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Abstract. Random number generators (RNGs) are essential for cryp-
tographic systems, and statistical tests are usually employed to assess
the randomness of their outputs. As the most commonly used statisti-
cal test suite, the NIST SP 800-22 suite includes 15 test items, each of
which contains two-level tests. For the test items based on the binomial
distribution, we find that their second-level tests are flawed due to the in-
consistency between the assessed distribution and the assumed one. That
is, the sequence that passes the test could still have statistical flaws in
the assessed aspect. For this reason, we propose Q-value as the metric for
these second-level tests to replace the original P-value without any extra
modification, and the first-level tests are kept unchanged. We provide the
correctness proof of the proposed Q-value based second-level tests. We
perform the theoretical analysis to demonstrate that the modification
improves not only the detectability, but also the reliability. That is, the
tested sequence that dissatisfies the randomness hypothesis has a higher
probability to be rejected by the improved test, and the sequence that
satisfies the hypothesis has a higher probability to pass it. The experi-
mental results on several deterministic RNGs indicate that, the Q-value
based method is able to detect some statistical flaws that the original
SP 800-22 suite cannot realize under the same test parameters.

Keywords: Statistical randomness test, NIST SP 800-22, random number gen-
erator, P-value

1 Introduction

As essential primitives, random number generators (RNGs) are important for
cryptographic systems. The security of many cryptographic schemes and pro-
tocols is built on the perfect randomness of RNG outputs. RNGs are classified
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into two types: pseudo/deterministic and true/non-deterministic random num-
ber generators (PRNGs and TRNGs, respectively). In general, TRNGs based
on some random physical phenomenons, may be used directly as random bit
sources or generate seeds for PRNGs, and PRNGs extend the seeds to produce
deterministic long sequences.

For any type of RNG, statistical hypothesis tests have been widely employed
to assess the quality of the RNG, which evaluate whether the output sequences
fit with the given hypothesis (i.e., the sequence has perfect randomness) or not.
In addition, statistical randomness tests are also used to evaluate the output-
s of other cryptographic primitives such as hash functions and block ciphers,
to preliminarily validate the indistinguishability of their outputs from random
mapping. The commonly used statistical test suites, each of which is composed
of a serial of test items, include Diehard [7] proposed by Marsaglia and SP 800-22
[11] standardized by US National Institute of Standard and Technology (NIST).

The most commonly used NIST SP 800-22 test suite is composed of 15 test
items, and provides comprehensive evaluation for different randomness aspects
of assessed sequences. For example, the Frequency Test assesses the uniformity of
the sequence, and the Runs Test assesses the transform frequency of 0’s and 1’s.
In the beginning of the testing process, the whole bit sequence is divided into N
blocks. In every test item, a test statistic value is computed for each data block.
According to the assumed distribution of the test statistic value, 15 test items are
divided into two types: binomial distribution based (binomial-based for short in
this paper) and chi-square distribution based (chi-square based for short). Each
test item uses its assumed distribution to compute the P-value, which roughly
represents the probability that the block is random. A test item is considered
to be passed when the computed P-value is larger than the significance level.
Then, based on the computed N P-values for N blocks, each test item performs
two-level tests: the first-level test and the second-level test, where passing the
former is the premise to execute the latter. The second-level testing approach
was found to increase the testing capability [9]. The first-level test focuses on the
passing ratio of the N P-values, and the second-level test further focuses on the
uniformity of the N P-values to assess whether the test statistic values follow the
expected distribution, i.e., the standard normal distribution1 or the chi-square
distribution. In the remainder of this paper, the test statistic refers to the test
statistic value that is assumed to follow the standard normal distribution in the
binomial-based tests.

Related work. Several papers on the NIST SP 800-22 test suite have been pre-
sented in literature. Among the test items, Kim et al. [6] analyzed the correctness
of the Spectral Test and the Lemple-Ziv Test, and Hamano [4, 5] adjusted the
distribution parameters for the Spectral Test and corrected the Overlapping
Test. Sulak et al. [14] found that the P-values for short sequences (less than 512
bits) follow a specific discrete distribution, rather than the assumed uniform dis-
tribution for long sequences. Pareschi et al. [9] investigated the reliability of the

1 For a sufficiently large number of trials, the distribution of the binomial sum after
normalizing, is closely approximated by a standard normal distribution [11].
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second-level tests, and analyzed the sensitivity to the approximation errors in-
troduced by the computation of P-values. Furthermore, as the sequence length is
finite in practice and thus the set of possible statistic values is discrete, Pareschi
et al. [10] provided the actual distributions of P-values for the Frequency Test,
the Runs Test, and the Spectral Test, and evaluated the test errors for different
testing methods based on P-values. In our preliminary work [15], we analyzed
the correctness and the reliability of the second-level tests in the NIST SP 800-22
test suite.

Our contribution. In this paper, we find that the P-values derived from the
binomial-based tests are unqualified for the second-level tests of the NIST SP
800-22 suite, though they are proper to be used for the first-level tests. The
P-values in the binomial-based tests are computed, using the absolute values of
the test statistics. Therefore, the second-level tests on P-values do not exactly
tell whether the test statistics follow the standard normal distribution or not,
because we cannot learn from the P-values that the test statistics are positive
or negative. In particular, even if P-values follow the uniform distribution on
[0, 1], there still exists a non-ignorable probability that the test statistics are not
aligned with the expected standard normal distribution; then, it fails to detect
some imperfect random sequences.

We propose a new metric called Q-value in this paper,2 for the second-level
tests of the binomial-based tests (but not the chi-square based ones), to replace
the original P-value without any extra modification. The Q-value is computed
directly using the test statistics, rather than their absolute values. We prove
that the uniformity of Q-values is equal to that the test statistics follow the
standard normal distribution as expected. In the case that there exists some
mean drifts of the assumed normal distribution, which is commonly caused by
flawed generators, the Q-value based tests produce greater gaps than the P-value
based ones under both the total variation distance (TVD) and the Kullback-
Leibler divergence (KLD), i.e., Q-value is more sensitive to detect such drifts.
Therefore, for the binomial-based tests, our Q-value based second-level tests have
greater testing capability than the P-value based ones.

