problem is a particular case of the well-known Learning withErrors
(LWE) [34] problem where instead of working inZ2 we extend the work to a
ring Zq.

The LPN problem is attractive as it is believed to be resistant to quantum
computers. Thus, it can be a good candidate for replacing thenumber-theoretic
problems such as factorization and discrete logarithm (which can be easily bro-
ken by a quantum algorithm). Also, given its structure, it can be implemented in
lightweight devices. TheLPN problem is used in the design of theHB-family
of authentication protocols [10,20,24,25,27,31] and several cryptosystems base
their security on its hardness [1,15,16,17,21,26].

Previous Work. LPN is believed to be hard. So far, there is no reduction from
hard lattice problems to certify the hardness (like in the case ofLWE). Thus,
the best way to assess its hardness is by trying to design and improve algo-
rithms that solve it. Over the years, theLPN problem was analyzed and there
exist several solving algorithms. The first algorithm to targetLPN is theBKW
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algorithm [6]. This algorithm can be described as a Gaussianelimination on
blocks of bits (instead on single bits) where the secret is recovered bit by bit.
Several improvements appeared afterwards [19,29]. One idea that improves the
algorithm is the use of the fast Walsh-Hadamard transform aswe can recover
several bits of the secret at once. In their work, Levieil andFouque [29] pro-
vide an analysis with the level of security achieved by differentLPN instances
and propose secure parameters. UsingBKW as a black-box, Lyubashevsky [30]
presents anLPN solving algorithm useful for the case when the number of
queries is restricted to an adversary. The best algorithm tosolveLPN was pre-
sented at ASIACRYPT’14 [23] and it introduces the use of the covering codes
to improve the performance. Some problems in the computation of complexities
were reported [7,37]. As discussed by Bogos et al. [7] and in the ASIACRYPT
presentation [23]1 , the authors used a too optimistic approximation for the
bias introduced by their new reduction method, the coveringcodes. Some com-
plexity terms are further missing (as discussed in Section 2.2) or are not in bit
operations. Also, no method to construct covering codes were suggested. At
EUROCRYPT’16, Zhang et al. [37] proposed a way to construct good codes by
concatenating perfect codes and improved the algorithms. However, some other
problem in complexities were reported [9]. The newLF(4) reduction technique
introduced by Zhang et al. [37] was also shown to be incorrect[9].

For the case when the secret is sparse, i.e. its Hamming weight is small, the
classical Gaussian elimination proves to give better results [7,8,11].

TheLPN algorithms consist of two parts: one in which the size of the secret
is reduced and one in which part of the secret is recovered. Once a part of the
secret is recovered, the queries are updated and the algorithm restarts to recover
the rest of the secret. When trying to recover a secrets of k bits, it is assumed
thatk can be written asa·b, for a,b∈N (i.e. secretscan be seen asa blocks of
b bits). Usually all the reduction steps reduce the size byb bits and the solving
algorithm recoversb bits. While the use of the same parameter, i.e.b, for all
the operations may be convenient for the implementation, wesearch for an al-
gorithm that may use different values for each reduction step. We discover that
small variations from the fixedb can bring important improvements in the time
complexity of the whole algorithm.

Our Contribution. In this work we firstanalyze the existingLPN algorithms
and study the operations that are used in order to reduce the size of the secret.
We adjust the expressions of the complexities of each step(as in some works
they were underestimated in the literature). For instance,the results from Guo et

1 http://des.cse.nsysu.edu.tw/asiacrypt2014/doc/1-1_SolvingLPNUsingCoveringCodes.pdf
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al. [23] and Zhang et al. [37] are displayed with correctionsin Table 1.2 (Details
for this computation are provided as an additional materialfor this paper.)

(k,τ) ASIACRYPT’14 [23] EUROCRYPT’16 [37] our results

(512,0.125)
286.96(279.9) (proceedings)

281.90(279.7) (presentation)1
280.09(274.73) 278.84

(532,0.125) 288.62(281.82) 282.17(276.90) 281.02

(592,0.125) 297.71(288.07) 289.32(283.84) 287.57

Table 1: Time complexity to solveLPN (in bit operations). These complexities
are based on the formulas from our paper with the most favorable covering codes
we constructed from our pool, with adjusted data complexityto reach a failure
probability bounded by 33%. Originally claimed complexities by [23] and [37]
are under parentheses.

Second, weimprove the theory behind the covering code reduction and show
the link with perfect and quasi-perfect codes.Using the average bias of covering
codes allows us to use arbitrary codes and even random ones. Using the algo-
rithm to construct optimal concatenated codes based on a pool of elementary
ones allows us to improve complexities. (In Guo et al. [23], only a hypothetical
code was assumed to be close to a perfect code; in Zhang et al. [37], only the
concatenation of perfect codes are used; in Table 1, our computed complexities
are based on the real codes that we built with our bigger pool to have a fair
comparison.)

Third, weoptimize the order and the parameters used by the operationsthat
reduce the size of the secret such that we minimize the time complexity required.
We design a “meta-algorithm” that combines the reduction steps and finds the
optimal strategy to solveLPN. Weautomatize the process of findingLPN solv-
ing algorithms, i.e. given a randomLPN instance, our algorithm provides the
description of the steps that optimize the time complexity. In our formalization
we call such algorithms “optimal chains”. We perform a security analysis of
LPN based on the results obtained by our algorithm and compare our results
with the existing ones. We discover that we improve the complexity compared
with the existing results [7,29,37,23], as shown in Table 1.

2 As for [37], we only reported the results based onLF2 which are better than withLF1, as the
LF(4) operation is incorrect [9].
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Preliminaries & Notations. Given a domainD, we denote byx
U←−D the fact

thatx is drawn uniformly at random fromD. By Berτ we denote the Bernoulli
distribution with parameterτ. By Berkτ we denote the binomial distribution with
parametersk andτ. Let 〈·, ·〉 denote the inner product,Z2 = {0,1} and⊕ denote
the bitwise XOR. The Hamming weight of a vectorv is denoted byHW(v).

Organization. In Section 2 we formally define theLPN problem and describe
the main tools used to solve it. We carefully analyze the complexity of each
step and show in footnote where it differs from the existing literature. Section 3
studies the failure probability of the entire algorithm andvalidates the use of the
average bias in the analysis. Section 4 introduces the bias computation for per-
fect and quasi-perfect codes. We provide an algorithm to findgood codes. The
algorithm that searches the optimal strategy to solveLPN is presented in Sec-
tions 5 and 6. We illustrate and compare our results in Section 7 and conclude in
Section 8. We put in additional material details of our results: the complete list
of the chains we obtain (for Table 3 and Table 4), an example ofcomplete solv-
ing algorithm, the random codes that we use for the covering code reduction,
and an analysis of the results from [23] and [37] to obtain Table 1.

2 LPN

2.1 LPN Definition

TheLPN problem can be seen as a noisy system of equations inZ2 where one is
asked to recover the unknown variables. Below, we present the formal definition.

Definition 1 (LPN oracle).Let s
U←−Z

k
2, let τ∈]0, 1

2[ be a constant noise param-
eter and letBerτ be the Bernoulli distribution with parameterτ. Denote by Ds,τ
the distribution defined as

{(v,c) | v U←− Z
k
2,c= 〈v,s〉⊕d,d← Berτ} ∈ Z

k+1
2 .

An LPN oracle OLPN
s,τ is an oracle which outputs independent random samples

according to Ds,τ.

Definition 2 (SearchLPN problem). Given access to anLPN oracle OLPN
s,τ ,

find the vector s. We denote byLPNk,τ theLPN instance where the secret has
size k and the noise parameter isτ. Let k′ ≤ k. We say that an algorithmM
(n, t,m,θ,k′)-solvesthe searchLPNk,τ problem if

Pr[M OLPN
s,τ (1k) = (s1 . . .sk′) | s U←− Z

k
2]≥ θ,

andM runs in time t, uses memory m and asks at most n queries from theLPN

oracle.
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Remark that we consider here the problem of recovering only apart of the
secret. Throughout the literature this is how theLPN problem is formulated. The
reason for doing so is that the recovery of the firstk′ bits dominates the overall
complexity. Once we recover part of the secret, the new problem of recovering
a shorter secret ofk−k′ bits is easier.

