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Abstract. Constructing short signatures with tight security from stan-
dard assumptions is a long-standing open problem. We present an adap-
tively secure, short (and stateless) signature scheme, featuring a constant
security loss relative to a conservative hardness assumption, Short Inte-
ger Solution (SIS), and the security of a concretely instantiated pseudo-
random function (PRF). This gives a class of tightly secure short lattice
signature schemes whose security is based on SIS and the underlying
assumption of the instantiated PRF.

Our signature construction further extends to give a class of tightly and
adaptively secure “compact” Identity-Based Encryption (IBE) schemes,
reducible with constant security loss from Regev’s vanilla Learning With
Errors (LWE) hardness assumption and the security of a concretely in-
stantiated PRF. Our approach is a novel combination of a number of
techniques, including Katz and Wang signature, Agrawal et al. lattice-
based secure IBE, and Boneh et al. key-homomorphic encryption.

Our results, at the first time, eliminate the dependency between the
number of adversary’s queries and the security of short signature/IBE
schemes in the context of lattice-based cryptography. They also indi-
cate that tightly secure PRFs (with constant security loss) would imply
tightly, adaptively secure short signature and IBE schemes (with con-
stant security loss).

1 Introduction

Short signatures are useful and desirable for providing data authenticity in low-
bandwidth and/or high-throughput applications where many signatures have to
be processed very quickly. Most digital signature schemes are based on compu-
tationally hard problems on specific algebraic groups, e.g., finite fields, curves,
and lattices. A signature is “short” if the signature consists in a (small) constant
number of group elements (e.g., field elements or lattice points).

Although bare-bones signatures can be obtained from very weak assumptions
(e.g., collision-resistant hash functions), constructing efficient short signatures
satisfying standard security requirements (e.g., existential unforgeability under
adaptively chosen-message attacks), from reasonable assumptions, appears to be
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a challenging task. Some of the existing short signature schemes use random or-
acles, e.g., [19,10,48,36,50], or rely on non-standard computational assumptions
(strong, interactive assumptions, and/or q-type parametric assumptions), e.g.,
[34,30,33,16,26], or require signers to maintain state across signatures, e.g., [45].

The first short signature scheme from a reasonable and non-parametric as-
sumption without random oracles was proposed by Waters [56]. Hohenberger
and Waters later proposed a short signature scheme from standard RSA [46].
Lattice-based short signatures from the very mild SIS assumption in the stan-
dard model were proposed in [20,51]. Recently, the “confined guessing” technique
developed by Böhl et al. [13] has produced short signatures from standard RSA
and bilinear-group CDH assumptions, and also from the ring-SIS/SIS assump-
tion in combination with lattice techniques [32,4] with very loose reductions.

Despite these elegant constructions, signature schemes that are short and
enjoy tight security reductions to standard assumptions in the standard model
(without random oracle), remain unknown. Existing tightly secure signature
schemes either have large signature size, e.g., [43,1,11], or merely have heuristic
security arguments based on random oracles, e.g., [48,39]. We have not been
able to ascertain the earliest occurrence of this long-standing folklore problem
in cryptography, but here [11] is one recent formulation:

Open Problem #1 —Tightly Secure Short Signatures
“Construct a tightly secure and short (in the sense that the signature
contains constant number of group elements or vectors and the security
loss is a constant) signature scheme from standard assumptions.” —
Blazy, Kakvi, Kiltz, Pan (2015)

1.1 Tight Security

The reductionist approach to cryptographic security algorithms seeks to prove
theorems along the lines of: “If a t-time adversary attacks the scheme with suc-
cessful probability ε, then a t′-time algorithm can be constructed to break some
computational problem with success probability ε′ = ε/θ and t′ = k · t+ o(t).”.
The parameters θ ≥ 1 and k ≥ 1, or more simply the product k · θ, measures
how tightly the security of the cryptographic scheme is related to the hardness
of the underlying computational problem. Alternatively, when k ≈ 1 as is the
case in many reductions, θ measures the security loss of the security reduction
of our cryptographic scheme from the underlying assumption. A cryptographic
scheme is tightly secure if θ is a small constant that in particular does not de-
pend on parameters under the adversary’s control, such as the adversary’s own
success probability ε, the number of queries it chooses to make, and even the
scheme’s security parameter. The reduction phrases “almost tight security” from
the literature refers to the case where θ is a polynomial of the security parameter.

Tight reduction is an elegant notion from a theoretical point of view. A
tight reductionist proof (with respect to a well-defined security model) indicates
that the security of a cryptographic scheme is (extremely) closely related to the
hardness of the underlying hard problem, which is the optimal case we expect
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from provable security theory. On the other hand, it is also a determinant factor
to the practicality of real-world security. Its opposite, loose security, means that
in order to realise a desired “real” target security level, one has to increase the
“apparent” security level inside the construction to compensate for the loose
reduction. This inflates the size of data atoms by some polynomial, with in turn
increases the running time of cryptographic operations by another polynomial,
combining multiplicatively.

1.2 Identity-Based Encryption with Tight Security

Digital signatures and identity-based encryption (IBE) are closely connected,
which suggests that techniques that improve upon the security of signatures
might also improve upon the security of IBE. In this work, we also investigate the
problem of constructing tightly secure IBE from standard assumptions (without
random oracles).

In an IBE system, any random string that uniquely represents a user’s iden-
tity, such as email address or driver license number, can act as a public key
(within a certain domain or realm). Encryption uses this identity, together with
some common domain-specific public parameters, to encrypt messages. Users
are issued private decryption keys corresponding to their public identities, by
a trusted authority (or distributed authorities) called Private Key Generator
(PKG) which hold(s) (shares of) the master secret key for a domain. Decryp-
tion succeeds if the identity associated with the ciphertext matches the identity
associated with the private key, in the same domain.

The strongest, most natural and most widely accepted notion of security for
IBE is the adaptive security model or full security model, formally defined in [17].
In this model, the adversary is able to announce its target (the challenge identity
it wants to attack) at any time during the course of its adaptive interaction with
the system. Without the luxury of random oracles, an easier security model to
achieve was the selective security model, where the adversary must announce its
target identity at the onset of its interaction with the system.

In the last fifteen years, a great many IBE schemes have been proposed, with
varying efficiency, security models, hardness assumptions, and other features. In
the standard model (i.e., without random oracles or other idealised oracles), we
mention several notable IBE schemes which have been constructed from bilinear
maps in the selective model [27,14] and the adaptive model [15,56,35,57,29,12],
and from lattices in the adaptive model [2,28,5]. It is fair to say that, by now, the
art of selectively secure IBE has been well honed. However, adaptively secure IBE
schemes from standard assumptions with tight security (in the sense that the
security loss is a small constant) remain unknown. The best known adaptively
secure IBE schemes in terms of tight reduction are based on linear assumptions
over pairings and achieve almost tight security (e.g., [29,12,6,44]). Waters [56]
states this open problem as follows:

Open Problem #2 —Tight Adaptively Secure IBE
“Construct a tightly, adaptively secure IBE scheme from standard com-
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putational hardness assumptions without random oracles.” —Waters
(2005)

Furthermore, for all known directly constructed adaptively secure IBE scheme
from standard post-quantum assumption (specifically the LWE assumption), i.e.
[2,28,5], their security loss during reduction depends on the number adversary’s
of queries. That is there is current no even “almost tightly” secure adaptive IBE
scheme based on standard computational problems which are conjectured to be
hard under quantum attacks. The following problem is still open.

Open Problem #3 —“Almost” Tight Adaptively Secure, Post-Quantum
IBE
“Construct an “almost” tightly, adaptively secure IBE scheme from stan-
dard post-quantum assumptions without random oracles.”

1.3 Our Results

Our work uses pseudorandom functions (PRFs). Recall a PRF is a (determin-
istic) function: PRF : K × D → R with the following security property. For
random secret key K from K, PRF(K, ·) is computationally indistinguishable
from a random function Ω : D → R, given oracle access to either PRF(K, ·)
or Ω(·). PRFs can be constructed from general assumptions (e.g., the existence
of pseudo-random number generators [40]), number-theoretic assumptions (e.g.,
the DDH/k-LIN assumption [53,31,47]), and lattice assumption LWE [9,8].

Our contribution is a construction of a class of adaptively secure short sig-
nature schemes/IBE schemes in the standard model. The schemes’ security is
tightly related to SIS/LWE and the security of an instantiated PRF PRF in
the sense that the security loss is a nearly optimal constant factor. More pre-
cisely, let ε and ε′ be the advantage of an adversary in attacking our signature
and IBE schemes respectively, εSIS and εLWE be the security level of the SIS
and LWE assumptions on which our schemes are based, and εPRF is the secu-
rity level of the PRF instantiation PRF. Our constructions provide the following:
ε ≈ 2(εSIS+εPRF), ε′ ≈ 2(εLWE+εPRF), and the (polynomial) runtime of reduction
is approximately the same as attacker’s runtime. Depending on the underlying
hardness assumption and the reduction of PRF, underlying assumptions and
tightness of our signature/IBE scheme vary.

Our work indicates that tightly secure PRFs, which are based on standard
assumptions and computable by polynomial size Boolean circuits, are sufficient
for us to build tightly, adaptively secure lattice signature/IBE schemes. Ide-
ally, it is better if the PRF instantiations assume weak assumptions and have
shallow Boolean circuits implementations. In particular, by instantiating the ‘al-
most” tightly secure PRFs from [9,8], (which are based on LWE assumption with
super-polynomial modulus) we obtain the first “almost” tightly secure short sig-
nature/IBE schemes from LWE with super-polynomial modulus whose security
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does not depend on the number of adversarial queries. 1 This, at the first time,
eliminates the dependency between the number of adversary’s queries and the
security of lattice-based short signature scheme/IBE scheme, and allows us to
answer the Open Problem #3.

