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Abstract. In 2015, Hofheinz et al. [PKC, 2015] extended Chen and
Wee’s almost-tight reduction technique for identity based encryptions
(IBE) [CRYPTO, 2013] to the multi-instance, multi-ciphertext (MIMC,
or multi-challenge) setting, where the adversary is allowed to obtain mul-
tiple challenge ciphertexts from multiple IBE instances, and gave the first
almost-tightly secure IBE in this setting using composite-order bilinear
groups. Several prime-order realizations were proposed lately. Howev-
er there seems to be a dilemma of high system performance (involving
ciphertext/key size and encryption/decryption cost) or weak/standard
security assumptions. A natural question is: can we achieve high perfor-
mance without relying on stronger/non-standard assumptions?

In this paper, we answer the question in the affirmative by describ-
ing a prime-order IBE scheme with the same performance as the most
efficient solutions so far but whose security still relies on the standard
k-linear (k-Lin) assumption. Our technical start point is Blazy et al.’s
almost-tightly secure IBE [CRYPTO, 2014]. We revisit their concrete
IBE scheme and associate it with the framework of nested dual system
group. This allows us to extend Blazy et al.’s almost-tightly secure IBE
to the MIMC setting using Gong et al.’s method [PKC, 2016]. We empha-
size that, when instantiating our construction by the Symmetric eXternal
Diffie-Hellman assumption (SXDH = 1-Lin), we obtain the most efficient
concrete IBE scheme with almost-tight reduction in the MIMC setting,
whose performance is even comparable to the most efficient IBE in the
classical model (i.e., the single-instance, single-ciphertext setting). Be-
sides pursuing high performance, our IBE scheme also achieves a weaker
form of anonymity pointed out by Attrapadung et al. [AsiaCrypt, 2015].

Keywords: Identity based encryption, Tight security, Multi-challenge
setting, Nested dual system group, Prime-order bilinear group, Groth-
Sahai proof system, (Weak) Anonymity



1 Introduction

1.1 Background and Motivation

The notion of identity based encryption (IBE) was proposed by Shamir [32] in
1984 and realized by Boneh and Franklin [7] in 2001 using bilinear groups. In an
IBE system, an authority publishes a set of public parameters and issues secret
keys for users according to their identities, the encryption requires the public
parameters and receiver’s identity (for example, his/her e-mail address). As an
advantage over traditional PKI-based cryptosystems, users in an IBE system
only need to authenticate and store the system-level public parameter once and
for all, while users’ identities are always self-explained and thus easy to validate.

Since Boneh and Franklin’s work [7], a series of constructions [6, 5, 33, 13] ap-
peared making trade-off between several features such as security model, strength
of complexity assumption, and public key size. In 2009, Waters [34] proposed a
novel proof technique, called dual system encryption, and showed the first adap-
tively secure IBE scheme with constant-size public key and polynomially relat-
ed to the k-linear (k-Lin) assumption, a standard assumption, in the standard
model. Nowadays the dual system technique has become a regular and powerful
tool for achieving adaptive security of attribute based encryptions (ABE) and
inner-product encryption (IPE) (and more general primitives) in the standard
model [21, 26, 22, 28, 27]. More importantly, under the framework of dual system
encryption, we have obtained a clean, deep, and uniform understanding on the
construction of a branch of encryption systems, including IBE, ABE, IPE and
so on [1, 35, 2, 8].

The classical adaptive security model for IBE [7] requires that the challenge
ciphertext for the challenge identity reveals nothing even when the adversary has
held secret keys for other identities. The dual system technique [34] generally
works as follows. There are two forms of secret keys and ciphertexts, normal and
semi-functional form. The normal ciphertexts/keys are used in the real system,
while the semi-functional ciphertexts/keys are often constructed by introducing
extra entropy into normal ones and will only be used for the security proof.
We say normal object is in the normal space and the extra entropy is in the
semi-functional space and require that they are independent in some sense. The
proof follows the hybrid argument method. One first transforms the challenge
ciphertext from normal to its semi-functional form. Next, one converts secret keys
from normal to semi-functional form in an one-by-one fashion. Finally, one can
immediately prove the security utilizing the extra entropy we have introduced
in the semi-functional space.

Tight Security. Clearly, the reduction described above suffers from a security
loss proportional to the number of secret keys the adversary held. Due to the
generality of such a loss, a natural question is whether such a security loss is
inherent for IBE in the standard model under standard assumptions? In practical
point of view, a tightly secure IBE allows practitioners to implement this system
in a smaller group, which always leads to shorter ciphertexts/keys and faster
encryption/decryption operations in the real world.
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Fortunately, Chen and Wee [9] answered the question in the negative. They
proposed the first almost-tightly secure IBE in the standard model based on the
k-Lin assumption. Here the so-called almost-tight means the security loss is pro-
portional to the security parameter instead of the amount of secret keys revealed
to the adversary. Technically, they combined the high-level idea of dual system
encryption with the proof technique of Naor and Reingold [25]. In the next year,
Blazy et al. showed an almost-tightly secure IBE with higher space and time
efficiency. In fact, they proved that an adaptively secure IBE can be generically
constructed from affine message authentication code (MAC) and Groth-Sahai
non-interactive zero-knowledge (NIZK) proof [15], and offered us a realization of
affine MAC based on Naor and Reingold’s proof technique [25]. Roughly speak-
ing, their high-level strategy is still identical to Chen and Wee’s [9].

Let us take a look at Chen and Wee’s idea [9]. Essentially, they borrowed
the proof strategy from Naor and Reingold [25] in order to introduce entropy
into semi-functional space more quickly. After converting normal ciphertext to
semi-functional form, one may conceptually introduce a truly random function
RF to all secret keys and challenge ciphertext whose domain is just {ε}, i.e.,
unrelated to the identity. Relying on the binary encoding of the identities in
secret keys, one can increase the dependency of RF on the identity, from 0-bit
prefix to 1-bit prefix, 2-bit prefix, ..., and finally the entire identity. They called
such a property nested hiding. At this moment, RF(id) is revealed to adversary
through secret key for id while RF(id∗) for the challenge identity id∗ is still
unpredictable since adversary is not allowed to hold its secret key. This feature
is sufficient for proving the security. It is worth noting that for an identity space
{0, 1}n, we just need n steps to construct such a random function RF and just
arise O(n) security loss.

Multi-instance, Multi-ciphertext Setting. The classical security model for
IBE [7] requires that the single challenge ciphertext from the single challenge
identity should leak nothing about the corresponding message even with secret
keys for adversarially-chosen identities. In 2015, Hofheinz et al. [18] considered
a more realistic security model, called adaptive security in the multi-instance,
multi-ciphertext setting (MIMC, or multi-challenge setting), which ensures the
security of multiple challenge ciphertexts for multiple challenge identities in mul-
tiple IBE instances. In general, an IBE scheme secure in the classical single-
instance, single-ciphertext (SISC) model must be secure in the MIMC setting.
However the implication is not tightness-preserving. Assuming the number of
IBE instances and challenge ciphertexts per instance are µ and Q, the general
reduction from MIMC to SISC will arise a multiplicative security loss O(Qµ).

Hofheniz et al. [18] extended Chen and Wee’s tight reduction technique [9]
and gave the first almost-tight secure IBE in the MIMC setting. Technically,
the ηth nested hiding step in Chen and Wee’s proof procedure requires that
the ηth bit of all challenge identities should be identical. It is the case in the
SISC setting but is not necessarily hold in the MIMC setting. To overcome
this difficulty, they introduced another semi-functional space. Now the original
semi-functional space may be called ∧-semi-functional space and the new-comer

3



may be named ∼-semi-functional space. They also employed two independent

random functions R̂F and R̃F for them, respectively, acting the same role of RF
in Chen and Wee’s proof. As the preparation for the ηth nested hiding, they
transfer the entropy in ∧-semi-functional space to ∼-semi-functional space for
all challenge ciphertexts whose identity has 1 on its ηth bit. At this moment,
we reach the configuration that, in every semi-functional spaces, the challenge
identities indeed share the same ηth bit, and nested hiding can be done as Chen
and Wee did but in each of two semi-functional spaces independently.

However their construction was built in composite-order bilinear groups. At-
trapadung et al. [3] and Gong et al. [14] gave prime-order solutions independent-
ly. Attrapadung et al. [3] provided a generic framework building almost-tight se-
cure IBE from broadcast encoding which is compatible with both composite-order
and prime-order bilinear groups. Utilizing the power of broadcast encoding, they
proposed not only ordinary IBE scheme but also IBE with other features such
as sublinear-size master public key. Gong et al. [14] followed the line of extended
nested dual system groups (ENDSG) [18] and proposed two constructions from
more general assumptions, the second of which is an improved version based
on the first one. In this paper, we do not consider additional feature and name
Attrapadung et al.’s basic IBE in the prime-order group (i.e., Φprime

cc ) [3] as AHY,
while name Gong et al.’s two constructions [14] as GCDCT and GCDCT+.

Motivation. Among existing prime-order IBE constructions with almost-tight
reduction in the MIMC model, there is a trade-off between the efficiency and
strength of complexity assumption. On one hand, GCDCT was proven secure
based on the k-Lin assumption but less efficient in terms of both ciphertext/key
size and encryption/decryption cost. On the other hand, GCDCT+ and AHY
were more efficient but relied on the k-linear assumption with auxiliary input
(k-LinAI) in asymmetric bilinear groups and the decisional linear assumption
(sDLIN) in symmetric bilinear groups, respectively, which are stronger and less
general than the k-Lin assumption. Therefore it is still an interesting and non-
trivial problem to find a solution with some real improvements instead of just a
trade-off. More concretely, we ask the following question:

Question: Can we find a tightly secure IBE scheme in the MIMC setting,
which is (at least) as efficient as GCDCT+ and AHY but still proven secure
under the standard k-Lin assumption as GCDCT?