TheLPN problem has a decisional form where one has to distinguish be-
tween random vectors of sizek+1 and the samples from theLPN oracle. In this
paper we are interested only in finding algorithms for the search version.

We defineδ = 1− 2τ. We call δ the bias of the error bitd. We haveδ =
E((−1)d), with E(·) the expected value. We denote the bias of the secret bits
by δs. As s is a uniformly distributed random vector, at the beginning we have
δs = 0.

2.2 Reduction and Solving Techniques

Depending on how many queries are given from theLPN oracle, theLPN
solving algorithms are split in 3 categories. With alinear number of queries,
the best algorithms are exponential, i.e. withn = Θ(k) the secret is recov-
ered in 2Θ(k) time [32,36]. Given apolynomial number of queries n= k1+η,
with η > 0, one can solveLPN with a sub-exponential time complexity of

2O( k
log logk ) [30]. Whenτ = 1√

k
we can improve this result and have a complex-

ity of e
1
2

√
k(lnk)2+O(

√
k lnk) [8]. The complexity improves but remains in the sub-

exponential range with asub-exponential number of queries. For this category,
we have theBKW [6], LF1, LF2 [29], FMICM [19] and the covering code algo-

rithm [23,37]. All these algorithms solveLPN with a time complexity of 2O( k
logk )

and require 2O( k
logk) queries. In the special case when the noise is sparse, a sim-

ple Gaussian elimination can be used for the recovery of the secret [7,11].LF2,
covering code or the Gaussian elimination prove to be the best one, depending
on the noise level [7].

All these algorithms have a common structure: given anLPNk,τ instance
with a secrets, they reduce the originalLPN problem to a newLPN problem
where the secrets′ is of sizek′ ≤ k by applying severalreduction techniques.
Then, they recovers′ using asolving method. The queries are updated and the
process is repeated until the whole secrets is recovered. We present here the
list of reduction and solving techniques used in the existing LPN solving algo-
rithms. In the next section, we combine the reduction techniques such that we
find the optimal reduction phases for solving differentLPN instances.

We assume for all the reduction steps that we start withn queries, that the
size of the secret isk, the bias of the secret bits isδs and the bias of the noise
bits is δ. After applying a reduction step, we will end up withn′ queries, size
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k′ and biasesδ′ andδ′s. Note thatδs averages over all secrets although the algo-
rithm runs with one target secret. As it will be clear below, the complexity of
all reduction steps only depends onk, n, and the parameters of the steps but not
on the biases. Actually, only the probability of success is concerned with biases.
We see in Section 3 that the probability of success of the overall algorithm is not
affected by this approach. Actually, we will give a formula to compute a value
which approximates the average probability of success overthe key based on
the average bias.

We have the following reduction steps:

– sparse-secret changes the secret distribution. In the formal definition ofLPN,
we take the secrets to be a random row vector of sizek. When other re-
duction steps or the solving phase depends on the distribution of s, one
can transform anLPN instance with a randoms to a new one wheres
has the same distribution as the initial noise, i.e.s← Berkτ. The reduc-
tion performs the following steps: from then queries selectk of them:
(vi1,ci1), . . . ,(vik ,cik) where the row vectorsvi j , with 1≤ j ≤ k, are linearly
independent. Construct the matrixM as M = [vT

i1 · · ·vT
ik] and rewrite thek

queries assM+ d′ = c′, whered′ = (di1, . . . ,dik). With the rest ofn− k
queries we do the following:

c′j = 〈v j(M
T)−1,c′〉⊕c j = 〈v j(M

T)−1,d′〉⊕d j = 〈v′j ,d′〉⊕d j

We haven− k new queries(v′j ,c
′
j) where the secret is nowd′. In Guo et

al. [23], the authors use an algorithm which is inappropriately called “the
four Russians algorithm” [2]. This way, the complexity should be of

O
(

minχ∈N
(

kn′⌈ k
χ⌉+k3+kχ2χ

))

.3 Instead, the Bernstein algorithm [4]

works inO
(

n′k2

log2 k−log2 log2 k +k2
)

. We use the best of the two, depending on

the parameters. Thus, we have:

sparse-secret : k′ = k; n′ = n−k; δ′ = δ; δ′s = δ
Complexity:O

(

minχ∈N
(

n′k2

log2 k−log2 log2 k +k2,kn′⌈ k
χ⌉+k3+kχ2χ

))

– xor -reduce(b) was first used by theLF2 algorithm. The queries are grouped
in equivalence classes according to the values onb random positions. In
each equivalence class, we perform the xoring of every pair of queries. The
size of the secret is reduced byb bits and the new bias isδ2. The expected
new number of queries isE(∑i< j 1vi matchesvj on theb-bit block) =

n(n−1)
2b+1

3 but thek3+kχ2χ terms is missing in [23].
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which improves previous results4. Whenn≈ 1+2b+1, the number of queries
are maintained. Forn> 1+2b+1, the number of queries will increase.

xor -reduce(b) : k′ = k−b; n′ = n(n−1)
2b+1 ; δ′ = δ2; δ′s = δs

Complexity:O(k ·max(n,n′))

– drop-reduce(b) is a reduction used only by theBKW algorithm. It consists in
dropping all the queries that are not 0 on a window ofb bits. Again, theseb
positions are chosen randomly. In average, we expect that half of the queries
are 0 on a given position. Forb bits, we expect to haven2b queries that are 0
on this window. The bias is unaffected and the secret is reduced byb bits.

drop-reduce(b) : k′ = k−b; n′ = n
2b ; δ′ = δ; δ′s = δs

Complexity:O(n(1+ 1
2 + . . .+ 1

2b−1 ))

The complexity ofn(1+ 1
2 + . . .+ 1

2b−1 ) = O(n) comes from the fact that we
don’t need to check all theb bits: once we find a 1 we don’t need to continue
and just drop the corresponding query.

– code-reduce(k,k′,params) is a method used by the covering code algorithm
presented in ASIACRYPT’14. In order to reduce the size of thesecret, one
uses a linear code[k,k′] (which is defined byparams) and approximates the
vi vectors to the nearest codewordgi . We assume that decoding is done in
linear time for the code considered. (For the considered codes, decoding is
indeed based on table look-ups.) The noisy inner product becomes:

〈vi ,s〉⊕di = 〈g′iG,s〉⊕ 〈vi −gi,s〉⊕di

= 〈g′i ,sGT〉⊕ 〈vi−gi,s〉⊕di

= 〈g′i ,s′〉⊕d′i ,

whereG is the generator matrix of the code,gi = g′iG, s′= sGT ∈{0,1}k′ and
d′i = 〈vi −gi,s〉⊕di . We denotebc= E((−1)〈vi−gi ,s〉) the bias of〈vi−gi,s〉.
We will see in Section 4 how to construct a[k,k′] linear code makingbc as
large as possible.
Here,bc averages the bias over the secret althoughs is fixed bysparse-secret .
It gives the correct average biasδ over the distribution of the key. We will
see that it allows to approximate the expected probability of success of the
algorithm.
By this transform, no query is lost.

code-reduce(k,k′,params) : k′; n′ = n; δ′ = δ ·bc
δ′s depends onδs andG
Complexity:O(kn)

4 In Bogos et al. [7], the number of queries was approximated to
n

2b

(

n
2b−1

)

2 which is less favor-
able.
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The wayδ′s is computed is a bit more complicated than for the other types
of reductions. However,δs only plays a role in thecode-reduce reduction, and
we will not consider algorithms that use more than onecode-reduce reduction.

It is easy to notice that with each reduction operation the number of queries
decreases or the bias is getting smaller. In general, for solving LPN, one tries to
lose as few queries as possible while maintaining a large bias. We will study in
the next section what is a good combination of using these reductions.

After applying the reduction steps, we assume we are left with anLPNk′,δ′

instance where we haven′ queries. The originalBKW algorithm was using a
final solving technique based on majority decoding. Since the LF2 algorithm,
we use a better solving technique based on the Walsh HadamardTransform
(WHT).