While constructing low-depth (e.g. circuits in NC1), tightly secure PRFs from
standard assumptions with constant security loss in the black-box sense2 remains
an open problem, any progress made in such direction will improve our work to-
ward solving Open Problem #1 and #2 (under SIS/LWE assumption). For in-
stance, if the DDH/k-LIN-based PRFs from [47] achieve security loss O(log2 λ)
for security parameter λ, we obtain signature/IBE schemes enjoy the same se-
curity loss under the combined assumptions.

Table 1 provides a comparison between our signature scheme with a LWE-
based PRF instantiation (from [9]) and a representative sample of the prominent
lattice-based (quantum-safe) signature schemes from the literature. Note, Katz
and Wang did not propose a SIS-based signature scheme in [48]. The scheme
we refer to is a straightforward application of Katz-Wang’s proof technique to
GPV’08 signature scheme. Table 2 provides a comparison between our signa-
ture scheme with DDH-based PRF instantiation from [47] and the representa-
tive signature schemes from traditional number-theoretic assumptions, including
(strong) RSA, Dlog and linear assumptions over pairings. Our signature scheme
loses a factor of O(log2 λ) in security proof if the DDH-based PRF instantiation
achieves the same security loss. All of those assumptions are not conjectured
to be quantum-safe. In each case, the two tables refer to conjectured quantum
safe and quantum-unsafe constructions respectively. Table 3 gives a compari-
son between our IBE scheme (with both direct LWE-based PRF instantiation
from [9] and DDH-based instantiation from [47]) and a representative selection
of existing IBE schemes from the literature.

It needs to mention that the bit length of PRF secret key determines the num-
ber of public matrices in our constructions. In the SIS-based signature scheme
from [20] and LWE-based IBE schemes from [2,28], the number of public matrices
are determined by the bit length of messages and identities respectively. For the
provably secure PRFs, the bit length of secret key is usually significantly larger
than the bit length of messages and identities needed in [20,2,28]. So our con-
structions have larger concrete size of verification key than the signature scheme
in [20] and larger concrete size of public parameters than the IBE schemes in
[2,28].

Efficiency Consideration. Though we focus on tightness of reduction in the con-
text of short signature and IBE, we do not hide the inefficiency of our schemes,
particularly with comparison to the adptively secure lattice-based signature/IBE
scheme obained from the “complexity leveraging” [14] of efficient selectively se-

1 The (direct) lattice-based PRFs from [9,8] assume LWE assumption with super-
polynomial modulus, which makes our schemes rely on LWE assumption for super-
polynomial modulus.

2 The security reduction does not require a priori information about a given adversary.
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Table 1: Comparison between signature schemes from quantum-safe (Ring-)SIS
assumption

Scheme
Signature

size
Security

loss
Assumption(s)

Standard
model?

KW’03 [48] O(1)× Zm O(1) SIS, β = Ω̃(n3/2) ROM

GPV’08 [36] O(1)× Zm O(qhash) SIS, β = Ω̃(n3/2) ROM

Boyen’10 [20] O(1)× Zm O(λqs) SIS, β = Ω̃(n7/2) 4

Lyu’12 [50] O(1)× Zm O(λqs) SIS, Ω̃(n3/2) ROM

MP’12 [51] O(1)× Zm O(λqs) SIS, β = Ω̃(n5/2) 4

BHJKSS’13 [13] O(log λ)× Zm O(λqs) SIS, β = Ω̃(n5/2) 4

DM’14 [32] O(1)×RO(log q)
q O(λqs) Ring-SIS, β = Ω̃(n7/2) 4

BKKP’15 [11] O(λ)× Zm O(1) SIS, β = Ω̃(n3/2) 4

Alperin’15 [4] O(1)× Zm O(λqs) SIS, β = Ω̃(δ2δ · n11/2) 4

Ours O(1)× Zm O(λ) SIS+LWE?, β = Ω̃(`4c · n7/2) 4

λ is the security parameter, n is the lattice hardness parameter, m is the lattice
dimension, and β is the SIS parameter. qhash is the number of random-oracle queries (if
applicable). qs is the number of signing queries. For DM’14, the ringR = Zq[X]/(f(X))
for some cyclotomic polynomial f of degree n and q ≥ β

√
nω(
√

logn). For Alperin’15,

δ satisfies 2q2s/ε < 2bc
′δc for attacker’s success probability ε and arbitrary constant

c′ > 1. Our construction here consider instantiation of the direct LWE-based PRF
from [9] which has security loss O(λ) and can be computed by a NC1 circuit with
input length ` and depth c log ` for some constant c > 1.
? The security of direct LWE-based PRF construction from [9] relies on LWE assump-
tion with super-polynomial modulus. So LWE here refers to LWE assumption with
super-polynomial modulus.

cure lattice-based signature/IBE scheme such as [2]. Although complexity lever-
aging is not very satisfactory from a theoretical perspective, it indeed often
leads to the most practical secure cryptographic schemes. In the context of IBE,
we have seen that the adaptively secure IBE scheme leveraged from selective
DBDH-based IBE scheme in [14] has higher real-world efficiency than the adap-
tively secure Waters IBE scheme [56] (as well as the subsequent adaptive IBE
schemes from similar standard pairing assumptions without random oracles) for
the same security level. This may seem counter-intuitive, but to design adap-
tively secure IBE schemes one needs to carefully embed some specially crafted
complex structures into the scheme, to provide enough freedom for the secu-
rity reduction. This makes directly constructed adaptive IBE schemes rather
bulky and sometimes require even stronger assumptions (in the lattice setting).
Therefore, our current results are of more theoretical value. One the other hand,
directly constructing adaptively secure schemes from standard assumptions usu-
ally requires new proof ideas and techniques which advance the state-of art and
lead to further applications. Trying to get tighter reduction for the directly con-
structed adaptively secure schemes should be always welcome as it remains a
very promising way of bridging the efficiency gap.
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Table 2: Comparison between signature schemes from various quantum-unsafe
assumptions

Scheme Sig. size Sec. loss Assumption(s) Standard model?

GHR’99 [34] O(1)× ZN O(1) Strong-RSA + D-I Hash 4

BLS’01 [19] O(1)×G O(λqs) CDH ROM
KW’03 [48] O(1)× |D| O(1) CFP ROM
BB’04 [16] O(1)×G O(1) qs-SDH 4

Waters’05 [56] O(1)×G O(λqs) CDH 4

HW’09 [46] O(1)× ZN O(λqs) RSA 4

BHJKSS’13 [13] O(1)×G O(λqs) DLog 4

BHJKSS’13 [13] O(1)× ZN O(λqs) RSA 4

ADKMO’13 [1] O(λ)×G O(1) DLIN 4

CW’13 [29] O(k)×G O(λ) k-LIN 4

BKP’14 [12] O(k)×G O(λ) k-LIN 4

BKKP’15 [11] O(λ)×G O(1) DLog 4

BKKP’15 [11] O(λ)× ZN O(1) RSA,FAC 4

Ours O(1)× Zm O(log2 λ) SIS+DDH, β = Ω̃(`4c · n7/2) 4

λ is the security parameter, n is the lattice hardness parameter, m is the lattice di-
mension, qs the number of signing queries, N is the RSA modulus, m is the lattice
dimension, β is the SIS parameter, and k is a non-adversary-query-dependent param-
eter of the LIN assumption. For GHR’99, D-I hash stands for division-intractable hash.
For KW’03, |D| the domain size of the instantiated claw-free permutation, which is
abbreviated as CFP. Our construction here consider instantiating the DDH-based PRF
from [47] which has security loss O(log2 λ) and can be computed by a NC1 circuit with
input length ` and depth c log ` for some constant c > 1.

1.4 Overview of Our Approach

Construction Outline. Our constructions use a PRF PRF : {0, 1}k × {0, 1}t →
{0, 1} which takes as input a truly random secret key from {0, 1}k and a string
from {0, 1}t, and deterministically outputs a bit which is computationally indis-
tinguishable from a random bit. In our signature scheme, 5+k random matrices
are chosen from Zn×mq , comprising: a “left” matrix A, two “signature subspace
selection” matrices A0,A1, k “PRF secret key” matrices {Bi}i∈[k], and two
“message representation” matrices C0,C1. The key generation algorithm fur-
ther expresses PRF as a NAND Boolean circuit, which serves as a part of the
public parameters or perhaps a common reference string. The signing key con-
sists of a “short” basis TAof A and a PRF key K ∈ {0, 1}k for PRF.

The signer takes three steps to generate the signature of message M =
x1x2 . . . xt ∈ {0, 1}t. Firstly, it uses the key-homomorphic evaluation algorithm
developed from [38,18,24] to compute the unique matrix APRF,M from the circuit
of PRF and the k+ t matrices {Bi}i∈[k], Cx1

, Cx2
, . . . ,Cxt .

3 Then it computes
b = PRF(K,M) and sets the matrix FM,1−b = [A | A1−b−APRF,M] ∈ Zn×2m

q . Fi-

3 It can be shown that for different massages M0 6= M2 APRF,M0 6= APRF,M1 with all
but negligible probability. See section 3.3 for details.
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Table 3: Comparison between adaptively secure IBE schemes from various as-
sumptions

Scheme Security loss Assumption Standard model? Quantum-safe?