1.2 Our Main Result

In this paper, we answer the question in the affirmative by proposing an IBE
scheme using prime-order bilinear groups in the MIMC setting. The adaptive
security of the construction is almost-tightly based on the k-Lin assumption as
GCDCT. At the same time, its performance is better than GCDCT and is identical
to GCDCT+ and AHY for corresponding parameter.
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We compare existing almost-tightly secure IBE in prime-order groups with
ours in detail in Table 1. The comparison involves the complexity assump-
tion, the sizes of master public key, secret keys and ciphertexts, and encryp-
tion/decryption cost. As a base line, we also investigate almost-tightly secure
prime-order IBE by Chen and Wee [9], denoted by CW, and Blazy et al. [4],
denoted by BKP, both of which are adaptively secure in the SISC setting.

Table 1. Comparison among almost-tight IBE schemes in the prime-order group.

Scheme Sec.
|mpk| |sk| |ct| TEnc TDec

MIMC
G1/G GT G2/G G1/G GT E1/E ET P

CW

k-Lin 2k2(2n+ 1) k 4k 4k 1 4k2 k 4k

%DLIN 16n+ 8 2 8 8 1 16 2 8

SXDH 4n+ 2 1 4 4 1 4 1 4

BKP

k-Lin k2(2n+ 1) + k k 2k + 1 2k + 1 1 2k2 + 1 k 2k + 1

%DLIN 8n+ 6 2 5 5 1 9 2 5

SXDH 2n+ 2 1 3 3 1 3 1 3

GCDCT

k-Lin 3k2(2n+ 1) k 6k 6k 1 6k2 k 6k

"DLIN 24n+ 12 2 12 12 1 24 2 12

SXDH 6n+ 3 1 6 6 1 6 1 6

GCDCT+
k-LinAI 2k2(2n+ 1) k 4k 4k 1 4k2 k 4k

"
XDLIN 16n+ 8 2 8 8 1 16 2 8

AHY sDLIN 16n+ 8 2 8 8 1 16 2 8 "

Ours

k-Lin k2(2n+ 3) k 4k 4k 1 4k2 k 4k

"DLIN 8n+ 12 2 8 8 1 16 2 8

SXDH 2n+ 3 1 4 4 1 4 1 4

– All schemes take {0, 1}n as identity space.

– “DLIN” and “sDLIN” in Column “Sec.” stand for decisional linear assumption in asym-

metric and symmetric bilinear groups, respectively.

– Column |mpk|, |sk|, and |ct| present numbers of group elements in master public keys,

secret keys and ciphertexts, respectively. Here G refers to the source group of symmetric

bilinear groups; G1, G2 are those of asymmetric bilinear groups; GT stands for the target

group for both cases.

– Column TEnc and TDec give numbers of costly operations required during encryption and

decryption procedures. E1, E and ET refer to exponentiation on the first source group

of asymmetric bilinear groups, the only source group of symmetric bilinear groups, and

target group in both cases, respectively. P is for pairing operation for both cases.

Benefit of Standard k-Lin. Compared with k-Lin, the k-LinAI assumption
(used by GCDCT+) is not well-understood6 and the sDLIN assumption (used
by AHY) is stronger especially in the case of AHY7. Without doubt k-Lin is the

6 The k-LinAI assumption is an extended (and stronger) version of k-Lin. However
only its generic security has been investigated in [14].

7 One may convert AHY into an asymmetric bilinear group and the security now relies
on the XDLIN assumption, which is stronger than 2-Lin. Furthermore it’s of course
stronger than k-Lin for k > 2.
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best choice. However we want to emphasize that achieving the same performance
(as GCDCT+ and AHY) under the k-Lin assumption is not just advantageous to
theorist, since we can indeed derive a strictly more efficient instantiation than all
previous solutions. We note that, AHY is based on the sDLIN assumption and
no related generalization was given, while the k-LinAI assumption, on which
GCDCT+ is built, is not well-defined8 for k = 1. In contrast, our construction
can be naturally instantiated by k = 1 and yield an IBE scheme based on
SXDH (see Section 6), whose performance is shown in the last row (in gray)
of the table. Clearly, it has the shortest secret key/ciphertext and the most
efficient encryption/decryption algorithm. Compared with BKP under the SXDH
assumption, the cost we pay for stronger and more practical MIMC security is
quite small: just one more group element is added to secret keys and ciphertexts,
and just one more exponentiation and pairing operation are added to encryption
and decryption procedure, respectively.

(Weak) Anonymity. Apart from the concern on performance, our main con-
struction achieves anonymity as BKP and AHY. However the notion here is weak-
er than the standard anonymity, which was first pointed out by Attrapadung et
al. [3]. All of them are proven to be anonymous under the restriction that all
secret keys for the same identity must be created using the same random coin.
It’s reported in [3] that this can be fulfilled by generating the random coin using
a PRF from each identity. A subtlety here is the newly introduced PRF itself
should be tightly secure otherwise our effort pursuing tight security will finally
come to nothing. In the paper we continue working in this restricted model and
neglect this subtlety to keep a clean exposition.

1.3 Our Method

All of AHY, GCDCT, and GCDCT+ are extended from Chen and Wee’s con-
struction [9] or its recent development by Chen et al. [8]. However, from Figure 1,
we can see that BKP, Blazy et al.’s almost-tightly secure IBE in the SISC mod-
el [4], is more efficient in terms of both space and time efficiency. Therefore our
idea is to extend BKP to the MIMC setting and we hope that the resulting
construction inherits its high performance and could become a solution to the
problem we posed in Section 1.1.

Although Blazy et al. essentially followed the dual system technique, their
concrete realization relied on the Groth-Sahai NIZK proof system [15], which is
very different from constructions in [8, 9], the common bases of AHY, GCDCT,
and GCDCT+. The existing extension strategy seemingly can not be directly
applied to updating BKP to the MIMC setting.

To circumvent the difficulty, we reconsider BKP and observe a surprising
connection between BKP and Chen et al.’s (non-tight) IBE [8]. This allows us
to study and manipulate BKP in the framework of nested dual system groups

8 The improvement technique behind GCDCT+ does not work for the special case
k = 1 since two semi-functional spaces are 1-dimension and too small to compress.
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(NDSG) [9] which is much easier to understand and also more feasible to extend
towards the MIMC setting [18, 14] with existing techniques. We provide the
reader with a technical overview in Section 3 covering our basic observation and
sketching our two technical results which formally treat the observation.

1.4 Related Work

In 2013, Jutla and Roy [19] investigated the notion of quasi-adpative NIZK
(QANIZK) and developed an IBE scheme from their SXDH based QANIZK.
Both this work and Blazy et al.’s work [4] realized the dual system technique
using NIZK proof and the idea is actually quite similar. Blazy et al. focused on
generic frameworks from affine MAC to IBE, while Jutla and Roy considered
many other applications of newly proposed QANIZK. A series of work [30, 31,
29] extended Jutla and Roy’s IBE constructions to more complex functionality.

Since being introduced in 2013, Chen and Wee’s technique of almost-tight
reduction [9] has been applied to other primitives such as public key encryption
against chosen-ciphertext attack and a signature [23] and QANIZK with un-
bounded simulation soundness [24]. Recently, Hofheinz [17, 16] proposed a series
of novel techniques based on Chen and Wee’s [9] and achieved constant-size pa-
rameters and better efficiency for public key encryptions with chosen-ciphertext
security and signatures. In the pairing-free setting, Gay et al. [12] provided more
efficient CCA secure PKE with tight reduction and applied their basic idea to
NIZK proof system.

Roadmap. We review necessary preliminary background in Section 2. Section 3
is an overview with more technical detail. Section 4 and Section 5 present our
two technical results. We show our main result (from k-Lin assumption) and its
concrete instantiation under SXDH assumption in Section 6.

2 Preliminaries

Notation. We use a ← A to denote the process of uniformly sampling an
element from set A and assigning it to variable a. We employ {xi}i∈I to denote
a family (or list) of objects with index set I. The abbreviation {xi} will be
used when index set is clear in the context. Let G be a group of order p. Given
two vectors a = (a1, . . . , bn) ∈ Gn and b = (b1, . . . , bn) ∈ Gn, we let a · b =
(a1b1, . . . , anbn) ∈ Gn. For c = (c1, . . . , cn) ∈ Zp and g ∈ G, we define gc =
(gc1 , . . . , gcn) ∈ Gn. For any matrix A ∈ Zm×np with m > n, we use A to
refer to the square matrix consisting of the first n rows of A and let A be
the sub-matrix consisting of the remaining m − n rows. For any square matrix
A ∈ Zm×mp , we define A∗ = (A>)−1. We use (A|B) to denote the matrix formed
by concatenating columns of matrix A and B in order.

2.1 Prime-order Bilinear Group

Let GrpGen be a prime-order bilinear group generator which takes as input se-
curity parameter 1λ and outputs group description G = (G1, G2, GT , p, e, g1, g2).
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Here G1, G2 and GT are finite cyclic groups of prime order p and |p| = Θ(λ).
e : G1×G2 → GT is an admissible (non-degenerated and efficiently computable)
bilinear map. g1, g2 and gT = e(g1, g2) are respective generators of G1, G2, GT .
We employ the implicit representation of group elements [11]. For any a ∈ Zp and
any s ∈ {1, 2, T}, we define [a]s = gas ∈ Gs. For any matrix A = (ai,j) ∈ Zm×np ,

we define [A]s = ([ai,j ]s) ∈ G
m×n
s and let e([A]1, [B]2) = [A>B]T when A>B is

well-defined.
The security of our construction relies on the Matrix Decisional Diffie-Hellman

(MDDH) Assumption introduced in [11].

Definition 1 (Matrix Distribution [11]). For any `, k ∈ N with ` > k, we let
D`,k be a matrix distribution over all full-rank matrices in Z`×kp . Furthermore,
we assume the first k rows of the output matrix form an invertible matrix.

Assumption 1 (D`,k-Matrix Diffie-Hellman Assumption [11]) Let D`,k be
a matrix distribution and s ∈ {1, 2, T}. For any p.p.t. adversary A against
GrpGen, the following advantage function is negligible in λ.

Adv
D`,k
A (λ) = |Pr [A(G, [A]s, [Au]s) = 1]− Pr [A(G, [A]s, [v]s) = 1]|

where G ← GrpGen(1λ), A← D`,k, u← Zkp, v← Z`p.