WHT recovers a block of the secret by computing the fast Walsh Hadamard
transform on the functionf (x) = ∑i 1vi=x(−1)〈vi ,s〉⊕di . The Walsh-Hadamard
transform is

f̂ (ν) = ∑
x
(−1)〈ν,x〉 f (x) = ∑

i

(−1)〈vi ,s+ν〉⊕di

Forν = s, we havef̂ (s) = ∑i(−1)di . For a positive bias, we know that most
of the noise bits are set to 0. It is the opposite when the bias is negative. So,
| f̂ (s)| is large and we suppose it is the largest value in the table off̂ . Using

again the Chernoff bounds, we need to haven′ = 8ln(2k′

θ )δ′−2 [7] queries in
order to bound the probability of guessing wrongly thek′-bit secret byθ. We
can improve further by applying directly the Central Limit Theorem and obtain

a heuristic boundϕ(−
√

n′
2δ′−2−1)≤ 1− (1−θ)

1
2k′ −1 , whereϕ(x) = 1

2 +
1
2erf(

x√
2
)

anderf is the Gauss error function. We obtain that

√
n′ ≥−

√

2δ′−2−1·ϕ−1
(

1− (1−θ)
1

2k′−1

)

. (1)

We can derive the approximation of Selçuk [35] thatn′ ≥ 4ln(2k′

θ )δ′−2.
We give the details of our results in Section 3. Complexity ofthe WHT(k′)

is O(k′2k′ log2 n′+1
2 +k′n′) as we use the fast Walsh Hadamard Transform5 6.

5 The second termk′n′ illustrates the cost of constructing the functionf . In cases where
n′ > 2k′ this is the dominant term and it should not be ignored. This was missing in several
works [23,7]. For the instanceLPN592,0.125 from Guo et al. [23] this makes a big difference as
k′ = 64 andn′ = 269; the complexity ofWHT with the second term is 275 vs 270 [23]. Given
that is must be repeated 213 (as 35 bits of the secret are guessed), the cost ofWHT is 288.

6 Normally, the valueŝf (ν) have an order of magnitude of
√

n′ so we have1
2 log2n′ bits.
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WHT(k′);

Requires
√

n′ ≥−
√

2δ′−2−1·ϕ−1

(

1− (1−θ)
1

2k′ −1

)

Complexity:O(k′2k′ log2 n′+1
2 +k′n′)

Given the reduction and the solving techniques, anLPNk,τ solving algorithm
runs like this: we start with ak-bit secret and withnqueries from theLPN oracle.
We reduce the size of the secret by applying several reduction steps and we end
up withn′ queries where the secret has sizek′. We use one solving method, e.g.
theWHT, and recover thek′-bit secret with a probability of failure bounded by
θ. We choseθ = 1

3. We have recovered a part of the secret. To fully recover
the whole secret, we update the queries and start another chain to recover more
bits, and so on until the remainingk− k′ bits are found. For the second part
of the secret we will require for the failure probability to be θ2 and for the
ith part it will be θi . Thus, if we recover the whole secret ini iterations, the
total failure probability will be bounded byθ+θ2+ · · ·+θi . Given that we take
θ = 1

3, we recover the whole secret with a success probability larger than 50%.
Experience shows that the time complexity for the first iteration dominates the
total complexity.

As we can see in the formulas of each possible step, the computations of
k′, n′, and of the complexity do not depend on the secret weight. Furthermore,
the computation of biases is always linear. So, the correct average bias (over the
distribution of the key made by thesparse-secret transform) is computed. Only
the computation of the success probability is non-linear but we discuss about
this in the next section. As it only matters inWHT, we will see in Section 3 that
the approximation is justified.

3 On Approximating the Probability of Success

Approximating n by using Central Limit Theorem.In order to approximate
the number of queries needed to solve theLPN instance we consider when
the Walsh Hadamard Transform fails to give the correct secret. We first as-
sume that the bias is positive. We have a failure when for another s̄ 6= s, we
have that f̂ (s̄) > f̂ (s). Following the analysis from [7], we lety = A′s̄T + c′T

andd′ = A′sT + c′T . We have f̂ (s̄) = ∑i(−1)yi = n′− 2.HW(y) and similarly,
f̂ (s) = n′−2.HW(d′). So, f̂ (s̄) > f̂ (s) translates toHW(y) ≤ HW(d′). There-
fore

Pr[ f̂ (s̄)> f̂ (s)] = Pr

[

n′

∑
i=1

(yi −d′i )≤ 0

]

.

For each ¯s, we takey as a uniformly distributed random vector and we letδ′(s)
be the bias introduce with a fixeds for d′i (we recall that our analysis computes
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δ′ = E(δ′(s)) over the distribution ofs). Let X1, . . . ,Xn′ be random variable cor-

responding toXi = yi −d′i . SinceE(yi) =
1
2, E(d′i ) =

1
2−

δ′(s)
2 andyi andd′i are

independent, we have thatE(Xi) =
δ′(s)

2 andVar(Xi) =
2−δ′(s)2

4 . By using the
Central Limit Theorem we obtain that

Pr[X1+ . . .+Xn′ ≤ 0]≈ ϕ(Z(s)) with Z(s) =− δ′(s)
√

2−δ′(s)2

√
n′

whereϕ can be calculated byϕ(x) = 1
2 +

1
2erf(

x√
2
) anderf is the Gauss error

function. Forδ′(s)< 0, the same analysis witĥf (s̄)< f̂ (s) gives the same result.
Applying the reasoning for anys′ 6= swe obtain that the failure probability is

p(s) = 1− (1−ϕ(Z(s)))2k′−1 , if δ′(s)> 0

andp(s) = 1− 1
2k′ , if δ′(s)≤ 0.

We deduce the following (forθ < 1
2)

p(s) ≤ θ⇔
√

n′ ≥−
√

2δ′(s)−2−1ϕ−1
(

1− (1−θ)
1

2k′ −1

)

andδ′(s)> 0

As a condition for ourWHT step, we adopt the inequality in which we
replaceδ′(s) by δ′. We give a heuristic argument below to show that it implies
E(p(s))≤ θ, which is what we want.

Note that if we use the approximationϕ(Z) ≈ − 1
Z
√

2π e−
Z2
2 for Z→ −∞,

we obtain the conditionn′ ≥ 2(2δ′−2−1) ln(2k′−1
θ ). So, our analysis brings an

improvement of factor two over the Hoeffding bound method used by Bogos et

al. [7] that requiresn′ ≥ 8δ′−2 ln(2k′

θ ).

On the validity of the using the bias average.The above computation is cor-
rect when usingδ′(s) but we useδ′ = E(δ′(s)) instead. If nocode-reduce step is
used,δ′(s) does not depend ons and we do haveδ′(s) = δ′. However, when a
code-reduce is used, the bias depends on the secret which is obtained after the
sparse-secret step. For simplicity, we lets denote this secret. The biasδ′(s) is
actually of form δ′(s) = δ2x

bc(s) where x is the number ofxor -reduce steps
andbc(s) is the bias introduced bycode-reduce depending ons. The values of
δ′(s), Z(s), andp(s) are already defined above. We defineZ =− δ′√

2−δ′2
√

n′ and

p= 1− (1−ϕ(Z))2k′−1. Clearly,E(p(s)) is the average failure probability over
the distribution of the secret obtained aftersparse-secret .
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Our method ensures thatδ′ = E(δ′(s)) over the distribution ofs. Sinceδ′
is typically small (after a fewxor -reduce steps,δ2x

is indeed very small), we
can considerZ(s) as a linear function ofδ′(s) and haveE(Z(s)) ≈ Z. This is
confirmed by experiment. We make theheuristic approximation that

E
(

1− (1−ϕ(Z(s)))2k′−1
)

≈ 1− (1−ϕ(E(Z(s))))2k′−1≈ 1− (1−ϕ(Z))2k′−1

So,E(p(s)) ≈ p.7

We did some experiments based on some examples in order to validate our
heuristic assumption. Our results show indeed thatE(Z(s))≈Z. There is a small
gap betweenE(p(s)) andp but this does not affect our results. Actually, we are
in a phase transition region so any tiny change in the value ofn′ makesE(p(s))
change a lot. We include our results in the additional material. Thus, ensuring
that p≤ θ with the above analysis based on the average bias ensures that the
expected failure probability to be bounded byθ.

