
Towards Practical Whitebox Cryptography:
Optimizing Efficiency and Space Hardness

Andrey Bogdanov1, Takanori Isobe2 and Elmar Tischhauser1

1 Technical University of Denmark, Denmark. anbog@dtu.dk,ewti@dtu.dk
2 Sony Global Manufacturing & Operations Corporation, Japan.

Takanori.Isobe@jp.sony.com

Abstract. Whitebox cryptography aims to provide security for cryptographic
algorithms in an untrusted environment where the adversary has full access
to their implementation. Typical security goals for whitebox cryptography in-
clude key extraction security and decomposition security : Indeed, it should be
infeasible to recover the secret key from the implementation and it should be
hard to decompose the implementation by finding a more compact represen-
tation without recovering the secret key, which mitigates code lifting.

Whereas all published whitebox implementations for standard cryptographic
algorithms such as DES or AES are prone to practical key extraction attacks,
there have been two dedicated design approaches for whitebox block ciphers:
ASASA by Birykov et al. at ASIACRYPT’14 and SPACE by Bogdanov and
Isobe at CCS’15. While ASASA suffers from decomposition attacks, SPACE
reduces the security against key extraction and decomposition attacks in the
white box to the security of a standard block cipher such as AES in the stan-
dard blackbox setting. However, due to the security-prioritized design strat-
egy, SPACE imposes a sometimes prohibitive performance overhead in the real
world as it needs many AES calls to encrypt a single block.

In this paper, we address the issue by designing a family of dedicated white-
box block ciphers SPNbox and a family of underlying small block ciphers with
software efficiency and constant-time execution in mind. While still relying
on the standard blackbox block cipher security for the resistance against key
extraction and decomposition, SPNbox attains speed-ups of up to 6.5 times
in the black box and up to 18 times in the white box on Intel Skylake and
ARMv8 CPUs, compared to SPACE. The designs allow for constant-time im-
plementations in the blackbox setting and meet the practical requirements
to whitebox cryptography in real-world applications such as DRM or mobile
payments. Moreover, we formalize resistance towards decomposition in form of
weak and strong space hardness at various security levels. We obtain bounds
on space hardness in all those adversarial models.

Thus, for the first time, SPNbox provides a practical whitebox block cipher that
features well-understood key extraction security, rigorous analysis towards de-
composition security, demonstrated real-world efficiency on various platforms
and constant-time implementations. This paves the way to enhancing suscep-
tible real-world applications with whitebox cryptography.

Key words: White-box cryptography, space hardness, code lifting, decompo-
sition, key extraction, mass surveillance, Trojans, malware

1 Introduction

1.1 Black Box vs White Box

Whitebox cryptography was introduced by Chow et al. in 2002 [14] as a technique to
secure software implementations of block ciphers when the adversary has full access to
the execution environment. This setup is called the whitebox setting, which is opposed
to the standard blackbox setting where the attacker can neither observe nor influence
the internals of the block cipher. The functionality of the cipher shall be the same
when implemented in the black-box and white-boxe settings. However, the whitebox
implementation in the untrusted environment (as e.g. in the mobile client software)
and blackbox implementation in the secure environment (as e.g. on the backend server)
can vary significantly to meet distinct security demands arising from two different
threat models:

– In the black box: The adversary is able to access inputs and outputs of the
cipher with known, chosen or adaptively chosen plaintexts/ciphertexts. Given
the blackbox implementation, the attacker aims to recover the secret key (key
recovery) or to distinguish the block cipher from a randomly drawn permutation
(distinguishing).

– In the white box: The attacker has full access to the execution environment
of the cipher. Given the whitebox implementation of the cipher, the adversary’s
goal is then to extract the secret key (key extraction) or to decompose the imple-
mentation to find a more compact representation that can be used as an effective
key to replicate the functionality (decomposition, or code lifting).

1.2 Whitebox Cryptography in the Wild

The seminal papers [14,15] in whitebox cryptography had the goal to provide security
in digital rights management (DRM) applications where encrypted contents (e.g. a
music or movie file) are decrypted on the user’s device. A malicious end user may
attempt to extract the key from its software and then illegally distribute it outside
the DRM system.

15 years have passed since those papers were published, and the context of white-
box cryptography has drastically changed. With the rapidly increasing demand for
software-only security solutions in embedded devices, laptop PCs, mobile and server
systems as well as the ever growing field of cloud-based services, the target for white-
box cryptography is no longer limited to the software implementation in the user-
controlled device only. Such a device is now merely a part of a larger system, as e.g.
in cloud computing or cloud-based payment. In addition, as whitebox cryptography
inherently addresses resistance to malware, Trojans and zero-day vulnerabilities, it
will find more and more applications in banking and other security-critical settings
as well.

For illustrative purposes, we mention three application scenarios for whitebox
cryptography, see also Fig. 1 and Fig. 2.

DRM in the Cloud. DRM-based services have moved to cloud-based contents dis-
tribution systems such as Adobe Primetime Cloud DRM [1] and Akamai’s Secure

2

Cloud Server

Blackbox

implementation

Device

Whitebox

implementation

-Key recovery security

-Cache attack security

-Key extraction security

-Space hardness

Fig. 1. Cloud-based content distribution: Cloud server encrypts contents in the black box
and distributes them to user devices. User devices decrypt the contents in the white box.

NFC Reader NFC Controller

Host CPU

Cloud Server

Blackbox

implementation

Mobile

Whitebox

Implementation

-Key recovery security

-Cache attack security

-Key extraction security

-Space hardness

Host Card Emulation
credential

Payment Processor

Issuer

Fig. 2. Cloud-based mobile payments with HCE: Cloud server sends tokenized payment
credentials provided by the issuer, to the mobile. Mobile phone transfers payment data with
tokenized payment credentials to the payment processor via HCE. Payment processor sends
it to the issuer for authorization.

Cloud-Based Workflows for Premium Content [2]. State-of-the-art contents distribu-
tion services often utilize IaaS (Infrastructure as a Service), for instance, Google cloud
platform, IBM, Amazon AWS and Microsoft Azure, in order to optimize costs and to
scale infrastructure. This application is illustrated in Fig. 1.

On the user device that plays the contents, whitebox implementation shall protect
the contents key against key extraction and decomposition attacks [6, 28, 39] and
recent side-channel attacks [11,35]. A useful security property in this context is space
hardness, which aims to mitigate code lifting, and discourages the adversary from
illegally distributing the code due to its large size [9].

On the cloud server that distributes the contents, a blackbox implementation is
used to deal with a large number of user keys simultaneously, since running whitebox
implementations for all users would require a huge amount of memory. Though usually
much better protected than the player devices, cloud computing infrastructures do
pose additional threats to the application. Namely, they are based on co-residency
and multi-tenancy, i.e. the user runs multiple virtual machines (VMs) in the hardware
resources of the same physical machine. Therefore, VM isolation raises a new security
concern: cache timing attacks which exploit the fact that cache memory access times
are data dependent. This may allow one to extract the secret key, given shared cache
across co-located VMs. With the rapidly increasing deployment of cloud services,

3

cache timing attacks have lately received a lot of attention [18, 22, 23, 34]. Thus,
cloud service providers have to deal with countermeasures. Indeed, having seen the
novel cache timing attacks of [23, 41], VMware made memory deduplication an opt-
in feature, and Amazon disabled deduplication on its EC2 cloud servers. However,
Irazouqui et al. show that attacks exploiting the L3 shared cache are still applicable
even if such system-level countermeasures are deployed [22]. Thus, this threat has to
be addressed at the cipher implementation level as well.

All in all, for DRM applications in the cloud, the blackbox cipher implementa-
tion should be secure against cache timing attacks on the cloud server, whereas the
whitebox implementation should provide key extraction security and space hardness
on the consumer device.

Host Card Emulation in Cloud-based Mobile Payments. NFC (Near Field
Communication) is extensively used in applications such as payment systems. A stan-
dard NFC payment implementation employs a mobile phone with credentials stored
inside a hardware-based secure element. HCE (Host Card Emulation) is a technol-
ogy that enables NFC transactions in a pure software environment without secure
elements — here anyone can create a mobile application without depending on the
secure element. This allows one to launch new payment services in a more flexible
way with a much less complex ecosystem. Thus, HCE is expected to become a game
changer for mobile payments. Google provides the HCE architecture from Android 4.4
Kitkat on, by which anyone can emulate an NFC smart card for a payment service.
Moreover, Visa and MasterCard also support the cloud-based HCE payments. In the
HCE, instead of expensive secure hardware, credentials are stored in alternative me-
dia such as cloud. Fig. 2 provides an overview of cloud-based payment systems with
HCE.

In cloud-based payments, resilient whitebox cryptography on the mobile phone is
central to the overall security. More precisely [29,37], a whitebox implementation shall
replace the secure element in two ways. First, it should protect sensitive data such
as tokens, payment information and card data from malware and spyware possibly
running on the same CPU. Second, it should ensure that legitimate devices and users
are accessing their payment credentials in the cloud by means of secure authentication
between the cloud and the device.

From the implementation viewpoint, a mobile phone may not have rich resources,
and available memory can be restrictive. Thus, the deployed whitebox cipher shall
support variable sizes of its whitebox tables to meet a variety of implementation
demands. In the cloud, which manages credentials, the corresponding blackbox im-
plementation should prevent cross-VM cache timing attacks [18, 22, 23, 34] similar to
the previous application.

Memory-Leakage Resilient Software. Leakage of memory by vulnerabilities such
as buffer overflows, cold boot attacks [20], bus monitoring attacks, Trojans and mal-
ware, or heartbleed-type vulnerabilities is a major problem in today’s software. The
notion of space hardness has been used to restrict the effect of memory leakage in
applications where the leakage channel from the implementation environment to the
adversary’s backend is of limited capacity [9]. In particular, the use of space-hard
whitebox cryptography can mitigate the damage of a memory-leakage vulnerability
in security-critical systems. Indeed, those are typically insulated from the Internet,

4

making it infeasible for Trojans to use low-capacity covert and side channels for the
transmission of necessary key material if space-hard ciphers are employed.

Thus, for a memory-leakage resilient software implementation, the space hard-
ness is necessary. It can be considered as a class of leakage resilient cryptography in
bounded retrieval model where malware has complete control over the computer but
can only send out a bounded amount of information.

1.3 Existing Whitebox Constructions

In order to meet some of the demands arising from applications, several whitebox
constructions have been proposed.

Whitebox Implementations of DES and AES. Whitebox implementations of
DES and AES were first proposed by Chow et al. in [14, 15]. Their approach is to
find a representation of the algorithm as a network of look-ups in randomized and
key-dependent tables. In the wake of these seminal papers, several further variants of
whitebox implementations for DES and AES were proposed [12,24,27,40]. However, all
published whitebox solutions for DES and AES to date have been practically broken
by key extraction and table-decomposition attacks [6, 26,30,31,39].