The matrix distribution Dk+1,k will extensively appear in the paper. For sim-
plicity, we take Dk as its abbreviation. As in [8], we let Dk output an additional
vector a⊥ ∈ Zk+1

p satisfying A>a⊥ = 0 and a⊥ 6= 0. The notable k-Linear
(k-Lin) Assumption is a special case of the Dk-MDDH assumption with

A =


a1

. . .

ak
1 · · · 1

 ∈ Z(k+1)×k
p and a⊥ =


a−11

...

a−1k
−1

 ∈ Zk+1
p

where a1, . . . , ak ← Zp. We describe a lemma similar to that shown in [8].

Lemma 1. With probability 1−1/p over (A,a⊥)← Dk and b← Zk+1
p , we have

b /∈ Span(A) and b>a⊥ 6= 0.

We will heavily use the uniform matrix distribution U`,k, which uniformly
samples a matrix over Z`×kp . Similarly, we let Uk be the short form of Uk+1,k.
A direct observation is “Dk-MDDH ⇒ Uk-MDDH” with constant security loss,
since any Dk-MDDH instance can be disguised as a Uk-MDDH instance using a
random square matrix (c.f. [11, 12]). Besides, we have the following lemma.

Lemma 2 (Uk ⇒ U`,k, ` > k [12]). For any p.p.t. adversary A, there exists an
adversary B with T(B) ≈ T(A) + k2` · poly(λ) and

Adv
U`,k-MDDH
A (λ) ≤ AdvUk-MDDH

B (λ).
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The observation and the lemma lead to the fact that U`,k-MDDH with ` > k
is constantly implied by the well-known k-Lin assumption. In the paper, we
utilize the following structural lemma [12].

Lemma 3. For a fixed full-rank A ∈ Z3k×k
p , with probability at least 1 − 2k/p

over Â, Ã← U3k,k, we have Span
(
(A|Â|Ã)

)
= Z3k

p , in which case it holds that

Span(A⊥) = Ker
(
(A|Â)>

)
⊕ Ker

(
(A|Ã)>

)
.

and Â>Â∗ ∈ Zk×kp is invertible if Â∗ forms a basis of Ker
(
(A|Ã)>

)
.

For Q ∈ N, we recall the Q-fold U`,k-MDDH assumption [11] as follows. One
may view it as Q independent instances of the basic U`,k-MDDH problem.

Assumption 2 (Q-fold U`,k-MDDH [11]) Let U`,k be the uniform matrix dis-
tribution and s ∈ {1, 2, T}. For any p.p.t. adversary A against GrpGen, the fol-
lowing advantage function is negligible in λ.

Adv
U`,k
A,Q(λ) = |Pr [A(G, [A]s, [AU]s) = 1]− Pr [A(G, [A]s, [V]s) = 1]|

where G ← GrpGen(1λ), A← U`,k, U← Zk×Qp , V← Z`×Qp .

It would be direct to prove “U`,k-MDDH ⇒ Q-fold U`,k-MDDH” with a
security loss Q. The Random Self-reducibility Lemma by Escala et al. [11] (see
below) provided us with a tighter reduction, the security loss solely depends on
the property of matrix A instead of Q. Namely one can deal with unbounded
number of instances simultaneously with constant security loss for a fixed A.

Lemma 4 (Random Self-reducibility [11]). Assume Q > ` − k. For any
uniform matrix distribution U`,k and any p.p.t. adversary A, there exists an
adversary B such that

Adv
U`,k
A,Q(λ) 6 (`− k) · AdvU`,kB (λ) + 1/(p− 1)

and T(B) ≈ T(A) + `2k · poly(λ) where poly(λ) is independent of T(A).

2.2 Identity Based Encryption

Algorithms. An Identity Based Encryption (IBE) in the multi-instance set-
ting [3, 18, 14] consists of five p.p.t. algorithms:

– Param(1λ, sys)→ gp. The parameter generation algorithm takes as input a
security parameter λ ∈ Z+ and a system-level parameter sys, and outputs
a global parameter gp.

– Setup(gp) → (mpk,msk). The setup algorithm takes as input a global pa-
rameter gp, and outputs a master public/secret key pair (mpk,msk).
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– KeyGen(mpk,msk, id)→ skid. The key generation algorithm takes as input
a master public key mpk, a master secret key msk and an identity id, and
outputs a secret key skid.

– Enc(mpk, id,m) → ctid. The encryption algorithm takes as input a master
public key mpk, an identity id and a message m, outputs a ciphertext ctid.

– Dec(mpk, sk,ct) → m. The decryption algorithm takes as input a master
public key mpk, a secret key sk and a ciphertext ct, outputs message m or ⊥.

If the IBE scheme in question is in the classical single-instance setting, we
may merge the first two algorithms into a single Setup algorithm for clarity.
The merged Setup algorithm takes 1λ and sys as inputs and creates a master
public/secret key pair (mpk,msk).

Correctness. For any parameter λ ∈ N, any sys, any gp ∈ [Param(1λ, sys)],
any (mpk,msk) ∈ [Setup(gp)], any identity id and any message m, it holds that

Pr

[
Dec(mpk, sk,ct) = m

∣∣∣∣ sk← KeyGen(mpk,msk, id)

ct← Enc(mpk, id,m)

]
> 1− 2−Ω(λ).

Security Definition. We investigate both ciphertext indistinguishability and
anonymity under chosen identity and plaintext attacks in the multi-instance,
multi-ciphertext setting. We define the advantage function

AdvIBEA (λ) =

∣∣∣∣∣∣∣Pr

β = β′

∣∣∣∣∣∣∣
µ← A(), gp← Param(1λ, sys), β ← {0, 1}

(mpk1,msk1), . . . , (mpkµ,mskµ)← Setup(gp)

β′ ← AOEnc
β ,OKeyGen

(mpk1, . . . ,mpkµ)

− 1

2

∣∣∣∣∣∣∣
where oracles OEnc

β and OKeyGen work as follows

- OEnc
β : Given (ι∗0, id

∗
0, ι
∗
1, id

∗
1,m

∗
0,m

∗
1), return Enc(mpkι∗β , id

∗
β ,m

∗
β) and update

QC = QC ∪ {(ι∗0, id∗0), (ι∗1, id
∗
1)}.

- OKeyGen: Given (ι, id), return KeyGen(mpkι,mskι, id) and update QK =
QK ∪ {(ι, id)}.

An identity based encryption scheme is adaptively secure and anonymous in the
multi-instance, multi-ciphertext setting if for all p.p.t. adversaryA the advantage
function AdvIBEA (λ) is negligible in λ and QK ∩QC = ∅.

As a special case, the adaptive security and anonymity in the single-instance,
single-ciphertext setting can be derived by setting two restrictions: (1) There is
only one master public/secret key pair, i.e., we set µ = 1 and all ι∗0, ι

∗
1, ι submitted

to oracles are restricted to be 1. (2) There is only one challenge ciphertext, i.e.,
A can send only one query to oracle OEnc

β .

3 A Technical Overview

3.1 Revisiting BKP

A Short Overview of BKP. Let (G1, G2, GT , p, e, g1, g2)← GrpGen(1λ), let’s
review BKP, i.e., IBE[MACNR[Dk],Dk] in [4], which is derived from the affine
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MAC based on Naor-Reingold PRF. The affine MAC can be described as follows.

skMAC : x1,0, x1,1, . . . , xn,0, xn,1, x

tagm : [t]2,
[∑n

i=1 x>i,m[i]t + x
]
2

Here xi,b ← Zkp for (i, b) ∈ [n] × {0, 1} and x ← Zp, random coin t ∈ Zkp
is uniformly sampled for each tag and m[i] represents the ith bit of message
m ∈ {0, 1}n. It’s beneficial to define randomized verification key for m∗ as

vkm∗ : [h]1,
[
h ·
∑n
i=1 xi,m∗[i]

]
1
, [h · x]T

where h ← Zp. Blazy et al. can prove that a verification key for m∗ is pseudo-
random for any p.p.t adversary holding tags for m1, . . . ,mq 6= m∗ under k-Lin
assumption with O(n) security loss.

In a nutshell, the IBE scheme is obtained as follows: master secret key msk
is skMAC; master public key mpk consists of perfectly hiding commitments to
skMAC; a secret key sk for id ∈ {0, 1}n is composed of a tag tag for id and a
Groth-Sahai NIZK proof [15] showing that tag is correct under skMAC; a cipher-
text under id and decryption algorithm are derived from verification method of
the NIZK proof system. A more detailed description is given below.

mpk : [A]1, [Z1,0]1, [Z1,1]1, . . . , [Zn,0]1, [Zn,1]1, [z]1 (commitment to skMAC)

skid : [k0]2, [k1]2 =
[∑n

i=1 x>i,id[i]k0 + x
]
2

(MAC tag tag for id)

[k2]2 =
[∑n

i=1 Y>i,id[i]k0 + y>
]
2

(proving validity of tag)

ctid : [As]1,
[∑n

i=1 Zi,id[i]s
]
1
, [zs]T ·m

Here A ← Dk is commitment key, Zi,b = (Yi,b|xi,b)A is a commitment to xi,b
with random coin Yi,b ← Zk×kq for (i, b) ∈ [`] × {0, 1}, and z = (y|x)A is a

commitment to x with random coin y ← Z1×k
q . To prove the security of BKP,

one first transform the challenge ciphertext ctid∗ into the form

[As + h · ek+1]
1
,
[∑n

i=1 Zi,id∗[i]s + h ·
∑n
i=1 xi,id∗[i]

]
1
, [zs + h · x ]

T
·m

in which the boxed terms in fact form a verification key of id∗. Then we may
rewrite the proof part [k2]2 of skid as

k2 = A
∗ ·
(∑n

i=1 Z>i,id[i]k0 + z> − k1A>
)
.

Here we use the following relation

Zi,b = (Yi,b|xi,b)A ⇔ Yi,b = Zi,bA
−1 − xi,bAA

−1
, (i, b) ∈ [n]× {0, 1}

z = (y|x)A ⇔ y = zA
−1 − xAA

−1
.