BF’01 [17] O(qid) BDH ROM 7

KW’03 [48] O(1) BDH ROM 7

BB’04a [14] O(2λ) DBDH, qid-BDHI 4 7

BB’04b [15] O(λqid) DBDH 4 7

Waters’05 [56] O(λqid) DBDH 4 7

Gentry’06 [35] O(1) qid-ABDHE 4 7

GPV’08 [36] O(qhash) LWE ROM 4

Waters’09 [57] O(qid) DBDH 4 7

ABB’10 [2] O(λqid) LWE 4 4

CHKP’12[28] O(λqid) LWE 4 4

LW’12 [49] O(q) DLIN 4 7

CW’13 [29] O(λ) k-LIN 4 7

BKP’14 [12] O(λ) k-LIN 4 7

Ours O(λ) LWE ? 4 4

O(log2(λ)) DDH†+LWE 4 7

λ is the security level, qid the number of private key queries and qhash the number
of random-oracle queries (if applicable). ? Here we instantiate the PRF by direct
LWE-based PRF construction from [9] which has O(λ) security loss and relies on
LWE assumption with super-polynomial modulus. So the LWE here refers to LWE
assumption with super-polynomial modulus. The schemes ABB’10 and CHKP’12
assume LWE assumption polynomial modulus. † Here we instantiate the PRF by
DDH-based PRF construction from [47] which has (black-box) security loss O(log2(λ)).

nally, it applies the trapdoor TA to generate the signature: a low-norm non-zero
vector dM ∈ Z2m such that FM,1−b ·dM = 0 (mod q). The verification algorithm
checks whether the signature is a non-zero vector in Z2m and has low-norm,
and whether FM,b · dM = 0 (mod q) or FM,1−b · dM = 0 (mod q). If all these
conditions are satisfied, the signature is accepted.

Our IBE scheme works as follows. The public parameters contain matri-
ces A, A0, A1, {Bi}i∈[k], C0,C1, a secure PRF PRF represented as a NAND
Boolean circuit, and a random vector u ∈ Znq which is used to hide messages.

The trapdoor basis TA and a secret PRF key K ∈ {0, 1}k serve as master
secret key. In private key generation for identity id = x1x2 . . . xt ∈ {0, 1}t, the
key-homomorphic evaluation algorithm is invoked to compute the unique matrix
APRF,id from the circuit of PRF and the k+tmatrices {Bi}i∈[k],Cx1

,Cx2
, . . . ,Cxt .

It then sets the “function” matrix to Fid,1−b = [A | A1−b−APRF,id] ∈ Zn×2m
q for

b = PRF(K,M), and uses TA to sample a Gaussian vector did ∈ Z2m as private
identity key where Fid,1−b · did = u (mod q).

To encrypt a message Msg ∈ {0, 1} with an identity id, the encryptor com-
putes APRF,id and sets two “function” matrices Fid,b = [A | Ab −APRF,id] and
Fid,1−b = [A | A1−b −APRF,id]. It generates two independent GPV-style cipher-
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texts [36]. The first one uses Fid,b:{
cb,0 = s>b u + νb,0 + Msg · bq/2c
c>b,1 = s>b Fid,b + ν>b,1

and the second is based on Fid,1−b:{
c1−b,0 = s>1−bu + ν1−b,0 + Msg · bq/2c
c>1−b,1 = s>1−bFid,1−b + ν>1−b,1

for random vectors sb, s1−b
$←− Znq , two small noise scalars νb,0, ν1−b,0, and two

low-norm noise vectors νb,1,ν1−b,1.
The decryption algorithm uses did to try both ciphertexts; one of them should

work. Here as a technical caveat, we need some redundant information in the
messages in order to check whether a recovered message is well-formed. To this
end, one option is to apply the standard way of encrypting multiple bits in
GPV-style ciphertexts without affecting the security analysis. That is, instead
of using just a vector u ∈ Znq in the public key, we use a matrix U ∈ Zn×zq

allowing us to encrypt z bits. A second option, which costs nothing if hybrid
encryption is being used, is to use multi-bit GPV-style encryption to encrypt a
symmetric session key without redundancy, again using a matrix Zn×zq and rely
on downstream symmetric integrity checks or MACs to weed out the incorrect
ciphertexts.

Proof Outline. The security reduction of our signature scheme uses an efficient
adversary to solve a of SIS problem instance A ∈ Zn×mq : a short non-zero vector
e ∈ Zm such that Ae = 0 (mod q). The reduction embeds a randomly picked
secret key K for PRF in verification key. More specifically, the reduction selects
low-norm matrices RA0

, RA1
, {RBi}i∈[k], RC0

, RC1
from {1,−1}m×m, a PRF

secret key K = s1s2 . . . sk ∈ {0, 1}k and sets A0 = ARA0
, A1 = ARA1

+ G,
{Bi = ARBi + siG}i∈[k], C0 = ARC0

and C1 = ARC1
+ G. Here, K is com-

pletely hidden from adversary’s view. For answering a signing query on message
M, the reduction computes APRF,M = AR + PRF(K,M)G for some known low-
norm m×m matrix R that depends on RA0 ,RA1 , {RBi}i∈[k],RC0 ,RC1 , K
and M. Let PRF(K,M) = b, the reduction sets FM,1−b = [A | A1−b−APRF,M] =
[A | AR + (1− 2b)G] and uses the trapdoor from G to compute the decryption
key. Note, we use PRF to select the matrix Ab which is the same as the real
scheme. For a valid forgery (M∗,dM∗), since b = PRF(K,M∗) is unpredictable to
the adversary, FM∗,b ·dM∗ = 0 (mod q) happens with essentially probability 1/2
leading to a valid SIS solution.

The security reduction for our IBE scheme is similar to the reduction of
the signature scheme. Basically, the reduction answers key generation queries in
the same way as answering signing queries in the signature scheme reduction. To
construct the challenge ciphertext for a challenge identity id∗, the LWE challenge
is embedded in the function matrix Fid∗,b = [A | AR] for which the simulator
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cannot produce private key. Another ciphertext based on Fid∗,1−b = [A | AR +
(1− 2b)G] is generated as in the real scheme. With essentially half probability,
the adversary will choose the ciphertext under Fid∗,b to attack giving out useful
information for solving the LWE challenge.

Related Works. In the related and concurrent work by Brakerski and Vaikun-
tanathan [25], a similar idea of embedding PRFs into encryption schemes has
been used to construct the first semi-adaptively secure attribute-based encryp-
tion scheme from lattices supporting an a priori unbounded number of attributes.
The recent work by Bai et al. [7] addresses the problem of improving efficiency of
lattice-based cryptographic schemes via a different but novel way. Their proposal
is about using Rényi divergence instead of statistical distance in the context of
lattice-based cryptography which leads to (sometimes simpler) security proofs
for more efficient lattice-based schemes.

2 Preliminaries

Notation. ‘PPT’ abbreviates “probabilistic polynomial-time”. If S is a set, we

denote by a
$←− S the uniform sampling of a random element of S. For a positive

integer n, we denote by [n] the set of positive integers no greater than n. We use
bold lowercase letters (e.g. a) to denote vectors and bold capital letters (e.g. A)
to denote matrices. For a positive integer q ≥ 2, let Zq be the ring of integers
modulo q. We denote the group of n ×m matrices in Zq by Zn×mq . Vectors are
treated as column vectors. The transpose of a vector a (resp. a matrix A) is de-

noted by a> (resp. A>). For A ∈ Zn×mq and B ∈ Zn×m′q , let [A|B] ∈ Zn×(m+m′)
q

be the concatenation of A and B. We denote the Gram-Schmidt ordered orthog-
onalization of a matrix A ∈ Zm×m by Ã. The inner product of two vectors x and
y is written 〈x,y〉. For a security parameter λ, a function negl(λ) is negligible
in λ if it is smaller than all polynomial fractions for a sufficiently large λ.

We recall the following generalisation of left-over hash lemma.

Lemma 1 ([2], Lemma 4). Suppose that m > (n+ 1) log q+ω(log n) and that
q > 2 is prime. Let R be an m×k matrix chosen uniformly in {1,−1}m×k mod q
where k = k(n) is polynomial in n. Let A and B be matrices chosen uniformly
in Zn×mq and Zn×kq respectively. Then, for all vectors w ∈ Zmq , the distribution

(A,AR,R>w) is statistically close to the distribution (A,B,R>w).

For a vector u, we let ‖u‖ and ‖u‖∞ denote its `2 norm and `∞ norm,
respectively. For a matrix R ∈ Zk×m, we define two matrix norms:

– ‖R‖ denotes the `2 length of the longest column of R.
– ‖R‖2 is the operator norm of R defined as ‖R‖2 = supx∈Rm+1 ‖R · x‖.

Lemma 2 ([2], Lemma 5). Let R be a random chosen matrix from {1,−1}m×m,
then Pr[‖R‖2 > 12

√
2m] < e−m.
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2.1 Lattice Background

Lattice Definitions

Definition 1. Let a basis B = [b1 | . . . |bm] ∈ (Rm)m of linearly independent
vectors. The lattice generated by B is defined as Λ = {y ∈ Rm : ∃si ∈ Z,y =

∑m
i=1 sibi}.

The dual lattice Λ∗ of Λ is defined as Λ∗ = {z ∈ Rm : ∀y ∈ Λ, 〈z,y〉 ∈ Z}.

Definition 2. For q prime, A ∈ Zn×mq and u ∈ Znq , we define the m-dimensional

(full-rank) random integer lattice Λ⊥q (A) = {e ∈ Zm : Ae = 0 (mod q)}, and
the “shifted lattice” as the coset Λu

q (A) = {e ∈ Zm : Ae = u (mod q)}.

Trapdoors of Lattices and Discrete Gaussians It is shown in [3,51] how
to sample a “nearly” uniform random matrix A ∈ Zn×m along with a trapdoor
matrix TA ∈ Zm×m which is a short or low-norm basis of the induced lattice
Λ⊥q (A). We refer to this procedure as TrapGen.

Lemma 3. There is a PPT algorithm TrapGen that takes as input integers n ≥
1, q ≥ 2 and a sufficiently large m = O(n log q), outputs a matrix A ∈ Zn×mq

and a trapdoor matrix TA ∈ Zm×m, such that A · TA = 0, the distribution
of A is statistically close to the uniform distribution over Zn×mq and ‖T̃A‖ =

O(
√
n log q).