We also observed that the reductioncode-reduce can introduce problems.
More precisely, what can go wrong is thats can have, with a given probabil-
ity, a negativeδ′(s) bias or a component in one of the concatenated codes giving
a zero bias, makingWHT to fail miserably.

4 Bias of the Code Reduction

In this section we present how to compute the bias introducedby a code-reduce.
Recall that the reductioncode-reduce(k,k′) introduces a new noise:

〈vi ,s〉⊕di = 〈g′i ,s′〉⊕ 〈vi−gi,s〉⊕di ,

wheregi = g′iG is the nearest codeword ofvi ands′ = sGT . Note thatgi is not
necessarily unique, specially if the code is not perfect. Wetakegi =Decode(vi)
obtained from an arbitrary decoding algorithm. Then the noisebc can be com-
puted by the following formula:

bc= E((−1)〈vi−gi ,s〉) = ∑
e∈{0,1}k

Pr[vi −gi = e]E((−1)〈e,s〉)

=
k

∑
w=0

∑
e∈{0,1}k,
HW(e)=w

Pr[vi −gi = e]δw
s = E

(

δHW(vi−gi)
s

)

7 Note that Zhang et al. [37] implicitly does the same assumption as they use the average bias
as well.
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for a δs-sparse secret. (We recall that thesparse-secret reduction step randomizes
the secret.) So, the probability space is over the distribution of vi and the dis-
tribution of s. Later, we considerbc(s) = E((−1)〈vi−gi ,s〉) over the distribution
overvi only. (In the work of Guo et al. [23], onlybc(s) is considered. In Zhang
et al. [37], ourbc was also considered.) In the last expression ofbc, we see that
the ambiguity in decoding does not affectbc as long as the Hamming distance
HW(vi−Decode(vi)) is not ambiguous. This is a big advantage of averaging in
bc as it allows to use non-perfect codes. From this formula, we can see that the
decoding algorithmvi → gi makingHW(vi − gi) minimal makesbc maximal.
In this case, we obtain

bc= E
(

δd(vi ,C)
s

)

, (2)

whereC is the code andd(vi ,C) denotes the Hamming distance ofvi from C.
For a codeC, thecovering radiusis ρ = maxvd(v,C). Thepacking radiusis

the largest radiusR such that the balls of this radius centered on all codewords
are non-overlapping. So, the packing radius isR=

⌊

D−1
2

⌋

whereD is the min-
imal distance. We further haveρ ≥

⌊

D−1
2

⌋

. A perfect codeis characterized by
ρ =

⌊

D−1
2

⌋

. A quasi-perfect codeis characterized byρ =
⌊

D−1
2

⌋

+1.

Theorem 1. We consider a[k,k′,D] linear code C, where k is the length, k′ is
the dimension, and D is the minimal distance. For any integerr and any positive
biasδs, we have

bc≤ 2k′−k
r

∑
w=0

(

k
w

)

(δw
s −δr+1

s )+δr+1
s

wherebc is a function ofδs defined by (2). Equality for anyδs such that0< δs<
1 implies that C is perfect or quasi-perfect. In that case, theequality is reached
when taking the packing radius r= R=

⌊

D−1
2

⌋

.

By taking r as the largest integer such that∑r
w=0

(

k
w

)

≤ 2k−k′ (which is the

packing radiusR=
⌊

D−1
2

⌋

for perfect and quasi-perfect codes), we can see that
if a perfect[k,k′] code exists, it makesbc maximal. Otherwise, if a quasi-perfect
[k,k′] code exists, it makesbc maximal.

Proof. Letdecode be an optimal deterministic decoding algorithm. The formula
gives us that

bc= 2−k ∑
g∈C

∑
v∈decode−1(g)

δHW(v−g)
s

12



We definedecode−1
w (g) = {v∈ decode−1(g);HW(v−g) =w} anddecode−1

>r (g)
the union of alldecode−1

w (g) for w> r. For all r, we have

∑
v∈decode−1(g)

δHW(v−g)
s

=
r

∑
w=0

(

k
w

)

δw
s +

r

∑
w=0

(

#decode−1
w (g)−

(

k
w

))

δw
s + ∑

w>r
δw

s #decode−1
w (g)

≤
r

∑
w=0

(

k
w

)

δw
s +

r

∑
w=0

(

#decode−1
w (g)−

(

k
w

))

δw
s +δr+1

s #decode−1
>r (g)

≤
r

∑
w=0

(

k
w

)

δw
s +δr+1

s

(

#decode−1(g)−
r

∑
w=0

(

k
w

)

)

where we usedδw
s ≤ δr+1

s for w > r, #decode−1
w (g) ≤

(

k
w

)

andδw
s ≥ δr+1

s for

w≤ r. We further have equality if and only if the ball centered ong of radius
r is included indecode−1(g) and the ball of radiusr +1 containsdecode−1(g).
By summing over allg∈C, we obtain the result.

So, the equality case implies that the packing radius is at least r and the
covering radius is at mostr + 1. Hence, the code is perfect or quasi-perfect.
Conversely, if the code is perfect or quasi-perfect andr is the packing radius,
we do have equality. ⊓⊔

So, for quasi-perfect codes, we can compute

bc= 2k′−k
R

∑
w=0

(

k
w

)

(δw
s −δR+1

s )+δR+1
s (3)

with R=
⌊

D−1
2

⌋

. For perfect codes, the formula simplifies to

bc= 2k′−k
R

∑
w=0

(

k
w

)

δw
s (4)

4.1 Bias of a Repetition Code

Given a[k,1] repetition code, the optimal decoding algorithm is the majority
decoding. We haveD = k, k′ = 1, R=

⌊

k−1
2

⌋

. Fork odd, the code is perfect so
ρ = R. Fork even, the code is quasi-perfect soρ = R+1. Using (3) we obtain

bc=















∑
k−1

2
w=0

1
2k−1

(k
w

)

δw
s if k is odd

∑
k
2−1
w=0

1
2k−1

(k
w

)

δw
s +

1
2k

( k
k/2

)

δ
k
2
s if k is even

We give below the biases obtained for some[k,1] repetition codes.
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[k,1] bias

[2,1] 1
2δs+

1
2

[3,1] 3
4δs+

1
4

[4,1] 3
8δ2

s +
1
2δs+

1
8

[5,1] 5
8δ2

s +
5
16δs+

1
16

[6,1] 5
16δ3

s +
15
32δ2

s +
3
16δs+

1
32

[7,1] 35
64δ3

s +
21
64δ2

s +
7
64δs+

1
64

[8,1] 35
128δ4

s +
7
16δ3

s +
7
32δ2

s +
1
16δs+

1
128

[9,1] 63
128δ4

s +
21
64δ3

s +
9
64δ2

s +
9

256δs+
1

256
[10,1] 63

256δ5
s +

105
256δ4

s +
15
64δ3

s+
45
512δ2

s +
5

256δs+
1

512

4.2 Bias of a Perfect Code

In previous work [23,37], the authors assume a perfect code.In this case,∑R
w=0

(k
w

)

=

2k−k′ and we can use (4) to computebc. There are not so many binary linear
codes which are perfect. Except the repetition codes with odd length, the only
ones are the trivial codes[k,k,1] with R= ρ= 0 andbc= 1, the Hamming codes
[2ℓ− 1,2ℓ− ℓ− 1,3] for ℓ ≥ 2 with R= ρ = 1, and the Golay code[23,12,7]
with R= ρ = 3.

For the Hamming codes, we have

bc= 2−ℓ
1

∑
w=0

(

2ℓ−1
w

)

δw
s =

1+(2ℓ−1)δs

2ℓ

For the Golay code, we obtain

bc= 2−11
3

∑
w=0

(

23
w

)

δw
s =

1+23δs+253δ2
s +1771δ3

s

211

Formulae (2), (3), (4) forbc are new. Previously [7,23], the valuebcw of
bc(s) for anysof Hamming weightw was approximated to

bcw = 1−2
1

S(k,ρ) ∑
i≤ρ,

i odd

(

w
i

)

S(k−w,ρ− i),

wherew is the Hamming weight of thek-bit secret andS(k′,ρ) is the number of
k′-bit strings with weight at mostρ. Intuitively the formula counts the number of
vi−gi that produce an odd number of xor with the 1’s of the secret. (See [7,23].)
So, Guo et al. [23] assumes a fixed value for the weightw of the secret and
considers the probability thatw is not correct. Ifw is lower, the actual bias is
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larger but ifw is larger, the computed bias is overestimated and the algorithm
fails.