From the standpoint of NIZK proof system, we have replaced the real proof with
a simulated proof. An observation is that we do not need Yi,b (resp. y) and Zi,b
(resp. z) and xi,b (resp. x) are distributed independently by the property of per-
fectly hiding commitment. In this case we can reduce the adaptive security and
anonymity of BKP to the property of underlying affine MAC we just mentioned.
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BKP in the Dual-system Lens. Although Blazy et al.’s proof [4] is in the
framework of dual system encryption [34, 9], from their exposition, it’s seemingly
difficult to identify normal space and semi-functional space, which may guide
us to a better understanding and has been formulated via dual system group
(DSG) [10] and NDSG [9] (as well as ENDSG [18, 14]). Fortunately, ciphertexts
and keys used in the proof (c.f. paragraph A Short Overview of BKP) give
us the following (informal) observations:

– the commitments Zi,b and z lie in the normal space;
– the values being committed to, xi,b and x, lie in the semi-functional space.

Now we try to put the structure into the real system instead of in the proof.
For simplicity, we ignore the master secret (i.e., z, y and x). From the relation
in the previous paragraph, we readily have the following representation:(

Y>i,b
x>i,b

)
=

(
A
∗ −A

∗
A>

01×k 1

)(
Z>i,b
x>i,b

)
, ∀ (i, b) ∈ [n]× {0, 1}.

We find that the transformation matrix above actually forms the dual basis

of (A|ek+1) =
(

A 0k
A 1

)
. A simple substitution results in secret keys (without

master secret) in the following form:

[
k0

]
2
,

[
k2

k1

]
2

=

[
n∑
i=1

(A|ek+1)∗

(
Z>i,id[i]
x>i,id[i]

)
k0

]
2

.

As we have observed, Yi,b is not needed when creating secret keys and ciphertexts
in the real system and Zi,b and xi,b are distributed independently. Therefore we
may sample them directly instead of through Yi,b. In particular, we sample

Wi,b ← Zk×(k+1)
p for all (i, b) ∈ [n]× {0, 1} and define Zi,b and xi,b such that

W>
i,b = (A|ek+1)∗

(
Z>i,b
x>i,b

)
or equivalently define Zi,b = Wi,bA and xi,b = Wi,bek+1. This allows us to
simplify BKP (without considering master secret key and payload) as follows:

mpk : [A]1, [W1,0A]1, [W1,1A]1, . . . , [Wn,0A]1, [Wn,1A]1
ctid : [As]1,

[∑n
i=1 Wi,id[i]As

]
1
∈ Gk+1

1 ×Gk1
skid : [k0]2,

[∑n
i=1 W>

i,id[i]k0

]
2
∈ Gk2 ×Gk+1

2

which is surprisingly close to Chen et al.’s structure [8].

Remark 1. The structure presented here also appeared in a quasi-adaptive NIZK
(QA-NIZK) recently proposed by Gay et al. [12]. They obtained this structure
from their pairing-free designated-verifier QA-NIZK. In fact, we can alternatively
derive their QA-NIZK from the basic QA-NIZK with no support to simulation
soundness in [20] (see their Introduction) and a randomized PRF underlying
the above structure (following the semi-general method of reaching unbounded
simulation soundness in [20]).
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3.2 Technical Result 1: Generalizing NDSG

The similarity between Chen et al.’s structure [8] and simplified BKP sug-
gests that one may study simplified BKP under the framework of NDSG [9].
However Chen and Wee’s NDSG [9] is not sufficient for our purpose and a series
of adjustments are seemingly necessary.

Informally, NDSG defines an abstract bilinear group (G,H,GT , e) equipped
with a collection of algorithms sampling group elements. In the generic construc-
tion of IBE, a ciphertext (excluding the payload) consists of elements from G
while a secret key is composed of elements in H. However both ciphertexts and
keys in the above observation involve elements from two distinct groups, i.e.,
Gk+1

1 and Gk1 for ctid and Gk2 and Gk+1
2 for skid. We generalize Chen and Wee’s

NDSG [9] in the following aspects:

- replace G with G0 and G;
- replace H with H0 and H;
- replace e with e and e0 which map G×H0 and G0 ×H to GT , respectively.

The first two points are straightforward while the last one is motivated by the
decryption procedure where only two vectors of the same dimensions, i.e., either
k or k+ 1 dimension, can be paired together and the results should lie in GT in
both case. Of course, more fine-tunings are required for other portions of NDSG
(including making SampH private as in [14], see Section 4 for more detail).

Furthermore, following Chen et al. [8], we also upgrade NDSG (with all above
generalization) to support weak anonymity. In particular, we define an additional
requirement, called G-uniformity, which is a combination of H-hiding and a
weakened G-uniformity in [8]. This allows us to implement its computational
version (we will discuss it later) in a tighter fashion.

It’s not hard to verify that our generalized NDSG implies an almost-tightly
secure IBE in the SISC setting with weaker anonymity [3]. Motivated by our
simplified BKP, we can provide a prime-order instantiation of our generalized
NDSG. All computational requirements (i.e., left-subgroup and nested-hiding
indistinguishability) are proved under the k-Lin assumption based on [8, 4].

3.3 Technical Result 2: Towards MIMC Setting

All previous informal discussion and formal treatment are preparations for
moving from SISC towards MIMC settings. Having a generalized NDSG with a
prime-order instantiation, we can now apply the extension technique proposed
in [18, 14]. This finally results in a generalized extended NDSG (ENDSG) [18, 14]
and its prime-order instantiation, which immediately gives us an almost-tightly
secure and weakly anonymous IBE in the MIMC setting, i.e., our main result
(c.f. Section 1.2 and Section 6).

Apart from regular extension procedure [18, 14] introducing new algorithms
and requirements, we also update the G-uniformity (in our generalized NDS-
G) to its computational version. It’s direct to check that the computational G-
uniformity gives to our generalized ENDSG the power of reaching weak anonymi-
ty [3] in the MIMC setting.
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The prime-order instantiation of generalized ENDSG and its proofs are ob-
tained from those for the generalized NDSG following the extension strategy by
Gong et al. [14] and its recent refinement from Gay et al. [12]. In particular, the
most important extensions must be:

– We let the bases of normal, ∧-semi-functional, and ∼-semi-functional space
be A, Â, and Ã, respectively, all of which are sampled from uniform ma-
trix distribution over Z3k×k

p . The size of matrix W randomizing bases are
extended from k × (k + 1) to k × 3k accordingly.

– Random functions R̂Fi and R̃Fi map an binary string (say, the i-bit prefix of

an identity) to a random element in Span(Â∗) and Span(Ã∗), respectively.

Here we let Â∗ (resp. Ã∗) be a basis of Ker
(
(A|Ã)>

)
(resp. Ker

(
(A|Â)>

)
)

following Gay et al.’s method [12].

This prime-order instantiation derives an IBE (i.e., our main result) with ci-

phertexts of size (3k+ k )|G1| = 4k|G1| and secret keys of size ( k + 3k)|G2| =
4k|G2|. We highlight that, with the above extension,

– all Wi,bA are still of size k × k (see the first boxed term);
– the random coin r for key is still k dimensional (see the second boxed term).

Namely not all components in ciphertexts and secret keys swell in our extension
procedure which seemingly benefits from Blazy et al.’s structure [4]. More impor-
tantly, we gain this feature without relying on the technique presented in [14]
which compresses both two semi-functional spaces and thus has to turn to a
non-standard assumption.

3.4 Discussion and Perspective

Besides acting as the cornerstone of Technical Result 2, we believe Technical
Result 1 may be of independent interest due to its clean description and proofs.
For instance, it allows us to explain why BKP can be more efficient than CW,
which is not quite obvious before. As a matter of fact, through Technical Result
1, we can compare CW with BKP in the same framework and perceive two
differences between them which make BKP more efficient.

Firstly, the secret keys in CW contain a structure supporting parameter-
hiding which is not found in BKP’s secret keys. It is previously used to achieve
right subgroup indistinguishability in Chen and Wee’s prime-order instantiation
of DSG [10] but is actually not needed when proving almost-tight adaptive se-
curity using Chen and Wee’s technique [9].

Secondly, the proof of nested-hiding indistinguishability is stronger such that
corresponding structure on the key side in BKP are much simpler than in CW.
We highlight this point in our proof (in Section 4.3) via a lemma (Lemma 5)
extracted from Blazy et al.’s proof. We specially describe it in the same flavor
as Chen and Wee’s Many Tuple Lemma [9]. One can think of it as a stronger
version of Many Tuple Lemma [9] since it just involves a secret vector instead
of a matrix which costs less space to hide.
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4 Blazy-Kiltz-Pan Almost-tightly Secure IBE, Revisited

4.1 Generalized Nested Dual System Group

Keeping our informal discussion in Section 3 in mind, we generalize the notion
of nested dual system group (NDSG) [9] in this section. The formal definition is
followed by remarks illustrating main differences with the original one.

Algorithms. Our generalized NDSG consists of five p.p.t. algorithms as follows:

– SampP(1λ, n): Output (pp, sp) where:
- pp contains group (G0,G,H0,H,GT ) and admissible bilinear maps

e0 : G0 ×H→ GT and e : G×H0 → GT ,

an efficient linear map µ defined on H, and public parameters for SampG;

- sp contains h∗ ∈ H and secret parameters for SampH, ŜampG.
– SampGT: Im(µ)→ GT .
– SampG(pp): Output g = (g0; g1, . . . , gn) ∈ G0 ×Gn.
– SampH(pp, sp): Output h = (h0; h1, . . . , hn) ∈ H0 ×Hn.

– ŜampG(pp, sp): Output ĝ = (ĝ0; ĝ1, . . . , ĝn) ∈ G0 ×Gn.

We employ SampG0 (resp., ŜampG0) to indicate the first element g0 ∈ G0 (resp.,

ĝ0 ∈ G0) in the output of SampG (resp., ŜampG). We simply view the outputs of
the last three algorithms as vectors but use a semicolon to emphasize the first
element and all remaining ones belong to distinct groups.

