Optimization of LPN Solving Algorithms

Sonia Bogos and Serge Vaudenay

EPFL
CH-1015 Lausanne, Switzerland
http://Tasec.epfl.ch

Abstract. In this article we focus on constructing an algorithm thabenatizes

the generation df PN solving algorithms from the considered parameters. When
searching for an algorithm to solve BRN instance, we make use of the existing
techniques and optimize their use. We formaliz&.8MN algorithm as a path in a
graphG and our algorithm is searching for the optimal paths in thépg. Our
results bring improvements over the existing work, i.e. wgriove the results

of the covering code from ASIACRYPT'14 and EUROCRYPT 16 rfh@rmore,

we propose concrete practical codes and a method to find guates c

1 Introduction

The Learning Parity with NoiseLPN) problem can be seen as a noisy system
of linear equations in the binary domain. More specificallg, have a secret
and an adversary that has access tbRN oracle which provides him tuples of
uniformly distributed binary vectong and the inner product betwesmandy; to
which some noise was added. The noise is represented by alllexariable
with a probabilityt to be 1. The goal of the adversary is to recover the secret
TheLPN problem is a particular case of the well-known Learning vitinors
(LWE) [34] problem where instead of working i, we extend the work to a
rng Zg.

The LPN problem is attractive as it is believed to be resistant tantua
computers. Thus, it can be a good candidate for replacingulmer-theoretic
problems such as factorization and discrete logarithmdwban be easily bro-
ken by a quantum algorithm). Also, given its structure, it ba implemented in
lightweight devices. Th&PN problem is used in the design of thEB-family
of authentication protocol$ [10,20)24/25.27,31] and sevaryptosystems base
their security on its hardness|[1/15/16/,17,21,26].

Previous Work. LPN is believed to be hard. So far, there is no reduction from
hard lattice problems to certify the hardness (like in theecaf LWE). Thus,
the best way to assess its hardness is by trying to designnapibve algo-
rithms that solve it. Over the years, theN problem was analyzed and there
exist several solving algorithms. The first algorithm t@&iLPN is the BKW

http://lasec.epfl.ch

algorithm [6]. This algorithm can be described as a Gaussianination on
blocks of bits (instead on single bits) where the secretdsvered bit by bit.
Several improvements appeared afterwards [19,29]. Oretide improves the
algorithm is the use of the fast Walsh-Hadamard transformwesan recover
several bits of the secret at once. In their work, Levieil &utdique [[29] pro-
vide an analysis with the level of security achieved by dife LPN instances
and propose secure parameters. USIKYV as a black-box, Lyubashevsky [30]
presents arPN solving algorithm useful for the case when the number of
queries is restricted to an adversary. The best algorithsolie LPN was pre-
sented at ASIACRYPT'14 [23] and it introduces the use of theecing codes

to improve the performance. Some problems in the computaficomplexities
were reported [7,37]. As discussed by Bogos et al. [7] antdeénASIACRYPT
presentation [23@ , the authors used a too optimistic approximation for the
bias introduced by their new reduction method, the covecodes. Some com-
plexity terms are further missing (as discussed in Sectidh@ are not in bit
operations. Also, no method to construct covering code® waggested. At
EUROCRYPT’16, Zhang et al. [37] proposed a way to constrocidgcodes by
concatenating perfect codes and improved the algorithroseder, some other
problem in complexities were reported [9]. The nel(4) reduction technique
introduced by Zhang et al. [37] was also shown to be incof@jct

For the case when the secret is sparse, i.e. its Hamming tasigimall, the
classical Gaussian elimination proves to give better te$0l8,11].

TheLPN algorithms consist of two parts: one in which the size of et
is reduced and one in which part of the secret is recoverede @rpart of the
secret is recovered, the queries are updated and the hfgaesstarts to recover
the rest of the secret. When trying to recover a sexoftk bits, it is assumed
thatk can be written aa- b, for a,b € N (i.e. secres can be seen asblocks of
b bits). Usually all the reduction steps reduce the sizé bits and the solving
algorithm recoverd bits. While the use of the same parameter, b,efor all
the operations may be convenient for the implementationseeech for an al-
gorithm that may use different values for each reductiop.df¢e discover that
small variations from the fixeld can bring important improvements in the time
complexity of the whole algorithm.

Our Contribution. In this work we firstanalyze the existingPN algorithms

and study the operations that are used in order to reduce iteecf the secret.
We adjust the expressions of the complexities of each(atejm some works
they were underestimated in the literature). For instatineesesults from Guo et

Lhttp: /7 des. cse. nsysu. edu. t w asi acr ypt 2014/ doc/ 1- 1_Sol vi ngLPNUsi ngCover i ngCodes. pdf

http://des.cse.nsysu.edu.tw/asiacrypt2014/doc/1-1_Solving LPN Using Covering Codes.pdf

al. |23] and Zhang et al. [37] are displayed with correctiongable17 (Details
for this computation are provided as an additional matéoiathis paper.)

(k,T) ASIACRYPT'14 [23] EUROCRYPT'16[[37] our results

28696(2799y (proceedings)

5120.12 2800997473 27884
(6120129 28190(2797y (presentation} ()

(5320.125) 288628182 28217(276.90) 28102
(592 0.125) 297.71(28807) 289.32(28384) 28757

Table 1: Time complexity to solvePN (in bit operations). These complexities
are based on the formulas from our paper with the most fal®cavering codes
we constructed from our pool, with adjusted data complexitgeach a failure
probability bounded by 33%. Originally claimed compleagtiby [23] and[[3[7]
are under parentheses.

Second, wémprove the theory behind the covering code reduction an@ish
the link with perfect and quasi-perfect codesing the average bias of covering
codes allows us to use arbitrary codes and even random osiwgy the algo-
rithm to construct optimal concatenated codes based on lagp@ementary
ones allows us to improve complexities. (In Guo etlall [28]ya@ hypothetical
code was assumed to be close to a perfect code; in Zhang B7gloply the
concatenation of perfect codes are used; in Table 1, our gmdgomplexities
are based on the real codes that we built with our bigger poblave a fair
comparison.)

Third, weoptimize the order and the parameters used by the operatitis
reduce the size of the secret such that we minimize the timplegity required
We design a “meta-algorithm” that combines the reduction stgymd finds the
optimal strategy to solvEPN. We automatize the process of findih§N solv-
ing algorithms, i.e. given a randomPN instance, our algorithm provides the
description of the steps that optimize the time complekitpur formalization
we call such algorithms “optimal chains”. We perform a séguanalysis of
LPN based on the results obtained by our algorithm and compareesults
with the existing ones. We discover that we improve the cexipt compared
with the existing results[7,29,87,23], as shown in Table 1.

2 As for [37], we only reported the results basedLdi? which are better than withF1, as the
LF(4) operation is incorrect [9].

Preliminaries & Notations. Given a domainD, we denote by & D the fact
thatx is drawn uniformly at random fronD. By Ber; we denote the Bernoulli
distribution with parameter. By BerX we denote the binomial distribution with
parameter& andt. Let (-,-) denote the inner produdt,; = {0,1} and® denote
the bitwise XOR. The Hamming weight of a vectois denoted byHW (v).

Organization. In Sectior 2 we formally define thePN problem and describe
the main tools used to solve it. We carefully analyze the derity of each
step and show in footnote where it differs from the existiterature. Sectionl3
studies the failure probability of the entire algorithm amadidates the use of the
average bias in the analysis. Secfion 4 introduces the brapuatation for per-
fect and quasi-perfect codes. We provide an algorithm todomt codes. The
algorithm that searches the optimal strategy to stRH is presented in Sec-
tions[® and 6. We illustrate and compare our results in S&@iand conclude in
Sectior 8. We put in additional material details of our resuhe complete list
of the chains we obtain (for Tallé 3 and Table 4), an exampt®wiplete solv-
ing algorithm, the random codes that we use for the coverie aeduction,
and an analysis of the results from [23] ahd|[37] to obtainl@db

2 LPN
2.1 LPN Definition

TheLPN problem can be seen as a noisy system of equatioAs\where one is
asked to recover the unknown variables. Below, we preseribtimal definition.

Definition 1 (LPN oracle). Let s& Z';, lett €]0, %[be a constant noise param-
eter and leBer; be the Bernoulli distribution with parameter Denote by [,
the distribution defined as

{(v,c) [ve ZK c= (v,s) & d,d + Ber } € ZK'L.

AnLPN oracle O5fN is an oracle which outputs independent random samples
according to Q.