For instance, with a[3,1] repetition code, the correct bias isbc = 3
4δs+

1
4

following our formula. With a fixedw, it is of bcw = 1− w
2 [7,23]. The probabil-

ity of w to be correct is
(k

w

)

τw(1− τ)k−w. We take the example ofτ = 1
3 so that

δs =
1
3.

w bcw Pr[w] Pr[w],τ = 1
3

0 1 (1− τ)3 0.2963
1 1

2 3τ(1− τ)2 0.4444
2 0 3τ2(1− τ) 0.2222
3 −1

2 τ3 0.0370

So, by takingw= 1, we haveδ = bcw = 1
2 but the probability of failure is about

1
4. Our approach uses the average biasδ = bc= 1

2.

4.3 Using Quasi-Perfect Codes

If C′ is a[k−1,k′,D] perfect code withk′> 1 and if there exists some codewords
of odd length, we can extendC′, i.e., add a parity bit and obtain a[k,k′] code
C. Clearly, the packing radius ofC is at least

⌊

D−1
2

⌋

and the covering radius is
at most

⌊

D−1
2

⌋

+ 1. For k′ > 1, there is up to one possible length for making
a perfect code of dimensionk′. So,C is a quasi-perfect, its packing radius is
⌊

D−1
2

⌋

and its covering radius is
⌊

D−1
2

⌋

+1.
If C′ is a [k+ 1,k′,D] perfect code withk′ > 1, we can puncture it, i.e.,

remove one coordinate by removing one column from the generating matrix.
If we chose to remove a column which does not modify the rankk′, we obtain
a [k,k′] codeC. Clearly, the packing radius ofC is at least

⌊

D−1
2

⌋

− 1 and the
covering radius is at most

⌊

D−1
2

⌋

. Fork′ > 1, there is up to one possible length
for making a perfect code of dimensionk′. So,C is a quasi-perfect, its packing
radius is

⌊

D−1
2

⌋

−1 and its covering radius is
⌊

D−1
2

⌋

.
Hence, we can use extended Hamming codes[2ℓ,2ℓ− ℓ− 1] with packing

radius 1 forℓ ≥ 3, punctured Hamming codes[2ℓ−2,2ℓ− ℓ−1] with packing
radius 0 forℓ≥ 3, the extended Golay code[24,12] with packing radius 3, and
the punctured Golay code[22,12] with packing radius 2.

There actually exist many constructions for quasi-perfectlinear binary codes.
We list a few in Table 2. We took codes listed in the existing literature [14, Ta-
ble 1], [33, p. 122], [22, p. 47], [18, Table 1], [13, p. 313], and [3, Table I]. In
Table 2,k, k′, D, andR denote the length, the dimension, the minimal distance,
and the packing radius, respectively.
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Table 2: Perfect and Quasi-Perfect Binary Linear Codes

name type [k,k′ ,D] R comment ref.
P [k,k,1], k≥ 1 0 [∗, . . . ,∗]

r P [k,1,k], k odd k−1
2 repetition code

H P [2ℓ−1,2ℓ− ℓ−1,3], ℓ≥ 3, 1 Hamming code
G P [23,12,7] 3 Golay code

QP [k,k−1,1] 0 [∗, . . . ,∗,0]
r QP [k,1,k], k even k

2 −1 repetition code
eG QP [24,12,8] 3 extended Golay code
pG QP [22,12,6] 2 punctured Golay code
eH QP [2ℓ,2ℓ− ℓ−1,4], ℓ≥ 2 1 extended Hamming code

QP [2ℓ−1,2ℓ− ℓ,1], ℓ≥ 2, 0 Hamming with an extra word
pH QP [2ℓ−2,2ℓ− ℓ−1,2], ℓ≥ 2 0 punctured Hamming
HxH QP [2∗ (2ℓ−1),2∗ (2ℓ− ℓ−1)], ℓ≥ 2 1 Hamming× Hamming [14]
upack QP [2ℓ−2,2ℓ− ℓ−2,3], ℓ≥ 3 1 uniformly packed [14]
2BCH QP [2ℓ−1,(2ℓ−1)− (2∗ ℓ)], ℓ≥ 3 2 2-e.c. BCH [14]
Z QP [2ℓ+1,(2ℓ+1)− (2∗ ℓ)], ℓ > 3 even 2 Zetterberg [14]
rGop QP [2ℓ−2,(2ℓ−2)− (2∗ ℓ)], ℓ > 3 even 2 red. Goppa [14]
iGop QP [2ℓ,(2ℓ)− (2∗ ℓ)], ℓ > 2 odd 2 irred. Goppa [14]
Mclas QP [2ℓ−1,(2ℓ−1)−2∗ ℓ], ℓ > 2 odd 2 Mclas [14]
S QP [5,2], [9,5], [10,5], [11,6] 1 Slepian [33]
S QP [11,4] 2 Slepian [33]
FP QP [15,9], [21,14], [22,15], [23,16] 1 Fontaine-Peterson [33]
W QP [19,10], [20,11], [20,13], [23,14] 2 Wagner [33]
P QP [21,12] 2 Prange [33]
FP QP [25,12] 3 Fontaine-Peterson [33]
W QP [25,15], [26,16], [27,17], [28,18], [29,19],

[30,20], [31,20]
1 Wagner [33]

GS QP [13,7], [19,12] 1 GS85 [22]
BBD QP [7,3,3], [9,4,4], [10,6,3], [11,7,3], [12,7,3],

[12,8,3], [13,8,3], [13,9,3], [14,9,3],
[15,10,3], [16,10,3], [17,11,4], [17,12,3],
[18,12,4], [18,13,3], [19,13,3], [19,14,3],
[20,14,4]

1 BBD08 [3]

BBD QP [22,13,5] 2 BBD08 [3]
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4.4 Finding the Optimal Concatenated Code

The linear code[k,k′] is typically instantiated by a concatenation of elemen-
tary codes for practical purposes. By “concatenation” ofm codesC1, . . . ,Cm,
we mean the code formed by allgi,1‖· · ·‖gi,m obtained by concatenating any
set ofgi, j ∈Cj . Decodingv1‖· · ·‖vm is based on decoding eachvi, j in Cj inde-
pendently. If allCj are small, this is done by a table lookup. So, concatenated
codes are easy to implement and to decode. For[k,k′] we have the concatena-
tion of [k1,k′1], . . . , [km,k′m] codes, wherek1+ · · ·+km= k andk′1+ · · ·+k′m= k′.
Let vi j ,gi j ,s′j denote thejth part of vi ,gi ,s′ respectively, corresponding to the
concatenated[k j ,k′j ] code. The bias of〈vi j − gi j ,sj〉 in the code[k j ,k′j ] is de-
noted bybc j . As 〈vi − gi ,s〉 is the xor of all〈vi j − gi j ,sj〉, the total bias in-
troduced by this operation is computed asbc = ∏k′

j=1bc j and the combination
params= ([k1,k′1], . . . , [km,k′m]) is chosen such that it gives the highest bias.

The way theseparams are computed is the following: we start by comput-
ing the biases for all elementary codes. I.e. we compute the biases for all codes
from Table 2. We may add random codes that we found interesting. (For these,
we use (2) to computebc.)8 Next, for each[i, j] code we check to see if there is
a combination of[i−n, j −m],[n,m] codes that give a better bias, where[n,m]
is either a repetition code, a Golay code or a Hamming code. Weillustrate be-
low the algorithm to find the optimal concatenated code. Thisalgorithm was
independently proposed by Zhang et al. [37] (with perfect codes only).