Correctness. For all λ, n ∈ Z+ and all (pp, sp) ∈ [SampP(1λ, n)], we require:

(projective) For all h ∈ H and coin s, SampGT(µ(h); s) = e0(SampG0(pp; s), h).
(associative) For all (g0; g1, . . . , gn) ∈ [SampG(pp)] and (h0; h1, . . . , hn) ∈

[SampH(pp, sp)], e0(g0, hi) = e(gi, h0) for all i ∈ [n].

Security. For all λ, n ∈ Z+ and (pp, sp)← SampP(1λ, n), we require:

(orthogonality) µ(h∗) = 1.

(non-degeneracy) With overwhelming probability when ĝ0 ← ŜampG0(pp, sp),
the value e0(ĝ0, h

∗)α is uniformly distributed over GT where α← Zord(H).
(H-subgroup) The output of SampH(pp, sp) is uniformly distributed over some

subgroup of H0 ×Hn.
(left subgroup indistinguishability) For any p.p.t. adversary A, the follow-

ing advantage function is negligible in λ.

AdvLSA (λ, q) =
∣∣∣Pr[A(pp, {hj}j∈[q], g ) = 1]− Pr[A(pp, {hj}j∈[q], g · ĝ ) = 1]

∣∣∣
where g← SampG(pp), ĝ← ŜampG(pp, sp), hj ← SampH(pp, sp).
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(nested-hiding indistinguishability) For all η ∈ [n] and any p.p.t. adversary
A, the following advantage function is negligible in λ.

Adv
NH(η)
A (λ, q) = |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]| ,

where D =
(
pp, h∗, ĝ−η, {h′j}j∈[q]

)
,

T0 =
{
hj
}
j∈[q], T1 =

{
hj · (1H0 ; (h∗)γjeη )

}
j∈[q]

and ĝ ← ŜampG(pp, sp), hj ,h
′
j ← SampH(pp, sp), γj ← Zord(H), ĝ−η refers

to (ĝ0; ĝ1, . . . , ĝη−1, ĝη+1, . . . , ĝn), eη is an n-dimension identity vector with a

1 on the ηth position. We can define AdvNH
A (λ, q) = maxη∈[n]

{
Adv

NH(η)
A (λ, q)

}
.

(G-uniformity) The statistical distance between the following two distribu-
tions is bounded by 2−Ω(λ).{

pp, h∗,
{
hj · (1H0

; (h∗)v̂j )
}
j∈[q], g · ĝ

}
and{

pp, h∗,
{
hj · (1H0

; (h∗)v̂j )
}
j∈[q], g · ĝ · (1G0

; (g′)1n)
}

where hj ← SampH(pp, sp), g ← SampG(pp), ĝ ← ŜampG(pp, sp), v̂j ←
Znord(H), g

′ ← G, 1n is a vector of n 1’s.

One can construct an IBE scheme from generalized NDSG following Chen
and Wee’s generic construction [9]. The master public/secret key pair is

mpk = (pp, µ(msk0)) and msk = (msk0, sp).

where (pp, sp)← SampP(1λ, 2n) and msk0 ← H. A secret key for id is

skid =
(
K0 = h0, K1 = msk0 ·

∏
i∈[n] h2i−id[i]

)
∈ H0 ×H.

where (h0;h1, . . . , h2n)← SampH(pp, sp). A ciphertext for m under id is

ctid =
(
C0 = g0, C1 =

∏
i∈[n] g2i−id[i], C2 = g′T ·m

)
∈ G0 ×G×GT .

where (g0; g1, . . . , g2n) ← SampG(pp; s) and g′T = SampGT(µ(msk0); s) for ran-
dom coin s. The message can be recovered by m = C2 · e(C1,K0)/e0(C0,K1).

Remark 2 (group structure). We generalized SampG, ŜampG and SampH such
that elements they outputs may come from two different groups. Of course, the
new groups G0 and H0 are generated via SampP and described in pp. Motivated
by the decryption procedure (see the graph below), we require two bilinear maps
e0 and e, denoted by dash line and solid line, respectively, in the graph.

ctid : C0 ∈ G0 C1 ∈ G C2 ∈ GT

skid : K0 ∈ H0 K1 ∈ H

It’s worth noting that both maps share the same range GT , which helps us to
preserve the associative property and thus the correctness of IBE scheme.
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Remark 3 (private SampH). We make the algorithm SampH private as in [14].
One should run SampH with sp besides pp. Therefore left subgroup and nested-
hiding indistinguishability are modified accordingly [14] since adversary now can-
not run SampH by itself.

Remark 4 (G-uniformity and anonymity). The G-uniformity property is used to
achieve the anonymity. Our definition could be viewed as a direct combination of
H-hiding and G-uniformity described by Chen et al. in [8] with a tiny relaxation.
In particular, we require the last n elements in g · ĝ to be hidden by one random
element from G instead of n i.i.d. random elements in G as in [8]. One can check
that our definition is sufficiently strong to prove the weak anonymity [3] (c.f.
Section 2.2) of our generic IBE scheme.

4.2 A Prime-order Instantiation Motivated by BKP

We provide an instantiation of our generalized NDSG in the prime-order
bilinear group. This formulates our (informal) observation in Section 3.1.

– SampP(1λ, n): Run G = (G1, G2, GT , p, e, g1, g2)← GrpGen(1λ). Define

G0 = Gk+1
1 , G = Gk1 , H0 = Gk2 , H = Gk+1

2

and bilinear map e0 and e are natural extensions of e (given in G) to (k+1)-
dim and k-dim, respectively. Sample (A,a⊥)← Dk and b← Zk+1

p . For each

k ∈ Zk+1
p , define µ : Gk+1

2 → GkT by

µ([k]2) = e([A]1, [k]2) = [A>k]T .

Let h∗ = [a⊥]2 ∈ G
k+1
2 . Pick Wi ← Zk×(k+1)

p for all i ∈ [n] and output

pp =
(
[A]1, [W1A]1, . . . , [WnA]1

)
, sp =

(
a⊥, b, W1, . . . , Wn

)
.

– SampGT([p]T ): Sample s← Zkp and output [s>p]T ∈ GT for p ∈ Zkp.

– SampG(pp): Sample s← Zkp and output(
[As]1; [W1As]1, . . . , [WnAs]1

)
∈ Gk+1

1 × (Gk1)n.

– SampH(pp, sp): Sample r← Zkp and output(
[r]2; [W>

1 r]2, . . . , [W>
n r]2

)
∈ Gk2 × (Gk+1

2 )n.

– ŜampG(pp, sp): Sample ŝ← Zp and output(
[bŝ]1; [W1bŝ]1, . . . , [Wnbŝ]1

)
∈ Gk+1

1 × (Gk1)n.

We only describe formal proof for nested-hiding indistinguishability for the
lack of space. The remaining requirements can be proved following [8] and [12].
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4.3 Nested-hiding Indistinguishability

We may rewrite the advantage function Adv
NH(η)
A (λ, q) using

pp =
(
[A]1, [W1A]1, . . . , [WnA]1

)
;

h∗ = [a⊥]2;

ĝ =
(
[bŝ]1; [W1bŝ]1, . . . , [Wnbŝ]1

)
, ŝ← Zp;

h′j =
([

r′j
]
2
;
[
W>

1 r′j
]
2
, . . . ,

[
W>

n r′j
]
2

)
, r′j ← Zkp

and the challenge term {hj · (1H0 ; (h∗)γjeη )} may be written as([
rj
]
2
;
[
W>

1 rj
]
2
, . . . ,

[
W>

η rj + a⊥γj
]
2
, . . . ,

[
W>

n rj
]
2

)
, rj ← Zkp,

where either γj ← Zp or γj = 0.
Before we proceed, we first prove a lemma implicitly used in Blazy et al.’s

proof [4], which looks like the Many Tuple Lemma by Chen and Wee [9].

Lemma 5. Given Q ∈ N, group G of prime order p, [M] ∈ G(k+1)×k and
[T] = [t1| · · · |tQ] ∈ G(k+1)×Q (Here [·] is the implicit representation on G.)
where either ti ← Span(M) or ti ← Zk+1

p , one can efficiently compute

[Z], [vZ], {[τj ], [τj ]}j∈[Q]

where Z ∈ Zk×kp is full-rank, v ∈ Z1×k
p is a secret row vector, τj ← Zkp, either

τj = vτj (when tj ← Span(M)) or τj ← Zp (when tj ← Zk+1
p ).

Proof. Given Q, G, [M], [T] = [t1| · · · |tQ], the algorithm works as follows:

Programming [Z] and [vZ]. Define Z = M. Pick m = (m1, . . . ,mk,mk+1)←
Z1×(k+1)
p and implicitly define v ∈ Z1×k

p such that

vZ = vM = mM.

One can compute [Z] and [vZ] using [M] and m.
Generating Q tuples. For all j ∈ [Q], we compute

[τj ] =
[
tj
]

and [τj ] = [mtj ].

Here tj indicates the first k entries of tj .

Observe that: if tj = Muj for some uj ∈ Zkp, we have that τj = Muj and

τj = mMuj = vMuj = vτj ; if tj ← Zk+1
p , we can see that

(
τj
τj

)
=


1

. . .

1

m1 · · · mk mk+1

 tj

is uniformly distributed over Zk+1
p . This readily proves the lemma. ut
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We now prove the following lemma for all η ∈ [n].

Lemma 6. For any p.p.t. adversary A, there exists an adversary B such that

Adv
NH(η)
A (λ, q) 6 AdvDkB,q(λ)

where T(B) ≈ T(A) + k2 · q · poly(λ, n) and poly(λ, n) is independent of T(A).

Proof. Given [M]2 ∈ G
(k+1)×k
2 and [T]2 = [t1| · · · |tq]2 ∈ G

(k+1)×q
2 where tj ←

Span(M) or tj ← Zk+1
p , B proceeds as follows:

Generating q tuples. We invoke the algorithm described in Lemma 5 on input
(q,G2, [M]2, [T]2) and obtain

(
[Z]2, [vZ]2,

{
[τj ]2, [τj ]2

}
j∈[q]

)
.