Furthermore, inspired by [10], we investigate the actual distributions of P-
values and Q-values with a finite block length, for the binomial-based tests. The
comparison in the Frequency Test shows that the distribution of Q-value is more
smooth, i.e., it is closer to the uniform distribution on [0, 1]. Hence, the Q-value
based second-level tests are more reliable, i.e., our improvement also decreases
the probability of erroneously identifying an ideal generator as not random.

Finally, we perform the improved statistical tests on the outputs of several
PRNGs. The experimental results demonstrate that the Q-value based second-
level tests are able to detect some statistical flaws that the original SP 800-22
suite cannot detect under the same test parameters.

Organization. The rest of this paper is organized as follows. In Section 2, we
introduce the two-level statistical tests included in the NIST SP 800-22 test

2 The term of q-value is defined as a measure of significance in terms of the false
discovery rate [12, 13], while in this paper we use Q-value as another definition.
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suite. In Section 3, we state the problem in the second-level tests of binomial-
based tests. In Section 4, we propose Q-value based second-level statistical tests,
and investigate the detectability and the reliability. In Section 5, we apply the
statistical tests on several popular PRNGs to validate the effectiveness. Section
6 concludes the paper.

2 Two-level Statistical Tests in SP 800-22

2.1 Statistical Hypothesis Testing for Randomness

Hypothesis testing is a commonly used method to assess whether the tested data
fit with the null hypothesis that is denoted as H0. In the statistical hypothesis
testing, a statistic value is chosen and used to determine whether H0 should
be accepted or rejected. Under the null hypothesis, the theoretical reference
distribution of this statistic value is figured out by mathematical methods. From
this reference distribution, a confidence interval is determined based on a preset
confidence level γ (e.g., γ = 0.99), i.e., the probability that the statistic values
are inside the confidence interval is γ.

The null hypothesis in statistical tests for randomness is that, the tested
bit sequence is random. In the testing, the test statistic value is computed on
the tested bit sequence, and then is compared to the bounds of the confidence
interval. If the test statistic value lies outside the confidence interval, the null
hypothesis that the sequence is random is rejected. Otherwise, H0 is accepted.

A randomness test suite may contain a serial of test items, which evaluate
different aspects of randomness. These test items produce different confidence
intervals based on the same confidence level. Then, P-value is employed as a
unified metric for different test items, which is calculated using the test statistic.
For a randomness test item, a P-value is the probability that a perfect random
number generator would have produced a sequence less random than the tested
sequence [11]. More specifically, the P-value is computed as the probability of
obtaining a statistic value S equal to or “more extreme” than the observed value
Sobs of the tested sequence. According to the definition of “more extreme” cases,
the tests are generally divided into two categories: one-sided tests and two-sided
tests.

In the NIST SP 800-22 test suite, a test is considered to be two-sided when
S is assumed to follow a normal distribution, and the P-value is computed as
2 min{Pr(S > Sobs),Pr(S < Sobs)}. A test is considered to be one-sided when
S is assumed to follow a chi-squared distribution, and the P-value is computed
as Pr(S > Sobs). Figure 1 shows the computations of P-values based on the
observed values for the one-sided and two-sided tests included in the NIST SP
800-22 test suite, where the shaped areas are the P-values.

Then the test is performed by comparing P-value with a significance level
denoted as α, and α = 1−γ where γ is the confidence level. If P-value p < α,then
H0 is rejected and the tested sequence is considered to be non-random. If p ≥ α,
H0 is accepted and the sequence is considered to be random. WhenH0 is true and
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Fig. 1. P-value in one-sided and two-sided tests

p < α, H0 is erroneously rejected, which is called Type I Error. The probability
of Type I Error is α. On the contrary, the fact that, p ≥ α when H0 is false, is
called Type II Error. The significance level recommended by NIST is α = 0.01.

2.2 Two-level Tests

The current version of the NIST SP 800-22 test suite [11] is composed of 15 test
items. According to the assumed distribution of the test statistic values, these
test items are divided into two categories: the binomial-based (i.e., the two-
sided tests) and the chi-square based (i.e., the one-sided tests). The Frequency
(Monobit) Test, the Runs Test, the Spectral Test, Maurer’s “Universal Statisti-
cal” Test, and the Random Excursions Variant Test belong to the binomial-based
tests, and the others are chi-square based.

In the testing process, according to the test parameters, the whole tested bit
sequence is partitioned into N blocks, and each block contains n bits. For each
test item, the hypothesis testing, where the null hypothesis is that the tested
sequence is random, is executed for each data block, and then N P-values are
obtained. Based on these P-values, the following two-level test is performed in
each test item.

1. Count the number of the blocks whose P-values are equal or greater than
α, and compute the passing ratio. If the ratio lies in the confidence interval

defined as 1− α± 3
√

(1−α)α
N , the first-level test is passed;
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2. Divide the interval [0, 1] into K equal sub-intervals, and count each number
of the P-values in each sub-interval. Perform a chi-square goodness-of-fit test
on these K numbers with the assumed uniform distribution, yielding another
P-value pT . If pT is equal to or greater than another significance level αT ,
the second-level test is considered to be passed. In the NIST SP 800-22 test
suite, K = 10 and αT = 0.0001.

A test item is passed if the tested sequence passes the two-level test of this
test item, and the SP 800-22 test suite is passed if all the 15 included test items
are passed. The testing procedure is depicted in Figure 2, where we use N = 1000
as an example. Note that, some test items are further composed of a serial of
sub-items (such as the Non-Overlapping Template Test), and each sub-item can
be treated as a separate test item that has its own P-values and pT . In addition,
for the Random Excursions and Random Excursions Variant Tests, the P-values
are computed only if the tested sequence block meets specific criteria, so the
number of available P-values may be less than N for the N sequence blocks.
These details are omitted in Figure 2 for simplicity.