ASASA. Dedicated whitebox block ciphers were proposed by Biryukov et al. in [7] at
ASIACRYPT’14. They are based on the ASASA structure that consists of two secret
nonlinear layers (S) and three secret affine layers (A), with affine and nonlinear layers
interleaved. The security of ASASA against the key extraction in the whitebox set-
ting relies on the hardness of the decomposition problem for ASASA. Unfortunately,
efficient decomposition attacks on ASASA have been proposed [28]. The security of
constructions based on multiple secret nonlinear and linear layers is still to be explored
and seems hard to evaluate, despite several cryptanalytic efforts [8,10,38]. Moreover,
generic ASASA-type constructions are difficult to implement in the constant-time
fashion in the black box, which makes them potentially susceptible to side channel
leakage.

SPACE. At CCS ’15, Bogdanov and Isobe proposed a family of whitebox-secure
block ciphers SPACE [9]. The design of SPACE is such that the security against key
extraction and decomposition attacks in the whitebox setting reduces to the well-
studied problem of key recovery for block ciphers in the standard blackbox setting.
Their approach is to construct the whitebox table from a well-understood standard
block cipher (AES in their example) by constraining the plaintext and truncating
the ciphertext. Furthermore, to mitigate code lifting, they proposed the new security
notion of space hardness which is a generalization of the weak whitebox security
notion of [7]. Space hardness quantifies security against code lifting by the amount of
code that needs to be extracted from an implementation by a whitebox adversary to
maintain its functionality with a certain probability.

However, in order to strongly guarantee security against key extraction and space
hardness in the whitebox setting, SPACE employs a very conservative design strategy.
Namely, a target-heavy Feistel construction is deployed that does not allow for paral-
lel or even pipelined implementations. Moreover, the internal F-function of SPACE
requires one full 10-round AES-128 call. As estimated in [9], at least 128 full-round
AES-128 calls are necessary to perform a single block encryption. That appears rather

5

unacceptable in real-world applications. However, it’s possible to derive a constant-
time implementation of SPACE in the black box.

Thus, all existing designs have important practical limitations. This paper aims
to bridge this gap by a novel design that addresses the key extraction security, the
decomposition security (space hardness), constant-time blackbox implementation re-
quirement as well as efficiency issues simultaneously.

1.4 Our Contributions

The contributions of this paper are as follows.

Design of SPNbox: New Efficient Whitebox Block Cipher. We propose SPN-
box, a new family of space-hard block ciphers, which significantly improves upon the
SPACE ciphers proposed at CCS 2015 [9]. While SPACE is based on a target-heavy
Feistel construction, SPNbox is an SPN-type design with small block ciphers as the
key-dependent S-boxes. In order to efficiently utilize the parallelism offered by both
standard SIMD and the AES-NI instructions on contemporary microprocessors, the
small block ciphers are based on the AES round transformation. The resulting par-
allelization opportunities allow for significantly faster implementations both in the
black box and in the white box. At the same time, similarly to SPACE, SPNbox still
offers all important whitebox security properties of quantifiable space hardness as well
as reduction of key extraction security to the blackbox key-recovery security of the
underlying block cipher. See Section 2.

Security Analysis of SPNbox in the Black Box. Our constructions come with
security analysis as block ciphers. As the overall design as well as the design of under-
lying small block cipher follows the principles of substitution-permutation networks,
we use the well-established tools of symmetric-key cryptanalysis. See Section 3. In
addition, we stress that our ciphers are secure against new types of attacks such as
differential computational and differential fault attacks [11, 35] in the white box as
well as cross-VM cache timing attacks for cloud in the black box [18,22,23,34].

Refined Compression Attack Settings. Resistance to decomposition attacks is
formalized by the notions of weak whitebox security and incompressibility [7], (M,Z)-
space hardness and strong (M,Z)-space hardness [9] as well as by a related notion of
(λ, δ) compressibility [16]. As opposed to previous studies of space hardness [9] that
did not go beyond a weak whitebox adversary, this paper considers various levels of
space hardness for table-based whitebox implementations, which are classified with
respect to the adversary’s abilities such as types of table accesses, knowledge about
the execution environment or reverse engineering capabilities. This covers a very wide
class of real-world adversaries that are thinkable in applications. In particular, we
introduce known-space, chosen-space and adaptively-chosen-space attacks on space
hardness. See Section 4.

Provable Bounds on Space Hardness. Moreover, we obtain bounds on space
hardness in all those adversarial models under the assumption that the underlying
tables are secure against decomposition, which is in turn guaranteed by the security of
the underlying small block ciphers in the standard blackbox setting. This enables us
to obtain rigorous upper bounds on the success probability, given a space of size M ,
in each adversarial model. These are the first security bounds on space hardness for
table-based whitebox implementations, while previous results only roughly evaluate

6

the security by an attack-based approach [9]. Furthermore, we apply our bounds to
SPNbox and SPACE ciphers. As a result, we update the evaluations of space hardnesses
of SPACE ciphers, and show that SPNbox offers a conservative level of space hardness
in each adversary model.

Efficient Optimized Software Implementations of SPNbox and SPACE. We
implement both SPNbox and SPACE families of whitebox block ciphers on Intel Sky-
lake and ARMv8. Our implementations use SIMD/AVX, AES-NI and NEON exten-
sions whenever possible to optimize performance. As a result, we report that instances
of SPNbox achieve speed-ups of up to 6.5 times in the black box and up to 18 times
compared to SPACE in the whitebox setting. See Section 5.

2 SPNbox: Efficient Space-Hard Block Ciphers

2.1 Design Choices

From Feistel to nested SPN. The SPACE family of space-hard block ciphers employs
a very conservative design strategy which involves using the full 10-round AES-128
transformation, even for 8-bit inputs. Furthermore, its Feistel structure prevents the
exploitation of any parallel execution or pipelining possibilities. At the same time, it
seems likely that the security margin offered by the proposed SPACE instances can
be reduced without ill effects.

The requirement of parallelism immediately points to an SPN-type design. For the
desired level of space hardness, key-dependent S-boxes of varying size can be employed.
This can then be combined with a public linear MDS diffusion layer operating on the
entire state, allowing rigorous security arguments for standard blackbox security.

Within this design framework, it remains to construct key-dependent S-boxes of
different sizes (for instance 8, 16, 24 and 32 bits as in SPACE). This is accomplished
by using smaller internal block ciphers, which are themselves SPNs, yielding a nested
SPN structure [3]. For the reasons of efficiency, security and side-channel protection, it
is desirable to base these internal SPNs on the AES round transformation, especially
given the availability of the AES-NI instructions [19]. The efficiency requirements
also dictate that little or no truncation should take place, and ideally, the AES round
transformation should be used to compute some of the larger S-boxes in parallel.

In order to also have an efficient implementation for the inverse cipher, the design
should employ involutory MDS matrices wherever possible. Since we mainly target
high-performance software implementations, our selection criteria for efficient MDS
matrices differs somewhat from the widely studied area of lightweight hardware im-
plementations as in [36]: In software, arbitrary bit permutations are costly, which
means that a matrix with smaller coefficients but higher theoretical XOR count can
result in a more efficient SIMD implementation.

Efficient Constant-Time Small Block Ciphers. We note that these small SPN-type
block ciphers used to construct the key-dependent S-boxes are of potential indepen-
dent interest: Block ciphers of sizes smaller than 32 bit are virtually unstudied, and
an AES-NI based implementation further allows an efficient constant-time implemen-
tation, which avoids the pitfalls of key-dependent table lookups (which is the usual

7

way of implementing small nonlinear functions due to efficiency reasons though bit-
sliced implementations may be possible as well). In addition, in order to prevent the
differential computational attacks [11], this small SPN-type block cipher depends on
128 bits of key information.

2.2 Specification

We now define the SPNbox family of block ciphers and their concrete instantiations
SPNbox-8, SPNbox-16, SPNbox-24, and SPNbox-32. SPNbox-nin is a substitution-
permutation network (SPN) with a block length of n bits, a k-bit secret key, and
based on nin-bit substitution boxes. For SPNbox-8, SPNbox-16 and SPNbox-32, the
block length is n = 128 bits, whereas SPNbox-24 has n = 120. While SPNbox can
support a wide range of key sizes, we use k = 128 for concreteness in the following.

Representation of Finite Fields. We will in the sequel sometimes view the set {0, 1}m
of bit strings as the finite field GF(2m). For this, we identify GF(2m) with the quo-
tient ring GF(2)[x]/(p) for a suitable irreducible polynomial p ∈ GF(2)[x]. An m-bit
string am−1am−2 · · · a1a0 ∈ {0, 1}m then corresponds to the polynomial am−1x

m−1 +
am−2x

m−2 + · · · + a1x + a0 ∈ GF(2m). We write such an element in a hexadecimal
representation of its bit string, e.g. 4x for 100.

For GF(28), we use the same irreducible polynomial as the AES, namely p(x) =
x8 + x4 + x3 + x + 1. Similarly, we use p(x) = x16 + x5 + x3 + x + 1 for GF(216),
p(x) = x24 +x4 +x3 +x+1 for GF(224) and p(x) = x32 +x7 +x3 +x2 +1 for GF(232),
respectively.

State. The state of SPNbox-nin is organised as a vector of t
def
= n/nin elements of

nin bits each:
X = {X0, . . . , Xt−1}.

Each of the nin-bit elements Xi can in turn be represented by a vector of `
def
= nin/8

bytes: Xi = {Xi,`−1, . . . , Xi,0}.

Key Schedule. The k-bit master key is expanded to (Rnin
+1) round keys k0, . . . , kRnin

of nin bits using any generic key derivation function (KDF) [32]:

(k0, . . . , kRnin
) = KDF(k, nin · (Rnin

+ 1)).

For example, one can use the SHAKE extendable output function which is based on
the SHA-3 hash [33].

Round Transformation. The encryption of a plaintext X0 to a ciphertext XR

is accomplished by applying R rounds of the following round transformation to the
plaintext:

XR =
(
©R

r=1 (σr ◦ θ ◦ γ)
)

(X0).

For all concrete proposals SPNbox-8, SPNbox-16, SPNbox-24 and SPNbox-32, we set
the number of rounds to R = 10. We now define in turn each of the components γ, θ
and σr. An overview of the round transformation is given in Fig. 3

8

prevents the exploitation of any available parallel exe-
cution or pipelining possibilities. At the same time, it
seems likely that the security margin offered by the pro-
posed SPACE instances can be reduced without ill ef-
fects.