Discrete Gaussians. Let m ∈ Z>0 be a positive integer and Λ ⊂ Zm. For any
real vector c ∈ Rm and positive parameter σ ∈ R>0, let the Gaussian function
ρσ,c(x) = exp

(
−π‖x− c‖2/σ2

)
on Rm with center c and parameter σ. Define

the discrete Gaussian distribution over Λ with center c and parameter σ as
DΛ,σ = ρσ,c(y)/ρσ(Λ) for ∀y ∈ Λ, where ρσ(Λ) =

∑
x∈Λ ρσ,c(x). For notational

convenience, ρσ,0 and DΛ,σ,0 are abbreviated as ρσ and DΛ,σ.
The following lemma bounds the length of a discrete Gaussian vector with

sufficiently large Gaussian parameter.

Lemma 4 ([52]). For any lattice Λ of integer dimension m with basis T, c ∈
Rm and Gaussian parameter σ ≥ ‖T̃‖·ω(

√
logm), we have Pr[‖x− c‖ > σ

√
m :

x← DΛ,σ,c] ≤ negl(n).

Smoothing Parameter. We recall the very important notion of smoothing param-
eter of a lattice Λ. It is the smallest value of s such that the discrete Gaussian
DΛ,s “behaves” like a continuous Gaussian.

Definition 3 ([52]). For any lattice Λ and positive real tolerance ε > 0, the
smoothing parameter ηε(Λ) is the smallest real s > 0 such that ρ1/s(Λ

∗\{0}) < ε.

We will make use of the following lemma, which is a special case of Corollary
3.10 from [55].

Lemma 5 (special case of Corollary 3.10 of [55]). Let r ∈ Zm be a vector
and r, α > 0 be reals. Assume that 1/

√
1/r2 + (‖r‖/α)2 ≥ ηε(Zm) for some ε <

1/2. Let y be a vector with distribution DZm,r and e be a scalar with distribution
DZ,α. The distribution of 〈r,y〉+ e is statistically close to DZ,

√
(r‖r‖)2+α2 .
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Lattice Sampling Algorithms Our constructions make use of the “two-sided
trapdoor” framework from [2,20] which consists of two sampling algorithms Sam-
pleLeft and SampleRight.

Algorithm SampleLeft(A,B,TA,u, s) (1)

Inputs: a full-rank matrix A ∈ Zn×mq and a short basis TA of Λ⊥q (A), a matrix
B ∈ Zn×m1

q , a vector u ∈ Znq , and a Gaussian parameter s.

Output: Let F =
[
A | B

]
. The algorithm outputs a vector d ∈ Zm+m1 in the

set Λu
q (F).

Theorem 1 ([2,28]). Let q > 2, m > n and s > ‖T̃A‖ · ω(
√

log(m+m1)).
Then the algorithm SampleLeft(A,B,TA,u, s) taking inputs as in (1), outputs
a vector d ∈ Zm+m1 distributed statistically close to DΛu

q (F),s.

Algorithm SampleRight(A,B,R,TB,u, s) (2)

Inputs: matrices A ∈ Zn×kq and R ∈ Zk×m, a full-rank matrix B ∈ Zn×mq , a

short basis TB of Λ⊥q (B), a vector u ∈ Znq , and a Gaussian parameter s.

Output: Let F =
[
A | AR + B

]
; the algorithm outputs a vector d ∈ Zm+m1

in the set Λu
q (F)

Theorem 2 ([2], Theorem 19). Let q > 2, m > n. Let s > ‖T̃B‖ · ‖R‖2 ·
ω(
√

logm). Then SampleRight(A,B,R,TB,u, s) taking inputs as in (2), outputs
a vector d ∈ Zm+k distributed statistically close to DΛu

q (F),s.

Gadget Matrix The “gadget matrix” G defined in [51]. We recall the following
two facts.

Lemma 6 ([51], Theorem 1). Let q be a prime, and n, m be integers with
m = n log q. There is a fixed full-rank matrix G ∈ Zn×mq such that the lattice

Λ⊥q (G) has a publicly known trapdoor matrix TG ∈ Zn×m with ‖T̃G‖ ≤
√

5.

Lemma 7 ([18], Lemma 2.1). There is a deterministic algorithm, denoted
G−1(·) : Zn×mq → Zm×m, that takes any matrix A ∈ Zn×mq as input, and
outputs the preimage G−1(A) of A such that G ·G−1(A) = A (mod q) and
‖G−1(A)‖ ≤ m.

Computational Assumptions We recall the two most mainstream and con-
servative average-case computational assumptions for lattice problems.

The learning with errors problem was first proposed by Regev [55]. For a

vector s
$←− Znq and a noise distribution χ over Zq, let As,χ be the distribution

over Znq ×Zq by taking a
$←− Znq and x← χ, and outputting (a, s>a+x) (mod q).

Usually, χ is a discrete Gaussian DZ,αq for some α < 1, reduced modulo q. We
refer to [55] for further details.
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Definition 4. For a security parameter Λ, let a positive integer n = n(λ), a
prime q = q(λ), and a distribution χ over Zq. The learning with errors prob-
lem LWEn,q,χ is to distinguish the oracle Os, which outputs samples from the
distribution As,χ, from the oracle O$, which outputs samples from the uniform
distribution over Znq × Zq, for an unspecified polynomial number of queries. We
define the advantage (in the security parameter λ) of an algorithm A in solving
the LWEn,q,χ problem as

Adv
LWEn,q,χ
A (λ) =

∣∣Pr[AOs(1λ) = 1]− Pr[AO$(1λ) = 1]
∣∣

We say that the (t, εLWE)-LWEn,q,χ assumption holds if no t-time algorithm A
that has advantage at least εLWE in solving the LWEn,q,χ problem.

For polynomial size q in λ, there are known quantum [55] and classical [22] reduc-
tions from the average-case LWEn,q,χ assumption to many standard worst-case
lattice problems (e.g., GapSVP). 4 Peikert [54] also gave a classic reduction that
applies (only) for exponential moduli q in λ. These reductions further strengthen
the appeal of the LWE assumption.

The security of our adaptively secure signature scheme is based on the SIS
problem, which can be seen as an average-case approximate shortest vector prob-
lem on random integer lattices. In a sense, SIS is the computational counterpart
to the decisional LWE.

Definition 5. For a security parameter λ, let n = n(λ), m = m(λ), and β =
β(λ). Let q be a prime integer. The short integer solution problem SISn,q,β,m

is as follows. Given a uniform random matrix A
$←− Zn×mq , find a non-zero

vector e ∈ Zm such that Ae = 0 (mod q) and ‖e‖ ≤ β. We define the advantage
(function of the security parameter λ) of an algorithm A in solving the SISn,q,β,m
problem as

Adv
SISn,q,β,m
A (λ) =

Ae = 0 (mod q)
and ‖e‖ ≤ β,

and e 6= 0.
: A

$←− Zn×mq

e← A(1λ,A)


We say the (t, εSIS)-SISn,q,β,m assumption holds if no t-time algorithm A that
has advantage at least εSIS in solving the SISn,q,β,m problem.

It has been shown in [52] that solving the average-case instances of the
SISn,q,β,m problem for certain parameters is as hard as solving worst-case in-
stances of the approximate Shortest Independent Vector Problem (SIVP).

2.2 Pseudorandom Functions

Definition 6 (Pseudorandom Functions). Let λ > 0 be the security pa-
rameter, and let k = k(λ), t = t(λ) and l = l(λ). A pseudorandom function

4 Equivalently, this is to say that many classic worst-case lattice problems reduce to
the average-case LWE problem, for suitable parameters.
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PRF : {0, 1}k × {0, 1}t → {0, 1}l is an efficiently computable, deterministic two-
input function where the first input, denoted by K, is the key. Let Ω be the set
of all functions that map t bits strings to l bits strings. We define the advantage
(in the security parameter λ) of an adversary A in attacking the PRF as

AdvPRF,A(λ) =
∣∣∣Pr[APRF(K,·)(1λ) = 1]− Pr[AF (·)(1λ) = 1]

∣∣∣
where the probability is taken over a uniform choice of key K

$←− {0, 1}k and

F
$←− Ω, and the randomness of A. We say that PRF is (tPRF, εPRF)-secure if for

all tPRF-time adversaries A, AdvPRF,A(λ) ≤ εPRF.

2.3 Key-Homomorphic Evaluation Algorithm

Recall the matrix key-homomorphic evaluation algorithm, which is developed
by Gentry et al. [38], Boneh et al. [18] and Brakerski and Vaikuntanathan [24]
in the context of fully homomorphic encryption and attribute-based encryption,
works generally in the following. Given a fan-in-2 Boolean NAND circuits C :
{0, 1}` → {0, 1}, ` different matrices {Ai = ARi + xiG ∈ Zn×mq }i∈[`] which

correspond to each input wire of C where A
$←− Zn×mq , Ri

$←− {1,−1}m×m,
xi ∈ {0, 1} and G ∈ Zn×mq is the gadget matrix, the key-homomorphic evaluation
algorithm deterministically computes AC = ARC + C(x1, . . . , x`)G ∈ Zn×mq

where RC ∈ Zm×m has low norm and C(x1, . . . , x`) ∈ {0, 1} is the output bit of
C on the arguments x1, . . . , x`. This is done, in general, by inductively evaluating
each NAND gate. For a NAND gate g(u, v;w) with input wires u, v and output
wire w, matrices Au = ARu + xuG and Av = ARv + xvG where xu and xv
are input bits of u and v respectively, the evaluation algorithm computes

Aw = G−Au ·G−1(Av)

= G− (ARu + xuG) ·G−1(ARv + xvG)

= ARg + (1− xuxv)G

where 1 − xuxv
def
= NAND(xu, xv), and Rg = −Ru ·G−1(Av) − xuRv has low-

norm if Ru,Rv have low-norm.
In this paper, we consider evaluating circuits of PRFs. Most of the well-known

PRFs from number-theoretic assumptions (e.g. [53,47]) and lattice assumptions
(e.g. [9,8]) can be computed by circuits in class NC1 (i.e. with polynomial size,
logarithmic depth O(log `) in input length ` and fan-in 2). For circuits in NC1, by
applying above procedure in a general tree-fashion, the norm of RC in the matrix
AC is roughly bounded by mO(log `), which in turn usually results in superpoly-
nomial or sub-exponential LWE/SIS modulus q (in the security parameter) in
certain applications.