Choose a test 

item

Compute 

1000 P-values

Count the 

number C of 

P-values≥0.01

C>980

No
The test item 

fails

Yes

Compute 

pT using 1000 

P-values

Yes
All tests are 

performed
Yes

No

No

The test suite 

is passed

1000 

sequence 

blocks

pT≥0.0001

First-level test

Second-level test

Fig. 2. The testing procedure of the NIST SP 800-22 test suite (N = 1000)
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2.3 Frequency Test

We take the Frequency Test as an example to explain the P-value computa-
tion in the binomial-based tests. The bit block with length n is denoted as
ε = {ε1, ε2, . . . , εn} ∈ {0, 1}n. Then S =

∑n
i=1(2εi − 1) is computed. Under the

null hypothesis, S is assumed to follow a binomial distribution. As n is always
very large, the limiting binomial distribution is approximated as a normal distri-
bution. Hence, S is assumed to follow the normal distribution N (u, σ2), where
u = 0 and σ2 = n. The test statistic d = (S − u)/σ follows N (0, 1). Then the
P-value is computed using the cumulative distribution function (CDF) of the
standard normal distribution Φ(·) or the complementary error function erfc(·):

p = 2(1− Φ(|d|)) = erfc(
|d|√

2
),

where

Φ(x) =
1√
2π

∫ x

−∞
e−

η2

2 dη,

erfc(x) =
2√
π

∫ ∞
x

e−η
2

dη.

In all binomial-based tests, the same formula is used to compute P-values
based on the test statistics, while each test item has a unique formula to compute
the test statistic.

2.4 Spectral Test

The Spectral Test is also known as the Discrete Fourier Transform (DFT) Test
or the Fast Fourier Transform (FFT) Test. The purpose of this test is to detect
periodic features (i.e., repetitive patterns that are near each other) in the tested
sequence [11]. For tested sequence ε = {ε1, ε2, . . . , εn} ∈ {0, 1}n, the observed
value N1 is assumed to follow N (u, σ2), where u is the expected number of

frequency components that are beyond the 95% threshold T =
√

(ln 1
0.05 )n.

Then the test statistic d is computed as:

d =
N1 − u
σ

,

where u = 0.95n/2, σ2 = 0.95 · 0.05 · n/c, and c = 4 in the NIST SP 800-22 test
suite.

3 Incompleteness of P-value based Second-level Tests

In the binomial-based tests, the standard normal distribution should be used
as the reference for the observed test statistics. However, we find that, when
the computed P-values follow a uniform distribution, the test statistic values
are aligned with the half-normal distribution3, rather than the expected normal

3 The half-normal distribution refers to the fold at the mean of the standard normal
distribution in this paper.
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distribution. We prove this observation using the following Lemma 1 [3] and
Theorem 1. To ensure the continuity of the statistic values’ CDF, we assume
that the sequence block length n is large enough in this section.

Lemma 1 Let F be a continuous CDF on R with inverse F−1 defined by

F−1(z) = inf{x : F (x) = z, 0 < z < 1},

where inf means the infimum. If Z is a uniform random variable on [0, 1], then
F−1(Z) has distribution function F . Also, if a random variable X has distribu-
tion function F , then F (X) is uniformly distributed on [0, 1].

Proof. The first statement follows after noting that for all x ∈ R,

Pr(F−1(Z) ≤ x) = Pr(inf{y : F (y) = Z} ≤ x)

= Pr(Z ≤ F (x)) = F (x).

The second statement follows from the fact that for all 0 < z < 1,

Pr(F (X) ≤ z) = Pr(X ≤ F−1(z))

= F (F−1(z)) = z.

ut

Theorem 1 Let d be the test statistic in a binomial-based test, and let p be the
P-value computed in the test. The following two statements are equivalent: 1) |d|
follows the half-normal distribution, and 2) p is uniformly distributed on [0, 1].

Proof. Let Y be a random variable following the half-normal distribution, and
let FY (·) be the CDF of Y . On one hand, if |d| follows the half-normal distribu-
tion, FY (|d|) is a uniformly distributed variable on [0, 1] according to the second
statement of Lemma 1. Since p is computed as 1−FY (|d|), p is also uniformly dis-
tributed on [0, 1]. On the other hand, if p = 1−FY (|d|) is uniformly distributed
on [0, 1], FY (|d|) also follows the uniform distribution on [0, 1]. According to the
first statement of Lemma 1 (by replacing Z with FY (|d|)), F−1Y (FY (|d|)) = |d|,
has the same CDF with Y , thus |d| follows the half-normal distribution. ut

Obviously, the condition that |d| follows the half-normal distribution is in-
sufficient to deduce that d follows the normal distribution. Therefore, for the
second-level tests of the binomial-based tests, checking the uniformity of P-
values is unqualified to assess whether d satisfies the null hypothesis. Hence, the
second-level tests in the binomial-based tests could fail to detect some imperfect
random sequences or elaboratively constructed sequences.

Remark. As to the chi-square based tests in the NIST SP 800-22 test suite,
we clarify that these tests do not have the mentioned problem. The chi-square
based tests are one-sided, and their P-values are not computed from the absolute
values of the test statistic values.
Biased “random” sequence construction. Below we will construct a biased
sequence, yet it passes the NIST SP 800-22 test suite with given test parameters.
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1. Generate a random bit sequence with an appropriate length that passes the
test suite. For example, use the Blum-Blum-Shub generator (BBS) [2] which
is acknowledged as a good PRNG.