Simulating pp and h∗. Sample (A,a⊥)← Dk and define h∗ = [a⊥]2. Sample

Wi ← Zk×(k+1)
p for all i ∈ [n] \ {η}. Pick W̄η ← Zk×(k+1)

p and implicitly set

Wη = W̄η + v>a⊥
>
.

Therefore we can simulate all entries in pp with the observation

WηA =
(
W̄η + v>a⊥

>)
A = W̄ηA,

where the secret vector v has been eliminated by the fact A>a⊥ = 0.
Simulating ĝ−η. Sample b ← Zk+1

p . We can directly simulate ĝ−η since we
know Wi for all i ∈ [n] \ {η}. Note that we do not know Wη where there is
a secret vector v, but it is not needed here.

Simulating h′j. Sample r̄j ← Zkp and implicitly define

r′j = Zr̄j for all j ∈ [q].

We are ready to produce
[
r′j
]
2

and
[
W>

i r′j
]
2

for i ∈ [n] \ {η}. Observe that

W>
η r′j =

(
W̄η + v>a⊥

>)>
Zr̄j = W̄>

η Zr̄j + a⊥ (vZ) r̄j .

The entry
[
W>

η r′j
]
2

can be simulated with W̄η, a⊥, r̄j and [Z]2, [vZ]2.
Simulating the challenge. For all j ∈ [q], we produce the challenge as(

[τj ]2,
[
W>

1 τj
]
2
, . . . ,

[
W̄>

η τj + a⊥τj
]
2
, . . . ,

[
W>

n τj
]
2

)
.

Here we implicitly set rj = τj . Observe that, when tj ← Span(M), we have
τj = vτj , the challenge is identical to {hj}, i.e., γj = 0; when tj ← Zk+1

p , we have
τj ← Zp, the challenge is identical to {hj · (1H0 ; (h∗)γjeη )} where γj = τj − vτj
is uniformly distributed over Zp. This proves the lemma. ut

5 Towards Tight Security in MIMC Setting

5.1 A Generalization of Extended Nested Dual System Group

Applying Gong et al.’s idea of extending NDSG [14], a variant of Hofheinz
et al.’s method [18], to our generalization described in Section 4.1, we obtain a
generalization of extended nested dual system group (ENDSG).
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Algorithms. Our ENDSG consists of eight p.p.t. algorithms defined as follows:

– SampP(1λ, n): Output (pp, sp) where:

- pp contains group description (G0,G,H0,H,GT ) and two admissible bi-
linear maps

e0 : G0 ×H→ GT and e : G×H0 → GT ,

an efficient linear map µ defined on H, and public parameters for SampG;

- sp contains secret parameters for SampH, ŜampG, S̃ampG, ŜampH
∗
, and

S̃ampH
∗
.

– SampGT: Im(µ)→ GT .
– SampG(pp): Output g = (g0; g1, . . . , gn) ∈ G0 ×Gn.
– SampH(pp, sp): Output h = (h0; h1, . . . , hn) ∈ H0 ×Hn.

– ŜampG(pp, sp): Output ĝ = (ĝ0; ĝ1, . . . , ĝn) ∈ G0 ×Gn.

– S̃ampG(pp, sp): Output g̃ = (g̃0; g̃1, . . . , g̃n) ∈ G0 ×Gn.

– ŜampH
∗
(pp, sp): Output ĥ∗ ∈ H.

– S̃ampH
∗
(pp, sp): Output h̃∗ ∈ H.

We employ SampG0 (resp., ŜampG0, S̃ampG0) to indicate the first element g0 ∈
G0 (resp., ĝ0 ∈ G0, g̃0 ∈ G0) in the output of SampG (resp., ŜampG, S̃ampG).

Correctness and Security. The correctness requirement is exactly the same as
our generalized NDSG including projective and associative (c.f. Section 4.1). For
all λ, n ∈ Z+ and (pp, sp)← SampP(1λ, n), the security requirement involves:

(orthogonality) For all ĥ∗ ∈ [ŜampH
∗
(pp, sp)] and all h̃∗ ∈ [S̃ampH

∗
(pp, sp)],

(1) µ(ĥ∗) = µ(h̃∗) = 1; (2) e0(ĝ0, h̃
∗) = 1 for all ĝ0 ∈ [ŜampG0(pp, sp)]; (3)

e0(g̃0, ĥ
∗) = 1 for all g̃0 ∈ [S̃ampG0(pp, sp)].

(H-subgroup) The output of SampH(pp, sp) is uniformly distributed over some

subgroup of H0 × Hn, while those of ŜampH
∗
(pp, sp) and S̃ampH

∗
(pp, sp)

are uniformly distributed over some subgroup of H, respectively.
(left subgroup indistinguishability 1) For any p.p.t. adversary A, the fol-

lowing advantage function is negligible in λ.

AdvLS1A (λ, q, q′) := |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]| ,

where D =
(
pp, {hj}j∈[q′]

)
,

T0 = {gj}j∈[q] , T1 =
{
gj · ĝj · g̃j

}
j∈[q]

and gj ← SampG(pp), ĝj ← ŜampG(pp, sp), g̃j ← S̃ampG(pp, sp), hj ←
SampH(pp, sp).
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(left subgroup indistinguishability 2) For any p.p.t. adversary A, the fol-
lowing advantage function is negligible in λ.

AdvLS2A (λ, q, q′) = |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]| ,

where D =
(
pp,
{
ĥ∗j · h̃∗j

}
j∈[q+q′],

{
g′j · ĝ′j · g̃′j

}
j∈[q] , {hj}j∈[q′]

)
,

T0 =
{
gj · ĝj · g̃j

}
j∈[q], T1 = {gj · ĝj}j∈[q] ,

and ĥ∗j ← ŜampH
∗
(pp, sp), h̃∗j ← S̃ampH

∗
(pp, sp), gj ,g

′
j ← SampG(pp),

ĝj , ĝ
′
j ← ŜampG(pp, sp), g̃j , g̃

′
j ← S̃ampG(pp, sp), hj ← SampH(pp, sp).

(left subgroup indistinguishability 3) For any p.p.t. adversary A, the fol-
lowing advantage function is negligible in λ.

AdvLS3A (λ, q, q′) = |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]| ,

where D =
(
pp,
{
ĥ∗j · h̃∗j

}
j∈[q+q′],

{
g′j · ĝ′j

}
j∈[q] , {hj}j∈[q′]

)
,

T0 =
{
gj · ĝj · g̃j

}
j∈[q], T1 = {gj · g̃j}j∈[q] ,

and ĥ∗j ← ŜampH
∗
(pp, sp), h̃∗j ← S̃ampH

∗
(pp, sp), gj ,g

′
j ← SampG(pp),

ĝj , ĝ
′
j ← ŜampG(pp, sp), g̃j ← S̃ampG(pp, sp), hj ← SampH(pp, sp).

(nested-hiding indistinguishability) For all η ∈ [bn/2c] and any p.p.t. ad-
versary A, the following advantage function is negligible in λ.

Adv
NH(η)
A (λ, q, q′) = |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]| ,

where D =
(
pp,
{
ĥ∗j , h̃

∗
j

}
j∈[q+q′],

{
(ĝj)−(2η−1), (g̃j)−2η

}
j∈[q] , {h

′
j}j∈[q′]

)
,

T0 = {hj}j∈[q′], T1 =
{
hj · (1H0

; (ĥ∗∗j )e2η−1) · (1H0
; (h̃∗∗j )e2η )

}
j∈[q′]

and ĝj ← ŜampG(pp, sp), g̃j ← S̃ampG(pp, sp), ĥ∗j , ĥ
∗∗
j ← ŜampH

∗
(pp, sp),

h̃∗j , h̃
∗∗
j ← S̃ampH

∗
(pp, sp), hj ,h

′
j ← SampH(pp, sp). We may further define

AdvNH
A (λ, q, q′) = maxη∈[bn/2c]{Adv

NH(η)
A (λ, q, q′)}.

(non-degeneracy) For any p.p.t. adversary A, the following advantage func-
tion is negligible in λ.

AdvND
A (λ, q, q′, q′′) = |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]| ,

where D =
(
pp,
{
ĥ∗j · h̃∗j , hj

}
j∈[q′],

{
ĝj,j′ = (ĝ0,j,j′ ; . . .)

}
j∈[q],j′∈[q′′]

)
,

T0 =
{
e0(ĝ0,j,j′ , ĥ

∗∗
j )
}
j∈[q],j′∈[q′′], T1 =

{
e0(ĝ0,j,j′ , ĥ

∗∗
j ) · Rj,j′

}
j∈[q],j′∈[q′′]

and ĝj,j′ ← ŜampG(pp, sp), h̃∗j ← S̃ampH
∗
(pp, sp), ĥ∗j , ĥ

∗∗
j ← ŜampH

∗
(pp, sp),

hj ← SampH(pp, sp), and Rj,j′ ← GT .

21



(G-uniformity) For any p.p.t. adversary A, the following advantage function
is negligible in λ.

AdvG-uni
A (λ, q, q′) = |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]| ,

where D =
(
pp,
{
hj · (1H0

; ĥ∗1,j , . . . , ĥ
∗
n,j), ĥ

∗
j , h̃

∗
j

}
j∈[q′]

)
,

T0 = {gj · ĝj}j∈[q], T1 =
{
gj · ĝj · (1G0

; (g′j)
1n)

}
j∈[q]

and hj ← SampH(pp, sp), gj ← SampG(pp), ĝj ← ŜampG(pp, sp), h̃∗j ←
S̃ampH

∗
(pp, sp), ĥ∗j , ĥ

∗
1,j , . . . , ĥ

∗
n,j ← ŜampH

∗
(pp, sp), g′j ← G.

The generic IBE in the multi-instance setting is similar to the IBE scheme
in Section 4.1 except that we take (pp, sp) ← SampP(1λ, 2n) as the global pa-
rameter gp and master secret msk0 ∈ H will be picked for each instance (in
algorithm Setup).

5.2 An Instantiation in the Prime-order Group

The generalized ENDSG described above can be implemented by extending
the construction in Section 4.2. In particular, we follow the extension technique
by Gong et al. [14] and Gay et al. [12] (c.f. Section 3.3).