Definition 2 (SearchLPN problem). Given access to ahPN oracle OLFN,
find the vector s. We denote bi?Ny; the LPN instance where the secret has
size k and the noise parametertisLet K < k. We say that an algorithrii/
(n,t,m,6,K')-solvesthe search.PNy ; problem if

PM O (1K) = (s1...5¢) | s ZK] > 6,

and M runs in time t, uses memory m and asks at most n queries frohPfiie
oracle.

Remark that we consider here the problem of recovering opigraof the
secret. Throughout the literature this is how k&N problem is formulated. The
reason for doing so is that the recovery of the fitdbits dominates the overall
complexity. Once we recover part of the secret, the new prolif recovering
a shorter secret &— k' bits is easier.

The LPN problem has a decisional form where one has to distinguish be
tween random vectors of sike- 1 and the samples from théN oracle. In this
paper we are interested only in finding algorithms for thecesersion.

We defined = 1 — 2t. We call d the bias of the error bid. We haved =
E((-1)%), with E(-) the expected value. We denote the bias of the secret bits
by ds. As sis a uniformly distributed random vector, at the beginning lvave
0s = 0.

2.2 Reduction and Solving Techniques

Depending on how many queries are given from LN oracle, theLPN
solving algorithms are split in 3 categories. WitHimear number of queries
the best algorithms are exponential, i.e. with= ©(k) the secret is recov-
ered in 2 time [32[36]. Given goolynomial number of queries A k11,
with n > 0, one can solve PN with a sub-exponential time complexity of
ZO(W) [30]. Whent = %(we can improve this result and have a complex-

ity of e2vk(ink>+0(vkink) [8] The complexity improves but remains in the sub-
exponential range with sub-exponential number of queridor this category,
we have thé8KW [6], LF1, LF2 [29], FMICM [19] and the covering code algo-

rithm [23/.37]. All these algorithms solMePN with a time complexity of Q(@)

and require Q(@) gueries. In the special case when the noise is sparse, a sim-
ple Gaussian elimination can be used for the recovery ofébees[7,11]LF2,
covering code or the Gaussian elimination prove to be thedres depending

on the noise level]7].

All these algorithms have a common structure: givenL&MNy; instance
with a secrets, they reduce the origindlPN problem to a new.PN problem
where the secret is of sizek’ < k by applying severateduction techniques
Then, they recoves using asolving methodThe queries are updated and the
process is repeated until the whole sea@ recovered. We present here the
list of reduction and solving techniques used in the exstiRN solving algo-
rithms. In the next section, we combine the reduction teqes such that we
find the optimal reduction phases for solving differeRN instances.

We assume for all the reduction steps that we start witjueries, that the
size of the secret ik, the bias of the secret bits &g and the bias of the noise
bits is 8. After applying a reduction step, we will end up withqueries, size

5

k' and biase®’ andd. Note thatds averages over all secrets although the algo-
rithm runs with one target secret. As it will be clear belolae tomplexity of
all reduction steps only depends kbm, and the parameters of the steps but not
on the biases. Actually, only the probability of succesisoerned with biases.
We see in Sectidnl 3 that the probability of success of theathvagorithm is not
affected by this approach. Actually, we will give a formutacdompute a value
which approximates the average probability of success theekey based on
the average bias.

We have the following reduction steps:

— sparse-secret Changes the secret distribution. In the formal definitioh R,
we take the secretto be a random row vector of siZe When other re-
duction steps or the solving phase depends on the distibut s, one
can transform arLPN instance with a randors to a new one wheres
has the same distribution as the initial noise, se— BerX. The reduc-
tion performs the following steps: from the queries seleck of them:
(Vig;Cip), - - -5 (Vi, G\,) Where the row vectorg, with 1 < j <k, are linearly
independent. Construct the matifix asM = v ---v]] and rewrite thek
queries asM+d' = ¢, whered = (d,,...,d;). With the rest ofn —k
queries we do the following:

¢j= (M) Ld)aci = (v(MT) L d)&d; = (Vj,d) &d

We haven — k new queries(vj,cj) where the secret is nod/. In Guo et
al. [23], the authors use an algorithm which is inapprophatalled “the
four Russians algorithm? [2]. This way, the complexity sttbbe of

@) (minxeN (krf ('i‘} T k34 kX2X>) B instead, the Bernstein algorithim [4]

works in O (W + k2> . We use the best of the two, depending on

the parameters. Thus, we have:

sparse-secret : K =k;n'=n—k; & =9;8,=10

Complexity: O (minxeN (m K2 kil ['ﬂ +3+ kx2X>)

— xor-reduce(b) was first used by theF2 algorithm. The queries are grouped
in equivalence classes according to the valued esandom positions. In
each equivalence class, we perform the xoring of every fajueries. The

size of the secret is reduced bybits and the new bias . The expected

new number of queries B(3i; 1, matches; on theb-bit block) = %

3 but thek3 + kx2X terms is missing in[23].

which improves previous resiftisvhenn ~ 1+ 201, the number of queries

are maintained. Far > 1+ 2P*1 the number of gueries will increase.
xor-reduce(b) 1 K =k—b;nf = 20D 5 — &2, 5, = &
Complexity: O(k-max(n,n’))

— drop-reduce(b) is a reduction used only by tiRKW algorithm. It consists in

dropping all the queries that are not 0 on a windovb bits. Again, thes®

positions are chosen randomly. In average, we expect tHaifithe queries

are 0 on a given position. Farbits, we expect to havg} queries that are 0

on this window. The bias is unaffected and the secret is etibgb bits.
drop-reduce(b) : K =k—b; n = Z—T,; & =08; 8= 0
Complexity: O(N(1+3 + ...+ 527))

The complexity oh(1+ 3+ ...+ 1) = O(n) comes from the fact that we
don’t need to check all thebits: once we find a 1 we don’t need to continue
and just drop the corresponding query.

— code-reduce(k,K',params) is a method used by the covering code algorithm
presented in ASIACRYPT’14. In order to reduce the size ofsberet, one
uses a linear codg, K'| (which is defined byarams) and approximates the
v; vectors to the nearest codewayd We assume that decoding is done in
linear time for the code considered. (For the considere@sodiecoding is
indeed based on table look-ups.) The noisy inner produairbes:

(Vi,s) @ di = <gi,G,S>@ (Vi — Gi,S) D d
= (d,sG") @ (i —g;,s) B d
=(g,s)ad,

whereG is the generator matrix of the codg=g/G, s =sG' € {0,1}¥ and

d = (vi — @i, @ di. We denotebc = E((—1)i~9-9) the bias of(vi — g;,s).

We will see in Sectiofil4 how to construcflak’] linear code makindc as

large as possible.

Here,bc averages the bias over the secret althosigHixed by sparse-secret.

It gives the correct average bidover the distribution of the key. We will

see that it allows to approximate the expected probabifityuccess of the

algorithm.

By this transform, no query is lost.
code-reduce(K,K',params) : K; 0 =n; & =&-bc
d; depends os andG
Complexity: O(kn)

n n_q
41n Bogos et al.[[7], the number of queries was approximat 3) which is less favor-
able.

The wayd; is computed is a bit more complicated than for the other types
of reductions. Howeveds only plays a role in theode-reduce reduction, and
we will not consider algorithms that use more than eme-reduce reduction.

It is easy to notice that with each reduction operation thalmer of queries
decreases or the bias is getting smaller. In general, foimgpLPN, one tries to
lose as few queries as possible while maintaining a large B will study in
the next section what is a good combination of using thesectemhs.

After applying the reduction steps, we assume we are left antLPNy, 5
instance where we have queries. The originaBKW algorithm was using a
final solving technique based on majority decoding. Sineel 2 algorithm,
we use a better solving technique based on the Walsh Hadamandform
(WHT).

WHT recovers a block of the secret by computing the fast Walsrahfaad
transform on the functiorf (x) = ¥; 1y—x(—1)-9%%, The Walsh-Hadamard
transform is

f(v) = Z(_l)w,x) f(X) — z(_l)wi ,S+V)@d;

Forv = s, we havef (s) = ¥;(—1)%. For a positive bias, we know that most
of the noise bits are set to 0. It is the opposite when the lsiaegative. So,
|f(s)| is large and we suppose it is the largest value in the table afsing

again the Chernoff bounds, we need to hate- 8In(%k/)23’—2 [7] queries in

order to bound the probability of guessing wrongly #iéit secret byd. We
can improve further by applying directly the Central Limhdorem and obtain

1
a heuristic bound(— / 5s—7) < 1—(1-8) %1, wherep(x) = 3+ zerf(%;)

anderf is the Gauss error function. We obtain that

V> /28 2—1.¢ 1 (1-(1-9)2%11).)