2. Perform the Frequency Test according to the test parameters n and N :
calculate the test statistic value di of the ith block (i = 1, ..., N). For each
i, if di is less than zero (i.e., 0’s are more than 1’s), perform a bitwise NOT
(negation) on the sequence block; otherwise, keep the block unchanged.

The processed sequence is significantly biased, as the number of 1’s is larger
than that of 0’s for each block after processing. However, the processed sequence
still has a very high probability to pass the test suite due to the following reasons.

– For the Frequency Test, the P-value for each block is unchanged since |d|
remains unchanged.

– For most test items, “0” and “1” have equal roles in the evaluation of ran-
domness. For example, in the Block Frequency, Cumulative Sums, Runs,
Spectral, Universal, Approximate Entropy, and Serial Tests, their P-values
remain unchanged after processing.

The effectiveness of the construction is confirmed by the statistical testing for
the original and processed BBS output sequences. The two test reports about the
original and processed BBS outputs are presented in Appendix A. We emphasize
that, the constructed sequence is elaborative, and changing the testing method
(e.g., enlarging the block length adopted by the test) certainly can detect the
bias. The goal of our construction is to demonstrate the incompleteness of the P-
value based second-level test, rather than to construct a flawed sequence which
can pass all the existing test methods. In practice, an undetectable flaw may
occur in other manners more than the unbalance, or occur in the focused aspects
of other binomial-based tests more than the Frequency Test.

4 Second-level Tests based on Q-value

4.1 Q-value

The bias in the constructed sequence above should be detected by the Frequency
Test that assesses the balance of the tested sequence. In our construction exper-
iment, as the P-value based second-level tests cannot assess the symmetry of the
test statistics, the constructed sequence “bypasses” the Frequency Test, even the
whole test suite. For this reason, we introduce Q-value to replace P-value in the
second-level tests of the binomial-based tests, and Q-value is defined as

q = 1− Φ(d) =
1

2
erfc(

d√
2

).

The relationship between p and q is

p =

{
2q, q ≤ 0.5;
2(1− q), q > 0.5.

Referring to the proof of Theorem 1, we have Theorem 2 for Q-value.
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Theorem 2 Let d be the test statistic in a binomial-based test, and let q be the
Q-value computed in the test. The following two statements are equivalent: 1)
d follows the standard normal distribution, and 2) q is uniformly distributed on
[0, 1].

Checking the uniformity of Q-value is equal to assessing the distribution of
d rather than |d|. Therefore, we propose the Q-value based second-level tests
to replace the original second-level tests for the binomial-based tests. In the
testing process, the modification is only using N Q-values rather than P-values
to perform the chi-square goodness-of-fit test.

Different from P-value, Q-value is computed directly using the test statistics,
rather than their absolute values. Hence, Q-value based tests are able to assess
the symmetry (to zero) of the test statistics, and have greater testing capability.
The constructed sequence in Section 3 cannot pass the Q-value based second-
level test of the Frequency Test, because all the derived Q-values are not greater
than 0.5.

4.2 Testing Capability on the Drift of Test Statistics

The second-level tests in the binomial-based tests are designed to assess the dif-
ference between the theoretical reference distribution (i.e., the standard normal
distribution) and the observed distribution. In the practical testing on the out-
put sequences of RNGs (rather than the elaboratively constructed sequences),
we emphasize that both the P-value based and Q-value based tests can detect
the statistical flaws when the observed distribution is quite different from the
standard normal distribution. Hence, we focus on the case that the observed
distribution is (or is similar to) a normal distribution, but the distribution pa-
rameters (such as the mean or the variance) drift from the ideal ones. Next, we
compare the sensitivity to the drifts between the Q-value based test and the
P-value based test.
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Fig. 3. The mean drift between the theoretical distribution and the observed one
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Mean drift. The mean drift is defined as the distance between the mean values
of the theoretical distribution and the observed one. We assume that the test
statistic d, which is computed by a formula on the tested data, follows the
standard normal distribution. The mean drift with µ for the test statistic is
depicted in Figure 3.

Either an error in the computation formula of d or the flawed data can cause
a drift. For example, Kim el al. [6] improved the formula in the Spectral Test,
which makes the the distribution of the calculated test statistics from good
RNGs show better consistency with the theoretical reference distribution. The
other case that, the tested data are flawed, is more common in the testing.
Below we show the consequence if one uses a biased generator of a noticeable
mean drift.

Test statistic

P
ro

bi
lit

y 
de

ns
ity

−2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

Normal distribution
Observed distribution

Fig. 4. The mean drift caused by the simulated biased sequence

The statistical flaw on the frequency (i.e., the tested sequence is biased) is
common for imperfect RNGs, especially for those TRNGs where the physical
phenomenons are not ideal. We assume that the flawed generator outputs a
biased sequence with 50.2% 1’s. The generator is simulated by the R software
[1], and the observed test statistics are computed with the parameters n = 105

and N = 1000. Due to the existence of the bias, the distribution of the observed
test statistics has a mean drift from the expected standard normal distribution,
as shown in Figure 4. The histogram in Figure 4 is plotted using the probability
density values computed on the 1000 test statistics. The mean of the observed
distribution drifts to 1.265. Knowing the inherent bias of the generator output
sequence, one can optimize brute-force attacks to reduce the breaking complexity
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for cryptographic systems. Hence, it is important to detect the mean drift for
the testing of RNGs.

KLD and TVD. We denote the probability distribution function (PDF) of the
ideal test statistic d as f(x), and the PDF of |d| as g(x). When the mean of
the observed test statistics dµ has a drift µ (µ 6= 0), the PDFs of dµ and |dµ|
are represented as fµ(x) and gµ(x), respectively. If the deviation caused by µ
between f(x) and fµ(x) is larger than that between g(x) and gµ(x), we say that
f(x) is more sensitive to the drift, and the statistical test based on f(x) has
greater testing capability on detecting the drift.