The requirement of parallelism immediately points to
an SPN-type design. For the desired level of space hard-
ness, key-dependent S-boxes of varying size can be em-
ployed. This can then be combined with a linear MDS
diffusion layer operating on the entire state, allowing rig-
orous security arguments for black-box security.

Within this design framework, it remains to construct
key-dependent S-boxes of different sizes (for instance 8,
16, 24 and 32 bits as in SPACE). This is accomplished
by using smaller internal block ciphers, which are them-
selves SPNs, yielding a nested SPN structure. For effi-
ciency reasons, it is desirable to base these internal SPNs
on the AES round transformation, especially given the
availability of the AES-NI instructions [20]. The effi-
ciency requirements also dictate that little or no trunca-
tion should take place, and ideally, the AES round trans-
formation should be used to compute some of the larger
S-boxes in parallel.

In order to also have an efficient implementation for
the inverse cipher, the design should employ involutory
MDS matrices wherever possible. Since we mainly tar-
get high-performance software implementations, our se-
lection criteria for efficient MDS matrices differs some-
what from the widely studied area of lightweight hard-
ware implementations as in [37]: In software, arbitrary
bit permutations are costly, which means that a ma-
trix with smaller coefficients but higher theoretical XOR
count can result in a more efficient SIMD implementa-
tion.

4.2 Efficient constant-time small block ci-
phers.

We note that these small SPN-type block ciphers used
to construct the key-dependent S-boxes are of poten-
tial independent interest: Block ciphers of sizes smaller
than 32 bit are virtually unstudied, and an AES-NI based
implementation further allows an efficient constant-
time implementation, which avoids the pitfalls of key-
dependent table lookups (which is the usual way of im-
plementing small nonlinear functions due to efficiency
reasons). In addition, in order to prevent the differential
computational attacks [11], these small SPN-type block
cipher depends on 128 bits of key information.

4.3 Specification
We now define the SPNbox family of block ciphers
and their concrete instantiations SPNbox-8,SPNbox-

Snin Snin · · · Snin

X r
0 X r

1 · · · X r
t−1

X r+1
0 X r+1

1 · · · X r+1
t−1

θ

σ r

Figure 3: Round transformation of SPNbox.

SB SB · · · SB

xi
0 xi

1 · · · xi
`−1

xi+1
0 xi+1

1 · · · xi+1
`−1

MCnin

AKi

Figure 4: Round transformation of the underlying block
ciphers Snin .

16,SPNbox-24, and SPNbox-32. SPNbox-nin is a
substitution-permutation network (SPN) with a block
length of n bits, a k-bit secret key, and based on nin-
bit substitution boxes. For SPNbox-8, SPNbox-16 and
SPNbox-32, the block length is n = 128 bits, whereas
SPNbox-24 has n = 120. While SPNbox can support a
wide range of key sizes, we use k = 128 for concreteness
in the following.

4.3.1 Representation of finite fields.

We will in the sequel sometimes view the set {0,1}m of
bit strings as the finite field GF(2m). For this, we iden-
tify GF(2m) with the quotient ring GF(2)[x]/(p) for a
suitable irreducible polynomial p ∈ GF(2)[x]. An m-bit
string am−1am−2 · · ·a1a0 ∈ {0,1}m then corresponds to
the polynomial am−1x

m−1+am−2x
m−2+ · · ·+a1x+a0 ∈

GF(2m). We write such an element in a hexadecimal rep-
resentation of its bit string, e.g. 4x for 100.

For GF(28), we use the same irreducible polynomial
as the AES, namely p(x) = x8 +x4 +x3 +x+ 1. Simi-
larly, we use p(x) = x16 + x5 + x3 + x+ 1 for GF(216),
p(x) = x24 + x4 + x3 + x+ 1 for GF(224) and p(x) =
x32 +x7 +x3 +x2 +1 for GF(232), respectively.

6

Fig. 3. Round transformation of SPNbox.

The Nonlinear Layer γ. γ is a nonlinear substitution layer, in which t key-dependent
identical bijective nin-bit S-boxes are applied to the state:

γ : GF(2nin)t → GF(2nin)t

(X0, . . . , Xt−1) 7→ (Snin
(X0), . . . , Snin

(Xt−1)) .

In SPNbox-nin, the substitution Snin
is realised by an internal small block cipher of

block length nin, which will be defined in the next subsection.

The Linear Layer θ. θ is a linear diffusion layer that applies a t × t MDS matrix to
the state:

θ : GF(2nin)t → GF(2nin)t

(X0, . . . , Xt−1) 7→ (X0, . . . , Xt−1) ·Mnin
.

We denote by cir (a0, . . . , at−1) the t × t circulant matrix A with the coefficients
a0, . . . , at−1 in the first row; and by had (a0, . . . , at−1) the t× t Hadamard matrix A
with coefficients Ai,j = ai⊕j , with t a power of two.

For the concrete proposals SPNbox-ninwith nin = 32, 24, 16, 8, the matrix Mnin
is

then respectively defined as follows:

M32 = cir (1x, 2x, 4x, 6x) for nin = 32,

M24 = cir (1x, 2x, 5x, 3x, 4x) for nin = 24,

M16 = had (1x, 3x, 4x, 5x, 6x, 8x, bx, 7x) for nin = 16,

and
M8 = had (08x, 16x, 8ax, 01x, 70x, 8dx, 24x, 76x,

a8x, 91x, adx, 48x, 05x, b5x, afx, f8x)

for nin = 8.

Note that M32,M16 and M8 are involutions. M32 and M16 are the matrices used in the
block ciphers Anubis [4] and Khazad [5], respectively. M8 is an optimised involutory
Hadamard-Cauchy matrix proposed at FSE 2015 [36].

9

The Affine Layer σr. σr is an affine layer that adds round-dependent constants to
the state:

σr : GF(2nin)t → GF(2nin)t

(X0, . . . , Xt−1) 7→
(
X0 ⊕ Cr

0 , . . . , Xt−1 ⊕ Cr
t−1

)
,

with Cr
i

def
= (r − 1) · t+ i+ 1 for 0 ≤ i ≤ t− 1.

The Underlying Small Block Ciphers. The key-dependent nin-bit bijective S-
boxes Snin in the nonlinear layer γ are small SPN-type block ciphers themselves.
They are based on the round transformation of the AES and consist of Rnin rounds

operating on a state x = {x0, . . . , x`−1} of `
def
= nin/8 bytes:

Snin : GF(28)` → GF(28)`

x 7→
(
©Rnin

i=1

(
AKi ◦MCnin ◦ SB

))
(AK0(x)).

Here, SB denotes the application of the AES S-box to each byte of the state. For
0 ≤ i ≤ Rnin

, AKi is defined as the addition of the round key ki (as expanded by the
key schedule) by XOR. MCnin implements an MDS diffusion layer on all ` bytes of
the state. It is based on the AES MixColumns operation. For the concrete proposals
of nin = 32, 24, 16, it is defined as the multiplication of x with the matrices

A32 = cir (2x, 1x, 1x, 3x) for nin = 32,

A24 =

2x 1x 1x
3x 2x 1x
1x 3x 2x

 for nin = 24,

A16 =

(
2x 1x
3x 2x

)
for nin = 16,

respectively. For nin = 8, MCnin
is the identity mapping. Note that A32 is the AES

MixColumns matrix (adjusted for Intel’s byte order), while A24 and A16 are obtained
from A32 as (x, y, z, 0)×A32 and (x, y, 0, 0)×A32, respectively. As square submatrices
of A32, all derived matrices are also `× ` MDS matrices over GF(28). An overview of
the round transformation is given in Fig. 4.

The number of rounds for each concrete proposal is defined as R32 = 16, R24 = 20,
R16 = 32 and R8 = 64.

2.3 SPNbox vs ASASA

Both SPNbox and the ASASA construction are based on the classical substitution-
permutation network structure, consisting however of secret key-dependent S-box and
public linear layers. The main constructive difference is how to construct the secret
key-dependent S-box. However, this is the discrepancy having far-reaching practical
consequences both in terms of security arguments and implementation.

In the ASASA construction, as its name suggests, tables are based on the ASASA
structure that consists of two secret nonlinear layers (S) and three secret affine layers

10

prevents the exploitation of any available parallel exe-
cution or pipelining possibilities. At the same time, it
seems likely that the security margin offered by the pro-
posed SPACE instances can be reduced without ill ef-
fects.

The requirement of parallelism immediately points to
an SPN-type design. For the desired level of space hard-
ness, key-dependent S-boxes of varying size can be em-
ployed. This can then be combined with a linear MDS
diffusion layer operating on the entire state, allowing rig-
orous security arguments for black-box security.

Within this design framework, it remains to construct
key-dependent S-boxes of different sizes (for instance 8,
16, 24 and 32 bits as in SPACE). This is accomplished
by using smaller internal block ciphers, which are them-
selves SPNs, yielding a nested SPN structure. For effi-
ciency reasons, it is desirable to base these internal SPNs
on the AES round transformation, especially given the
availability of the AES-NI instructions [20]. The effi-
ciency requirements also dictate that little or no trunca-
tion should take place, and ideally, the AES round trans-
formation should be used to compute some of the larger
S-boxes in parallel.

In order to also have an efficient implementation for
the inverse cipher, the design should employ involutory
MDS matrices wherever possible. Since we mainly tar-
get high-performance software implementations, our se-
lection criteria for efficient MDS matrices differs some-
what from the widely studied area of lightweight hard-
ware implementations as in [37]: In software, arbitrary
bit permutations are costly, which means that a ma-
trix with smaller coefficients but higher theoretical XOR
count can result in a more efficient SIMD implementa-
tion.

4.2 Efficient constant-time small block ci-
phers.

We note that these small SPN-type block ciphers used
to construct the key-dependent S-boxes are of poten-
tial independent interest: Block ciphers of sizes smaller
than 32 bit are virtually unstudied, and an AES-NI based
implementation further allows an efficient constant-
time implementation, which avoids the pitfalls of key-
dependent table lookups (which is the usual way of im-
plementing small nonlinear functions due to efficiency
reasons). In addition, in order to prevent the differential
computational attacks [11], these small SPN-type block
cipher depends on 128 bits of key information.

4.3 Specification
We now define the SPNbox family of block ciphers
and their concrete instantiations SPNbox-8,SPNbox-

Snin Snin · · · Snin

X r
0 X r

1 · · · X r
t−1

X r+1
0 X r+1

1 · · · X r+1
t−1

θ

σ r

Figure 3: Round transformation of SPNbox.

SB SB · · · SB

xi
0 xi

1 · · · xi
`−1

xi+1
0 xi+1

1 · · · xi+1
`−1

MCnin

AKi

Figure 4: Round transformation of the underlying block
ciphers Snin .