Algorithm 1 Finding the optimalparams and bias
1: Input : k
2: Output : table for the optimal bias for each[i, j ] code, 1≤ j < i ≤ k

3: initialize allbias(i, j) = 0
4: initializebias(1,1) = 1
5: initialize the bias for all elementary codes
6: for all j : 2 tok do
7: for all i : j +1 tok do
8: for all elementary code[n,m] do
9: if |bias(i−n, j−m) ·bias(n,m)|> |bias(i, j)| then

10: bias(i, j) = bias(i−n, j−m) ·bias(n,m)
11: params(i, j) = params(i−n, j−m)∪params(n,m)

UsingO(k) elementary codes, this procedure takesO(k3) time and we can
store allparams for any combination[i, j], 1≤ j < i ≤ k with O(k2) memory.

8 The random codes that we used are provided as an additional material to this paper.
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5 The Graph of Reduction Steps

Having in mind the reduction methods described in Section 2,we formalize
an LPN solving algorithm in terms of finding the best chain in a graph. The
intuition is the following: in anLPN solving algorithm we can see each reduc-
tion step as an edge from a(k, log2n) instance to a new instance(k′, log2 n′)
where the secret is smaller,k′ ≤ k, we have more or less number of queries and
the noise has a different bias. For example, axor -reduce(b) reduction turns an
(k, log2n) instance with biasδ into (k′, log2 n′) with biasδ′ wherek′ = k− b,
n′ = n(n−1)

2b+1 andδ′ = δ2. By this representation, the reduction phase represents a
chain in which each edge is a reduction type moving fromLPN with parameters
(k,n) to LPN with parameters(k′,n′) and that ends with an instance(ki ,ni) used
to recover theki-bit length secret by a solving method. The chain terminatesby
the fast Walsh-Hadamard solving method.

We formalize the reduction phase as a chain of reduction steps in a graph
G = (V,E). The set of verticesV is composed ofV = {1, . . . ,k}× L whereL
is a set of real numbers. For instance, we could takeL = R or L = N. For ef-
ficiency reasons, we could even takeL = {0, . . . ,η} for some boundη. Every
vertex saves the size of the secret and the logarithmic number of queries; i.e. a
vertex(k, log2n) means that we are in an instance where the size of the secret
is k and the number of queries available isn. An edge from one vertex to an-
other is given by a reduction step. An edge from(k, log2n) to a(k′, log2n′) has a
label indicating the type of reduction and its parameters (e.g. xor -reduce(k− k′)
or code-reduce(k,k′,params)). This reduction defines someα andβ coefficients
such that the biasδ′ after reduction is obtained from the biasδ before the reduc-
tion by

log2δ′2 = α log2δ2+β

whereα,β ∈R.
We denote by⌈λ⌉L the smallest element ofL which is at least equal toλ

and by⌊λ⌋L the largest element ofL which is not larger thanλ. In general,
we could use a rounding functionRoundL(λ) such thatRoundL(λ) is in L and
approximatesλ.

The reduction steps described in Subsection 2.2 can be formalized as fol-
lows:

– sparse-secret : (k, log2 n)→ (k,RoundL(log2(n−k))) andα = 0,β = 0

– xor -reduce(b): (k, log2 n)→ (k−b,RoundL(log2

(

n(n−1)
2b+1

)

)) andα= 2,β = 0

– drop-reduce(b): (k, log2 n)→ (k−b,RoundL(log2 (
n
2b ))) andα = 1,β = 0
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– code-reduce(k,k′,params): (k, log2n)→ (k′, log2n) andα = 1,β = log2bc
2,

wherebc is the bias introduced by the covering code reduction using a[k,k′]
linear code defined byparams.

Below, we give the formal definition of a reduction chain.

Definition 3 (Reduction chain).Let

R = {sparse-secret ,xor -reduce(b),drop-reduce(b), code-reduce(k,k′,params)}

for k,k′,b∈ N . A reduction chain is a sequence

(k0, log2 n0)
e1−→ (k1, log2n1)

e2−→ . . .
ei−→ (ki , log2 ni),

where the change(k j−1, log2 n j−1)→ (k j , log2n j) is performed by one reduction
from R , for all 0< j ≤ i.

A chain issimple if it is accepted by the automaton from Figure 1.

initial state 1

2

3 4

accepting state

drop-reduce

xor -reduce

sparse-secret

WHT

xor -reduce
WHT

xor -reduce
drop-reduce

code-reduce

WHT

xor -reduce
drop-reduce

WHT

Fig. 1: Automaton accepting simple chains

Remark:Restrictions for simple chains are modelled by the automaton in
Figure 1. We restrict to simple chains as they are easier to analyze. Indeed,
sparse-secret is only used to raiseδs to makecode-reduce more effective. And, so
far, it is hard to analyze sequences ofcode-reduce steps as the first one may de-
stroy the uniform and highδs for the next ones. This is why we exclude multiple
code-reduce reductions in a simple chain. So, we use up to onesparse-secret reduc-
tion, always one beforecode-reduce. And sparse-secret occurs beforeδ decreases.
For convenience, we will add a state of the automaton to the vertex inV.
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Definition 4 (Exact chain). An exact chain is a simple reduction chain for
L = R. I.e.RoundL is the identity function.

A chain which is not exact is calledrounded.
For solvingLPN we are interested in those chains that end with a vertex

(ki , log2ni) which allows to call aWHT solving algorithm to recover theki-bit
secret. We call these chains valid chains and we define them below.

Definition 5 (Valid reduction chain). Let

(k0, log2n0)
e1−→ (k1, log2n1)

e2−→ ·· · ei−→ (ki , log2ni)

be a reduction chain with ej = (α j ,β j , .). Letδ j be the bias corresponding to the
vertex(k j , log2n j) iteratively defined byδ0 = δ and log2δ2

j = α j log2δ2
j−1+β j

for j = 1, . . . , i. We say the chain is aθ-valid reduction chain if ni satisfies (1)
from page 8 forδ′ = δi and n′ = ni .

Thetime complexityof a chain(e1, . . . ,ei) is simply the sum of the complex-
ity of each reduction stepe1,e2, . . . ,ei andWHT. We further define themax-
complexity of a chain which is the maximum of the complexity of each reduc-
tion step andWHT. The max-complexity is a good approximation of the com-
plexity. Our goal is to find a chain with optimal complexity. What we achieve is
that,given a set L, we find aroundedchain with optimalmax-complexityup to
some given precision.

5.1 Towards Finding the BestLPN Reduction Chain

In this section we present the algorithm that helps finding the optimal valid
chains for solvingLPN. As aforementioned, we try to find the valid chain with
optimal max-complexity for solving anLPNk,τ instance in our graphG.

The first step of the algorithm is to construct the directed graphG= (V,E).
We take the set of verticesV = {1, . . . ,k}× L×{1,2,3,4} which indicate the
size of the secret, the logarithmic number of queries and thestate in the automa-
ton in Figure 1. Each edgee∈ E represents a reduction step and is labelled with

the following information:(k1, log2 n1,st)
α,β,t→ (k2, log2n2,st′) wheret is one of

the reduction steps andα andβ save information about how the bias is affected
by this reduction step.

The graph hasO(k · |L|) vertices and each vertex hasO(k) edges. So, the
size of the graph isO(k2 · |L|).

Thus, we construct the graphG with all possible reduction steps and from
it we try to see what is the optimal simple rounded chain in terms of max-
complexity. We present in Algorithm 2 the procedure to construct the graphG
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that contains all possible reduction steps with a time complexity bounded by 2η

(As explained below, Algorithm 2 is not really used).
The procedure of finding the optimal valid chain is illustrated in Algo-

rithm 3. The procedure of finding a chain with upper bounded max-complexity
is illustrated in Algorithm 4.