In [24], Brakerski and Vaikuntanathan observed that the norm of RC ma-
trix in above homomorphic evaluation is accumulated in an asymmetric way.
They exploited this feature to design a special evaluation algorithm that eval-
uates NC1 circuits with moderately increasing the norm of RC . Specifically,
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the observation is that any circuit with depth d can be simulated by a length-
4d and width-5 branching program, through the Barrington’s theorem. Such a
branching program can be computed by multiplying 4d 5-by-5 permutation ma-
trices. It is showed in [24] that homomorphically evaluating the multiplication
of permutation matrices using above homomorphic evaluation procedure and
the asymmetrical noise-growth feature only increases the noise by a polynomial
factor and, therefore, allows us to use polynomial size LWE/SIS modulus q in
the security parameter. Such result has been used to construct efficient ABE
scheme for branching programs (with bounded length) from LWE with polyno-
mial modulus [42]. In our constructions, we particularly use the Brakerski and
Vaikuntanathan’s evaluation algorithm [24] and denote it by EvalBV.

We recall the Barrington’s Theorem.

Theorem 3 (Barrington’s Theorem). Every Boolean NAND circuit C that
acts on ` inputs and has depth d can be computed by a width-5 permutation
branching program Π of length 4d. Given the description of the circuit Ψ , the
description of the branching program C can be computed in poly(`, 4d) time.

The following theorem follows from the Claim 3.4.2 and Lemma 3.6 of [24]
and the Barrington’s Theorem.

Lemma 8. Let C : {0, 1}` → {0, 1} be a NAND Boolean circuit. Let {Ai =
ARi + xiG ∈ Zn×mq }i∈[`] be ` different matrices correspond to each input wire

of C where A
$←− Zn×mq , Ri

$←− {1,−1}m×m, xi ∈ {0, 1} and G ∈ Zn×mq is the
gadget matrix. There is an efficient deterministic algorithm EvalBV that takes as
input C and {Ai}i∈[`] and outputs a matrix AC = ARC + C(x1, . . . , x`)G =
EvalBV(C,A1, . . . ,A`) where RC ∈ Zm×m and C(x1, . . . , x`) is the output of C
on the arguments x1, . . . , x`. EvalBV runs in time poly(4d, `, n, log q).

Let ‖Rmax‖2 = max {‖Ri‖2}i∈[`]
, the norm of RC in AC output by EvalBV

can be bounded,with overwhelming probability, by

‖RC‖2 ≤ O(L · ‖Rmax‖2 ·m)

≤ O(L · 12
√

2 ·
√
m ·m)

≤ O(4d ·m3/2)

where L is the length of the width-5 branching program which simulates C and
‖Ri‖2 ≤ 12

√
2m for i ∈ [`] with overwhelming probability, by Lemma 2.

Particularly, if C has depth d = c log ` for some constant c, i.e. C is in NC1,
we have L = 4d = `2c and ‖RC‖2 ≤ O(`2c ·m3/2).

2.4 Digital Signatures

A digital signature scheme consists of three PPT algorithms: KeyGen, Sign, and
Ver. The algorithm KeyGen takes as input a security parameter and generates a
public verification key Vk and a private signing key Sk. The signing algorithm
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Sign takes as input the signing key Sk and a massage M, and outputs the signa-
ture Sig of M. The verification algorithm Ver takes as input a signature-message
pair (Sig,M) as well as the verification key Vk. It outputs 1 if Sig is valid, or 0
if Sig is invalid.

We review the standard security notion of digital signature schemes. The
existential unforgeability under chosen-message attack (EUF-CMA) of a digital
signature scheme Π is defined through the following security game between an
adversary A and a challenger B.

Setup. B runs Setup(1λ)→ (Sk,Vk), and passes Vk to A.

Query. A adaptively selects messages M1, . . . ,Mqs to ask for the corresponding
signatures under Vk from B. For the query Mi, B responds with a signature
Sigi ← Sign(Sk,Mi).

Forge. A outputs a pair (Sig∗,M∗) and wins if

1. M∗ /∈ {M1, . . . ,Mqs}, and

2. Ver(Vk,Sig∗,M∗)→ 1.

We refer to such an adversaryA as EUF-CMA adversary. We define the advantage
(in the security parameter λ) AdvΠ,A(λ) of A in attacking a digital signature
scheme Π to be the probability that A wins above game.

Definition 7. For a security parameter λ, let t = t(λ), qs = qs(λ) and ε = ε(λ).
We say that a digital signature scheme Π is (t, qs, ε)-EUF-CMA secure if for any
t time EUF-CMA adversary A that makes at most qs signing queries and has
AdvΠ,A(λ) ≤ ε.

2.5 Identity-Based Encryption

An Identity-Based Encryption system (IBE) consists of four PPT algorithms:
Setup, KeyGen, Encrypt, and Decrypt. The algorithm Setup takes as input a se-
curity parameter and generates public parameters Pub and a master secret key
Msk. The algorithm KeyGen uses the master secret key Msk to produce an iden-
tity private key Skid corresponding to an identity id. The algorithm Encrypt
takes the public parameters Pub to encrypt messages for any given identity id.
The algorithm Decrypt decrypts ciphertexts using the identity private key if the
identity of the ciphertext matches the identity of the private key.

We review the adaptive (full) security under chosen-plaintext attack (IND-
ID-CPA) of IBE system. The IND-ID-CPA security of IBE is defined through
the following game between an adversary A and a challenger B. For a security
parameter λ, let Mλ be the message space and Cλ be the ciphertext space.

Setup. B runs Setup(1λ)→ (Pub,Msk), passes the public parameters Pub to A,
and keeps the master secret Msk.

Phase 1. A adaptively requests keys for any identity id of its choice. B responds
with the corresponding private key Skid by running algorithm KeyGen.
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Challenge. When A decides the Phase 1 is over, it outputs a challenge identity
id∗, which is not been queried during Phase 1, and two equal length mes-

sages Msg0,Msg1 ∈ Mλ. B flips a fair coin γ
$←− {0, 1} and sets Ctxid∗ ←

Encrypt(Pub,Msgγ , id
∗). Finally A passes Ctxid∗ to A.

Phase 2. A continues to make key quires for any identity id 6= id∗.
Guess. A outputs γ′ ∈ {0, 1} and it wins if γ′ = γ.

We refer to such an adversary A as an IND-ID-CPA adversary. We define the
advantage (in the security parameter λ) of A in attacking an IBE scheme E as
AdvE,A(λ) = |Pr[γ′ = γ]− 1/2|.

Definition 8. For a security parameter λ, let t = t(λ), qid = qid(λ), and ε =
ε(λ). We say that an IBE system E is (t, qid, ε)-IND-ID-CPA secure if for any
t-time IND-ID-CPA adversary A that makes at most qid private key queries, we
have AdvE,A(λ) ≤ ε.

3 Signature Scheme with Tight Security

3.1 Constructions

KeyGen(1λ) The key generation algorithm does the following.

1. Sample a matrix A along with a trapdoor basis of lattice Λ⊥q (A) by TrapGen.
2. Select matrices A0, A1, “PRF key” matrices B1, . . . , Bk, and “PRF input”

matrices C0, C1 from Zn×mq uniformly at random.

3. Select a secure pseudorandom function PRF : {0, 1}k × {0, 1}t → {0, 1},
express it as a NAND Boolean circuit CPRF with depth d = d(λ), and select

a PRF key K = s1s2 . . . sk
$←− {0, 1}k.

4. Select a Gaussian parameter s > 0.
5. Output the verification key and signing key as:

Vk =
(
A, {A0,A1}, {Bi}i∈[k], {C0,C1}, s,PRF, CPRF

)
, Sk = (TA,K)

Sign(Vk,Sk,M) The signing algorithm takes as input the public verification key
Vk, the signing key Sk and a message M = m1m2 . . .mt ∈ {0, 1}t. It does:

1. Compute ACPRF,M = EvalBV(CPRF, {Bi}i∈[k],Cm1 ,Cm2 , . . . ,Cmt) ∈ Zn×mq . 5

2. Compute bit value b = PRF(K,M) and set FM,1−b =
[
A | A1−b −ACPRF,M

]
.

3. Run SampleLeft to sample dM ∈ Z2m with distribution DΛ⊥q (FM,1−b),s.
4. Output the signature Sig = dM.

Ver(Vk,M,Sig) The verification algorithm takes as input the verification key Vk,
message M and the signature of M, verifies as follows:

1. Assume Sig = d. It checks if d ∈ Z2m, d 6= 0, and ‖d‖ ≤ s
√

2m.
2. Compute ACPRF,M = EvalBV(CPRF, {Bi}i∈[k],Cm1 ,Cm2 , . . . ,Cmt) ∈ Zn×mq .

Check if FM,bd =
[
A | Ab −ACPRF,M

]
d = 0 (mod q) for b = 0 or 1.