16,SPNbox-24, and SPNbox-32. SPNbox-nin is a
substitution-permutation network (SPN) with a block
length of n bits, a k-bit secret key, and based on nin-
bit substitution boxes. For SPNbox-8, SPNbox-16 and
SPNbox-32, the block length is n = 128 bits, whereas
SPNbox-24 has n = 120. While SPNbox can support a
wide range of key sizes, we use k = 128 for concreteness
in the following.

4.3.1 Representation of finite fields.

We will in the sequel sometimes view the set {0,1}m of
bit strings as the finite field GF(2m). For this, we iden-
tify GF(2m) with the quotient ring GF(2)[x]/(p) for a
suitable irreducible polynomial p ∈ GF(2)[x]. An m-bit
string am−1am−2 · · ·a1a0 ∈ {0,1}m then corresponds to
the polynomial am−1x

m−1+am−2x
m−2+ · · ·+a1x+a0 ∈

GF(2m). We write such an element in a hexadecimal rep-
resentation of its bit string, e.g. 4x for 100.

For GF(28), we use the same irreducible polynomial
as the AES, namely p(x) = x8 +x4 +x3 +x+ 1. Simi-
larly, we use p(x) = x16 + x5 + x3 + x+ 1 for GF(216),
p(x) = x24 + x4 + x3 + x+ 1 for GF(224) and p(x) =
x32 +x7 +x3 +x2 +1 for GF(232), respectively.

6

Fig. 4. Round transformation of the underlying block ciphers Snin .

(A), with affine and nonlinear layers interleaved. On the other hand, SPNbox is based
on the SPN-type small block cipher that consists of the public nonlinear and linear
layer, and secret key XOR layers.

Regarding the security of the whitebox implementation, the difficulty of the key
extraction and the decomposition problem for ASASA relies on the hardness of the
decomposition problem for ASASA, which is still to be explored and seems hard to
evaluate, despite several cryptanalytic efforts [8,10,38]. Actually, efficient decomposi-
tion attacks on ASASA have been proposed [28]. On the other hand, SPNbox relies on
well analyzed problem of the key recovery attack of the block cipher in the standard
blackbox setting.

In the blackbox implementation, assuming the random choice of secret S-boxes,
the substitution layer of ASASA is realized by the table based implementation due to
the secrecy of underlying component, and is impossible to optimize the performance
by AES-NI. The table-based blackbox implementation of the ASASA is not secure
against cache timing attacks similar to the table-based blackbox AES implementation
[18,22,23,34].

3 Security in the Black Box: Analysis as a Block Cipher

We evaluate the general construction of SPNbox-8, -16, -24 and -32, modeling the
underlying small block cipher as pseudorandom permutation. We furthermore analyze
the security of the underlying small block ciphers Snin

against cryptanalytic attacks.
Finally, we evaluate the security against cross-VM cache timing attacks for cloud
application.

3.1 General Construction

First, we evaluate the security of the general construction of SPNbox-8, -16, -24 and -
32, assuming an underlying small block cipher, i.e. the key-dependent nin-bit bijective
S-boxes Snin

, is a pseudo random permutation. The generic construction of all variants
is a 10-round SPN-type construction.

11

Differential Cryptanalysis. Here we analyze the differential properties of an nin-
bit permutation Snin

: {0, 1}nin → {0, 1}nin . Given input difference a and output
difference b, the differential probability of function f is defined as

DP (a, b) = #{(v, u)|u⊕ v = a and f(v)⊕ f(u) = b}

for u, v ∈ {0, 1}nin . The bound of the maximum differential probability MDP is
proved as follows [21].

Pr
(n ln 2

2n−1 lnn
≤MDP <

n

2n−1

)
≈ 1

Suppose that the maximum differential probability of Snin
of SPNbox-8, -16, -24

and -32 to be 2−4 (= 8/27), 2−11 (= 16/215), 2−18.42 (= 24/223) and 2−26 (= 32/231),
respectively. Due to properties of MDS diffusion matrices. SPNbox-8, -16, -24 and -32
have at least 34, 18, 12 and 5 active Snin after 4, 4, 4 and 2 rounds.

Linear Cryptanalysis. Now we analyze the linear properties of an nin-bit permu-
tation Snin

: {0, 1}nin → {0, 1}nin .

Given an input mask α and an output mask β, α, β ∈ {0, 1}nin , the correlation of
a linear approximation (α, β) for a function f : {0, 1}nin → {0, 1}nin is defined as

Cor = 2−nin [#{x ∈ {0, 1}nin |α · x⊕ β · f(x) = 0} −
#{x ∈ {0, 1}nin |α · x⊕ β · f(x) = 1}.

The linear probability LP of (α, β) is defined as Cor2. For a fixed-key block cipher,
the maximum linear probability MLP is normally distributed in mean ≈ (1.38 · 2n−
ln(1.38 · 2n) + 1) · 2−n and standard deviation ≈ 2.6× 2−n [21].

Suppose that the maximum linear probability of Snin of SPNbox-8, -16, -24 and
-32 to be 2−3.67 (= 19.99 · 2−8), 2−10.62 (= 41.37 · 2−16), 2−18.02 (= 63 · 2−24) and
2−25.61 (= 84 · 2−32), respectively. SPNbox-8, -16, -24 and -32 have at least 51, 18, 12

and 5 active F
(j)
i (x) after 6, 4, 4 and 2 rounds.

Other Cryptanalysis. Any input difference nonlinearly affects all states after one
round due to the MDS matrix. Following the miss-in-the-middle approach, after 3
rounds, we have not found any useful impossible differentials for the respective vari-
ants. Also, a 2.5-round generic integral distinguisher against the SPN-type construc-
tion is proposed [8]. We also consider other-types of attacks including a higher order
differential, a truncated differential, a slide, and an algebraic attack. Consequently,
we expect that none of them work better than brute force attacks.

3.2 The Underlying Small Block Ciphers

We evaluate the security of underlying small block ciphers Snin . These are based on
well-analyzed AES components such as the inversion base 8-bit S-box and the MDS
circulant matrix on GF(28).

12

Differential/Linear Cryptanalysis. The differential/linear probability of 8-bit S-
box is 2−6. S8, S16, S24, and S32 have at least 2, 3, 4 and 10 differentially/linearly
active S-boxes after 2, 2, 2 and 4 rounds, respectively. We therefore expect all Snin ,
for nin = 8, 16, 24, 32, to not have any differential or linear trails with probabilities
exceeding the bound 2−nin after 2, 2, 2 and 4 rounds, respectively. Since they are
proposed with much higher numbers of rounds, they offer ample security margin.

Meet-in-the-Middle and Other Cryptanalysis. In each cipher, four times 128-
bit key information is involved, and one round already achieves full diffusion. Thus, we
believe that the small block ciphers are secure against MitM attacks. We developed
MitM attacks on each variant using splice and cut, biclique and partial matching
techniques. However, we did not find full round attacks.

Considering further attacks, the byte-oriented structure combined with full dif-
fusion after 1 round means that for impossible (truncated) differential attacks, and
integral and higher order differential attacks, we can at most construct cryptanalytic
properties spanning 3 and 4 rounds, respectively. All small block ciphers are proposed
with much significantly higher numbers of rounds. Finally, the use of distinct round
constants in the key schedule precludes slide attacks.

3.3 Cache Timing Attack

There are several techniques exploiting cache information over VM isolations in the
cloud: the Prime+Probe attack [22] and Flush+Reload attacks [18,23,41]. All attacks
make use of timing differences between cache hits and misses. Our key-dependent
small block ciphers are designed to be executed in constant time by using AES-NI, and
there are no cache accesses during key-dependent operations. Thus, it is impossible
to mount cache timing attacks against the blackbox implementation of SPNbox.

4 Security in the White Box: Analysis of Space Hardness

In this section, we first evaluate the security against key-extraction and decomposition
attacks in the whitebox model. Second, we evaluate the difficulty of code lifting attacks
by notions of weak and strong space hardness [9]. We generalize the adversarial models
of space hardness to capture a wide class of adversaries: from adversaries with limited
control (greybox) to stronger ones with more knowledge of the computational platform
and reverse engineering abilities (whitebox). Then, we show bounds for weak and
strong space hardness for table-based whitebox cryptography under the assumption
that tables are secure against key extraction and table decomposition attacks, i.e. it
is computationally infeasible to compress the tables in the whitebox models3. By
contrast, the authors of [9] evaluate the space hardness of their proposals only by
attack-based approaches, called compression attack. Finally, we evaluate the security
against recent advanced side-channel attacks [11,35].

3 Whitebox AES implementations [12, 14, 24, 40] and the ASASA construction [7] do not
satisfy the assumption due to practical decomposition attacks [6, 26,28,30,31].

13

4.1 Key Extraction and Table Decomposition Attacks

As the tables are constructed from small block ciphers, the security of key-extraction
and decomposition attacks in the whitebox model reduces to the key recovery problem
for these small block ciphers in the blackbox model (which is evaluated in Sec. 3).
The advantage of key extraction in the whitebox model for SPNbox, AdvKE-WB, is
upper-bounded by the advantage of the key recovery for the underlying block cipher
in the blackbox model, AdvKR-BB: AdvKE-WB ≤ AdvKR-BB.

4.2 Existing Notions of Space Hardness

The difficulty of a decomposition attack is measured by space hardness that is sum-
marized here. The whitebox implementation of a cipher should resists decomposition:
Instead of a secret key, the adversary can directly use the implementation itself as a
larger effective key. In particular, he can isolate the program code where the key is
embedded in order to copy the functionality of encryption/decryption routines and to
utilize it in a stand-alone manner. We refer to decomposition attacks as code lifting at-
tack. If a code lifting attack succeeds, the adversary gets the advantage which is almost
the same as key extraction, i.e. he can encrypt/decrypt any plaintext/ciphertext.

To formalize the difficulty of code lifting, the notions of weak white-box security
and incompressibility have been introduced in [7]. To capture the resistance towards
compression attacks in a more fine-grained fashion, two further security notions were
introduced in [9]: (M,Z)-space hardness and strong (M,Z)-space hardness. Space
hardness measures the difficulty of compressing the whitebox implementation of a
cipher, and quantifies security against code lifting by the amount of code that needs
to be extracted from the implementation by a whitebox adversary to maintain its
functionality. Moreover, Delerablee et al. propose a related notion of (λ, δ) compress-
ibility [16]. However, the latter aims to evaluate the difficulty of code compression,
given the full code. Space hardness [9] assesses the difficulty of isolating code from
execution environments, namely, code lifting, by the amount of the data. Thus, it
covers a wide class of adversaries: from the one with limited control all the way to the
stronger ones with full code and complete access to the environments. For the sake of
clarity, the paper at hand refers to (M,Z)-space hardness of [9] as weak (M,Z)-space
hardness:

Definition 1 (Weak (M,Z)-space hardness [9]) An implementation of a block
cipher EK is weakly (M,Z)-space hard if it is infeasible to encrypt (decrypt) any
randomly drawn plaintext (ciphertext) with probability of more than 2−Z given any
code (table) of size less than M bits.