We choose Kullback-Leibler divergence (KLD) and total variation distance
(TVD) as the measurements of the sensitivity. For PDFs hA(x) and hB(x) of
two continuous random variables A and B, the KLD between them is defined as

DKL(hA(x)‖hB(x)) =

∫ ∞
−∞

hA(x) log
hA(x)

hB(x)
dx, (1)

and the TVD between them is defined as

δ(hA(x), hB(x)) =
1

2

∫ ∞
−∞
|hA(x)− hB(x)|dx. (2)

Roughly speaking, KLD represents the amount of information lost when
hB(x) is used to approximate hA(x), and TVD represents the largest possi-
ble difference between the probabilities that the two variables A and B have the
same value.

When d is assumed to follow the standard normal distribution, we get

f(x) =
1√
2π
e−

x2

2 , fµ(x) =
1√
2π
e−

(x−µ)2
2 , x ∈ (−∞,+∞),

and

g(x) =
2√
2π
e−

x2

2 , gµ(x) =
1√
2π

(e−
(x−µ)2

2 + e−
(x+µ)2

2 ), x ∈ [0,+∞).

Then, substituting f(x) and fµ(x) into Equation (1), we get the KLD between
f(x) and fµ(x), as shown in Equation (3).

DKL(f(x)‖fµ(x)) =

∫ ∞
−∞

f(x) log
f(x)

fµ(x)
dx (3)

=

∫ ∞
−∞

1√
2π
e−

x2

2 log
e−

x2

2

e−
(x−µ)2

2

dx =
µ2

2

By noting that e−
(x−µ)2

2 + e−
(x+µ)2

2 ≥ 2e−
x2+µ2

2 , we get the KLD between
g(x) and gµ(x), which is strictly smaller than µ2/2, as shown in Equation (4).
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DKL(g(x)‖gµ(x)) =

∫ ∞
−∞

g(x) log
g(x)

gµ(x)
dx (4)

=

∫ ∞
0

2√
2π
e−

x2

2 log
2e−

x2

2

(e−
(x−µ)2

2 + e−
(x+µ)2

2 )
dx <

µ2

2

By observing that e−
x2

2 and e−
(x−µ)2

2 are symmetrical to x = 0 and x = µ,
respectively, we compare the result between δ(f(x), fµ(x)) and δ(g(x), gµ(x)), as
shown in Equation (5).
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2
· 1√
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2 dx+
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2 − e−
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2 dx

+
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√

2π

∫ ∞
µ
2

e−
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2 − e− x
2

2 dx

=
1

2
√

2π

∫ ∞
µ
2

|(e−
(x−µ)2

2 − e− x
2

2 )|+ |(e− x
2

2 − e−
(x+µ)2

2 )|dx

+
1

2
√

2π

∫ µ
2

0

|2e− x
2

2 − e−
(x−µ)2

2 − e−
(x+µ)2

2 |dx

>
1

2
√

2π

∫ ∞
0

|2e− x
2

2 − e−
(x−µ)2

2 − e−
(x+µ)2

2 |dx = δ(g(x), gµ(x))

From Equations (3)–(5), we deduce DKL(f(x)‖fµ(x)) > DKL(g(x)‖gµ(x))
and δ(f(x), fµ(x)) > δ(g(x), gµ(x)).

The KLD and TVD results with µ = 0.5 on the normal distribution f(x)
and the half-normal distribution g(x) are also depicted in Figure 5, where the
distances represent the integral parts in Equations (1) and (2). We can see that
the change caused by µ in the normal distribution is larger than that in the half-
normal distribution, which means that the test based on the normal distribution
is more sensitive to the drift. Thus, we conclude that Q-value based second-level
tests are more powerful than the P-value based ones to detect the mean drift of
the test statistics.

Regarding to the drift of the variance, we note that the testing capability of
the two testing methods are identical, as their KLDs (or TVDs) are equal.

4.3 Testing Reliability Analysis based on Actual Distribution

An asymptotic distribution refers to the limiting distribution when n approaches
infinity. The asymptotic distribution of P-value is the uniform distribution on
[0, 1]. However, in the practical cases that n is finite, the number of possible P-
values is limited, i.e., the set of P-values is discrete. This fact makes the actual
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Fig. 5. The comparison of TVDs and KLDs with the drift µ = 0.5

distribution of P-value is not a perfect uniform distribution on [0, 1]. When
the number of blocks N is very large, the inconsistency is revealed and the
observed P-values do not follow the assumed uniform distribution, which makes
these P-values fail the chi-square test in the second-level test. This decreases
the reliability of the statistical tests, i.e., increases the probability of erroneously
identifying an ideal generator as not random.

In order to investigate the reliability of the Q-value based second level tests,
we deduce the actual distributions of Q-values for the binomial-based tests, and
compare them with those of P-values. The actual distributions of P-values for
the binomial-based tests have been analyzed in [10]. The actual distribution of
Q-value is closer to the assumed uniform distribution, meaning that the Q-value
based test has a lower probability that a sequence with perfect randomness fails
the test, i.e., higher reliability.
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Actual distribution. As we mentioned in Section 2.3, each binomial-based test
computes its normally distributed value S ∼ N (u, σ2). For an n-bit sequence
block, the number of possible values of S is denoted as m. The possible values
are increasingly ordered as S = {s1, s2, ..., sm}, i.e., si−1 < si for i = 2, . . . ,m.
Note that the variables u, σ,m depend on the specific test item, such as the
Frequency, Runs, Spectral, Universal, and Random Excursions Variant Tests.
As our goal is to provide a general conclusion for the binomial-based tests, we
do not consider the specific values of these variables.

For simplicity, we consider a common situation that m is odd and S is sym-

metrical with respect to u. For each si, P-value pi = erfc( |si−u|√
2σ

), and Q-value

qi = 1
2erfc( si−u√

2σ
). The sets of possible P-values and possible Q-values are de-

noted as P and Q, respectively. According to the symmetry of S, it is observed
that pi = pm+1−i and qi + qm+1−i = 1, thus the cardinality |P| = m/2 + 1 and
|Q| = m.