3. If all above verifications pass, accept the signature; otherwise, reject.
5 It turns out that if PRF is secure, an efficient SIS algorithm can be tightly reduced

to an efficient algorithm that finds M 6= M′ such that ACPRF,M = ACPRF,M
′ . We prove

this in the section 3.3.
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3.2 Parameters Selection and Discussion

Let λ be the security parameter, we set n = n(λ), let the message length be
t = t(λ) and the secret key length of PRF be k = k(λ). For the most general
case, let the circuit depth of CPRF be d = d(λ). To ensure we can run TrapGen
in the Lemma 3, we set m = n1+η for some η (we assume nη > O(log q)). To
run SampleLeft and SampleRight in the real scheme and simulation per Theorem
2, we set s sufficiently large such that s > ‖T̃G‖ · ‖R‖2 · ω(

√
logm) for R =

RAb
−RCPRF,M (see the security proof below). By Lemma 8 we set s = O(4d ·

m3/2) · ω(
√

logm). For the SIS parameter β, we need β ≥ O(4d ·m3/2 · s
√

2m).
So we set β = O(16d · m7/2) · ω(

√
logm). To ensure the applicability of the

average-case to worst-case reduction for SIS, we need q ≥ β ·ω(
√
n log n). So we

set q = O(16d ·m4) · (ω(
√

logm))2.
Particularly, if we choose PRF from the well-known efficient and provably

secure candidates of PRFs like the ones from [53,31,47,9,8] can be computed by
NC1 circuits, let ` = t + k be the input length of PRF (which is a polynomial
in the security parameter), the circuit depth of CPRF will be d = c log ` for
some constant c. In this case we can set β = O(`4c · m7/2) · ω(

√
logm) and

q = O(`4c ·m4) · (ω(
√

logm))2 which are polynomial in the security parameter.
It needs to mention that if we instantiate PRF by the (direct) LWE-based

PRF from [9] or by the LWE-based PRF from [8] whose security relies on LWE
assumption with super-polynomial modulus, the security of our signature scheme
has to rely on LWE assumption with super-polynomial modulus. Such LWE
assumption is stronger than the SIS assumption with polynomial modulus (as
we set above) from which we make the proof for the following theorem.

3.3 Security of the Signature Scheme

The security of our signature scheme is stated by the following theorem.

Theorem 4. Let λ be a security parameter. The parameters n, m, and q are
chosen as the section 3.2. If the (tSIS, εSIS)-SISn,q,β,m assumption holds and the
PRF used in the signature scheme is (tPRF, εPRF)-secure, the signature scheme is
(t, qs, ε)-EUF-CMA secure where εSIS ≥ ε/2 − εPRF − negl(λ), for some negligible
statistical error negl(λ), and max(tPRF, tSIS) ≤ t+O(qs · (TS + TE)) where qs is
the number of signing query, TS is the maximum running time of SampleRight,
and TE is the maximum running time of EvalBV for one input message.

Proof. Consider the following security game between an adversary A and a sim-
ulator B. Upon receiving a SISn,q,β,m challenge A ∈ Zn×mq , the challenger B
prepares Vk as follows:

1. Select k + 4 matrices RA0
, RA1

, {RBi}i∈[k], RC0
, RC1

$←− {1,−1}m×m.

2. Select a secure pseudorandom function PRF : {0, 1}k × {0, 1}t → {0, 1} and
express it as a NAND Boolean circuit CPRF with depth d.

3. Select a PRF key K = s1s2 . . . sk
$←− {0, 1}k.

4. Set Ab = ARAb
+ bG and Cb = ARCb + bG for b = 0, 1.
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5. Set Bi = ARBi + siG for i ∈ [k].
6. Select a Gaussian parameter s > 0.
7. Publish Vk =

(
A, {A0,A1}, {Bi}i∈[k], {C0,C1},PRF, CPRF

)
.

In the query phase, the adversary A adaptively issues messages for inquiring
the corresponding signatures. Consider a message M = m1m2 . . .mt ∈ {0, 1}t. B
does the following to prepare the signature:

1. Compute ACPRF
= ARCPRF,M + PRF(K,M)G ∈ Zn×mq by EvalBV (CPRF,

{Bi}i∈[k], Cm1
, Cm2

, . . . , Cmt).
2. Let b = PRF(K,M), it sets

FM,1−b =
[
A | A1−b −ACPRF,M

]
=
[
A | A(RA1−b −RCPRF,M) + (1− 2b)G

]
and runs SampleRight to generate the signature Sig = dM ∼ DΛ⊥q (FM,1−b),s.

Finally, A output a forgery (d∗,M∗). Let PRF(K,M∗) = b. If ‖d‖ > s
√

2m
or
[
A | A1−b −ACPRF,M∗

]
d∗ = 0 (mod q), B aborts. Otherwise, we have[

A | Ab −ACPRF,M∗
]
d∗ = 0 (mod q). Let d∗ = [d>1 | d>2 ]> ∈ Z2m. B outputs

e = d1 + (RAb
− RCPRF,M∗)d2 where ‖e‖ ≤ β as a solution for the SISn,q,β,m

problem instance.
We show that Vk output by B has the correct distribution. In the real scheme,

the matrix A is generated by TrapGen. In the simulation, A has uniform distribu-
tion in Zn×mq as it comes from the SIS challenge. By the Lemma 3, A generated
in the simulation has right distribution except a negligibly small statistical er-
ror. Secondly, the matrices A, {A0,A1}, {Bi}i∈[k], and {C0,C1} computed in
the simulation have distribution that is statistically close to uniform distribu-
tion in Zn×mq by the Lemma 1. In particular, the PRF secret key {si}i∈[k] is
information-theoretically concealed by {Bi}i∈[k].

Now we show that given {A0,A1}, {Bi}i∈[k], and {C0,C1}, it is hard to find
two messages M 6= M′ such that ACPRF,M = ACPRF,M′ . Assume an efficient adver-
sary finds M 6= M′ such that ACPRF,M = ACPRF,M′ . With the public parameters
set up above, we have

ARCPRF,M + PRF(K,M)G = ARCPRF,M′ + PRF(K,M′)G

If PRF(K,M) 6= PRF(K,M′), which will happen essentially 1/2 probability if
PRF is secure, we have RCPRF,M 6= RCPRF,M′ and A(RCPRF,M −RCPRF,M′)±G = 0
(mod q). By Lemma 6 and Algorithm 1, a low-norm vector d̄ ∈ Zm×m can be
efficiently found such that Gd̄ = 0 (mod q) where d̄ 6= 0 and

∥∥d̄∥∥ ≤ s′
√
m for

some Gaussian parameter s′ ≥
√

5 ·ω(
√

logm). Then (RCPRF,M−RCPRF,M′) ·d̄ will
be a non-zero vector with all but negligible probability and, therefore, a valid
the SIS solution for A.

In the query phase, the signatures replied to A have the correct distribution
under the predefined conditions. Indeed, by the Theorem 2, for sufficient large
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Gaussian parameter s, the the distribution of signatures generated in the simula-
tion by SampleRight is statistically close to DΛ⊥q (FM,1−b),s where the distribution
of signatures generated in the real scheme by SampleLeft is also statistically close
to DΛ⊥q (FM,1−b),s.

In the forge phase, A will have at most advantage εPRF in predicting the
bit value b with respect to the message it wants to forge. Therefore, if A can
not distinguish PRF from random functions, it will randomly pick either of the
matrices A0 or A1 to make a forgery. With 1

2 chance it will pick the one that B
will be able to use to solve the SIS problem. So we have εSIS ≥ ε/2−εPRF−negl(λ)
where negl(λ) stands for negligible statistical error in the simulation.

To argue that e = d1+(RA1
−RCPRF,M∗)d2 is a valid solution of the SISn,q,β,m

problem instance, we need to show e is sufficiently short, and non-zero except
with negligible probability. First of all, we have[

A | Ab −ACPRF,M∗
]
d∗ =

[
A | A(RAb

−RCPRF,M∗)
]
d∗

= Ad1 + A(RAb
−RCPRF,M∗)d2

= A (d1 + R · d2)

= 0 (mod q)

where R = RAb
−RCPRF,M∗ . Since d1,d2 have distribution DZm,s with condition

d ∈ Λ⊥q (FM,b), by the Lemma 4, d1,d2 ≤ s
√
m. By Lemma 8, we have ‖e‖ ≤

‖d1‖+‖R‖2 · ‖d2‖ ≤ O(4d ·m3/2) ·s
√
m. Let β ≥ O(4d ·m3/2) ·s

√
m is sufficient.

It remains to show that e = d1 + R ·d2 6= 0. Suppose d2 6= 0, we have e 6= 0
since d 6= 0. On the other hand, we have d2 = (d1, . . . , dm)> 6= 0 and, thus, at
least one coordinate of d2, say dj , is not 0. We write R = (r1, . . . , rm) and so

R · d2 = rj · dj +

m∑
i=1,i6=j

ri · di

Observe that for the fixed message M∗ on which Amade the forgery, R (therefore
rj) depends on the low-norm matrices RA0 ,RA1 , {RBi}i∈[k],RC0 ,RC1 and the
secret key of PRF. The only information about rj for A is from the public
matrices in Vk, i.e. {A0,A1}, {Bi}i∈[k], {C0,C1}. So by the pigeonhole principle
there is a (exponentially) large freedom to pick a value to rj which is compatible
with A’s view, i.e. Ar′j = Ar′′j (mod q) for admissible (low-norm) r′j , r

′′
j where

r′j 6= r′′j . (In fact, here we have more freedom than the case in [20] where R is
picked from {1,−1}m×m).

Finally, to answer one signing query, B’s running time is bounded by O(TS +
TE). So the total running time of B in the simulation is bounded by O(qs(TS +
TE)). This concludes the proof. ut

4 IBE Scheme with Tight Security

4.1 Construction with CPA Security

Setup(1λ) The setup algorithm takes as input a security parameter λ and does:
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1. Sample a random matrix A ∈ Zn×mq along with a trapdoor basis TA ∈
Zm×m of lattice Λ⊥q (A) by running TrapGen.