Weak (M,Z)-space hardness estimates the code (table) size M that needs to be
isolated from the whitebox environment to be able to encrypt (decrypt) any plaintext
(ciphertext) with a success probability larger than 2−Z .

Definition 2 (Strong (M,Z)-space hardness [9]) An implementation of a block
cipher EK is strongly (M,Z)-space hard if it is infeasible to obtain a valid plaintext
and ciphertext pair with probability higher than 2−Z given the code (table) of size less
than M bits.

14

Round Function

F0
(1) …

R round

Ciphertext

Plaintext

Ft-1
(1)

F0
(2) … Ft-1

(2)

F0
(R) … Ft-1

(R)

Fi
(j)

n

nin

nin

Execution Environments (e.g. user PC and mobile)

Adversary

query

(known,

chosen,

adaptably-chosen space)

corresponding

space
-Trojan

-Malware

-S/W vulnerability

-Limited control of adversary

-Full control of adversary

Fig. 5. Target block cipher construction for the white box and its adversarial models

Strong (M,Z)-space hardness assumes an adversary who tries to find any valid in-
put/output pair. It is relevant to message authentication codes in the context of
forgeries.

4.3 Target Construction

To simplify our evaluation of space hardness in the sequel, we define a target construc-
tion: an n-bit block cipher that is encrypted/decrypted by key dependent table-based
implementations in the whitebox environment as shown in Fig. 5. Let the input and
output sizes of each table be nin and nout, respectively, and the number of rounds be
R, where the each round consists of t tables. We denote j-th table in round r as a

function F
(r)
j : {0, 1}nin → {0, 1}nout for j ∈ {0, 1, . . . , t− 1} and r ∈ {1, 2, . . . , R}. In

the cases of SPNbox and SPACE [9], all tables are identical, and the total table sizes
T is estimated as T = (2nin × nout).

4.4 Adversary Models of Space Hardness

We consider three adversary models that are classified with respect to the adversary’s
ability, while previous works [9] do not specify the adversary model. In particular, we
simulate the action of the adversary against the execution environments by access to

the table (space) functions F
(r)
j (see Fig. 5).

Definition 3 (Known-Space (KS) Attack) The adversary obtains q pairs of in-

puts and the corresponding outputs of tables (xi, F
(r)
j (xi)), i ∈ {0, 1, . . . , q − 1},

j ∈ {0, 1, . . . , t− 1} and r ∈ {1, 2, . . . , R}.

Definition 4 (Chosen-Space (CS) Attack) The adversary obtains q pairs of in-

puts and the corresponding outputs of tables (xi, F
(r)
j (xi)) for a series of a priori

chosen inputs xi, i ∈ {0, 1, . . . , q − 1}, j ∈ {0, 1, . . . , t− 1} and r ∈ {1, 2, . . . , R}.

15

0

50

100

150

200

250

300

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SPACE-8

SPNbox-8

SPACE-16,24,32

SPNbox-16

SPNbox-24

SPNbox-32

M

TM = TM = T/2

-log2Z

Fig. 6. Weak (M,Z)-space hardness of SPACE-8, 16, 24 and 32 and SPNbox-8, 16, 24 and
32 in known- and chosen-space attack

Definition 5 (Adaptively-Chosen-Space (ACS) Attack) The adversary obtains

q pairs of inputs and the corresponding outputs of tables (xi, F
(r)
j (xi)) for a se-

ries of adaptively chosen inputs xi, i ∈ {0, 1, . . . , q − 1}, j ∈ {0, 1, . . . , t − 1} and

r ∈ {1, 2, . . . , R}, namely he can choose xa after obtaining (xa−1, F
(r)
j (xa−1)).

The known-space attack models the limited control of the adversary over the
platform, where the adversary passively gets a part of space from the environments,
e.g. with the aid of a trojan, malware, or a memory-leakage software vulnerability.
The model is applicable to memory-leakage resilient cryptography where malware
has complete control over the computer but can only send out a bounded amount of
information [17].

The chosen-space attack captures the stronger adversary who has the ability to
isolate any part of tables (space) with the knowledge of the memory layout, but the
amount of data and the timing of access to the implementation are restricted due
to the limited capacity of the communication channel and access controlled environ-
ments.

Finally, the adaptively-chosen-space attack assumes an adversary who has full
access to the execution environment at any time by decompiler and debugger tools,
e.g. IDA Pro and IL DASM, which is corresponding to the original whitebox adversary
defined in [14] and the assumption of (λ, δ) compressibility [16].

Previous weak and strong (M,Z)-space hardness are evaluated by compression at-
tacks [9]. The assumption of these attacks is classified as the known-table attack, i.e.
weak KS-(M,Z)-space hardness and KS-(M,Z)-space hardness, respectively. Thus,
previous evaluation of space hardness in [9] can capture only the weaker adversary
than the standard whitebox adversary who has full access to the execution environ-
ment.

16

4.5 Weak Space Hardness

We show bounds for the weak (M,Z)-space hardness of the target construction in
known-, chosen- and adaptively-chosen space attacks. Our evaluation assumes that
the table decomposition is computationally infeasible as evaluated in Section 4.1,
and input values of each table in the cipher are uniformly distributed, which is a
reasonable assumption for block ciphers. The evaluation of the weak space hardness
in the case where the adversary has a partial knowledge of a plaintext is provided in
Subsection 4.6.

Known-Space Attack. First, we introduce the following lemma.

Lemma 1 (Inequality of arithmetic and geometric means) For arbitary n pos-
itive positive numbers x0, x1, . . . , xn−1, the inequality

n
√
x0 · x1 · · ·xn−1 ≤

x0 + x1 + . . . , xn−1

n

holds, with equality if and only if x0 = x1, . . . ,= xn−1.

There are various proofs in the literature, and for example we refer to [13].
For known-space attacks, we have the following theorem:

Theorem 1 Given known space of size M , the probability that a randomly-drawn
plaintext can be computed is upper bounded by (M/T)tR.

Proof. Let the number of known entries of each table F
(r)
j be #F

(r)
j for j ∈ {0, 1, . . . , t−

1} and r ∈ {1, 2, . . . , r}. The probability that an input of a tables F
(r)
j matches with

known ones is estimated as (#F
(r)
j /2nin). Hence, a randomly-drawn plaintext can be

computed with the probability of

t−1∏
j=0

R∏
r=1

#F
(r)
j

2nin
=
(1

2nin

)tR t−1∏
j=0

R∏
r=1

#F
(r)
j .

Here the sum of the numbers of known inputs is expressed as
∑t−1

j=0

∑R
r=1 #F

(r)
j .

According to Lemma 1, we have

t−1∏
j=0

R∏
r=1

(#F
(r)
j) ≤

(∑t−1
j=0

∑Rt
r=1 #F

(r)
j

tR

)tR
.

Only if #F
(1)
0 = #F

(1)
1 = . . . = #F

(R)
t−1 , the equation holds. Here, M is estimated as

M = (
∑t−1

j=0

∑R
r=1 #F

(r)
j · nout)/tR bits.

Thus, we have

(1

2nin

)tR t−1∏
j=0

R∏
r=1

#F
(r)
j ≤

(1

2nin

)tR(∑t−1
j=0

∑Rt
r=1 #F

(r)
j

tR

)tR
≤
(1

2nin

)tR(M · 2nin

T

)tR
ut

17

0

20

40

60

80

100

120

140

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SPNbox-32

SPNbox-24
SPNbox-16

SPACE-16,24,32 SPACE-8SPNbox-8

-log2Z

M

T

M = T
M = T/2

Fig. 7. Weak (M,Z)-space hardness of SPACE-8, 16, 24 and 32 and SPNbox-8, 16, 24 and
32 in adaptively-chosen attack .

From Theorem 1, we obtain weak KS-(M,− log2((M/T)tR))-space hardness, i.e.
given any known space of sizeM , it is infeasible to encrypt a randomly-drawn plaintext
with the probability larger than (M/T)tR. Figure 6 shows the relation between M
and Z in terms of weak KS-(M,Z) space hardness of SPACE-8, 16, 24 and 32 and
SPNbox-8, 16, 24 and 32. For example, in SPNbox-16, given space of size M = T/4,
the success probability is upper bounded by 2−160 (= (2−2)8·10).

Chosen-Space Attack. Due to the randomly-drawn plaintext, inputs of tables
are unpredictable in advance even in the chosen-table attack. Thus, the chosen-
space attack has no advantage over the known-space attack. We obtain weak CS-
(M,− log2((M/T)tR))-space hardness from Theorem 1.

Adaptive-Space Attack. The adversary is able to encrypt any plaintext by adap-
tively accessing the tables and computing round functions one by one. Thus he can
prepare a set of pairs of plaintexts and the corresponding ciphertexts before a target
plaintext is given. If the target plaintext is included in the set of prepared pairs, the
corresponding ciphertext is obtained with the probability one.

Let us estimate how large space is necessary to compute N plaintexts in advance.
In the encryptions of N plaintexts, it requires N · t ·R table accesses, and each table

function F
(r)
j has N accesses. We provide the following Lemma.

Lemma 2 For q table accesses, the expected value of the number of used entries in
the table is estimated as (1− ((2nin − 1)/2nin)q) · 2nin .

Proof. An i-th entry of the table is used during q table accesses with the probability
of (1− ((2nin − 1)/2nin)q). There are 2nin entries in the table. ut

Here, we define (2nin − 1)/2nin as ein. Using Lemma 2, we obtain Theorem 2.

Theorem 2 Given adaptively-chosen space of size M , the probability that a randomly-
drawn plaintext can be computed is upper bounded by N ·2−128+(1−N ·2−128)(M/T)tR,
where N = dlogein(1−M/T)/tRe.