We can derive the approximation of Selcuk][35] tmat> 4In(2—g)6’*2.
We give the details of our results in Sectioh 3. Complexityttef WHT (K')

is O(k'2¢ % +Kn') as we use the fast Walsh Hadamard Transffim

5 The second ternk'n' illustrates the cost of constructing the functidn In cases where
n > 2¥ this is the dominant term and it should not be ignored. This méssing in several
works [23.,7]. For the instandePN5g20.125 from Guo et al.[[23] this makes a big difference as
K = 64 andn’ = 289; the complexity o WHT with the second term is’2 vs 20 [23]. Given
that is must be repeated®(as 35 bits of the secret are guessed), the costlaT is 258,

6 Normally, the valued (v) have an order of magnitude of’ so we hav% log, ' bits.

8

WHT(K');
Requires\/ﬁ > /282 1.¢*1 <1_ (1- e)zk’;1>

Complexity: O(k 2K 2921 ry)
Given the reduction and the solving techniques,. BNy ; solving algorithm
runs like this: we start with k-bit secret and witm queries from th& PN oracle.
We reduce the size of the secret by applying several redustaps and we end
up withn’ queries where the secret has $izeNe use one solving method, e.qg.
the WHT, and recover th&'-bit secret with a probability of failure bounded by
6. We chosed = % We have recovered a part of the secret. To fully recover
the whole secret, we update the queries and start anothiartoh&cover more
bits, and so on until the remainirig— k' bits are found. For the second part
of the secret we will require for the failure probability t@ B and for the
it part it will be 8'. Thus, if we recover the whole secretiiriterations, the
total failure probability will be bounded b§+ 62+ --- + 6. Given that we take
0= % we recover the whole secret with a success probabilityefaigan 50%.
Experience shows that the time complexity for the first tieradominates the
total complexity.

As we can see in the formulas of each possible step, the catigng of
K, ', and of the complexity do not depend on the secret weighthEtmore,
the computation of biases is always linear. So, the correrage bias (over the
distribution of the key made by thgarse-secret transform) is computed. Only
the computation of the success probability is non-linedrvizel discuss about
this in the next section. As it only matters\iHT, we will see in Sectioh]3 that
the approximation is justified.

3 On Approximating the Probability of Success

Approximating n by using Central Limit Theorenin order to approximate
the number of queries needed to solve LN instance we consider when
the Walsh Hadamard Transform fails to give the correct sedke first as-
sume that the bias is positive. We have a failure when forhemat = s, we
have thatf () > f(s). Following the analysis froni[7], we lgt= A'ST + ¢’
andd’ = A's" +¢'T. We havef(s) = Yi(—1)¥ =n"—2.HW(y) and similarly,
f(s) = —2.HW(d'). So,f(s) > f(s) translates tHHW(y) < HW(d'). There-
fore

"

PHf(§ > f(9) = Prlzm ~d) < o] .

1=
For eachs, we takey as a uniformly distributed random vector and wedés)
be the bias introduce with a fixexfor df (we recall that our analysis computes

9

0 =E(d/(s)) over the distribution o§). Let X1,.. Xn/ be random variable cor-
responding to§; = y; —d/. SlnceE(y.) E(d) 2 () andy; andd’ are

independent, we have th&t(X;) =) andVar(X.) 2 6/() . By using the
Central Limit Theorem we obtain that

PriXi+...+Xy < 0] ~ ¢ (Z(s)) with Z(s) = —%W

where¢ can be calculated by (x) = 3 + 2erf(f) anderf is the Gauss error

function. Ford (s) < 0, the same analysis with(s) < f(s) gives the same result.
Applying the reasoning for ang # s we obtain that the failure probability is

p(9) = 1— (1 $(2(s)))> ~L,if &(s) >0

L ise <o

andp(s) = 1- o

We deduce the following (fo < 3)
1
p(s) <Be V> —/28(s)2—- 1971 (1— (1-6) zk'1> andd(s) >0

As a condition for ourWHT step, we adopt the inequality in which we
replaced’(s) by &. We give a heuristic argument below to show that it implies
E(p(s)) <6, which is what we want.

Note that if we use the approximatian(Z) ~ —#e—z—; for Z — —o,

we obtain the conditiom’ > 2(25'~2 — 1) In(Z2 ‘1) So, our analysis brings an
improvement of factor two over the Hoeffding bound methoedusy Bogos et

al. [7] that requiresy > 86’*2In(%).

On the validity of the using the bias averagéhe above computation is cor-
rect when using' (s) but we use = E(&(s)) instead. If nocode-reduce step is
used,d(s) does not depend omand we do havé'(s) = &. However, when a
code-reduce 1S used, the bias depends on the secret which is obtainedtladte
sparse-secret Step. For simplicity, we les denote this secret. The bi@4s) is
actually of form&(s) = 8 bc(s) wherex is the number ofyor-reduce steps
andbc(s) is the bias introduced byode-reduce depending ors. The values of
0/(s), Z(s), andp(s) are already defined above. We defihe: — 2 N \/— and

p=1—(1—(2))% L Clearly,E(p(s)) is the average failure probability over
the distribution of the secret obtained aftparse-secret.

10

Our method ensures that = E(d/(s)) over the distribution of. Sinced
is typically small (after a fewor-reduce steps,d® is indeed very small), we
can consideZ(s) as a linear function od'(s) and haveE(Z(s)) ~ Z. This is
confirmed by experiment. We make theuristic approximation that

E(1-(1-0(2(9)%) = 1- (1-6(EZ(9))* = 1-(1-6(2)*

S0,E(p(s)) ~ pl1

We did some experiments based on some examples in ordelidateabur
heuristic assumption. Our results show indeed #{@(s)) ~ Z. There is a small
gap betweet (p(s)) andp but this does not affect our results. Actually, we are
in a phase transition region so any tiny change in the valu miakesE (p(s))
change a lot. We include our results in the additional maltefihus, ensuring
that p < 6 with the above analysis based on the average bias ensutebdha
expected failure probability to be bounded ty

We also observed that the reductiesife-reduce can introduce problems.
More precisely, what can go wrong is theatan have, with a given probabil-
ity, a negatived (s) bias or a component in one of the concatenated codes giving
a zero bias, makingVHT to fail miserably.

4 Bias of the Code Reduction

In this section we present how to compute the bias introdbyesl code- reduce.
Recall that the reductiorvde-reduce(k, k') introduces a new noise:

(vi,s @di = (gi,s) ® (i —gi,5) di,

whereg; = g/G is the nearest codeword gf ands = sG'. Note thatg; is not
necessarily unique, specially if the code is not perfecttadeg; = Decode(V;)
obtained from an arbitrary decoding algorithm. Then thesebt can be com-
puted by the following formula:

be=E((-1)¥99) = 5 Privi—g = gE(-1)/*)

ec{0,1}k
k
=y Y Plvi-g-da—g (&)
w=0 ec{0,1},
HW (e)=w

7 Note that Zhang et al[37] implicitly does the same assuonpéis they use the average bias
as well.

11

for ads-sparse secret. (We recall that #perse-secret reduction step randomizes
the secret.) So, the probability space is over the distdbhudf v; and the dis-
tribution of s. Later, we considebc(s) = E((—1)"~99) over the distribution
overy; only. (In the work of Guo et all [23], onlgc(s) is considered. In Zhang
et al. [37], ourbc was also considered.) In the last expressiohmfve see that
the ambiguity in decoding does not affdet as long as the Hamming distance
HW (vi — Decode(Vv;)) is not ambiguous. This is a big advantage of averaging in
bc as it allows to use non-perfect codes. From this formula, avesee that the
decoding algorithnv; — g; makingHW (v; — g;) minimal makesbc maximal.

In this case, we obtain

bc—E (62“*@) : @

whereC is the code and(v;,C) denotes the Hamming distancevpfrom C.

For a codeC, thecovering radiugs p = max,d(v,C). Thepacking radiuds
the largest radiu® such that the balls of this radius centered on all codewords
are non-overlapping. So, the packing radiuRis L%J whereD is the min-
imal distance. We further haye> | 251 |. A perfect codés characterized by
p=| B3 |. A quasi-perfect codés characterized bg = | 252 | + 1.

Theorem 1. We consider gk, k', D] linear code C, where k is the lengtH, ik
the dimension, and D is the minimal distance. For any integerd any positive
biasds, we have

)
be < 2KK S (\D (8% — &Ly -85

w=0

wherebc is a function oBs defined byl(R). Equality for any such tha < & <
1limplies that C is perfect or quasi-perfect. In that case,ahjaality is reached

when taking the packing radius+ R= [251 |.

By taking r as the largest integer such thgf,_q <V'f,) < 2K (which is the

packing radiuik = [DT*” for perfect and quasi-perfect codes), we can see that
if a perfect[k, k'] code exists, it makesc maximal. Otherwise, if a quasi-perfect
[k,K'] code exists, it makelsc maximal.