2. Select random matrices A0, A1, random “PRF key” matrices B1, . . . , Bk,
and random “PRF input” matrices C0, C1 from Zn×mq uniformly at random.

3. Select a random vector u
$←− Znq .

4. Select a secure pseudorandom function PRF : {0, 1}k × {0, 1}t → {0, 1},
express it as a NAND Boolean circuit CPRF with depth d = d(λ), and select

a PRF key K = s1s2 . . . sk
$←− {0, 1}k.

5. Output the public parameters

Pub =
(
A, {A0,A1}, {Bi}i∈[k], {C0,C1},u,PRF, CPRF

)
and the master secret key Msk = (TA,K).

KeyGen(Pub,Msk, id) Upon an input identity id=x1x2 . . . xt ∈ {0, 1}t, the key
generation algorithm does the following:

1. Compute b = PRF(K, id).
2. Compute ACPRF,id = EvalBV(CPRF, {B}i∈[k],Cx1

,Cx2
, . . . ,Cxt) ∈ Zn×mq .

3. Set Fid,1−b =
[
A | A1−b −ACPRF,id

]
∈ Zn×2m

q .
4. Run SampleLeft to sample did from the discrete Gaussian distributionDΛu

q (Fid,1−b),s

hence Fid,1−bdid = u (mod q). Output Skid = did.

Encrypt(Pub, id,Msg) To encrypt a message Msg ∈ {0, 1} with respect to an
identity id = x1x2 . . . xt ∈ {0, 1}t:
1. Compute ACPRF,id = EvalBV(CPRF, {Bi}i∈[k],Cx1 ,Cx2 , . . . ,Cxt).
2. Set Fid,b =

[
A | Ab −ACPRF,id

]
∈ Zn×2m

q for b = 0, 1.

3. Select two random vectors s0, s1
$←− Znq .

4. Select two noise scalars ν0,0, ν1,0 ← DZ,σLWE
and four noise vectors ν̂0,1, ν̂1,1 ←

DZm,
√

2σLWE
, ν̌0,1, ν̌1,1 ← DZm,σ where σ is sufficiently larger than σLWE. 6

5. Compute the ciphertext Ctxid = (c0,0, c0,1, c1,0, c1,1) as:
c0,0 =

(
s>0 u + ν0,0 + Msgbq/2c

)
mod q

c>0,1 =
(
s>0 Fid,0 + [ν̂>0,1 | ν̌>0,1]

)
mod q

c1,0 =
(
s>1 u + ν1,0 + Msgbq/2c

)
mod q

c>1,1 =
(
s>1 Fid,1 + [ν̂>1,1 | ν̌>1,1]

)
mod q

Decrypt(Pub,Skid,Ctxid) The decryption algorithm uses the key did to try to
decrypt both (c0,0, c0,1) and (c1,0, c1,1) 7. W.l.o.g., assume that (cb,0, cb,1) is the
correct ciphertext. The decryption algorithm computes

τ =
(
cb,0 − c>b,1did

)
mod q

6 For instance we set σ = O(4d ·m3/2) · ω(
√

logm) · σLWE.
7 To ensure correct decryption, the message should contain some redundancy to weed

out the incorrect ciphertext. It is a standard technique to encrypt multiple bits in
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View τ as an integer in (−q/2, q/2]. If τ is closer to 0 than ±q/2, the output is
Msg = 0. Otherwise, it is Msg = 1.

4.2 Correctness

Following the decryption algorithm, let did = [d>1 | d>2 ]>. We have

τ =
(
cb,0 − c>b,1did

)
mod q

=
(
Msgbq/2c+ νb,0 − ν̂>0,1d1 − ν̌>0,1d2

)
mod q

Recall, the norm of d1 and d2 is bounded by s
√
m, and the norm of ν̂b,1 and

ν̌b,1 is bounded by σLWE
√
m and σ

√
m respectively, by Lemma 4. To ensure

correctness of decryption, we need

|τ | = |cb,0 − ν̂>b,1d1 − ν̌>0,1d2|
≤ |cb,0|+ ‖ν̂0,1‖ · ‖d1‖+ ‖ν̂0,1‖ · ‖d2‖
≤ O(s ·m · (σLWE + σ))

≤ q/4

Accordingly, it is enough to set q such that O(s ·m · (σLWE + σ)) ≤ q/4.

4.3 Parameter Selection and Discussion

We now discuss a consistent parameter instantiation that achieves both correct-
ness and security. Let λ be the security parameter, t = t(λ) be the identity
length, k = k(λ) be the secret key length of PRF, and let ` = t + k be the
input length of PRF. Let, for the most general case, the circuit depth of PRF
be d = d(λ). To ensure we can run TrapGen in the Lemma 3, we set m = n1+η

for some η > 0 (we assume nη > O(log q)). To make sure SampleLeft in the
real scheme and SampleRight in the simulation algorithm Sim.KeyGen (see sec-
tion 4.4) have the same output distribution per Theorem 2, we set a sufficiently
large Gaussian parameter s = ‖T̃G‖ · O(4d ·m3/2) · ω(

√
logm). To ensure the

applicability of Regev’s [55] and Peikert’s [54] LWE reductions from worst-case
lattice problems, we set the Gaussian parameter of LWE noise distribution to
be σLWE =

√
n. So the LWE noise distribution is (DZ,

√
n) mod q. For the se-

curity proof (specifically for the proofs of Lemma 10 and Lemma 16), we set
σ = O(4d ·m3/2) · ω(

√
logm) · σLWE. Finally, to ensure correctness condition of

decryption, we set q = O(16d ·m9/2) · (ω
√

logm)2.
As for our signature scheme, if we the PRF can be computed by a NC1

NAND circuit with depth d = c log ` for some constant c > 1, we can set the
LWE modulus q = O(`4c ·m9/2) ·(ω

√
logm)2, which is polynomial in the security

parameter λ.

GPV-style encryption, by replacing u with a matrix U ∈ Zn×zq in Pub with which we
can now independently encrypt z > 1 bits without change to the security analysis.
If hybrid encryption is used, the multiple bits can be used to encrypt a symmetric
key without redundancy, deferring the integrity check to the symmetric realm where
it can be performed at minimal cost.
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Tight Reduction and Hardness of LWE. It is known that larger modulus results
in stronger LWE assumption, if the standard deviation of the noise distribution
stays unchanged. More precisely, let B be the maximum magnitude of the LWE
noise, and q be the LWE modulus. The hardness of the LWE problem depends on
the ratio q/B. The LWE problem becomes easier when this ratio grows. In this
regard, the appeal of our tight reduction varies: tight reduction to harder LWE
problem is more preferable than tight reduction to easier LWE problem. This is
true particularly when one considers the average-case hardness of LWE to worst-
case hardness of classic lattice problems, e.g. GapSVP and SIVP, reductions
[55,54,22] where ratio q/B is smaller, the solutions for classic lattice problems
are better.

One feature of our IBE scheme (and the signature scheme it induces) is that
depending on different circuits instantiations, the assumptions we make for our
tight reduction may vary. In addition, if we use a LWE-based PRF, our IBE
scheme relies on the stronger one of two LWE assumptions: one is made for the
PRF and another one is made for our construction, which uses a polynomial
modulus q as we chose above. Currently, basing our IBE scheme solely on LWE
needs to assume the LWE assumption with super-polynomial modulus. This is
because the state-of-art PRFs from LWE (from [9,8]) in terms of efficiency and
provable security require super-polynomial LWE modulus.

On the other hand, we believe that our tight reduction is still very valuable
even for large ratio q/B. Firstly, it shows that, at the first time, we actually can
eliminate the dependency between the number of adversary’s queries and the
security of lattice-based IBE scheme (as well as short lattice signature scheme).
This is very important since the number of adversary’s queries can be quite
large, which will negatively impact the schemes’ security seriously. Secondly, the
average-case to worst-case reduction does provide some security confidence for
the LWE assumption, but this is not the whole story. For certain parameters,
many classic lattice problems are NP-hard. However, those parameters have no
direct connection to lattice-based cryptography. (There is even evidence that
the classic lattice problems with parameters relevant cryptography are not NP-
hard.) On the other hand, the LWE problem (with various parameters) could be
assured to be a hard problem in its own right. It has shown robustness against
various attacks in a relatively long-term period. This has made LWE widely ac-
cepted as standard assumption and for use in cryptography. For instance, even
for sub-exponentially large ratios q/B = 2O(nc) where n is the LWE dimension
and 0 < c < 1/2, the LWE problem is still believed to be hard and leads to pow-
erful cryptographic schemes which we were not able to obtain by other means,
including fully homomorphic encryption, e.g. [23], attribute-based encryption for
circuits, e.g. [37,18,25], and predicate encryption for circuits [41].

4.4 Proof of Security

The security of our IBE scheme with respect to the Definition 8 can be stated
by the following theorem.
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Theorem 5. Let λ be a security parameter. The parameters n, q are chosen as
the section 4.3. Let χ be the distribution DZm,

√
n. If the (tLWE, εLWE)-LWEn,q,χ

assumption holds and the PRF used in the IBE scheme is (tPRF, εPRF)-secure,
then the IBE scheme is (t, qid, ε)-IND-ID-CPA secure such that ε ≤ 2(εPRF +
εLWE) + negl(λ) for some negligible function negl(λ), and max(tPRF, tLWE) ≤ t +
O (qid · (TS + TE)) where TS is the maximum running time of SampleRight and
TE is the maximum running time of EvalBV for one input identity.

We prove above theorem through a sequence of indistinguishable security
games. The first game is identical to the IND-ID-CPA game. In the last game,
the adversary has no advantage. We will show that a PPT adversary will not be
able to distinguish the neighbouring games which will prove that the adversary
has only negligibly small advantage in wining the first (real) game.