18

0

20

40

60

80

100

120

140

160

180

200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SPACE-8

SPNbox-8

SP-SPACE-16,24,32

SPNbox-16

SPNbox24

SPNbox-32

M

T

M = TM = T/2

-log2Z

Fig. 8. Strong KS-(M,Z)-space hardness of SPACE-8, 16, 24 and 32 and SPNbox-8, 16, 24
and 32 in known/chosen space attacks

Proof. According to Lemma 2, in order to compute N pairs of plaintexts and the
corresponding ciphertexts, it requires (1− (ein)N ·tR) · 2nin ·nout = (1− (ein)N ·tR) ·T -
bit space. In the other words, adaptively-chosen space of size M enables to compute
N(= dlogein(1 −M/T)/tRe) pairs of plaintexts and the corresponding ciphertexts.
Then, the randomly-drawn plaintext is included in a set of the prepared pairs with
probability of 2−128+N . Otherwise, given space of size M , the probability that the
randomly-drawn plaintext can be computed is upper-bounded by (M/T)tR from The-
orem 1. ut

From Theorem 2, we obtain weak ACS-(M ,− log2(N ·2−128+(1−N ·2−128)(M/T)tR)-
space hardness. For example, in SPNbox-16, given M = 0.46 · T space, the success
probability is upper bounded by 2−88.4 (= 9 · 2−128 + (1− 9 · 2−128) · (0.465)8·10).

4.6 On (Partial) Target Plaintext for Weak Space Hardness

So far we assume that a plaintext is randomly drawn. However, the adversary might
have the (partial) knowledge of a plaintext, e.g. the header of a file and the format-
fixed encryption cases.

Let us estimate the security when the adversary has z-bit (z ≤ n) information
about the given plaintext in advance. In the known-space attack, since the adversary
is not able to choose the entries of tables, the advantage in this setting is same as that
in the randomly-drawn plaintext setting. In the chosen-space setting, the adversary
is able to know inputs of some tables in advance. If the inputs of tables in first y
rounds is known, it is weak CS-(X,− log2((M/T)t(R−y)))-space hardness, where y
depends on the z and constructions. In the adaptively-chosen space setting, since the
plaintext space is reduced to 2128−z, we have ACS-(M , − log2(N · 2−128+z + (1−N ·
2−128+z)(M/T)tR)-space hardness.

19

4.7 Strong Space Hardness

Next, we show bounds for the strong (M,Z)-space hardness in known-, chosen- and
adaptively-chosen space attacks.

Known- and Chosen-Space Attack. To begin with, we give the following lemma.

Lemma 3 Given any space of size M , the expected number of the computable pairs
is 2n · (M/T)tR.

Proof. According to Theorem 1, given space of size M , a randomly-drawn plain-
text can be computed with the probability (M/T)tR or less. It holds in any set of
known/chosen-space of size M . Here, the entire space of the plaintext is 2n. ut

From Lemma 3, the probability to find a valid pairs with known/chosen space of
size M is information-theoretically upper bounded by 2n · (M/T)tR. We prove strong
KP- and CP- (M , − log2(2n · (M/T)tR))-space hardness. For example, in SPNbox-
16, given M = T/4 space, the success probability is upper bounded by 2−32 (=
2128 · (1/4)8·10).

Adaptively-Chosen Space Attack. In this setting, the adversary has full access
to execution environment at any time. Thus, he easily obtain a valid pair of plaintext
and ciphertext by adaptively accessing inputs and outputs of each table tR times.
Therefore, we can not ensure strong space hardness in this setting.

4.8 Tradeoffs between Strong Space Hardness and Time Complexity

In the previous subsection, we have obtained the upper bound of the probability to
find a valid pair of plaintexts and ciphertexts given known- and chosen-space of size
M . Here, we try to figure out how much time complexity is necessary to find the pair
and reveal the tradeoff between the success probability and time complexity. In the

multi-table setting, we assume #F
(1)
0 = #F

(1)
1 = . . . = #F

(R)
t−1 which is the optimal

case with respect to the success probability. We consider following three types of
attacks as shown in Fig 9.

Brute Force Attack. The adversary simply tries to encrypt 2b plaintexts with the
given space of size M . The time complexity is estimated as 2b for b ≤ n and the success
probability is 2b ·(M/T)tR. If b = n, the probability becomes the upper bounded value
of Lemma 3.

Start-from-the-Middle Attack. Assume that if input values of all tables in con-
secutive h rounds are chosen, then the n-bit internal state are determined. We call
such states in r rounds start states. We prepare a start state, and then check whether
a pair of the plaintext and the ciphertext is computed from the start state through the
remaining (R−h) rounds with the given space of size M . The number of possible state
states is estimated (#F)th = 2n · (#F/2nin)th = 2n · (M/T)th. The time complexity
is estimated as 2b (≤ 2n · (M/T)th) and the success probability is 2b · (M/T)t(R−h).

20

h

Ciphertext

Plaintext

F0
(1) … Ft-1

(1)

n

F0
(2) … Ft-1

(2)

F0
(3) … Ft-1

(3)

F0
(R) … Ft-1

(R)

Ciphertext

Plaintext

F0
(1) … Ft-1

(1)

n

F0
(x) … Ft-1

(x)

F0
(R) … Ft-1

(R)

F0
(x+h) … Ft-1

(x+h)

start state

Ciphertext

Plaintext

F0
(1) … Ft-1

(1)

n

F0
(R) … Ft-1

(R)

h

F0
(x) … Ft-1

(x)

F0
(x+h) … Ft-1

(x+h)

h

F0
(y) … Ft-1

(y)

F0
(y+h) … Ft-1

(y+h)

Brute force Start-from-the-middle Meet-in-the-Middle

Fig. 9. Three types of attacks for strong space hardness

Meet-in-the-Middle Attack. We start with two start states in the different loca-
tions, and mount the meet-in-the-middle approach. In particular, we check whether
two states match in the middle rounds, and a pair of the plaintext and the cipher-
text is computed from the start states through the (R − 2h) rounds. The number of
possible start states is estimated 2 · (#F)th = 2(n+1) · (#F/2nin)th = 2n+1 · (M/T)th.
The time complexity is estimated as 2b (≤ 2n · (M/T)th) and the success probability
is 22b−n · (M/T)t(R−2h).

Evaluation Figure 10 shows the trade off between time complexity and strong KS-
(T/4, Z)-space hardness of SPNbox-16. As mentioned in Section 4.7, given T/4 space,
the success probability is upper bounded by 2−32 (= 2128 · (1/4)8·10). In our evalua-
tions, in order to achieve it, it requires at most time complexity of 2112(= 2128·(1/4)8·1)
by the meet-in-the-middle approach and the start-from-the-middle approach. If ad-
versary’s time complexity is restricted, the success probability decreases depending
on the time complexity. If time complexity is 280 or 264, the probability is estimated
as 2−64 (=280 · 2−144) or 2−80 (=264 · 2−144) by the start-from-the-middle attack.

4.9 Summary of Space Hardness

Table 1 provides a summary of weak and strong space hardness of the target con-
struction in known-, chosen- and adaptively-chosen space attacks. It shows the upper
bounds of the success probability against each attack, given space of size M ; or, in
other words, lower bounds for the required space with respect to the success proba-
bility of 2−Z .

Table 2 shows the lower bounds of the required space with respect to success
probabilities of 2−64 and 2−128 of SPACE-8,-16,-24 and -32 and SPNbox-8,-16,-24 and
-32. These results update the evaluations of SPACE-8,-16,-24 and -32 as weak KP-
(T/20.44, 128), (T/2, 128), (T/2, 128) and (T/2, 128)-space hardness, while previous re-
sults claim weak KP-(T/4, 128)-space hardness [9]. All variants SPNbox-8,-16,-24 and
-32 achieve weak (T/4, 64)-space hardness in known, chosen and adaptively-chosen

21

-140

-120

-100

-80

-60

-40

-20

0

64 72 80 88 96 104 112 120 128

Time complexity (log2)

Success

Probability

(log2)

-32
upper bound

brute force

Meet in the Middle

Start in the Middle

Fig. 10. Tradeoffs between time complexity and strong (T/4, Z)-space hardness of SPNbox-
16 in known/chosen space attacks

Table 1. Summary of bounds for weak/strong space hardness against known-, chosen- and
adaptively-chosen space attacks

Known/Chosen-space attack

Weak space hardness (M,− log2((M/T)tR))

Strong space hardness (M , − log2(2n · (M/T)tR))

Adaptively-chosen space attack

Weak space hardness (M , − log2(2−128+N + (M/T)tR)

N = dlogein(1−M/T)/tRe, where ein = (2nin − 1)/2nin

space attacks, which is a reasonable security level for practical applications. Also,
all variants achieve strong (T/2.3, 64) to (T/32, 64)-space hardness in known/chosen
space attacks.

4.10 Advanced Side Channel Attacks

Differential Computation Analysis. Bos et al. proposed a new class of side chan-
nel attacks called differential computation analysis [11]. This attack exploits memory
access patterns during the software execution of whitebox AES [15,24,40] with the aid
of a binary instrumentation framework such as PIN and Valgrind. Since the software
execution traces contain time demarcated physical addresses of memory locations be-
ing read/written into, they essentially leak the values of the inputs to the various
tables accessed, and can be used as side-channel information to extract the key.

This attack basically utilizes the fact that each table depends on only a fraction
of the key, e.g. 8 and 16 bits of key [15, 24, 40]. A small part of the key is efficiently
extracted using side-channel leakages. On the other hand, any table of SPNbox con-
tains full 128-bit key information. Thus, even if the adversary can fully monitor the

22

Table 2. Comparison of SPACE, SPNbox: Lower bounds of the required space with respected
to the success probability 2−64 and 2−128

cipher T Weak Space hardness Strong Space hardness

Z = 64 Z = 128 Z = 64 Z = 128

KS/CS ACS KS/CS ACS KS/CS KS/CS

SPACE-8 [9] 3.84 KB T/20.22 T/20.22 T/20.44 T/20.44 T/20.64 T/20.86

SPACE-16 [9] 918 KB T/20.5 T/20.5 T/2 - T/21.5 T/22

SPACE-24 [9] 218 MB T/20.5 T/20.5 T/2 - T/21.5 T/22

SPACE-32 [9] 51.5 GB T/20.5 T/20.5 T/2 - T/21.5 T/22

SPNbox-8 256 B T/20.40 T/20.40 T/20.80 T/20.80 T/21.20 T/21.60

SPNbox-16 132 KB T/20.81 T/20.81 T/21.61 - T/22.40 T/23.20

SPNbox-24 50.3 MB T/21.28 T/21.28 T/22.57 - T/23.68 T/24.96

SPNbox-32 17.2 GB T/21.60 T/21.60 T/23.20 - T/24.80 T/26.40

KS: Known-space attack, CP : Chosen-space attack

ACS: Adaptive-chosen-space Attack

memory access patterns for the target key-dependent table, there are 2128 possible
candidates of corresponding memory access patterns for each key value. Therefore, a
differential computational attack on SPNbox is computationally infeasible.

Differential Fault Attacks. Sanfelix et al. propose a differential fault attack on
whitebox AES and DES [35]. This attack modifies the specific byte position of internal
states by injecting a fault. In the case of the AES, the fault injection targets the
MixColumn operation in the 9-th round.