The actual CDFs of P-value and Q-value are represented as:

F ′p(x) =

m∑
i=1

Pr{S = si}U(x− pi), (6)

F ′q(x) =

m∑
j=1

Pr{S = sj}U(x− qj), (7)

where

U(x) =

{
1, x ≥ 0;
0, x < 0.

Using the property pi = pm+1−i, F
′
p(x) is rewritten as:

F ′p(x) = 2

(m−1)/2∑
i=1

Pr{S = si}U(x− pi) + Pr{S = sm+1
2
}U(x− pm+1

2
). (8)

In fact, these two CDFs are both stepladder-like functions. We compare the
number, height, and width of the steps between F ′p(x) and F ′q(x). Note that |Q|
is almost as twice as |P|, so the number of steps in F ′q(x) is approximately as
twice as that in F ′p(x). The coefficient of the step function in F ′p(x) is as twice
as that in F ′q(x), so the maximum width and height of the step in F ′p(x) are also
as twice as those in F ′q(x). Therefore, the actual distribution of Q-values is more
smooth, and is closer to the uniform distribution than that of P-values.

It should be noted that we assume S is symmetrical with respect to u, the
mean of the asymptotic distribution. The assumption is appropriate for the
Frequency Test; however, in other binomial-based tests, there may be a little
deviation between u and the mean of S. We leave the study on this case as our
future work.
Actual distribution in the Frequency Test. We take the Frequency Test as
an example to demonstrate the difference between the distributions of P-value
and Q-value. Without loss of generality, the length n of the sequence block is
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assumed to be even. It is easy to figure out that |S| = n + 1, |P| = n
2 + 1,

|Q| = n+1, and u = 0, σ2 = n. Then, from Equation (8) we get the actual CDF
of P-value:

F ′p(x) = 2
∑
i

Pr{S = si}U(x− pi) +
2√
2πn

U(x− 1),

where Pr{S = si} = 2−n
(
n
i−1
)
≈ 2√

2πn
e

−(2i−n−2)2

2n , pi = erfc( |2i−n−2|√
2n

), and

i ∈ {1, 2, ..., n2 }.
From Equation (7), we get the actual CDF of Q-value:

F ′q(x) =
∑
j

Pr{S = sj}U(x− qj),

where Pr{S = sj} = 2−n
(
n
j−1
)
≈ 2√

2πn
e

−(2j−n−2)2

2n , qj = 1
2erfc( 2j−n−2√

2n
) and

j ∈ {1, 2, ..., n+ 1}.
For the parameter n = 200, we plot the actual CDFs of P-value and Q-value,

as shown in Figure 6. It is observed that Q-value’s actual CDF is closer to the
uniform distribution than P-value’s.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
p

 

 

Actual P−value CDF
Uniform CDF

(a) The actual CDF of P-value

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
q

 

 

Actual Q−value CDF
uniform CDF

(b) The actual CDF of Q-value

Fig. 6. Actual CDF comparison between P-value and Q-value for the Frequency Test
(n = 200)

Then, we compare the uniformity between actual P-values and Q-values
through the chi-square goodness-of-fit test. Here we choose n = 220 and K = 16
to better express the difference between Q-values and P-values in the chi-square
test. As shown in Equation (9), the statistic value χ2 is computed using Oi which
is the number of P-values or Q-values in the ith sub-interval.

χ2 =

K∑
i=1

(Oi −N/K)2

N/K
(9)
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Using the Q-value and P-value CDFs with n = 220, we calculate two sets of
Oi based on P-values and Q-values, respectively. As expected, the set of Oi based
on Q-values shows better consistency with the uniform distribution than that
based on P-values, as shown in Figure 7. Therefore, we conclude that, under the
same test parameters, the Q-value based second-level test has higher reliability
than the P-value based one.
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Fig. 7. The probability comparison between P-values and Q-values in each sub-interval
(K = 16, n = 220)

To verify the correctness of the derived actual CDF of Q-value, we test the
BBS output sequence with test parameters n = 210 and N = 100000, and count
the number of Q-values in each sub-interval. The experimental and theoretical
counting results in each sub-interval are shown in Figure 8, which shows good
consistency between the theory and the experiment.

5 Statistical Tests on PRNGs

In this section, our experiments confirm that the Q-value based second-level tests
have lower probabilities to erroneously identify good RNGs as not random, and
also demonstrate that they have greater testing capability.

5.1 Experiment Setup

We choose several popular PRNGs including BBS, Linear Congruential Gen-
erator (LCG), Modular Exponentiation Generator (MODEXPG), and Micall-
Schnorr Generator (MSG), and test their original output sequences using the
NIST Statistical Test Suite (sts v2.1) [8] and our version using Q-values.

The test parameters adopted by each test item are the default values specified
in the sts v2.1 toolkit. Also, we run the PRNG functions included in the toolkit
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to generate the output sequences, and the input parameters for these PRNGs
are the default values fixed in the source code of sts v2.1, where the default seed
of LCG is 23482349.

5.2 Statistical Testing

Using the recommended test parameters n = 106 and N = 1000, we perform
statistical tests on the output sequences of these PRNGs. We only list the second-
level test results (i.e., pt’s) for the Frequency Test, the Runs Test, the Spectral
Test, and the Universal Test, as shown in Table 1. We omit the results of the
Random Excursions Variant Test, for 18 different subitems are included in this
item and all these subitems are passed.