– SampP(1λ, n): Run G = (G1, G2, GT , p, e, g1, g2)← GrpGen(1λ). Define

G0 = G3k
1 , G = Gk1 , H0 = Gk2 , H = G3k

2

and bilinear map e0 and e are natural extension of e (given in G) to 3k-

dim and k-dim, respectively. Sample A, Â, Ã ← U3k,k and randomly pick

Â∗, Ã∗ ∈ Z3k×k
p as respective bases of Ker

(
(A|Ã)>

)
and Ker

(
(A|Â)>

)
. For

each k ∈ Z3k
p , define µ : G3k

2 → GkT by µ([k]2) = e([A]1, [k]2) = [A>k]T .

Sample Wi ← Zk×3kp for all i ∈ [n] and output

pp =
(
[A]1, [W1A]1, . . . , [WnA]1

)
, sp =

(
Â, Ã, Â∗, Ã∗,W1, . . . ,Wn

)
.

– SampGT([p]T ): Sample s← Zkp and output [s>p]T for p ∈ Zkp.

– SampG(pp): Sample s← Zkp and output(
[As]1; [W1As]1, . . . , [WnAs]1

)
∈ G3k

1 × (Gk1)n.

– SampH(pp, sp): Sample r← Zkp and output(
[r]2; [W>

1 r]2, . . . , [W>
n r]2

)
∈ Gk2 × (G3k

2 )n.

– ŜampG(pp, sp): Sample ŝ← Zkp and output(
[Âŝ]1; [W1Âŝ]1, . . . , [WnÂŝ]1

)
∈ G3k

1 × (Gk1)n.
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– S̃ampG(pp, sp): Sample s̃← Zkp and output(
[Ãs̃]1; [W1Ãs̃]1, . . . , [WnÃs̃]1

)
∈ G3k

1 × (Gk1)n.

– ŜampH
∗
(pp, sp): Sample r̂ ∈ Zkp and output

[
Â∗r̂

]
2
∈ G3k

2 .

– S̃ampH
∗
(pp, sp): Sample r̃ ∈ Zkp and output

[
Ã∗r̃

]
2
∈ G3k

2 .

For the lack of space, we only show that our instantiation satisfies Left
Subgroup Indistinguishability 2 and 3, Nested-hiding Indistinguishability and G-
uniformity in the next several subsections.

5.3 Left Subgroup Indistinguishability 2 & 3

We rewrite the advantage function AdvLS2A (k, q, q′) using

pp = ([A]1, [W1A]1, . . . , [WnA]1) ;

ĥ∗j · h̃∗j =
[
Â∗r̂j + Ã∗r̃j

]
2
, r̂j , r̃j ← Zkp;

g′j · ĝ′j · g̃′j =
(
[s′j ]1; [W1s

′
j ]1, . . . , [Wns′j ]1

)
, s′j ← Z3k

p ;

hj =
(
[rj ]2; [W>

1 rj ]2, . . . , [W>
n rj ]2

)
, rj ← Zkp;

gj · ĝj =
([

Asj + Âŝj
]
1
;
[
W1(Asj + Âŝj)

]
1
, . . . ,

[
Wn(Asj + Âŝj)

]
1

)
,

sj , ŝj ← Zkp;

gj · ĝj · g̃j =
(
[sj ]1; [W1sj ]1, . . . , [Wnsj ]1

)
, sj ← Z3k

p .

Note that the distribution here is identical to the original one except that A, Â,
Ã fail to span the entire space Z3k

p whose probability is bounded by 2k/p (c.f.
Lemma 3). We prove the following lemma.

Lemma 7. For any p.p.t. adversary A, there exists an adversary B such that

AdvLS2A (λ, q, q′) 6 Adv
U3k,k
B,q (λ) + 2−Ω(λ)

where T(B) ≈ T(A)+k2·(q+q′)·poly(λ, n) and poly(λ, n) is independent of T(A).

Proof. Given [Â]1 ∈ G
3k×k
1 and [T]1 = [t1| · · · |tq]1 ∈ G

3k×q
1 , B works as follows:

Simulating pp. Sample A ← U3k,k and Wi ← Zk×3kp for all i ∈ [n]. We can
then simulate pp directly.

Simulating ĥ∗j · h̃∗j . Calculate A⊥ ∈ Z3k×2k
p from A ∈ Z3k×k

p and one may

simulate ĥ∗j · h̃∗j by sampling ĥ∗j · h̃∗j ← Span([A⊥]2) by Lemma 3.
Simulating g′j · ĝ′j · g̃′j and hj. We can simply simulate each g′j · ĝ′j · g̃′j (resp.

hj) using Wi for all i ∈ [n] and a freshly chosen s′j ← Z3k
p for all j ∈ [q]

(resp. rj ∈ Zkp for all j ∈ [q′]).
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Simulating the Challenge. Sample s̄j ← Zkp for all j ∈ [q]. We simulate the
challenge as(

[As̄j + tj ]1; [W1(As̄j + tj)]1, . . . , [Wn(As̄j + tj)]1
)

for all j ∈ [q].

Observe that: when tj ← Span(Â) for all j ∈ [q], the challenge equals {gj · ĝj};
when tj ← Z3k

p for all j ∈ [q], the challenge is identical to {gj · ĝj · g̃j} (we
described above). This proves the lemma. ut

We can prove a similar lemma for AdvLS3A (k, q, q′). The proof is almost the

same as above with the exception that B controls A and Â this time, and embeds
q-fold U3k,k-MDDH instance through Ã. More concretely, one may simulate pp,

{ĥ∗j · h̃∗j}, {hj} and the challenge with A and Ã as before, while the simulation

of {g′j · ĝ′j} needs the help of Â.

5.4 Nested-hiding Indistinguishability

For all η ∈ [bn/2c], we rewrite the advantage function Adv
NH(η)
A (λ, q, q′) using

pp =
(
[A]1, [W1A]1, . . . , [WnA]1

)
;

ĥ∗j =
[
Â∗r̂′j

]
2
, r̂′j ← Zkp; h̃∗j =

[
Ã∗r̃′j

]
2
, r̃′j ← Zkp;

ĝj =
(
[Âŝj ]1; [W1Âŝj ]1, . . . , [WnÂŝj ]1

)
, ŝj ← Zkp;

g̃j =
(
[Ãs̃j ]1; [W1Ãs̃j ]1, . . . , [WnÃs̃j ]1

)
, s̃j ← Zkp;

h′j =
(
[r′j ]2; [W>

1 r′j ]2, . . . , [W>
n r′j ]2

)
, r′j ← Zkp

and the challenge term hj · (1H0
; (ĥ∗∗j )e2η−1) · (1H0

; (h̃∗∗j )e2η ) equals(
[rj ]2;

[
W>

1 rj
]
2
, . . . ,

[
W>

2η−1rj + Â∗r̂j
]
2
,
[
W>

2ηrj + Ã∗r̃j
]
2
, . . . ,

[
W>

n rj
]
2

)
where rj ← Zkp, either r̂j , r̃j ← Zkp or r̂j = r̃j = 0k. We prove the lemma below.

Lemma 8. For any p.p.t. adversary A, there exists an adversary B such that

Adv
NH(η)
A (λ, q, q′) 6 Adv

U3k,k
B,q′ (λ)

where T(B) ≈ T(A)+k2·(q+q′)·poly(λ, n) and poly(λ, n) is independent of T(A).

Before we prove the lemma, we describe and prove an extension of Lemma 5.

Lemma 9. Given Q ∈ N, group G of prime order p, [M] ∈ G3k×k and [T] =
[t1| · · · |tQ] ∈ G3k×Q where either ti ← Span(M) or ti ← Z3k

p , one can efficiently
compute

[Z], [V0Z], [V1Z],
{

[τj ], [τ0,j ], [τ1,j ]
}
j∈[Q]

where Z ∈ Zk×kp is full-rank, V0,V1 ∈ Zk×kp are secret matrices, τj ← Zkp and

either τ0,j = V0τj, τ1,j = V1τj (when tj ← Span(M)) or τ0,j , τ1,j ← Zkp (when

tj ← Z3k
p ).
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Proof. Given Q, G, [M], [T] = [t1| · · · |tQ], the algorithm works as follows:

Programming [Z], [V0Z], [V1Z]. Define Z = M. Randomly pick M0,M1 ←
Zk×3kp and implicitly define V0,V1 ∈ Zk×kp such that

V0Z = V0M = M0M and V1Z = V1M = M1M.

One can generate [Z] along with [V0Z], [V1Z] using [M] and M0,M1.
Generating Q tuples. For all j ∈ [Q], we compute

[τj ] =
[
tj
]
, [τ0,j ] = [M0tj ], [τ1,j ] = [M1tj ].

Here tj indicates the first k entries of tj .

Observe that: if tj = Muj for some uj ← Zkp, we have that τj = Muj and

τ0,j = M0Muj = V0Muj = V0τj , τ1,j = M1Muj = V1Muj = V1τj ;

if tj ← Z3k
p , we can see that τj

τ0,j
τ1,j

 =

Ik×3k
M0

M1

 tj

is uniformly distributed over Z3k
p where the left-most k columns of Ik×3k form

an identity matrix and remaining columns are zero vectors. ut

We are ready to prove Lemma 8 by extending the strategy proving Lemma 6.

Proof. Given [M]2 ∈ G3k×k
2 and [T]2 = [t1| · · · |tq′ ]2 ∈ G3k×q′

2 where either
tj ← Span(M) or tj ← Z3k

p , B proceeds as follows:

Generating q′ tuples. We invoke the algorithm described in Lemma 9 on in-
put (q′, G2, [M]2, [T]2) and obtain(

[Z]2, [V0Z]2, [V1Z]2, {[τj ]2, [τ0,j ]2, [τ1,j ]2}j∈[q′]
)
.

Simulating pp. Sample A, Â, Ã ← U3k,k and randomly pick Â∗ and Ã∗, the

respective bases of Ker
(
(A|Ã)>

)
and Ker

(
(A|Â)>

)
. Select W̄2η−1,W̄2η ←

Zk×3kp and define

W2η−1 = W̄2η−1 + V>1 · (Â∗)> and W2η = W̄2η + V>0 · (Ã∗)>.