Proof. Letdecode be an optimal deterministic decoding algorithm. The foranul

gives us that
bc = sz ; z BSHW(V_Q)
9€Cvedecode1(g)

12

We definedecode,,(g) = {v € decode ~*(g); HW (v—g) = w} anddecode=}(g)
the union of alldecode,*(g) for w > r. For allr, we have
6HW(V*9)
S

vedecode~1(g)

:Wio (\:/) oY + Z <#decodeW (;)) o + 5W#deC0dev_vl(g)
SAWLI

< (o) a5 ()

where we used? < &, for w >, #decode\,_\,l(g) < (VkV) anddY > &L+ for

w < r. We further have equality if and only if the ball centeredgaf radius
r is included indecode(g) and the ball of radius + 1 containsdecode ~*(g).
By summing over alfj € C, we obtain the result.

So, the equality case implies that the packing radius isa#tleand the
covering radius is at most+ 1. Hence, the code is perfect or quasi-perfect.
Conversely, if the code is perfect or quasi-perfect atglthe packing radius,
we do have equality. O

#decodey, (g (;)) od + 6r+l#decode>r (9)

So, for quasi-perfect codes, we can compute

R
be=2"*§ < k> (B¢ -3) +35+ (3)
wi=o \W
with R= | B3 |. For perfect codes, the formula simplifies to
K —k 2 [k W
o203 (w) @

4.1 Bias of a Repetition Code

Given alk, 1] repetition code, the optimal decoding algorithm is the migjo
decoding. We hav® =k, k' = 1, R= | ¥:1|. Fork odd, the code is perfect so
p = R. Fork even, the code is quasi- perfectp;e: R+ 1. Using [3) we obtain

Zw_o ()3 if kis odd
bc =

ZW—O 2k 1 ()6W 2k (k/Z) 65 if kis even

We give below the biases obtained for sofkd] repetition codes.

13

bias
o
3524_:1—2 4_|_ 1
5%25+ izéer T
SR 6%6:3 St
e
< e .
L:cx) + it + §2625+ ﬁés +lis
EHS I AR AR
256-s " 256~s " 64~s " 512~s T 256~S ' 512

e N A e I

[y sy P) PO) L) Ly Ly PO

[

‘O|o[N|o[d N w/N||=

=

=
=

4.2 Bias of a Perfect Code

In previous workl[[23,3]7], the authors assume a perfect dadkis casez\ff,zo (Vkv) =
2K and we can uséJ4) to compute. There are not so many binary linear
codes which are perfect. Except the repetition codes withledgth, the only
ones are the trivial codgk, k, 1] with R=p =0 andbc = 1, the Hamming codes
26 — 1,2 —¢—1,3] for £ > 2 with R= p = 1, and the Golay codi3,12,7]
withR=p=3.

For the Hamming codes, we have

be— o L o/2t—1 6W_1+(zf—1)a'>s
N wZo w) 2!

For the Golay code, we obtain

bc =211 z AT

w=0

3 (23) 5 — 1+ 235+ 2532 + 177153

Formulae [(R),[(B),[(4) fobc are new. Previously [7,23], the valle,, of
bc(s) for anys of Hamming weightwv was approximated to

1 w .
bcwzl—zm igzp’ <i>8(k—w,p—|),
i odd

wherew is the Hamming weight of thke-bit secret an&(K', p) is the number of
K'-bit strings with weight at mog. Intuitively the formula counts the number of
v; — @i that produce an odd number of xor with the 1's of the secrete ($,23].)
So, Guo et al.[[23] assumes a fixed value for the weigltdf the secret and
considers the probability that is not correct. Ifw is lower, the actual bias is

14

larger but ifw is larger, the computed bias is overestimated and the igori
fails.

For instance, with 3, 1] repetition code, the correct biaslis = 355+ 1
following our formula. With a fixedw, itis of bcyy = 1— ¥ [7J23]. The probabil-
ity oflw to be correct i) 1%(1— 7). We take the example af= 1 so that
O = 3.

W bcy, Priw] Prw],1=3

0 1 (1-1® 02963
1 3 3r(1-1)?2 04444
2 0 3%(1l-1) 02222
3 -4 0.0370

So, by takingw = 1, we haved = bc,, = % but the probability of failure is about
3. Our approach uses the average Biasbc = 1.

4.3 Using Quasi-Perfect Codes

If C'is alk—1,K, D] perfect code witlk’ > 1 and if there exists some codewords
of odd length, we can exter, i.e., add a parity bit and obtain[k k'] code

C. Clearly, the packing radius & is at IeastL%J and the covering radius is
at most{DT‘lj +1. Fork' > 1, there is up to one possible length for making
a perfect code of dimensidki. So,C is a quasi-perfect, its packing radius is
| 252 | and its covering radius is%5? | + 1.

If C"is a[k+ 1,k',D] perfect code withk > 1, we can puncture it i.e.,
remove one coordinate by removing one column from the géngranatrix.

If we chose to remove a column which does not modify the kinive obtain
a[k,K] codeC. Clearly, the packing radius @ is at least| 21| — 1 and the
covering radius is at mosﬁ%} Fork’ > 1, there is up to one possible length
for making a perfect code of dimensiéh So,C is a quasi-perfect, its packing
radius is| 251 | — 1 and its covering radius 252 |.

Hence, we can use extended Hamming cd@e®’ — ¢ — 1] with packing
radius 1 for¢ > 3, punctured Hamming codég’ — 2,2 — ¢ — 1] with packing
radius O for¢ > 3, the extended Golay cod®4,12] with packing radius 3, and
the punctured Golay cod@2, 12| with packing radius 2.

There actually exist many constructions for quasi-peifaear binary codes.
We list a few in TabléR2. We took codes listed in the existingrature[[14, Ta-
ble 1], [33, p. 122],[[22, p. 47] 118, Table 1], [13, p. 313hda[3, Table I]. In
Table[2 k, K, D, andR denote the length, the dimension, the minimal distance,
and the packing radius, respectively.

15

Table 2: Perfect and Quasi-Perfect Binary Linear Codes

name type [k,K,D] R comment ref.
P kk1,k>1 0 [#...,%
r P [k1,k, kodd k21 repetition code
H P [20—-12—¢-13,¢>3, 1 Hamming code
G P [23127) 3 Golay code
QP [kk—1,1] 0 [#,...,%0]
r QP [k 1,k], keven K—1 repetition code
eG QP [24,12,8] 3 extended Golay code
pG QP [22,12,6] 2 punctured Golay code
eH QP 20,20 —¢—1,4,(>2 1 extended Hamming code
QP [20—1,26—¢,1],¢>2, 0 Hamming with an extra word

pH QP [26-22—¢-1,2,0>2 0 punctured Hamming
HxH QP [2x(20—1),2x(2' —¢—1)],£>2 1 Hammingx Hamming [14]
upack QP [2(—-22/—¢-23],(>3 1 uniformly packed [14]
2BCH QP [20—-1,(2/—1)—(2%0),£>3 2 2-e.c.BCH [T4]
z QP [241,(2' +1)—(2%0)],£> 3 even 2 Zetterberg [14]
rGop QP [20—2,(2—2)—(2x¢)],£> 3 even 2 red. Goppa [14]
iGop QP [2(,(2) —(2%¢)],¢>20dd 2 irred. Goppa [14]
Mclas QP [2f—1,(2—1)—2x(),¢> 2 odd 2 Mclas [T4]
S QP [5,2,[9,5], [10,5], [11,6] 1 Slepian [38]
S QP [11,4] 2 Slepian [38]
FP QP [15,9], [21,14], [22,15, [23,16] 1 Fontaine-Peterson B3]
w QP [19,10}, [20,11], [20,13), [23,14) 2 Wagner [33]
P QP [21,12 2 Prange [3B]
FP QP [25,12 3 Fontaine-Peterson [33]
w QP [25,15), [26,16), [27,17], [28,18), [29,19, 1 Wagner [38]

[30,20], [31,20]
GS QP [137],[19,12 1 GS85 [22]
BBD QP [7,3,3,[9,4,4],[106,3],[11,7,3,[127,3, 1 BBDO8 [3

[128,3, [138,3, [139,3, [149,3

[15,10,3], [16,10,3], [17,11,4], [17,12,3],

(18,12 4], [18,13 3], [19,13 3], [19,14,3],

[20,14,4]
BBD QP [22135] 2 BBDO8 3]