Table 1. Second-level test results for PRNGs (n = 106, N = 1000)

PRNG
Second-level

Test
Frequency Runs

Spectral
(c = 4)

Spectral
(c = 3.8)

Universal

BBS P-value 0.6641 0.6350 0.5281 0.2480 0.4299
Q-value 0.4817 0.9379 0.0218 0.0113 0.4263

MSG P-value 0.3899 0.1746 0.6642 0.9619 0.7734
Q-value 0.8055 0.1786 0.1825 0.6350 0.9996

LCG P-value 0.8596 0.7075 0.4788 0.6392 0.8111
Q-value 0.4769 0.8905 0.0007 0.0026 0.4447

MODEXPG P-value 0.0 * 0.4541 0.2636 0.2676
Q-value 0.0 * 0.1538 0.1107 0.7578

* The first-level test fails.
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All the tested sequences of these PRNGs pass the whole original SP 800-22
test suite, except for MODEXPG. For BBS, MSG, and LCG, the pt’s of the three
binomial-based tests are all greater than the preset threshold αT = 0.0001, thus
these PRNGs pass both P-value based and Q-value based second-level tests. For
MODEXPG, the Frequency Test fails either for P-value or Q-value. However,
the Q-value’s pt of LCG in the Spectral Test becomes very small (0.0007), which
indicates that the test statistics are not well consistent with the standard normal
distribution, though pt is still greater than αT .

In order to confirm the discovery in the Spectral Test, we plot the histograms
using the probability density values computed on the 1000 test statistics from
LCG or MSG, and compare them with the PDF of the standard normal distribu-
tion, as depicted in Figure 9. The distribution of the test statistics of MSG has
better consistency with the standard normal distribution, while the distribution
of the test statistics of LCG drifts to the right. As we analyzed in Section 4.2,
the Q-value based test is more sensitive to the mean drift, thus detects the drift
better than the P-value based test.
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Fig. 9. Comparison between the standard normal distribution and the distribution of
test statistics for LCG and MSG

For the Spectral Test, Pareschi et al. [10] pointed out that the variance σ2 =
0.95 · 0.05 · n/c with c = 3.8, is closer to the ideal distribution than the original
value (c = 4) in the NIST SP 800-22 test suite [6, 4, 11]. Here we emphasize
that the modification only adjusts the variance of the test statistic value, rather
than the mean. The reason why the tested sequence almost fails the Spectral
Test is the asymmetry of the statistic values. Therefore, the mean drift (or the
asymmetry) still exists after modifying the variance, thus the Q-value based
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test can still detect the drift. This is confirmed by the experiment, and the
experimental results for c = 3.8 are also shown in Table 1.

5.3 Further Analysis on LCG

We repeat the Spectral Test on the output sequences of LCG with different
seeds, and the pt results of the P-value and Q-valued based second-level tests
are presented in Table 2. From Table 2, we confirm that the conflict in Table 1
is not a coincidence or individual example, as similar results are also obtained
for other seeds. It is noted that the choice of the LCG parameters has an impact
on the quality of the output, thus the output sequences derived from some seeds
are possible to show better statistical properties, as shown in the latter rows of
Table 2.

Table 2. The second-level test results of the Spectral Test on the outputs of LCG with
different seeds (n = 106, N = 1000, c = 4)

Seed P-value based test Q-value based test

73724612 0.3635 0.00006
12876498 0.2882 0.00030
52731971 0.0329 0.00096
92134122 0.0142 0.00106
82345342 0.1478 0.01581
59823781 0.6890 0.02959
23646172 0.2167 0.03732

Although we get small pt’s in the Q-value based second-level tests for LCG
outputs, the sequence is still considered to pass the test (pt ≥ αT = 0.0001).
Therefore, we further test the LCG outputs using a longer block length n = 107

to improve the testing capability, and the tested sequence is the same with that
in Table 1. We find that, out of N = 100 blocks only 2 blocks pass the Spectral
Test, i.e., the first-level test fails. For comparison, we also perform the test with
n = 107 and N = 100 on the same BBS output sequence in Table 1, and the
test is still passed. The detailed test reports are presented in Appendix B.

It is reasonable to conclude that the Q-value based second-level tests improve
the detectability under the same test parameters. In the process of increasing the
block length to improve the testing capability, the Q-value based second-level
tests discover statistical flaws sooner.

6 Conclusion

We investigate the testing capability of the second-level tests of the binomial-
based tests in the NIST SP 800-22 test suite, and find that, the sequence that
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passes the tests could still have statistical flaws in the assessed aspect. Hence, we
propose Q-value as the metric for the second-level tests to replace the original
P-value without any extra modification. The Q-value based second-level test is
applicable for all the five binomial-based tests, including the Frequency, Runs,
Spectral, Universal, and Random Excursions Variant Tests. We provide the cor-
rectness proof of the proposed Q-value based second-level tests, and the distance
analyses show that the modification improves the testing capability. Surprisingly,
the comparison between the P-value’s and Q-value’s actual distributions indi-
cates that the testing reliability is also improved. The experiments on several
popular PRNGs demonstrate that the Q-value based second-level tests improve
the detectability under the same test parameters. In the future, we will study
the effectiveness of our method on TRNGs, and further analyze the properties
of the Q-value based second-level tests.
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A Statistical test results on the original and processed
BBS output sequences

Table 3. Statistical test report of the original BBS outputs (n = 106, N = 103)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPO STATISTICAL TEST
102 88 101 108 101 89 93 95 111 112 0.664168 995/1000 Frequency
86 109 99 91 89 106 106 94 116 104 0.474986 987/1000 BlockFrequency
88 102 85 106 112 98 88 109 103 109 0.463512 994/1000 CumulativeSums
97 96 83 104 103 94 107 109 103 104 0.807412 996/1000 CumulativeSums
89 115 89 103 102 95 100 102 93 112 0.635037 990/1000 Runs
98 90 97 101 116 102 99 93 104 100 0.883171 994/1000 LongestRun
103 98 80 92 102 96 116 94 108 111 0.371941 989/1000 Rank
107 108 83 99 109 101 90 94 96 113 0.528111 983/1000 FFT
97 104 101 118 84 86 112 94 97 107 0.319084 993/1000 NonOverlappingTemplate
103 101 104 106 112 94 90 95 90 105 0.841226 992/1000 OverlappingTemplate
114 118 104 101 98 93 93 97 84 98 0.429923 987/1000 Universal
107 98 97 89 95 99 101 101 106 107 0.965860 995/1000 ApproximateEntropy
62 58 67 60 68 61 53 63 60 52 0.906970 598/604 RandomExcursions
59 53 55 56 66 59 73 51 58 74 0.380976 600/604 RandomExcursionsVariant
90 96 81 105 109 96 104 117 109 93 0.323668 994/1000 Serial
81 97 91 104 112 100 105 103 113 94 0.484646 988/1000 Serial
111 95 100 107 113 88 97 97 97 95 0.779188 993/1000 LinearComplexity