Firstly, we define the following simulation algorithms Sim.Setup, Sim.KeyGen
and Sim.Encrypt.

Sim.Setup(1λ) The algorithm does the following:

1. Select matrix A
$←− Zn×mq .

2. Select k + 4 random low-norm matrices RA0
, RA1

, {RBi}i∈[k], RC0
, RC1

from {1,−1}m×m.
3. Select a secure pseudorandom function PRF : {0, 1}k × {0, 1}t → {0, 1} and

express it as a NAND Boolean circuit CPRF with depth d = d(λ).

4. Select a uniformly random string K = s1s2 . . . sk
$←− {0, 1}k.

5. Set Ab = ARAb
+ bG and Cb = ARCb + bG for b = 0, 1.

6. Set Bi = ARBi + siG for i ∈ [k].

7. Select vector u
$←− Znq .

8. Publish Pub =
(
A, {A0,A1}, {Bi}i∈[k], {C0,C1},u,PRF, CPRF

)
Sim.KeyGen(Pub,Msk, id) Upon an input identity id = x1x2 . . . xt ∈ {0, 1}t, the
algorithm uses the parameters generated from Sim.Setup to do the following:

1. Compute APRF,id = ARCPRF,id+PRF(K, id)G← EvalBV(CPRF, {Bi}i∈[k],Cx1 , . . . ,Cxt).
2. Let PRF(K, id) = b ∈ {0, 1}. Set

Fid,1−b =
[
A | A1−b −ACPRF,id

]
=
[
A | A(RA1−b −RCPRF,id) + (1− 2b)G

]
.

3. Run SampleRight to sample did ∈ DΛu
q (Fid,1−b),s as the private key Skid.

Sim.Encrypt(Pub, id∗,Msg) To encrypt a message Msg∗ ∈ {0, 1} with respect to
an identity id∗:

1. Compute b = PRF(K, id∗).
2. Set

Fid∗,b =
[
A | Ab −ACPRF,id∗

]
=
[
A | A(RAb

−RCPRF,id∗)
]
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and

Fid∗,1−b =
[
A | A1−b −ACPRF,id∗

]
=
[
A | A(RA1−b −RCPRF,id∗) + (1− 2b)G

]
.

3. Select random vectors sb, s1−b
$←− Znq .

4. Select noise scalars νb,0, ν1−b,0 ← DZ,σLWE
.

5. Sample noise vectors x,y← DZm,σLWE
for sufficiently large Gaussian param-

eter σLWE (σLWE ≥ ηε(Zm) for some small ε > 0). Set ν̂b,1 = x + y.
6. Let R = RAb

− RPRF,id∗ and ri be the i-th column of R. We sample the
noise vector z = (z1, z2, . . . , zm) ∈ Zm with zi ← DZ,σ1,i

for the sufficiently

large Gaussian parameter σ1,i =
√
σ2 − 2(‖ri‖ · σLWE)2. 8 Set ν̌b,1 = R> ·

(x− y) + z.
7. Select noise vectors ν̂1−b,1 ← DZm,

√
2σLWE

, ν̌1−b,1 ← DZm,σ.
8. Set the challenge ciphertext Ctxid∗ = (cb,0, cb,1, c1−b,0, c1−b,1) as:{

cb,0 =
(
s>b u + νb,0 + Msgbq/2c

)
mod q

c>b,1 =
(
s>b Fid∗,b + [ν̂>b,1 | ν̌>b,1]

)
mod q

{
c1−b,0 =

(
s>1−bu + ν1−b,0 + Msgbq/2c

)
mod q

c>1−b,1 =
(
s>1−bFid∗,1−b + [ν̂>1−b,1 | ν̌>1−b,1]

)
mod q

Now we define a series of games and prove that the neighbouring games are
either statistically indistinguishable, or computationally indistinguishable.

Game 0 This is the real IND-ID-CPA game from the definition. All the algo-
rithms are the same as the real scheme.

Game 1 This game is the same as Game 0 except it runs Sim.Setup and
Sim.KeyGen instead of Setup and KeyGen.

Game 2 This game is the same as Game 1 except that the challenge ciphertext
is generated by Sim.Encrypt instead of Encrypt.

Game 3 This game is the same as Game 2 except that during preparation of
the challenge ciphertext for identity id∗, it samples (cb,0, cb,1) uniformly random
from Zq × Z2m

q for b = PRF(K, id∗). Another part of the challenge ciphertext
(c1−b,0, c1−b,1) is computed by Sim.Encrypt as in Game 2.

Game 4 This game is the same as Game 3 except for b = PRF(K, id∗) it runs
real encryption algorithm Encrypt to generate (c1−b,0, c1−b,1) of the challenge
ciphertext instead of using Sim.Encrypt.

8 In section 4.3, the σ is set large enough such that σ1,i can be larger than ‖R‖·ηε(Zm).
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Game 5 This game is the same as Game 4 except it runs Setup and KeyGen
to generate Pub and private identity keys.

Game 6 This game is the same as Game 5 except that for b = PRF(K, id∗), the
challenge ciphertext part (cb,0, cb,1) is generated by Encrypt instead of choosing
it randomly, and (c1−b,0, c1−b,1) is chosen randomly.

Game 7 This game is the same as Game 6 except that it runs Sim.Setup and
Sim.KeyGen to generate Pub and private identity keys.

Game 8 This game is the same as Game 7 except that for the bit value
b = PRF(K, id∗), it computes the challenge ciphertext (cb,0, cb,1) by Sim.Encrypt.

Game 9 This game is the same as Game 8 except that the whole challenge
ciphertext is sampled uniformly at random from the ciphertext space. Therefore,
in Game 5 the adversary has no advantage in wining the game.

In Game i, we let Si be the event that γ′ = γ at the end of the game. The
adversary’s advantage in Game i is |Pr[Si]− 1

2 |. The following lemmas are used
to prove Theorem 5. We refer to the full version of this paper ([21]) for the proofs
of these lemmas.

Lemma 9. Game 1 and Game 0 are statistically indistinguishable, so |Pr[S0]−
Pr[S1]| ≤ negl(λ) for some negligible function negl(λ).

Lemma 10. Game 2 and Game 1 are statistically indistinguishable, so |Pr[S1]−
Pr[S2]| ≤ negl(λ) for some negligible function negl(λ).

Lemma 11. If (t, εLWE)-LWEn,q,χ assumption holds where χ stands for the dis-
tribution DZ,σLWE

reduced modulo q, then |Pr[S2]− Pr[S3]| ≤ εLWE.

Lemma 12. |Pr[S3]− Pr[S4]| = 0.

Lemma 13. Game 5 and Game 4 are statistically indistinguishable, so |Pr[S4]−
Pr[S5]| ≤ negl(λ) for some negligible function negl(λ).

Lemma 14. If the PRF PRF is (t, εPRF)-secure, then |Pr[S5]−Pr[S6]| ≤ 2εPRF.

Lemma 15. Game 7 and Game 6 are statistically indistinguishable, so |Pr[S6]−
Pr[S7]| ≤ negl(λ) for some negligible function negl(λ).

Lemma 16. Game 8 and Game 7 are statistically indistinguishable, so |Pr[S7]−
Pr[S8]| ≤ negl(λ) for some negligible function negl(λ).

Lemma 17. If (t, εLWE)-LWEn,q,χ assumption holds where χ stands for the dis-
tribution DZ,σLWE

reduced modulo q, then |Pr[S8]− Pr[S9]| ≤ εLWE.

Now we prove the Theorem 5 by the established lemmas.
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Proof. Based on the lemmas that show the difference between the sequence of
games, we have ε = |Pr[S0]−1/2| ≤ 2(εPRF + εLWE) +negl(λ) for some negligibly
small statistical error negl(λ). The running time of B is dominated by answering
qid private key generation queries from A. For answering one such query, B needs
to apply the key-homomorphic algorithm on the circuit of PRF. This requires
time TE . Besides that, B needs to run SampleRight to sample Gaussian vectors
for constructing the private keys, which requires at most time TS . Therefore, for
one query, B roughly runs O(TS +TE) time. For all qid queries and constructing
the challenge ciphertext, the total time is bounded by O (qid · (TS + TE)). So if
an adversary A has running time t, max(tLWE, tPRF) ≤ t+O(qid · (TS +TE)). ut

5 Conclusions

In this paper, we propose a short adaptively secure lattice signature scheme and
a “compact” adaptively secure IBE scheme in the standard model. Our construc-
tions make use of PRFs in a novel way by combining several recent techniques
in the area of lattice-based cryptography. The security of our signature and
IBE scheme is tightly related to the conservative lattice assumptions SIS and
LWE, respectively, and the security of an instantiated PRF, with a constant loss
factor. By instantiating the existing efficient PRFs from lattice and number-
theoretic assumptions which can be implemented by shallow circuits, we obtain
the first “almost” tightly secure lattice-based short signature/IBE scheme whose
security is based on LWE assumption with super-polynomial modulus, and an
adaptively secure IBE scheme with the tightest security reduction so far, i.e.
with only O(log2 λ) factor of security loss for the security parameter λ, based
on a novel combination of lattice and number-theoretic assumptions.

The problem of constructing a tightly and adaptively secure IBE scheme
from standard assumptions (in the sense that the security loss of reduction is
a constant) remains open. Our work suggests that constructing tightly secure
PRFs, which is another important open problem left by [31,47], would solve it.
We leave as a fascinating open problem the question of employing similar (or
different) techniques to construct compact and (almost) tightly secure signature
and encryption schemes with increased expressiveness, such as hierarchical and
attribute-based encryption scheme, or homomorphic signatures. Another inter-
esting open question is to construct an efficient PRF from LWE assumption with
polynomial modulus.
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