The tables of SPNbox compose of small block ciphers, and the internals of the
small block ciphers are inaccessible in whitebox setting. Thus, any fault injection
attack reduces to a differential attack on a small block cipher in the blackbox setting.
Since the underlying cipher is secure against a differential attack in the blackbox
setting as estimated in Section 3.2, SPNbox is secure against differential fault attacks.

5 Efficient Software Implementations

5.1 Setting

In this section, we discuss implementation characteristics of the SPNbox family of
block ciphers. We also present experimental measurements based on our optimised
high-performance software implementations and compare them to equivalent instances
of the SPACE family of whitebox ciphers proposed at CCS 2015 [9]. Altogether, this
provides a comprehensive implementation study of all proposed variants both in the
blackbox and the whitebox setting. As target platforms for the server-side, we chose
the recent Skylake generation of Intel microprocessors which support the AES-NI
instruction set [19] and SSE instructions up to AVX2. As a mobile platform, we use
the ARMv8 (AArch64) microarchitecture with NEON instructions.

23

For the blackbox implementations, we specifically focus on constant-time imple-
mentations without key-dependent table lookups on recent Intel platforms. Whenever
possible, we realise the small block ciphers with AES-NI instructions.

For the whitebox implementations, both on Intel and ARM, the small block ciphers
are implemented as table lookups, while the linear mixing of the table lookups is
implemented using AVX2 (Intel) and NEON (ARMv8) instructions.

5.2 Implementation Characteristics of SPNbox

The SPNbox ciphers can efficiently utilize the parallelism offered by both standard
SIMD and the AES instructions on contemporary microprocessors. With block sizes
of n = 128 or n = 120 bit, one block fits naturally in the 128/256-bit SSE/AVX
registers on Intel, or the 128-bit NEON registers on ARMv8. Additionally, the par-
allel and independent application of the S-boxes Snin , realised by the small internal
block ciphers, offers opportunities for exploiting parallelism, both inside one block
and across blocks of a longer message.

In the Black Box. In the blackbox setting on Intel platforms, the small block
ciphers are implemented in a round-based fashion using the AES-NI instructions for
the individual transformations. The composition of MCnin ◦SB can be realised by first
using the pshufb instruction reordering the bytes of the state equivalent to inverse
ShiftRows, followed by an aesenc instruction for one full AES round. For nin = 32,
this is already sufficient. For nin = 24, 16, we note that by construction, the matrices
A24 and A16 are submatrices of A32 such that their multiplication with the state
corresponds to (x, y, z, 0) × A32 and (x, y, 0, 0) × A32, respectively (the last 8 resp.
16 bits are ignored). We can therefore realize the round function of the small block
ciphers by XOR-ing the values (0, 0, 0, 52x) or (0, 0, 52x, 52x) before applying inverse
ShiftRows and the AES round, with 52x being the inverse of 0 through the AES
S-box. This allows the efficient re-use of Intel’s AES-NI instructions also for smaller
block sizes. For nin = 8, the linear mixing step is the identity mapping, so can be
omitted.

For the implementation of the linear layer θ in the outer rounds, it is beneficial to
re-organise the internal state such that the i-th S-boxes of multiple message blocks
are collected in one 128-bit register. This allows an efficient parallel execution of the
finite field arithmetic, which vastly outweighs the overhead imposed by the input and
output conversion to and from this format.

Additionally, on the Skylake platform, the AES round function has a latency of 4
cycles with a throughput of 1. Altogether, this implies that in order to both fully utilize
the AES-NI instruction pipeline and fill the SSE/AVX registers for SIMD operations,
our implementations for nin = 32, 24, 16, 8 process 8/4/8/16 consecutive blocks at a
time, respectively (which is possible in any parallelizable mode, in particular ECB or
CTR). By reordering the round keys accordingly, the implementation of the internal
block ciphers can remain unchanged.

Efficient and Constant-Time Parallel Finite Field Arithmetic. Since we explicitly
aim for constant-time implementations in the black box, the conditional polynomial
reduction has to be carried out without branching. For this, we employ an optimized

24

variant of the technique introduced in [25], which allows a simultaneous doubling of 4
elements of GF(232) and GF(224), or 8 elements of GF(216) or 16 elements of GF(28)
with just four instructions with a latency of 3 and a throughput of 1.

The in-place multiplication by two of register %xmm0 can be implemented in constant-
time as follows:

vpcmpgtd MSB4_M, %xmm0, %xmm1

vpslld $1, %xmm0, %xmm0

vpand REDPOLY4_M, %xmm1, %xmm1

vpxor %xmm0, %xmm1, %xmm0

with MSB4 M containing four 32-bit copies of the value 7fffffffx, and REDPOLY4 M

containing four 32-bit copies of the reduction polynomial, i.e. 8dx.

In the White Box. In the whitebox setting, the small block ciphers Snin are imple-
mented as lookup tables of size nin · 2nin bytes. The linear layer θ of SPNbox is then
implemented on top of these table lookups using AVX (Intel) or NEON instructions
(ARMv8).

Again, we found it beneficial to re-organize the state to collect the i-th S-boxes
of consecutive blocks in one SSE/NEON register for a SIMD execution of the finite
field arithmetic. Compared to SPACE, we have 4,5,8 and 16 parallel independent table
lookups in SPNbox-32,24,16 and 8, respectively. Since memory-XMM register transfers
have a throughput of 0.5 on Skylake, two of these independent table lookups can be
scheduled per cycle on Intel platforms. This has to be contrasted to the situation
in the serial round function of SPACE, where no simultaneous table lookups were
possible.

On ARM, the smaller caches and slower memory interface imply that lookups in
larger tables tend to be relatively more expensive than on Intel platforms.

5.3 Performance Measurements

We provide performance measurements for SPNbox and SPACE in both the blackbox
and the whitebox setting for the encryption of messages of length 2048 bytes. For the
Intel platform, all measurements were taken on a single core of an Intel Core i7-6700
CPU at 3400 MHz with Turbo Boost and hyperthreading disabled, and averaged over
100000 repetitions, processing one message at a time. For the ARMv8 platform, a
single Cortex-A57 core at 2100 MHz of a Samsung Exynos 7420 CPU as shipped in
a Samsung Galaxy S6 mobile phone was used.

Our findings are summarised in Table 3 and Fig. 11 for the blackbox setting; and
Table 4 for the whitebox setting. The whitebox performance is further illustrated in
Fig. 12 (grouped by table size) and Fig. 13 (grouped by platform). All performance
figures are given in cycles per byte (cpb).

Discussion. The blackbox constant-time implementation results in Table 3 indicate
that for each variant with comparable space hardness, the SPNbox ciphers offer sig-
nificantly increased performance compared to SPACE. Somewhat interestingly, the
largest improvement (factor 4.5 speed-up) is obtained for the 32-bit variant offering

25

24bit 16bit 8bit

25

50

75

100

125

150

248.31

P
er

fo
rm

a
n
ce

[c
p
b
]

SPACE

SPNbox

Fig. 11. Constant-time blackbox performance of SPACE and SPNbox on Intel Skylake plat-
form for various table sizes in cycles per byte (lower is better).

24bit 16bit 8bit

20
50

100

200

300

400

500

2384.7

P
er

fo
rm

a
n
ce

[c
p
b
]

SPACE Intel

SPNbox Intel

SPACE ARM

SPNbox ARM

Fig. 12. Whitebox performance of SPACE and SPNbox on Intel Skylake and ARMv8 plat-
forms for various table sizes in cycles per byte (lower is better).

Intel ARM

20
50

100

200

300

400

500

2384.7
↓

P
er

fo
rm

a
n
ce

[c
p
b
] SPACE-24

SPNbox-24

SPACE-16

SPNbox-16

SPACE-8

SPNbox-8

Fig. 13. Whitebox performance of SPACE and SPNbox on Intel Skylake and ARMv8 plat-
forms for various table sizes in cycles per byte (lower is better).

26

Table 3. Software performance of the SPNbox and SPACE cipher families on the Intel Skylake
platform in the blackbox setting. Numbers are given in cycles per byte (cpb).

Algorithm Rounds Rounds Performance
(outer) (inner) [cpb]

SPNbox-32 10 16 15.09
SPNbox-24 10 20 40.48
SPNbox-16 10 32 39.98
SPNbox-8 10 64 46.49

SPACE-32 128 10 101.02
SPACE-24 128 10 107.01
SPACE-16 128 10 101.21
SPACE-8 300 10 248.31

Table 4. Software performance of the SPNbox and SPACE cipher families in the whitebox
setting on Intel Skylake and ARMv8 platforms. Numbers are given in cycles per byte (cpb).

Algorithm Rounds Table size Performance [cpb]
(outer) Intel ARM

SPNbox-32 10 17.2 GB 184.56 —
SPNbox-24 10 50.3 MB 33.48 479.38
SPNbox-16 10 132 KB 17.59 27.37
SPNbox-8 10 256 B 22.93 42.66

SPACE-32 128 51.5 GB 5535.01 —
SPACE-24 128 218 MB 354.86 2384.74
SPACE-16 128 918 KB 305.11 377.51
SPACE-8 300 3.84 KB 203.19 409.57

the highest level of space hardness. This is due to inherent construction differences:
While SPACE always uses the full AES transform and its performance is only affected
by the number of Feistel rounds, SPNbox needs more and more rounds in its internal
block ciphers to ensure sufficient key mixing when the block sizes becomes smaller.
Additionally, the use of the AES round transformation implies increasing overhead
with smaller block sizes, since increasing parts of the state are unused. For nin = 8,
the decrease in performance is caused by the heavy 16× 16 MDS diffusion layer over
GF(28).

Regarding the performance of SPACE, our results largely confirm the estimation
of R cpb for R rounds on an AES-NI platform provided in [9].

Also in the whitebox setting, SPNbox significantly outperforms SPACE for all vari-
ants, on both Intel and ARM platforms. One observes that any increases in pure
lookup performance due to smaller table size is increasingly compensated for by the
heavier linear MDS layers. The surprisingly good performance of SPNbox-32 can to
some extent be attributed to the fact that our test platform had 16 GB of memory
available.

Comparing the blackbox to the whitebox performances of each variant of SPNbox,
it becomes apparent that from nin = 24 and smaller, table-based implementations

27

outperform round-based implementations. The latter, however, offer constant timing
behaviour. Further optimizations of the constant-time implementations also remain
possible.

Summarising, the constant-time blackbox performance of the proposed SPNbox
ciphers outperforms the SPACE variants by factors of 2.5 to 6.5. In the whitebox
setting, the new SPNbox ciphers offer performance improvements by factors of 8 to
18 (on Intel) and 5 to 13 (on ARM) over SPACE, as illustrated in Fig. 12 and Fig. 13.