16

4.4 Finding the Optimal Concatenated Code

The linear coddk, K] is typically instantiated by a concatenation of elemen-
tary codes for practical purposes. By “concatenation’motodesC;,...,Cn,
we mean the code formed by @l:||---[|gim obtained by concatenating any
set ofg; j € C;. Decodingv; || -- - ||vy is based on decoding eagfy in C; inde-
pendently. If allC; are small, this is done by a table lookup. So, concatenated
codes are easy to implement and to decode.[lE&f] we have the concatena-
tion of [kq, K], .., [km, k] codes, wher&; + - - - +kn = kandk] +- - - + ki, =K.
Let vij,gij,s’j denote thejt" part of vi, g, s respectively, corresponding to the
concatenatedk;, kj] code. The bias ofvj —gij,sj) in the codelk;,kj] is de-
noted bybcj. As (vi —g,s) is the xor of all(vij — gij,s;), the total bias in-
troduced by this operation is computedbas— |‘|'j":1 bcj and the combination
params = ([kg,K{],...,[km, K/,]) is chosen such that it gives the highest bias.
The way thes@arams are computed is the following: we start by comput-
ing the biases for all elementary codes. l.e. we computeittsesb for all codes
from Table[2. We may add random codes that we found integedifor these,
we use[(R) to computbc.ﬁ Next, for eacHli, j] code we check to see if there is
a combination ofi —n, j — m|,[n,m| codes that give a better bias, whémnem|
is either a repetition code, a Golay code or a Hamming codeillWgérate be-
low the algorithm to find the optimal concatenated code. Htg®rithm was
independently proposed by Zhang et lal. [37] (with perfeciesoonly).

Algorithm 1 Finding the optimaparams and bias
1: Input: k
: Output: table for the optimal bias for eadh j] code, 1< j <i <k

N

: initialize all bias(i,j) =0
. initialize bias(1,1) = 1
. initialize the bias for all elementary codes
: forall j:2tokdo
forall i:j+1tokdo
for all elementary codén, m| do
if |bias(i —n, j —m) - bias(n,m)| > |bias(i, j)| then
bias(i, j) = bias(i —n, j —m) - bias(n,m)
params(i, j) = params(i —n, j —m) U params(n, m)

R
= o

Using O(k) elementary codes, this procedure tak¥k®) time and we can
store allparams for any combinatiorii, j], 1 < j < i < k with O(k?) memory.

8 The random codes that we used are provided as an additionatiah4o this paper.

17

5 The Graph of Reduction Steps

Having in mind the reduction methods described in Sedtiowe formalize
an LPN solving algorithm in terms of finding the best chain in a graphe
intuition is the following: in anLPN solving algorithm we can see each reduc-
tion step as an edge from(&log,n) instance to a new instanc&’,log, n’)
where the secret is smalléf,< k, we have more or less number of queries and
the noise has a different bias. For examplep@areduce(b) reduction turns an
(k,log,n) instance with bia® into (K',log,n’) with biasd wherek’' = k—b,
n = ”(2';111) and®d = &. By this representation, the reduction phase represents a
chain in which each edge is a reduction type moving ftd? with parameters
(k,n) to LPN with parametersgk’,n’) and that ends with an instan@e, n;) used
to recover the;-bit length secret by a solving method. The chain terminbyes
the fast Walsh-Hadamard solving method.

We formalize the reduction phase as a chain of reductiorsstep graph
G = (V,E). The set of vertice¥ is composed o¥ = {1,...,k} x L whereL
is a set of real numbers. For instance, we could takeR or L = N. For ef-
ficiency reasons, we could even take- {0,...,n} for some bound). Every
vertex saves the size of the secret and the logarithmic nuoflzpieries; i.e. a
vertex (k,log,n) means that we are in an instance where the size of the secret
is k and the number of queries availablenisAn edge from one vertex to an-
other is given by a reduction step. An edge frthriog, n) to a(k’,log, n’) has a
label indicating the type of reduction and its parameters. (@r-reduce(k — K')
or code-reduce(k, K, params)). This reduction defines sonteandf coefficients
such that the bia& after reduction is obtained from the bidbefore the reduc-
tion by

log,8? = alog,d” + B

whereaq, 3 € R.

We denote by[A|_ the smallest element &f which is at least equal t&
and by |A|_ the largest element df which is not larger thard. In general,
we could use a rounding functidRound, (A) such thatRound, (A) is in L and
approximatesg\.

The reduction steps described in Subsedfioh 2.2 can be liaatdaas fol-
lows:

— sparse-secret: (K,log,n) — (k,Round| (log, (n—K))) anda =0, =0

— xor-reduce(b): (k,log,n) — (k—b, Round, (log, (ng;;p)))anda =2,p=0

— drop-reduce(b): (k,logyn) — (k—b,Round(log, (35))) anda = 1, =0

18

— code-reduce(k, K ,params): (k,log,n) — (K,log,n) anda = 1, = log, bc?,
wherebc is the bias introduced by the covering code reduction usikgd
linear code defined byarams.

Below, we give the formal definition of a reduction chain.
Definition 3 (Reduction chain).Let
R = {sparse-secret, xor-reduce(D), drop-reduce(b), code-reduce(K, K, params) }
for k,k',b € N . Areduction chain is a sequence
(ko,l0g, o) 2 (k1,log,ny) 2.5 (ki,log,n;),

where the changgkj_1,109,nj_1) — (kj,log, n;) is performed by one reduction
fromR,foral 0< j<i.
A chain issmpleif it is accepted by the automaton from Figlite 1.

xor-reduce xor-reduce
drop-reduce drop-reduce drop-reduce

)) 0

sparse-secret ° code-reduce

initial state
xor-reduc WHT
xor-reduce (| _WHT accepting state

Fig. 1: Automaton accepting simple chains

Remark:Restrictions for simple chains are modelled by the automato
Figure[1. We restrict to simple chains as they are easier alyze Indeed,
sparse-secret 1S only used to raisés to makecode-reduce more effective. And, so
far, it is hard to analyze sequencescafe-reduce steps as the first one may de-
stroy the uniform and highs for the next ones. This is why we exclude multiple
code-reduce reductions in a simple chain. So, we use up to g@age- secret reduc-
tion, always one beforevde-reduce. And sparse-secret occurs before decreases.
For convenience, we will add a state of the automaton to thex@V.

19

Definition 4 (Exact chain). An exact chain is a simple reduction chain for
L = RR. l.e.Round, is the identity function.

A chain which is not exact is calledunded.

For solvingLPN we are interested in those chains that end with a vertex
(ki,log, ;) which allows to call aVHT solving algorithm to recover thig-bit
secret. We call these chains valid chains and we define thiaw.be

Definition 5 (Valid reduction chain). Let
(ko,10g,n0) = (ka,log,ng) 2 -+ 2 (ki,log,)

be a reduction chain withje= (aj,3j,.). Letd; be the bias corresponding to the
vertex(kj,log, n;) iteratively defined byo = 5 andlog, 35 = a10g, & ; + B
for j =1,...,i. We say the chain is @-valid reduction chain if n; satisfies[{ll)
from pagd B fo' = & and i = n;.

Thetime complexityf a chain(ey, ..., &) is simply the sum of the complex-
ity of each reduction step;,e,..., andWHT. We further define thenax-
complexity of a chain which is the maximum of the complexity of each reduc
tion step andVHT. The max-complexity is a good approximation of the com-
plexity. Our goal is to find a chain with optimal complexity.HAt we achieve is
that,given a set [.we find aroundedchain with optimalmax-complexityp to
some given precision.

5.1 Towards Finding the BestLPN Reduction Chain

In this section we present the algorithm that helps findiregy dptimal valid
chains for solving_PN. As aforementioned, we try to find the valid chain with
optimal max-complexity for solving abPN ; instance in our grapfs.

The first step of the algorithm is to construct the directeabbG = (V,E).
We take the set of vertice$ = {1,...,k} x L x {1,2,3,4} which indicate the
size of the secret, the logarithmic number of queries andttite in the automa-

ton in Figurd_1. Each edgee E represents a reduction step and is labelled with

the following information:(ky,log, n1, st) i (kz,l0g, Ny, st') wheret is one of

the reduction steps ardandf3 save information about how the bias is affected
by this reduction step.

The graph ha®(k-|L|) vertices and each vertex hagk) edges. So, the
size of the graph i®/(k?- |L|).

Thus, we construct the graghwith all possible reduction steps and from
it we try to see what is the optimal simple rounded chain imt&eiof max-
complexity. We present in Algorithil 2 the procedure to cartthe graphG

20

that contains all possible reduction steps with a time cexifyl bounded by 2
(As explained below, Algorithria]2 is not really used).

The procedure of finding the optimal valid chain is illustghtin Algo-
rithm[3. The procedure of finding a chain with upper bounded-gwmmplexity
is illustrated in Algorithr 4.