Table 4. Statistical test report of the processed BBS outputs (n = 106, N = 103)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPO STATISTICAL TEST
102 88 101 108 101 89 93 95 111 112 0.664168 995/1000 Frequency
86 109 99 91 89 106 106 94 116 104 0.474986 987/1000 BlockFrequency
88 102 85 106 112 98 88 109 103 109 0.463512 994/1000 CumulativeSums
97 96 83 104 103 94 107 109 103 104 0.807412 996/1000 CumulativeSums
89 115 89 103 102 95 100 102 93 112 0.635037 990/1000 Runs
101 88 88 111 118 100 104 99 92 99 0.518106 993/1000 LongestRun
99 100 81 85 107 98 111 98 110 111 0.361938 990/1000 Rank
107 108 83 99 109 101 90 94 96 113 0.528111 983/1000 FFT
98 102 88 105 91 105 104 97 102 108 0.926487 994/1000 NonOverlappingTemplate
122 89 90 98 112 96 109 108 84 92 0.147815 991/1000 OverlappingTemplate
114 118 104 101 98 93 93 97 84 98 0.429923 987/1000 Universal
107 98 97 89 95 99 101 101 106 107 0.965860 995/1000 ApproximateEntropy
61 56 57 53 74 57 64 65 65 52 0.654467 597/604 RandomExcursions
56 60 58 55 76 54 69 51 54 71 0.280306 601/604 RandomExcursionsVariant
90 96 81 105 109 96 104 117 109 93 0.323668 994/1000 Serial
81 97 91 104 112 100 105 103 113 94 0.484646 988/1000 Serial
97 92 110 99 101 105 98 97 108 93 0.953089 992/1000 LinearComplexity
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B Statistical test results with the longer block length on
the LCG and BBS output sequences

Table 5. Statistical test report of the LCG outputs (n = 107, N = 102)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPO STATISTICAL TEST
12 16 4 12 12 8 10 8 11 7 0.334538 100/100 Frequency
12 10 8 11 11 8 11 10 6 13 0.911413 100/100 BlockFrequency
12 13 14 6 6 11 8 7 13 10 0.494392 99/100 CumulativeSums
9 11 10 11 11 17 10 6 9 6 0.474986 100/100 CumulativeSums
9 10 7 12 13 8 13 12 9 7 0.834308 99/100 Runs
9 10 9 10 13 16 7 6 12 8 0.534146 100/100 LongestRun
14 10 12 7 11 7 9 12 9 9 0.867692 98/100 Rank
100 0 0 0 0 0 0 0 0 0 0.000000 2/100 FFT
6 11 10 10 6 15 12 11 14 5 0.319084 100/100 NonOverlappingTemplate
17 13 7 10 13 7 8 6 9 10 0.304126 97/100 OverlappingTemplate
6 8 7 8 12 10 7 17 12 13 0.289667 98/100 Universal
10 3 8 10 8 12 13 6 21 9 0.013569 99/100 ApproximateEntropy
8 14 7 13 3 9 6 13 9 8 0.213309 88/90 RandomExcursions
9 8 13 11 7 9 11 11 6 5 0.694743 89/90 RandomExcursionsVariant
5 9 10 9 4 12 8 18 10 15 0.066882 100/100 Serial
8 10 11 7 13 6 12 13 10 10 0.816537 100/100 Serial
7 11 6 8 13 11 14 7 9 14 0.514124 100/100 LinearComplexity

Table 6. Statistical test report of the BBS outputs (n = 107, N = 102)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPO STATISTICAL TEST
12 10 7 6 11 6 15 7 8 18 0.096578 99/100 Frequency
11 8 7 11 8 7 6 12 14 16 0.350485 100/100 BlockFrequency
12 10 4 15 8 10 8 8 13 12 0.437274 99/100 CumulativeSums
12 5 10 12 9 4 11 13 11 13 0.437274 99/100 CumulativeSums
11 12 10 12 8 6 8 8 13 12 0.834308 100/100 Runs
7 16 14 11 5 7 13 9 5 13 0.122325 100/100 LongestRun
11 11 12 6 8 7 10 11 10 14 0.816537 99/100 Rank
16 13 13 6 14 10 7 7 5 9 0.162606 97/100 FFT
13 11 12 7 6 7 6 10 11 17 0.249284 97/100 NonOverlappingTemplate
18 12 10 11 8 9 11 7 7 7 0.334538 96/100 OverlappingTemplate
15 10 9 8 8 8 12 11 7 12 0.779188 100/100 Universal
9 11 11 6 7 8 10 7 8 23 0.010988 99/100 ApproximateEntropy
11 8 9 7 7 9 9 7 7 14 0.689019 88/88 RandomExcursions
9 8 8 6 10 7 4 11 17 8 0.105618 87/88 RandomExcursionsVariant
9 12 10 9 13 10 7 6 7 17 0.366918 100/100 Serial
7 20 8 8 9 9 8 8 9 14 0.108791 99/100 Serial
11 7 11 10 14 12 6 8 12 9 0.779188 100/100 LinearComplexity