Algorithm 2 Construction of graphG
1: Input : k,τ,L,η
2: Output : graphG= (V,E) containing all the reduction steps that have a complexity smaller

than 2η

3: V = {1, . . . ,k}×L×{1, . . . ,4}
4: E is the set of all((i,η1,st),( j ,η2,st′)) labelled by(α,β, t) such that there is ast

t−→ st′

transition in the automaton and for
5: t = sparse-secret :
6: for all η : 1 such thatlcomp≤ η do set the edge
7: where i = k, ( j ,η2) = (i,RoundL(log2(2

η1 − i))), α = 1, β = 0, lcomp =

minx log2(
(2η1−i)i2

log2i−log2log2i + i2, i(2η1− i)⌈ i
2x ⌉+ i3+ i2x+2x

)

8: t = xor -reduce :
9: for all (i,η1,b) such thatb≥ 1 andlcomp≤ η do set the edge

10: where( j ,η2) = (i−b,RoundL(η1−1+ log2(
2η1

2b −1))), α = 2, β = 0, lcomp= log2 i+
max(η1,η2)

11: t = drop-reduce :
12: for all (i,η1,b) such thatb≥ 1 andlcomp ≤ η do set the edge
13: where( j ,η2) = (i−b,RoundL(η1−b)), α = 1, β = 0, lcomp= log2 b+η1

14: t = code-reduce :
15: for all (i,η1, j) such thatj < i andlcomp≤ η do set the edge
16: whereη2 = η1, α = 1, β = log2bc

2, lcomp= log2 i+η1, bc is the bias from the optimal
[i, j ] code

Algorithm 4 receives as input the parametersk andτ for theLPN instance,
the parameterθ which represents the bound on the failure probability in re-
covering the secret. Parameterη represents an upper bound for the logarithmic
complexity of each reduction step. Givenη, we build the graphG which con-
tains all possible reductions with time complexity smallerthan 2η (Step 4). Note
that we don’t really call Algorithm 2. Indeed, we don’t need to store the edges of
the graph. We rather keep a way to enumerate all edges going toa given vertex
(in Step 11) by using the rules described in Algorithm 2.

For each vertex, we iteratively define∆st andBestst, the best reduction step
to reach a vertex and the value of the corresponding error bias. The best reduc-
tion step is the one that maximizes the bias. We define these values iteratively
until we reach a vertex from which theWHT solving algorithm succeeds with

21



Algorithm 3 Search for a rounded chain with optimal max-complexity
1: Input : k,τ,θ,precision
2: Output : a valid simple rounded chain in which rounding uses a given precision

3: setfound= bruteforce ⊲ found is the best found algorithm
4: setincrement= k
5: setη = k ⊲ 2η is a bound on the max-complexity
6: repeat
7: setincrement← 1

2 increment

8: defineL = {0,precision,2×precision, . . .}∩ [0,η− increment]
9: run(out,success) = Search(k,τ,θ,L,η− increment) with Algorithm 4

10: if success then
11: setfound= out

12: setη = η− increment

13: until increment≤ precision

14: outputfound

complexity bounded by 2η. Once we have reached this vertex, we construct the
chain by going backwards, following theBest pointers.

We easily prove what follows by induction.

Lemma 1. At the end of the iteration of Algorithm 4 for( j,η2,st′), ∆st′
j,η2

is the
maximum oflog2δ2, whereδ is the bias obtained by anRoundL-rounded simple
chain from a vertex of form(k,η1,0) to ( j,η2,st′) with max-complexity bounded
by 2η (∆st′

j,η2
=−∞ if there is no such chain).

Lemma 2. If there exists a simpleRoundL-rounded chain c ending on state
(k j ,η j ,stj) and max-complexity bounded by2η, there exists one c′ such that
∆sti

i,ηi
= log2δ2

i at each step.

Proof. Let c′′ be a simple chain ending on(k j ,η j ,stj) with ∆stj
jη j

= log2 δ2
j . Let

(k j−1,η j−1,stj−1) be the preceding vertex inc′′. We apply Lemma 2 on this
vertex by induction to obtain a chainc′′′. Since the complexity of the last edge
does not depend on the bias andα ≥ 0 in the last edge, we construct the chain
c′, by concatenatingc′′′ with the last edge ofc′′. ⊓⊔

Theorem 2. Algorithm 4 finds aθ-valid simpleRoundL-rounded chain forLPNk,τ
with max-complexity bounded by2η if there exists one.

Proof. We use Lemma 2 and the fact that increasingδ2 keeps constraint (1)
valid. ⊓⊔

If we usedL = R, Algorithm 4 would always find a valid simple chain with
bounded max-complexity when it exists. Instead, we use rounded chains and
hope that rounding still makes us find the optimal chain.
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Algorithm 4 Search for a bestLPN reduction chain with max-complexity
bounded toη
1: Input : k,τ,θ,L,η
2: Output : a valid simple rounded chain with max-complexity bounded to η

3: δ = 1−2τ
4: Construct the graphG using Algorithm 2 with parametersk,τ,L,η
5: for all η1 ∈ L do
6: set∆0

k,η1
= log2 δ2, Best0k,η1

=⊥
7: set∆st

k,η1
=−∞, Bestst

k,η1
=⊥ ⊲ ∆st stores the best bias for a vertex(k,η1,st) in a chain,

andBestst is the edge ending to this vertex in this chain

8: for j : k downto 1do ⊲ Search for the optimal chain
9: for η2 ∈ L in decreasing orderdo

10: set∆st
j,η2

= 0,Bestst =⊥ for all st

11: foreach st’ and each edgee to ( j ,η2,st′)
12: set(i,η1,st) to the origin ofe andα andβ as defined bye
13: if α∆st

i,η1
+β≥ ∆st′

j,η2
then set∆st′

j,η2
= α∆st

i,η1
+β, Bestst = e

14: if η2 > 1−∆st′
j,η2

+2log2

(

−ϕ−1(1− (1−θ)
1

2 j−1 )
)

and j + log2 j ≤ η then

15: Construct the chainc ending byBestst′
j,η2

and output(c,true)

16: output(⊥, false)

So, we build Algorithm 3. In this algorithm, we look for the minimal η for
which Algorithm 4 returns something by a divide and conquer algorithm. First,
we setη as being in the interval[0,k] where the solution forη = k corresponds
to a brute-force search. Then, we cut the interval in two pieces and see if the
lower interval has a solution. If it does, we iterate in this interval. Otherwise, we
iterate in the other interval. We stop once the amplitude of the interval is lower
than the requested precision. The complexity of Algorithm 3is of log2

k
precision

calls to Algorithm 4.

Theorem 3. Algorithm 3 finds aθ-valid simpleRoundL-rounded chain forLPNk,τ
with parameterprecision, with optimal rounded max-complexity, where the round-
ing function approximateslog2 up toprecision if there exists one.

Proof. Algorithm 3 is a divide-and-conquer algorithm to find the smallest η
such that Algorithm 4 finds a valid simpleRoundL-rounded chain of
max-complexity bounded by 2η. ⊓⊔

We can see that the complexity of Algorithm 4 is ofO
(

k2 · |L|
)

iterations
as vertices havek possible values for the secret length and|L| possible values
for the logarithmic number of equations. So, it is linear in the size of the graph.
Furthermore, each type of edge to a fixed vertex hasO(k) possible origins. The
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memory complexity isO (k · |L|), mainly to store the∆k,η andBestk,η tables.
We also use Algorithm 1 which has a complexityO(k3) but we run it only once
during precomputation. Algorithm 3 sets|L| ∼ k

precision
. So, the complexity of

Algorithm 3 isO
(

k3+ k3

precision
× log k

precision

)

.

6 Chains with a Guessing Step

In order to further improve our valid chain we introduce a newreduction step to
our algorithm. As it is done in previous works [23,5], we guess part of the bits of
the secret. More precisely, we assume thatb bits of the secret have a Hamming
weight smaller or equal tow. The influence on the whole algorithm is more
complicated: it requires to iterate theWHT step∑w

i=0

(w
i

)

times. The overall

complexity must further be divided by∑w
i=0

(w
i

)

(

1−δs
2

)i (
1+δs

2

)w−i
. Note that

this generalizedguess-secret step was used in Guo et al. [23].
We formalize this step as following:

– guess-secret(b,w) guesses thatb bits of the secret have a Hamming weight
smaller or equal tow. Theb positions are chosen randomly. The number of
queries remains the same, the noise is the same and the size ofthe secret is
reduced byb bits. Thus, for this step we have

guess-secret(b,w) : k′ = k−b; n′ = n; δ′ = δ; δ′s = δ
Complexity:O(nb) (included insparse-secret ) and
the Walsh transform has to be iterated∑w

i=0

(w
i

)

times and
the complexity of the whole algorithm is divided by

∑w
i=0

(w
i

)

(

1−δs
2

)i (
1+δs

2

)w−i

This step may be useful for a sparse secret, i.e.τ is small, as then we reduce
the size of the secret with a very small cost. In order to accommodate this new
step we would have to add a transition from state 3 to state 3 inthe automaton
that accepts the simple chains (See Figure 1).