Algorithm 2 Construction of grapl®
1: Input: k,T,L,n
2: Output: graphG = (V,E) containing all the reduction steps that have a complexitglem
than 21

3V ={L.. kxLx{1,...,4}
4: E is the set of all((i,ng,st), (j,nz,st')) labelled by(a,B,t) such that there is at Lot
transition in the automaton and for
5: t = sparse-secret:
6: for all n :1 such thatcomp < n do set the edge
7: where i = k, (j,n2) = (i,Round(log,(2"t —i))), a =1, B = 0, lcomp =
Min 100, (o eramtagr +121(21 — i) 4] +i%+i242)
8. t = xor-reduce:
9: for all (i,n1,b) such thab > 1 andicomp < n do set the edge
10: where(j,n2) = (i—b,Roundi (N1 —1+logy (55 —1))), a =2, =0, lcomp = log,i +
max(N1,n2)
11: t = drop-reduce:
12: for all (i,n1,b) such thab > 1 andlcomp < n do set the edge
13: where(j,n2) = (i—b,Round| (N1 —b)), a =1, =0, lcomp =log,b+n1
14: t = code-reduce:
15: forall (i,n1,j) such thatj < i andlcomp < n do set the edge
16: wheren, = ny, a = 1, B = log, bc?, lcomp = log,i + N1, be is the bias from the optimal
[i,]] code

Algorithm[4 receives as input the parametk@ndt for the LPN instance,
the parameteB which represents the bound on the failure probability in re-
covering the secret. Parametgrepresents an upper bound for the logarithmic
complexity of each reduction step. Givgnwe build the grapls which con-
tains all possible reductions with time complexity smatlen 2! (Sted 4). Note
that we don't really call Algorithrhl2. Indeed, we don’t needstore the edges of
the graph. We rather keep a way to enumerate all edges goagit@n vertex
(in Stefd11) by using the rules described in Algorithim 2.

For each vertex, we iteratively defidé! and Best®, the best reduction step
to reach a vertex and the value of the corresponding errsr Bitae best reduc-
tion step is the one that maximizes the bias. We define thdaesvderatively
until we reach a vertex from which tR&HT solving algorithm succeeds with

21

Algorithm 3 Search for a rounded chain with optimal max-complexity
1: Input: k,T,0, precision

2: Output: a valid simple rounded chain in which rounding uses a giveipion

3: setfound =brut ef orce > found is the best found algorithm
4: setincrement =Kk

5: setn =k > 21 is a bound on the max-complexity
6: repeat

7 setincrement <— %increment

8 defineL = {0, precision, 2 x precision, ...} N [0,n — increment]

9: run (out, success) = Search(k, 1,0, L,n — increment) with Algorithm[4
10: if success then
11: setfound = out
12: setn = n —increment
13: until increment < precision
14: outputfound

complexity bounded by™ Once we have reached this vertex, we construct the
chain by going backwards, following thgest pointers.
We easily prove what follows by induction.

Lemma 1. At the end of the iteration of Algorithim 4 fo§,n2,st), A?ﬁnz is the
maximum ofog, &, whered is the bias obtained by aRound -rounded simple
chain from a vertex of forrfk,n,0) to (j, N2, st') with max-complexity bounded

by 21 (AS',, = —w if there is no such chain).

Lemma 2. If there exists a simpl®ound, -rounded chain ¢ ending on state
(kj,nj,stj) and max-complexity bounded BY, there exists one’ such that
A7y, = log, 8 at each step.

Proof. Let ¢’ be a simple chain ending di;,n;,st;) with A?gj = log, &5. Let
(kj—1,nj-1,stj_1) be the preceding vertex id’. We apply Lemmal2 on this
vertex by induction to obtain a cha@{. Since the complexity of the last edge
does not depend on the bias amd- 0 in the last edge, we construct the chain
¢, by concatenating” with the last edge of”. 0

Theorem 2. Algorithm[4 finds @-valid simpleRoundy -rounded chain fot. PNy
with max-complexity bounded BY if there exists one.

Proof. We use Lemma&]2 and the fact that increashigkeeps constrain{{1)
valid. a

If we usedL = R, Algorithm[4 would always find a valid simple chain with
bounded max-complexity when it exists. Instead, we usededrchains and
hope that rounding still makes us find the optimal chain.

22

Algorithm 4 Search for a bestPN reduction chain with max-complexity
bounded tm

1: Input: k,T,6,L,n
2: Output: a valid simple rounded chain with max-complexity boundeqd t

3:0=1-21

4: Construct the grap8 using Algorithn{2 with parameteist,L,n
5: forall np e Ldo

6 setA} =log, & Bestd, = |

7 setAﬁFm = —0o, Bestﬁfnl = 1 > A stores the best bias for a vertgkn, st) in a chain,

andBest® is the edge ending to this vertex in this chain

8: for j : k downto 1do > Search for the optimal chain
9: for n» € L in decreasing ordeto
10: sel‘A?_‘n2 =0, BestSt = | for all st
11: foreach st' and each edgeto (j,n2,st’)
12: set(i,n1,st) to the origin ofe anda andp as defined by
. ; t v t _ qASt st_
13: if aAﬁnl +B> A?ﬁnz then setAJ?n2 = O(Aﬁn11 +B, Best® =¢e
14: ifnz>1-45% +2log, (—qu(l— (1—9)511)) andj +log, j < n then
15: Construct the chaioending byBest?fn2 and outpuf(c, true)

16: output(_L,false)

So, we build AlgorithniB. In this algorithm, we look for the mnal n for
which Algorithm[4 returns something by a divide and conqugorithm. First,
we setn as being in the intervdD, k] where the solution fon = k corresponds
to a brute-force search. Then, we cut the interval in twogsesnd see if the
lower interval has a solution. If it does, we iterate in thigerval. Otherwise, we
iterate in the other interval. We stop once the amplitudénefinterval is lower
than the requested precision. The complexity of Algoriffie 8f IOgZprTli(sion
calls to Algorithmi4.

Theorem 3. Algorithm(3 finds @-valid simpleRoundy -rounded chain fot PNy ¢
with parameteprecision, with optimal rounded max-complexity, where the round-
ing function approximate®g, up to precision if there exists one.

Proof. Algorithm [3 is a divide-and-conquer algorithm to find the #ps n
such that Algorithni 4 finds a valid simpRound| -rounded chain of
max-complexity bounded by12 O

We can see that the complexity of Algoritirh 4 is@f(k?- |L|) iterations
as vertices havk possible values for the secret length ahfipossible values
for the logarithmic number of equations. So, it is linearhia size of the graph.
Furthermore, each type of edge to a fixed vertex®@g possible origins. The

23

memory complexity isO (k- |L|), mainly to store the\,, and Besty, tables.
We also use Algorithr]1 which has a complexityk®) but we run it only once
during precomputation. Algorithii 3 sefis| ~ —~-—. So, the complexity of

precision *
AIgorithmBisO<k3+ K log—K)

precision precision

6 Chains with a Guessing Step

In order to further improve our valid chain we introduce a meduction step to
our algorithm. As itis done in previous works |2B,5], we gupart of the bits of
the secret. More precisely, we assume thbits of the secret have a Hamming
weight smaller or equal tov. The influence on the whole algorithm is more
complicated: it requires to iterate theHT step 31*, (%) times. The overall

. .. w15\ 145 w—i
complexity must further be divided by;", (%) (5 5 . Note that
this generalizeguess-secret Step was used in Guo et al. [23].

We formalize this step as following:

— guess-secret(b,w) guesses that bits of the secret have a Hamming weight
smaller or equal tev. Theb positions are chosen randomly. The number of
gueries remains the same, the noise is the same and the simesafcret is
reduced byb bits. Thus, for this step we have
guess-secret(b,w) : K =k—b;n=n; & =§;8,=90
Complexity: O(nb) (included insparse-secret) and
the Walsh transform has to be iteratgfi ; (') times and
the complexity of the whole algorithm is divided by

o () ()"

This step may be useful for a sparse secretyii@small, as then we reduce
the size of the secret with a very small cost. In order to acnodate this new
step we would have to add a transition from state 3 to statetfeimutomaton
that accepts the simple chains (See Figuire 1).