6 Conclusion and Outlook

In this paper, we proposed SPNbox, a new family of space-hard block ciphers, which
significantly improves upon the SPACE ciphers. Employing an SPN-type design with
efficient constant-time small block ciphers, the resulting parallelization opportunities
allow significantly faster implementations both in the black box and in the white
box. Instances of SPNbox achieve speed-ups of up to 6.5 times in the black box and
up to 18 times in the whitebox setting, while offering comparable space hardness.
Moreover, we formalized the security models of space hardness which are classified
with respect to the adversary’s abilities. We proved security bounds of space hardness
in all adversarial models. We then applied this analysis to SPNbox, showing that
SPNbox offers sufficiently high levels of space hardness in each adversary model.

Our work also raises a couple of open research questions and directions. Concerning
the design of the small internal block ciphers, there seems to be an efficiency bottleneck
regarding the key mixing: The smaller the block size, the more rounds are needed to
avoid meet-in-the-middle attacks, which limits their efficiency. This raises the question
of how to build more efficient block ciphers with very small block lengths and a
relatively large key. Especially, fast key mixing and efficient key scheduling functions
for small block ciphers are essentially unknown.

A possible solution for this efficiency problem is to use table lookups for secret
S-boxes. This however introduces side-channel issues with key-dependent lookups,
motivating further research into how to construct secret S-boxes of various sizes with
efficient constant-time implementations.

References

1. Adobe Systems Incorporated. Adobe Primetime Technical Primer for Operators, 2014.
2. Akamai Technologies. Securing Cloud-Based Workflows for Premium Content, 2014.
3. R. Benadjila, O. Billet, H. Gilbert, G. Macario-Rat, T. Peyrin, M. Robshaw, and

Y. Seurin SHA-3 Proposal: ECHO. Submission to NIST, 2009.
4. P. Barreto and V. Rijmen. The Anubis Block Cipher. Submission to the NESSIE Project,

2000.
5. P. Barreto and V. Rijmen. The Khazad Legacy-level Block Cipher. Submission to the

NESSIE Project, 2000.
6. O. Billet, H. Gilbert, and C. Ech-Chatbi. Cryptanalysis of a White Box AES Imple-

mentation. In Selected Areas in Cryptography, 11th International Workshop, SAC 2004,
Revised Selected Papers, pages 227–240, 2004.

7. A. Biryukov, C. Bouillaguet, and D. Khovratovich. Cryptographic Schemes Based on
the ASASA Structure: Black-Box, White-Box, and Public-Key (Extended Abstract). In
Advances in Cryptology - ASIACRYPT 2014 - 20th International Conference on the

28

Theory and Application of Cryptology and Information Security, Proceedings, Part I,
pages 63–84, 2014.

8. A. Biryukov and A. Shamir. Structural Cryptanalysis of SASAS. J. Cryptology, 23(4):
505–518, 2010.

9. A. Bogdanov and T. Isobe. White-box Cryptography Revisited: Space-hard Ciphers. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, pages 1058–1069. ACM, 2015.

10. J. Borghoff, L. R. Knudsen, G. Leander, and S. S. Thomsen. Slender-Set Differential
Cryptanalysis. J. Cryptology, 26(1):11–38, 2013.

11. J. W. Bos, C. Hubain, W. Michiels, and P. Teuwen. Differential Computation Analysis:
Hiding Your White-box Designs Is Not Enough. In CHES 2016 - 18th International
Conference, Proceedings, pages 215–236, 2016.

12. J. Bringer, H. Chabanne, and E. Dottax. White Box Cryptography: Another Attempt.
IACR Cryptology ePrint Archive, 2006:468, 2006.

13. K-M. Chong. The Arithmetic Mean-Geometric Mean Inequality: A New Proof. Mathe-
matics Magazine, 49(2):87–88, 1976.

14. S. Chow, P. A. Eisen, H. Johnson, and P. C. van Oorschot. A White-Box DES Implemen-
tation for DRM Applications. In Security and Privacy in Digital Rights Management,
ACM CCS-9 Workshop, DRM 2002, Revised Papers, pages 1–15, 2002.

15. S. Chow, P. A. Eisen, H. Johnson, and P. C. van Oorschot. White-Box Cryptography and
an AES Implementation. In Selected Areas in Cryptography, 9th Annual International
Workshop, SAC 2002, Revised Papers, pages 250–270, 2002.

16. C. Delerablée, T. Lepoint, P. Paillier, and M. Rivain. White-box Security Notions for
Symmetric Encryption Schemes. In Selected Areas in Cryptography - SAC 2013 - 20th
International Conference, Revised Selected Papers, pages 247–264, 2013.

17. S. Dziembowski. Intrusion-Resilience via the Bounded-Storage Model. In Theory of
Cryptography, Third Theory of Cryptography Conference, TCC 2006, Proceedings, vol-
ume 3876 of Lecture Notes in Computer Science. Springer, 2006.

18. D. Gruss, R. Spreitzer, and S. Mangard. Cache Template Attacks: Automating attacks
on Inclusive Last-Level Caches. In 24th USENIX Security Symposium, USENIX Security
15, pages 897–912. USENIX Association, 2015.

19. S. Gueron. Intel Advanced Encryption Standard (AES) Instructions Set. Intel white
paper, September 2012.

20. J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calandrino,
A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest We Remember: Cold Boot Attacks
on Encryption Keys. In Proceedings of the 17th USENIX Security Symposium, pages 45–
60. USENIX Association, 2008.

21. P. Hawkes and L. O’Connor. XOR and Non-Xor Differential Probabilities. In Advances
in Cryptology - EUROCRYPT ’99, International Conference on the Theory and Applica-
tion of Cryptographic Techniques,Proceeding, volume 1592 of Lecture Notes in Computer
Science, pages 272–285. Springer, 1999.

22. G. Irazoqui, T. Eisenbarth, and B. Sunar. S$a: A Shared Cache Attack That Works
Across Cores and Defies VM Sandboxing - and Its Application to AES. In 2015 IEEE
Symposium on Security and Privacy, SP 2015, pages 591–604. IEEE Computer Society,
2015.

23. G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar. Wait a Minute! A Fast, Cross-VM
Attack on AES. In Research in Attacks, Intrusions and Defenses - 17th International
Symposium, RAID 2014, Proceedings, volume 8688 of Lecture Notes in Computer Sci-
ence, pages 299–319. Springer, 2014.

24. M. Karroumi. Protecting White-box AES with Dual Ciphers. In Information Security
and Cryptology - ICISC 2010 - 13th International Conference, Revised Selected Papers,
volume 6829 of Lecture Notes in Computer Science, pages 278–291. Springer, 2010.

29

25. E. Käsper and P. Schwabe. Faster and Timing-Attack Resistant AES-GCM. In Crypto-
graphic Hardware and Embedded Systems - CHES 2009, 11th International Workshop,
Proceedings, volume 5747 of Lecture Notes in Computer Science, pages 1–17. Springer,
2009.

26. T. Lepoint, M. Rivain, Y. De Mulder, P. Roelse, and B. Preneel. Two Attacks on a
White-Box AES Implementation. In Selected Areas in Cryptography - SAC 2013 - 20th
International Conference, Revised Selected Papers, pages 265–285, 2013.

27. H. E. Link and W. D. Neumann. Clarifying Obfuscation: Improving the Security of
White-Box DES. In International Symposium on Information Technology: Coding and
Computing (ITCC 2005), Volume 1, pages 679–684, 2005.

28. B. Minaud, P. Derbez, P-A. Fouque, and P. Karpman. Key-Recovery Attacks on ASASA.
In Advances in Cryptology - ASIACRYPT 2015 - 21st International Conference on the
Theory and Application of Cryptology and Information Security, Proceedings, Part II,
volume 9453 of Lecture Notes in Computer Science, pages 3–27. Springer, 2015.

29. HCE Workgroup Mobey Forum. The Host Card Emulation in Payments: Options for
Financial Institutions, 2014.

30. Y. De Mulder, P. Roelse, and B. Preneel. Cryptanalysis of the Xiao - Lai White-Box
AES Implementation. In Selected Areas in Cryptography, 19th International Conference,
SAC 2012, Revised Selected Papers, pages 34–49, 2012.

31. Y. De Mulder, B. Wyseur, and B. Preneel. Cryptanalysis of a Perturbated White-Box
AES Implementation. In Progress in Cryptology - INDOCRYPT 2010 - 11th Interna-
tional Conference on Cryptology in India, Proceedings, pages 292–310, 2010.

32. National Institute of Standards and Technology. Recommendation for Key Derivation
Using Pseudorandom Functions. NIST Special Publication (SP) 800-108., 2009.

33. National Institute of Standards and Technology. SHA-3 Standard: Permutation-Based
Hash and Extendable-Output Functions. Federal Information Processing Standards Pub-
lication 202, 2015.

34. T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, You, Get off of My Cloud:
Exploring Information Leakage in Third-Party Compute Clouds. In Proceedings of the
2009 ACM Conference on Computer and Communications Security, CCS 2009, pages
199–212. ACM, 2009.

35. E. Sanfelix, C. Mune, and J. de Haas. Unboxing the White-Box Practical Attacks against
Obfuscated Ciphers. Black Hat Europe 2015, 2015.

36. S. Meng Sim, K. Khoo, F. E. Oggier, and T. Peyrin. Lightweight MDS Involution Ma-
trices. In Fast Software Encryption - 22nd International Workshop, FSE 2015, Revised
Selected Papers, volume 9054 of Lecture Notes in Computer Science, pages 471–493.
Springer, 2015.

37. Smart Card Alliance. White Paper: Host Card Emulation (HCE) 101, 2014.
38. T. Tiessen, L. R. Knudsen, S. Kolbl, and M. M. Lauridsen. Security of AES with a Secret

S-box . In Fast Software Encryption - 22nd International Workshop, FSE 2015, Revised
Selected Papers, volume 9054 of Lecture Notes in Computer Science, pages 471–493.
Springer, 2015.

39. B. Wyseur, W. Michiels, P. Gorissen, and B. Preneel. Cryptanalysis of White-Box DES
Implementations with Arbitrary External Encodings. In Selected Areas in Cryptography,
14th International Workshop, SAC 2007, Revised Selected Papers, pages 264–277, 2007.

40. Y. Xiao and X. Lai. A Secure Implementation of White-box AES. In 2nd International
Conference on Computer Science and its Applications (CSA2009), 2009.

41. Y. Yarom and K. Falkner. FLUSH+RELOAD: A High Resolution, Low Noise, L3 Cache
Side-Channel Attack. In Proceedings of the 23rd USENIX Security Symposium, pages
719–732. USENIX Association, 2014.

30