Then we sample Wi ← Zk×3kp for all i ∈ [n] \ {2η − 1, 2η}. We can simulate
pp using the following observation:

W2η−1A =
(
W̄2η−1 + V>1 · (Â∗)>

)
A = W̄2η−1A,

W2ηA =
(
W̄2η + V>0 · (Ã∗)>

)
A = W̄2ηA.
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Simulating ĥ∗j and h̃∗j . It is direct to simulate all ĥ∗j and h̃∗j using Â∗ and Ã∗.
Simulating (ĝj)−(2η−1) and (g̃j)−2η. We can simulate (ĝj)−(2η−1) following

the fact that

W2ηÂ =
(
W̄2η + V>0 · (Ã∗)>

)
Â = W̄2ηÂ.

Similarly, we can also simulate (g̃j)−2η because

W2η−1Ã =
(
W̄2η−1 + V>1 · (Â∗)>

)
Ã = W̄2ηÃ.

Although W2η−1Â and W2ηÃ contain secret matrices and are unknown to
B due to Lemma 3, they are not necessary in our simulation.

Simulating h′j. Sample r̄j ← Zkp and implicitly define r′j = Zr̄j for all j ∈ [q′].

We can simply produce
[
r′j
]
2

and
[
W>

i r′j
]
2

for i ∈ [n] \ {2η − 1, 2η} while
the remaining two entries are simulated following the fact

W>
2η−1r

′
j =

(
W̄2η−1 + V>1 · (Â∗)>

)>
Zr̄j = W̄>

2η−1Zr̄j + Â∗ · (V1Z) · r̄j ,

W>
2ηr
′
j =

(
W̄2η + V>0 · (Ã∗)>

)>
Zr̄j = W̄>

2ηZr̄j + Ã∗ · (V0Z) · r̄j ,

because [Z]2, [V0Z]2 and [V1Z]2 are known to B.
Simulating the challenge. For all j ∈ [q′], we compute the challenge as(

[τj ]2, [W
>
1 τj ]2, . . . ,

[
W̄>

2η−1τj + Â∗τ1,j
]
2
,
[
W̄>

2ητj + Ã∗τ0,j
]
2
, . . . , [W>

n τj ]2
)
.

Observe that, when tj ← Span(M), we have that τ0,j = V0τj and τ1,j = V1τj ,
the challenge is identical to {hj}, i.e., r̂j = r̃j = 0k; when tj ← Z3k

p , we have

τ0,j , τ1,j ← Zkp, the challenge is identical to {hj ·(1H0
; (ĥ∗∗j )e2η−1)·(1H0

; (h̃∗∗j )e2η )}
where r̂j = τ1,j −V1τj and r̃j = τ0,j −V0τj are uniformly distributed over Zkp.
This proves the lemma. ut

5.5 G-uniformity

We rewrite the advantage function AdvG-uni
A (λ, q, q′) using

pp =
(
[A]1, [W1A]1, . . . , [WnA]1

)
; ĥ∗j =

[
Â∗r̂j

]
2
; h̃∗j =

[
Ã∗r̃j

]
2

where r̂j , r̃j ← Zkp and hj · (1H0
; ĥ∗1,j , . . . , ĥ

∗
n,j) equals(

[rj ]2;
[
W>

1 rj + Â∗r̂1,j
]
2
, . . . ,

[
W>

n rj + Â∗r̂n,j
]
2

)
, rj , r̂1,j , . . . , r̂n,j ← Zkp;

and the challenge term gj · ĝj · (1G0 ; (g′j)
1n) equals([

Asj + Âŝj
]
1
;
[
W1(Asj + Âŝj) + s′j

]
1
, . . . ,

[
Wn(Asj + Âŝj) + s′j

]
1

)
where sj , ŝj ← Zkp, either s′j ← Zkp or s′j = 0k. We prove the following lemma
using essentially the same method as in [3].
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Lemma 10. For any p.p.t. adversary A, there exists an adversary B such that

AdvG-uni
A (λ, q, q′) 6 Adv

U2k,k
B,q (λ)

where T(B) ≈ T(A)+k2·(q+q′)·poly(λ, n) and poly(λ, n) is independent of T(A).

We describe a simple extension of Lemma 5 without proof which is basically
identical to Generalized Many-Tuple Lemma in [14].

Lemma 11. Given Q ∈ N, group G of prime order p, [M] ∈ G2k×k and [T] =
[t1| · · · |tQ] ∈ G2k×Q where either ti ← Span(M) or ti ← Z2k

p , one can efficiently

compute [Z], [VZ] and Q tuples
(
[τj ], [τ

′
j ]
)
j∈[Q]

where Z ∈ Zk×kp is full-rank,

V ∈ Zk×kp is a secret matrix, τj ← Zkp, either τ ′j = Vτj (when tj ← Span(M))

or τ ′j ← Zkp (when tj ← Z2k
p ).

We are ready to prove Lemma 10.

Proof. Given [M]1 ∈ G
2k×k
1 and [T]1 = [t1| · · · |tq]1 ∈ G

3k×q
1 where either tj ←

Span(M) or tj ← Z2k
p , B proceeds as follows:

Generating q tuples. We invoke the algorithm described in Lemma 11 on in-
put (q,G1, [M]1, [T]1) and obtain

(
[Z]1, [VZ]1,

{
[τj ]1, [τ ′j ]1

}
j∈[q]

)
.

Simulating pp. Sample A, Â, Ã ← U3k,k and randomly pick Â∗ and Ã∗, the

respective bases of Ker
(
(A|Ã)>

)
and Ker

(
(A|Â)>

)
. For all i ∈ [n], pick

W̄i ← Zk×3kp and implicitly define

Wi = W̄i + V̄ · (Â∗)>

where V̄ = V((Â∗)>Â)−1 ∈ Zk×kp . We can simulate pp from the observation

WiA =
(
W̄i + V̄ · (Â∗)>

)
A = W̄iA.

Simulating ĥ∗j and h̃∗j . It is direct to simulate all ĥ∗j and h̃∗j using Â∗ and Ã∗.

Simulating hj · (1H0
; ĥ∗1,j , . . . , ĥ

∗
n,j). Observe that

W>
i rj + Â∗r̂i,j = W̄>

i rj + Â∗(V̄>rj + r̂i,j) for all i ∈ [n], j ∈ [q′].

We can alternatively simulate hj · (1H0
; ĥ∗1,j , . . . , ĥ

∗
n,j) as W̄>

i rj + Â∗r̂i,j for

all i ∈ [n], j ∈ [q′] where rj , r̂i,j ← Zkp without secret matrix V.
Simulating the challenge. Observe that

WiÂ =
(
W̄i + V̄ · (Â∗)>

)
Â = W̄iÂ + V.

We can sample s̄j ← Zkp and simulate the challenge as([
As̄j + Âτj

]
1
,
[
W̄1As̄j + W̄1Âτj + τ ′j

]
1
, . . . ,

[
W̄nAs̄j + W̄nÂτj + τ ′j

]
1

)
.

Observe that, when tj ← Span(M), we have τ ′j = Vτj , the challenge is identical

to {gj · ĝj}; when tj ← Z2k
p , we have τ ′j ← Zkp, the challenge is identical to

{gj · ĝj · (1G0
; (g′j)

1n)} where s′j = τ ′j − Vτj is uniformly distributed over Zkp.
This proves the lemma. ut
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6 Concrete Constructions

We present our main result in Figure 1 whose adaptive security and anonymi-
ty in the MIMC setting is almost-tightly based on the k-Lin assumption.

Param(1λ, n)

A← U3k,k
for (i, b) ∈ [n]× {0, 1} do

Wi,b ← Zk×3k
p , Zi,b = Wi,bA ∈ Zk×kp

gp =
(
[A]1, {[Zi,b]1, [Wi,b]2}

)
return gp

Setup(gp)

α← Z3k
p

mpk =
(
[A]1, {[Zi,b]1},

[
A>α

]
T

)
msk =

(
[α]2, {[Wi,b]2}

)
return mpk, msk

KeyGen(mpk,msk, id)

r← Zkp
sk =

(
[r]2,

[
α +

∑n
i=1 W

>
i,id[i]r

]
2

)
∈ G4k

2

return sk

Enc(mpk, id,m)

s← Zkp
ct′ =

(
[As]1,

[∑n
i=1 Zi,id[i]s

]
1

)
∈ G4k

1

key = [s>A>α]T ∈ GT
return ct = (ct′, key · m)

Dec(mpk, sk = (k0,k1),ct = (c0, c1, c2))

return m = c2 · e(c1,k0)/e(c0,k1)

Fig. 1. Main result: A Concrete IBE Scheme Based on the k-Lin assumption.

Figure 2 presents a concrete instantiation of our main result based on SXDH
(1-Lin) assumption by setting k = 1. Our description below only involves vectors
and scalars.

Param(1λ, n)

a← Z3
p

for (i, b) ∈ [n]× {0, 1} do
wi,b ← Z3

p, zi,b = 〈wi,b,a〉 ∈ Zp
gp =

(
[a]1,

{
[zi,b]1, [wi,b]2

})
return gp

Setup(gp)

α← Z3
p

mpk =
(
[a]1,

{
[zi,b]1

}
,
[
〈a,α〉

]
T

)
msk =

(
[α]2,

{
[wi,b]2

})
return mpk, msk

KeyGen(mpk,msk, id)

r ← Zp
sk =

(
[r]2,

[
α + r ·

∑n
i=1 wi,id[i]

]
2

)
∈ G4

2

return sk

Enc(mpk, id,m)

s← Zp
ct′ =

(
[s · a]1, [s ·

∑n
i=1 zi,id[i]]1

)
∈ G4

1

key = [s · 〈a,α〉]T
return ct = (ct′,key · m)

Dec(mpk, sk = (k0,k1),ct = (c0, c1, c2))

return m = c2 · e(c1, k0)/e(c0,k1)

Fig. 2. A Concrete IBE Scheme Based on SXDH (k = 1). Here we let 〈x,y〉 be the
inner product of x and y of the same length and e([x]1, [y]2) = [〈x,y〉]T in this case.
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