To find the optimal chain usinguess-secret(b,w), we have to make a loop
over all possibleb and all possiblev. We run the full searclo(k?) times. The

total complexity isthus?(K Jog——K)

precision precision

7 Results

We illustrate in this section the results obtained by rugniigorithm [4 for
different LPN instances taken from Bogos et all [7]. They vary from taking

24

k=32 tok = 768, with the noise levels.05,0.1,0.125 0.2 and 025. In Tablé B
we display the logarithmic time complexity we found for daty LPN without
using guess-secret

k
32 48 64 100 256 512 768

0.05 1389426 14520294 16043443 20471826 36753425 57.7735%° 76.63403
0.1 1504370 1858843 21581938 27.61253° 46750422 73680992 98973804
0.125 15663352 19294700 22943050 28912630 49908735 7885622 105890301
0.2 17013480 21251923 24422200 32062%75 56.313?122 89.043838 1210431818
0.25 1842830 22342043 2686298 32943075 50473688 94669537 1273513163
entry of formag...: a = log, complexity,b = log, max-complexity ¢ = precision

subscriptc means that aode-reduce is used
Table 3: Logarithmic time complexity on solving®N without guess-secret

k
' 32 48 64 100 256 512 768
005 118533 130153350 1444 %ige 17205 gs0 3018 chire 49561z 68 15i0s0m
01 1241555 152500 17.7h%en 240G, 459% g 7368’ 9921555
0.125 133055006 164%%cpo 20570 2714007 499055 7897574 10618105

02 17013480 2125928 24422200 3208%7° 56.34331251 89.28007° 1211211857

025 1842)5% 22349% 26865%1%® 329497° 594758 0485773 12763(23"

entry of forma2._: a = log, complexity,b = log, max-complexity ¢ = precision
subscriptc means that aode-reduce is used

subscripto means that a only 1 bit of the secret is foundW{d T

subscripgb means that guess-secret (b, -) is used

Table 4: Logarithmic time complexity on solvind®N with guess-secret

9 Complete results are provided as an additional materilisoqpaper.

25

Sequence of chaingf we analyze in more details one of the chains that we ob-
tained, e.g. the chain fdrPNs120 125, we can see that it first usesrse-secret.
Afterwards, the secret is reduced by applying 5 timesaiereduce and one
code-reduce at the end of the chain. With a total complexity dP2° and8 < 33%

it recovers 64 bits of the secret.

sparse=secret xor-reduce(59)

(512 633) P77 (512 633)
xor-reduce(66)
ekl siaia/N

(453 66. 6) xor-reduce(65)
xor-reduce(66) xor-reduce(67)
= =

(388 67.2) (32267.4)
code=reduce WHT

(189,67.6) L&, (64, 67.6) 211,

(256,67.8)

The code used is 89 64 concatenation made of ten random codes: one in-
stance of 418, 6] code, five instances of [49,6] code, and four instances of a
[19,7] code. By manually tuning the number of equations withouhdiug, we
can obtain witm = 2632%° g complexity of 2884, This is the value from Tablg 1.

On theguess-secret reduction. Our results show that thgess-secret step does not
bring any significant improvement. If we compare Tdlle 3 Widble[4 we can
see that in few cases the guess step improves the total cdtypkeork > 512,
some results are not better than Tdble 3. This is most likal td the lower
precision used in Tablg 4.

We can see several cases where, at the end of a chaigaedthsecret, only
one bit of the secret is recovered WHT. If only 1 bit of the secret is recovered
by non-bruteforce methods, the next chain E®N,_1: will have to be run
several times, given thguess-secret step used in the chain faPNy . Thus, it
might happen that the first chain does not dominate the totapexity. So, our
strategy to use sequences of chains has to be revised, butikets the final
result will not be better than sequences of chains with@ess-secret. So, we
should rather avoid these chains ending with 1 bit recovery.

There is no case whergygess-secret without a chain ending with 1 bit brings
any improvement.

Comparing the resultsFor practical values we compare our results with the
previous work([23,29,3[7]7].

From the work of ASIACRYPT’14[23] and EUROCRYPT'16 [37] wave
that LPNs120.125 can be solved in time complexity of % (with more precise
complexity estimates). The comparison was shown in Tabte Ihtroduction.
We do better, provide concrete codes and we even removg:dfiesecret Step
with an optimized use of a code. Thus, the results of Algarithimprove all
the existing results on solvingPN.

26

8 Conclusion

In this article we have proposed an algorithm for creatirduotion chains with
the optimal max-complexity. The results we obtain bring iayements to the
existing work and to our knowledge we have the best algoritbmsolving
LPNs120.125. We believe that our algorithm could be further adapted and a
tomatized if new reduction techniques would be introduced.

As future works, we could look at applications to thW&/E problem. Kirch-
ner and Fouque [28] improve th&VE solving algorithms by refining the mod-
ulus switching. We could also look at ways to keep track o$esaof secret bits
bitwise, in order to allow cascades @ffe-reduce steps.

References

1. Michael Alekhnovich. More on Average Case vs ApproximatComplexity. In44th
Symposium on Foundations of Computer Science (FOCS 20D3)} Dctober 2003, Cam-
bridge, MA, USA, Proceedingpages 298-307. IEEE Computer Society, 2003.

2. V. L. Arlazaroyv, E. A. Dinic, M. A. Kronrod, and I. A. Faradz. On economical construction
of the transitive closure of a directed graph. 1970.

3. Tsonka Stefanova Baicheva, lliya Bouyukliev, Stefan MdDnekov, and Veerle Fack. Bi-
nary and ternary linear quasi-perfect codes with small dsiens. IEEE Transactions on
Information Theory54(9):4335-4339, 2008.

4. Daniel J. Bernstein. Optimizing linear maps modulo 2.
http://binary. cr.yp.to/ I near mod2- 20090830. pdf |

5. Daniel J. Bernstein and Tanja Lange. Never Trust a BunnyJabp-Henk Hoepman and
Ingrid Verbauwhede, editorfadio Frequency Identification. Security and Privacy Issue
- 8th International Workshop, RFIDSec 2012, Nijmegen, Thth&tlands, July 2-3, 2012,
Revised Selected Papexolume 7739 of_ecture Notes in Computer Sciengages 137—
148. Springer, 2012.

6. Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tol¢taarning, the parity problem,
and the statistical query model. In F. Frances Yao and Eulgehelks, editorsProceedings
of the Thirty-Second Annual ACM Symposium on Theory of CongpiMay 21-23, 2000,
Portland, OR, USApages 435-440. ACM, 2000.

7. Sonia Bogos, Florian Trameér, and Serge Vaudenay. Omgdl¥’N using BKW and variants
- Implementation and analysi€ryptography and Communicatignd(3):331-369, 2016.

8. Sonia Bogos and Serge Vaudenay. How to sequentializepéndent parallel attacks? -
biased distributions have a phase transition. In Tetsuawatl Jung Hee Cheon, editors,
Advances in Cryptology - ASIACRYPT 2015 - 21st InternatiQuaference on the Theory
and Application of Cryptology and Information Securityckiand, New Zealand, November
29 - December 3, 2015, Proceedings, Partyblume 9453 ofLecture Notes in Computer
Sciencepages 704-731. Springer, 2015.

9. Sonia Bogos and Serge Vaudenay. Observations on the LPNngoAlgo-
rithm from Eurocrypt’16. Cryptology ePrint Archive, RepoR2016/451, 2016.
https:/7eprint.iacr.org/ 2016/ 451]

10. Julien Bringer, Hervé Chabanne, and Emmanuelle Dot *: a Lightweight Authenti-
cation Protocol Secure against Some Attack$Sdnond International Workshop on Security,
Privacy and Trust in Pervasive and Ubiquitous ComputingcPeeU 2006), 29 June 2006,
Lyon, France pages 28-33. IEEE Computer Society, 2006.

27

http://binary.cr.yp.to/linearmod2-20090830.pdf
https://eprint.iacr.org/2016/451

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

José Carrijo, Rafael Tonicelli, Hideki Imai, and Anstem C. A. Nascimento. A Novel Prob-
abilistic Passive Attack on the Protocols HB and HBEICE Transactions92-A(2):658—
662, 2009.

Chandra Chekuri, Klaus Jansen, José D. P. Rolim, and Trevisan, editorsApproxima-
tion, Randomization and Combinatorial Optimization, Aifums and Techniques, 8th Inter-
national Workshop on Approximation Algorithms for Combameal Optimization Problems,
APPROX 2005 and 9th InternationalWorkshop on Randomizatiad Computation, RAN-
DOM 2005, Berkeley, CA, USA, August 22-24, 2005, Procesdundume 3624 oL ecture
Notes in Computer Scienc8pringer, 2005.

G. Cohen, I. Honkala, S. Litsyn, and A. Lobsteftovering CodesNorth-Holland Mathe-
matical Library. Elsevier Science, 1997.

Gérard D. Cohen, Mark G. Karpovsky, H. F. Mattson Jrd dames R. Schatz. Covering
radius - survey and recent resulti£EE Transactions on Information Theor§1(3):328—
343, 1985.