To find the optimal chain usingguess-secret(b,w), we have to make a loop
over all possibleb and all possiblew. We run the full searchO(k2) times. The

total complexity is thusO
(

k5

precision
× log k

precision

)

.

7 Results

We illustrate in this section the results obtained by running Algorithm 4 for
different LPN instances taken from Bogos et al. [7]. They vary from taking

24



k= 32 tok= 768, with the noise levels: 0.05,0.1,0.125,0.2 and 0.25. In Table 3
we display the logarithmic time complexity we found for solving LPN without
usingguess-secret .9

τ k

32 48 64 100 256 512 768

0.05 13.8911.26
0.1 14.5212.94

0.1c 16.0414.43
0.1c 20.4718.46

0.1c 36.7534.45
0.1c 57.7755.09

0.1c 76.6374.03
0.1c

0.1 15.0412.70
0.1 18.5816.43

0.1 21.5819.38
0.1c 27.6125.39

0.1c 46.7544.22
0.1c 73.6870.92

0.1c 98.9796.04
0.1c

0.125 15.6613.52
0.1 19.2917.00

0.1 22.9420.50
0.1 28.9126.30

0.1 49.9047.35
0.1c 78.8576.22

0.1c 105.89103.01
0.1c

0.2 17.0114.80
0.1 21.2519.23

0.1 24.4222.00
0.1 32.0629.75

0.1 56.3153.82
0.1c 89.0486.38

0.1c 121.04118.18
0.1c

0.25 18.4216.30
0.1 22.3420.43

0.1 26.8624.58
0.1 32.9430.75

0.1 59.4756.88
0.1 94.6691.97

0.1c 127.35124.63
0.1c

entry of formab
c···: a= log2 complexity,b= log2max-complexity,c= precision

subscriptc means that acode-reduce is used

Table 3: Logarithmic time complexity on solvingLPN without guess-secret

τ k

32 48 64 100 256 512 768

0.05 11.8510.90
0.1cg13o 13.0112.52

0.1cg23o 14.4413.74
0.1cg38o 17.2016.19

0.1cg75o 30.1328.02
0.1cg178o 49.5647.29

1cg417o 68.1565.98
1cg682o

0.1 12.4111.65
0.1cg23o 15.2314.25

0.1cg37o 17.7116.76
0.1cg52o 24.0222.14

0.1cg77o 45.9943.49
0.1cg100o 73.6871.09

1cg2 99.2196.34
1cg5

0.125 13.3012.40
0.1cg26o 16.4915.49

0.1cg39o 20.5718.61
0.1cg36o 27.1424.80

0.1cg47o 49.9047.35
0.1c 78.9776.24

1cg1 106.18103.42
1cg4

0.2 17.0114.80
0.1o 21.2519.23

0.1o 24.4222.00
0.1 32.0629.75

0.1 56.3453.82
0.1cg1 89.2886.79

1cg3 121.12118.57
1

0.25 18.4216.30
0.1 22.3420.43

0.1 26.8624.58
0.1 32.9430.75

0.1 59.4756.88
0.1 94.8592.36

1cg2 127.63125.01
1cg3

entry of formab
c···: a= log2 complexity,b= log2 max-complexity,c= precision

subscriptc means that acode-reduce is used
subscripto means that a only 1 bit of the secret is found byWHT

subscriptgb means that aguess-secret (b, ·) is used

Table 4: Logarithmic time complexity on solvingLPN with guess-secret

9 Complete results are provided as an additional material to this paper.
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Sequence of chains.If we analyze in more details one of the chains that we ob-
tained, e.g. the chain forLPN512,0.125, we can see that it first uses asparse-secret .
Afterwards, the secret is reduced by applying 5 times thexor -reduce and one
code-reduce at the end of the chain. With a total complexity of 279.46 andθ < 33%
it recovers 64 bits of the secret.

(512,63.3)
sparse-secret−−−−−−→ (512,63.3)

xor-reduce(59)−−−−−−−→ (453,66.6)
xor-reduce(65)−−−−−−−→

(388,67.2)
xor-reduce(66)−−−−−−−→ (322,67.4)

xor-reduce(66)−−−−−−−→ (256,67.8)
xor-reduce(67)−−−−−−−→

(189,67.6)
code-reduce−−−−−→ (64,67.6)

WHT−−−→

The code used is a[189,64] concatenation made of ten random codes: one in-
stance of a[18,6] code, five instances of a[19,6] code, and four instances of a
[19,7] code. By manually tuning the number of equations without rounding, we
can obtain withn= 263.299 a complexity of 278.84. This is the value from Table 1.

On theguess-secret reduction. Our results show that theguess-secret step does not
bring any significant improvement. If we compare Table 3 withTable 4 we can
see that in few cases the guess step improves the total complexity. For k≥ 512,
some results are not better than Table 3. This is most likely due to the lower
precision used in Table 4.

We can see several cases where, at the end of a chain withguess-secret , only
one bit of the secret is recovered byWHT. If only 1 bit of the secret is recovered
by non-bruteforce methods, the next chain forLPNk−1,τ will have to be run
several times, given theguess-secret step used in the chain forLPNk,τ. Thus, it
might happen that the first chain does not dominate the total complexity. So, our
strategy to use sequences of chains has to be revised, but most likely, the final
result will not be better than sequences of chains withoutguess-secret . So, we
should rather avoid these chains ending with 1 bit recovery.

There is no case where aguess-secret without a chain ending with 1 bit brings
any improvement.

Comparing the results.For practical values we compare our results with the
previous work [23,29,37,7].

From the work of ASIACRYPT’14 [23] and EUROCRYPT’16 [37] we have
thatLPN512,0.125 can be solved in time complexity of 279.9 (with more precise
complexity estimates). The comparison was shown in Table 1 in Introduction.
We do better, provide concrete codes and we even remove theguess-secret step
with an optimized use of a code. Thus, the results of Algorithm 4 improve all
the existing results on solvingLPN.
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8 Conclusion

In this article we have proposed an algorithm for creating reduction chains with
the optimal max-complexity. The results we obtain bring improvements to the
existing work and to our knowledge we have the best algorithmfor solving
LPN512,0.125. We believe that our algorithm could be further adapted and au-
tomatized if new reduction techniques would be introduced.

As future works, we could look at applications to theLWE problem. Kirch-
ner and Fouque [28] improve theLWE solving algorithms by refining the mod-
ulus switching. We could also look at ways to keep track of biases of secret bits
bitwise, in order to allow cascades ofcode-reduce steps.

References

1. Michael Alekhnovich. More on Average Case vs Approximation Complexity. In44th
Symposium on Foundations of Computer Science (FOCS 2003), 11-14 October 2003, Cam-
bridge, MA, USA, Proceedings, pages 298–307. IEEE Computer Society, 2003.

2. V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, and I. A. Faradzev. On economical construction
of the transitive closure of a directed graph. 1970.

3. Tsonka Stefanova Baicheva, Iliya Bouyukliev, Stefan M. Dodunekov, and Veerle Fack. Bi-
nary and ternary linear quasi-perfect codes with small dimensions. IEEE Transactions on
Information Theory, 54(9):4335–4339, 2008.

4. Daniel J. Bernstein. Optimizing linear maps modulo 2.
http://binary.cr.yp.to/linearmod2-20090830.pdf.

5. Daniel J. Bernstein and Tanja Lange. Never Trust a Bunny. In Jaap-Henk Hoepman and
Ingrid Verbauwhede, editors,Radio Frequency Identification. Security and Privacy Issues
- 8th International Workshop, RFIDSec 2012, Nijmegen, The Netherlands, July 2-3, 2012,
Revised Selected Papers, volume 7739 ofLecture Notes in Computer Science, pages 137–
148. Springer, 2012.

6. Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem,
and the statistical query model. In F. Frances Yao and EugeneM. Luks, editors,Proceedings
of the Thirty-Second Annual ACM Symposium on Theory of Computing, May 21-23, 2000,
Portland, OR, USA, pages 435–440. ACM, 2000.
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