Ivan Damgard and Sunoo Park. Is Public-Key Encryptiasesl on LPN PracticalPACR
Cryptology ePrint Archive2012:699, 2012.

Nico Dottling, Jorn Miller-Quade, and Anderson C.Mascimento. IND-CCA Secure
Cryptography Based on a Variant of the LPN Problem. In XiaoWang and Kazue Sako,
editors,Advances in Cryptology - ASIACRYPT 2012 - 18th InternatiQuamference on the
Theory and Application of Cryptology and Information SégiBeijing, China, December
2-6, 2012. Proceedingsolume 7658 of.ecture Notes in Computer Scienpages 485-503.
Springer, 2012.

Alexandre Duc and Serge Vaudenay. HELEN: A Public-Keyp@rsystem Based on the
LPN and the Decisional Minimal Distance Problems. In Amr ¥sef, Abderrahmane Nitaj,
and Aboul Ella Hassanien, editoRrogress in Cryptology - AFRICACRYPT 2013, 6th Inter-
national Conference on Cryptology in Africa, Cairo, Egyfitne 22-24, 2013. Proceedings
volume 7918 oL ecture Notes in Computer Scienpages 107-126. Springer, 2013.

Tuvi Etzion and Beniamin Mounits. Quasi-perfect codéb wmall distancelEEE Trans-
actions on Information Theoyp1(11):3938-3946, 2005.

Marc P. C. Fossorier, Miodrag J. Mihaljevic, Hideki Iméang Cui, and Kanta Matsuura. An
Algorithm for Solving the LPN Problem and Its Application$ecurity Evaluation of the HB
Protocols for RFID Authentication. In Rana Barua and Tardade, editorsSINDOCRYPT
volume 4329 oL ecture Notes in Computer Scienpgages 48—62. Springer, 2006.

Henri Gilbert, Matthew J. B. Robshaw, and Yannick Seurii: Increasing the Secu-
rity and Efficiency of HB". In Nigel P. Smart, editorAdvances in Cryptology - EURO-
CRYPT 2008, 27th Annual International Conference on theofijhand Applications of
Cryptographic Techniques, Istanbul, Turkey, April 13-2@808. Proceedings/olume 4965
of Lecture Notes in Computer Scienpages 361-378. Springer, 2008.

Henri Gilbert, Matthew J. B. Robshaw, and Yannick SeuHow to Encrypt with the LPN
Problem. In Luca Aceto, lvan Damgard, Leslie Ann Goldbévagnis M. Halldorsson,
Anna Ingolfsdottir, and Igor Walukiewicz, editosytomata, Languages and Programming,
35th International Colloquium, ICALP 2008, Reykjavik,l&re, July 7-11, 2008, Proceed-
ings, Part Il - Track B: Logic, Semantics, and Theory of Paogming & Track C: Security
and Cryptography Foundationgolume 5126 ol ecture Notes in Computer Scienpages
679-690. Springer, 2008.

Ronald L. Graham and Neil J. A. Sloane. On the coveriniyisaaf codeslEEE Transactions
on Information Theory31(3):385-401, 1985.

Qian Guo, Thomas Johansson, and Carl Londahl. Solviflg Using Covering Codes.
In Palash Sarkar and Tetsu lwata, editgkglvances in Cryptology - ASIACRYPT 2014 -
20th International Conference on the Theory and ApplicatibCryptology and Information

28

24.

25.

26.

27.

28.

20.

30.

31.

32.

33.

34.

35.

Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2Bidceedings, Part,lvolume
8873 ofLecture Notes in Computer Scienpages 1-20. Springer, 2014.

Nicholas J. Hopper and Manuel Blum. Secure Human Ideatiin Protocols. In Colin
Boyd, editor,Advances in Cryptology - ASIACRYPT 2001, 7th Internati@w@iference on
the Theory and Application of Cryptology and Informatiort@®éy, Gold Coast, Australia,
December 9-13, 2001, Proceeding®lume 2248 of_ecture Notes in Computer Science
pages 52—-66. Springer, 2001.

Ari Juels and Stephen A. Weis. Authenticating PervaBmces with Human Protocols. In
Victor Shoup, editorAdvances in Cryptology - CRYPTO 2005: 25th Annual Intecometi
Cryptology Conference, Santa Barbara, California, USAgésat 14-18, 2005, Proceedings
volume 3621 oL ecture Notes in Computer Sciengages 293—-308. Springer, 2005.

Eike Kiltz, Daniel Masny, and Krzysztof Pietrzak. Sim@hosen-Ciphertext Security from
Low-Noise LPN. In Hugo Krawczyk, editoRublic-Key Cryptography - PKC 2014 - 17th In-
ternational Conference on Practice and Theory in Publig-iGxyptography, Buenos Aires,
Argentina, March 26-28, 2014. Proceeding®lume 8383 ofLecture Notes in Computer
Sciencepages 1-18. Springer, 2014.

Eike Kiltz, Krzysztof Pietrzak, David Cash, Abhishelinjaand Daniele Venturi. Efficient
Authentication from Hard Learning Problems. In Kenneth @&ePson, editorAdvances in
Cryptology - EUROCRYPT 2011 - 30th Annual International fe@nce on the Theory and
Applications of Cryptographic Techniques, Tallinn, Es&épMay 15-19, 2011. Proceedings
volume 6632 oLecture Notes in Computer Sciengages 7—26. Springer, 2011.

Paul Kirchner and Pierre-Alain Fouque. An improved BKWyoaithm for LWE with ap-
plications to cryptography and lattices. In Rosario Gearsard Matthew Robshaw, editors,
Advances in Cryptology - CRYPTO 2015 - 35th Annual Crypfofognference, Santa Bar-
bara, CA, USA, August 16-20, 2015, Proceedings, Rarblume 9215 ol ecture Notes in
Computer Sciencgages 43—62. Springer, 2015.

Eric Levieil and Pierre-Alain Fouque. An Improved LPN Algbm. In Roberto De Prisco
and Moti Yung, editorsSecurity and Cryptography for Networks, 5th InternatioGainfer-
ence, SCN 2006, Maiori, Italy, September 6-8, 2006, Prdogsdvolume 4116 oL ecture
Notes in Computer Scienggages 348—359. Springer, 2006.

Vadim Lyubashevsky. The Parity Problem in the Presemddotse, Decoding Random
Linear Codes, and the Subset Sum Problem. In Chekuri &t2]|.pages 378—-389.

Vadim Lyubashevsky and Daniel Masny. Man-in-the-M&ddbecure Authentication
Schemes from LPN and Weak PRFs. In Ran Canetti and Juan Ay,Gglitors,Advances
in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Confess Santa Barbara, CA,
USA, August 18-22, 2013. Proceedings, Partzdlume 8043 ol ecture Notes in Computer
Sciencepages 308-325. Springer, 2013.

Alexander May, Alexander Meurer, and Enrico Thomae. ddety Random Linear Codes
in 0(27{0.054r}). In Dong Hoon Lee and Xiaoyun Wang, editofglvances in Cryptology
- ASIACRYPT 2011 - 17th International Conference on the iheead Application of Cryp-
tology and Information Security, Seoul, South Korea, Ddxmnd-8, 2011. Proceedings
volume 7073 oLecture Notes in Computer Scienpages 107-124. Springer, 2011.
W.W. Peterson and E.J. Welddgrror-correcting CodesMIT Press, 1972.

Oded Regev. On lattices, learning with errors, randomali codes, and cryptography. In
Harold N. Gabow and Ronald Fagin, editdPspceedings of the 37th Annual ACM Sympo-
sium on Theory of Computing, Baltimore, MD, USA, May 22-2832pages 84-93. ACM,
2005.

Ali Aydin Selguk. On probability of success in lineardadifferential cryptanalysis.J.
Cryptology 21(1):131-147, 2008.

29

36.

37.

Jacques Stern. A method for finding codewords of smalyjlteiln Gérard D. Cohen and
Jacques Wolfmann, editoiSpding Theory and Applications, 3rd International Collagu,
Toulon, France, November 2-4, 1988, Proceedingdume 388 ofLecture Notes in Com-
puter Sciencepages 106—-113. Springer, 1988.

Bin Zhang, Lin Jiao, and Mingsheng Wang. Faster algmstfior solving LPN. In Marc
Fischlin and Jean-Sébastien Coron, editédyances in Cryptology - EUROCRYPT 2016
- 35th Annual International Conference on the Theory andlispfions of Cryptographic
Techniques, Vienna, Austria, May 8-12, 2016, Proceedifas, |, volume 9665 ol ecture
Notes in Computer Scienggages 168—195. Springer, 2016.

30

	Optimization of LPN Solving Algorithms

