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Abstract. The concrete security bounds for some blockcipher-based
constructions sometimes become worrisome or even vacuous; for exam-
ple, when a light-weight blockcipher is used, when large amounts of data
are processed, or when a large number of connections need to be kept
secure. Rotating keys helps, but introduces a “hybrid factor” m equal to
the number of keys used. In such instances, analysis in the ideal-cipher
model (ICM) can give a sharper picture of security, but this heuristic
is called into question when cryptanalysis of the real-world blockcipher
reveals weak keys, related-key attacks, etc.

To address both concerns, we introduce a new analysis model, the ideal-
cipher model under key-oblivious access (ICM-KOA). Like the ICM, the
ICM-KOA can give sharp security bounds when standard-model bounds
do not. Unlike the ICM, results in the ICM-KOA are less brittle to
current and future cryptanalytic results on the blockcipher used to in-
stantiate the ideal cipher. Also, results in the ICM-KOA immediately
imply results in the ICM and the standard model, giving multiple view-
points on a construction with a single effort. The ICM-KOA provides
a conceptual bridge between ideal ciphers and tweakable blockciphers
(TBC): blockcipher-based constructions secure in the ICM-KOA have
TBC-based analogs that are secure under standard-model TBC security
assumptions. Finally, the ICM-KOA provides a natural framework for
analyzing blockcipher key-update strategies that use the blockcipher to
derive the new key. This is done, for example, in the NIST CTR-DRBG
and in the hardware RNG that ships on Intel chips.

1 Introduction

When a secret-key cryptographic primitive E is based upon a blockci-
pher E, a security proof for E will typically appeal to the pseudorandom-
permutation (PRP) assumption—namely, that no efficient adversary can
distinguish between the input-output behavior of the secretly (and ran-
domly) keyed blockcipher EK , and that of a truly random permutation π
with the same domain. When the proof states that the PRP-security of E



is a tight upperbound for the security of E , one can derive from it use-
ful messages for practice; e.g., how many calls to the blockcipher should
be allowed before changing its key. When the upperbound is not tight,
the usefulness of any such messages can be unclear. In particular, when
there is no known attack on the security of E whose success probability
approaches the upperbound evidenced in the security proof. Such gaps
are common when the security proof uses a “hybrid argument”.

As an example, consider the following self-rekeying version of counter-
mode encryption. (This is similar to the NIST CTR-DRBG [9] that un-
derlies Intel’s hardware RNG [11,19].) Let CTR[E]NK(·) denote counter-
mode encryption (over n-bit blockcipher E) under key K and IV N . The
scheme is initialized with a key K1 that is random. To encrypt the i-th
plaintext Xi, the scheme computes ciphertext Ci ← CTR[E]0Ki(Xi) using
key Ki, and then computes a key Ki+1 for the next encryption call via

Ki+1 ← CTR[E]
d|Xi|/ne+1
Ki

(0k). The standard proof would show that the
security of this construction is (roughly) upperbounded by m times the
probability violating the PRP-security of E, where m is the number of
strings Xi that are encrypted before the key is reinitialized to a fresh ran-
dom, secret value. Such a bound can quickly become vacuous when the
underlying blockcipher is lightweight and cannot be assumed to provide
PRP-security comparable to blockciphers like AES, or in settings where
frequent re-initialization (i.e., resetting to a fresh, random K1) is difficult.

If this construction is analyzed instead in the ideal cipher model
(ICM), the upperbound is considerably tighter, and nearly matched by an
attack. This suggests that the multiplicative factor of m in the standard-
model result isn’t “real”, but rather an artifact of the proof technique. On
the other hand ICM analysis provides only a security heuristic, and seems
particularly inappropriate when the underlying blockcipher is known to
have obvious non-ideal behavior for certain “weak” keys, or to suffer from
related-key attacks.

Yet for constructions like this one, the presence of weak blockcipher
keys is unlikely to be a real issue for the security of the construction:
intuitively, if the initial key K is random, then so should be the derived
keys that follow it. Analysis in the ICM naturally captures this intuition,
as the key Ki is (essentially) independent of keys K1,K2, . . . ,Ki−1, and
of the ciphertexts C1, C2, . . . , Ci that the construction outputs.

Moreover, observe that the construction doesn’t actually need to know
the value of any of the keys. It could carry out its duties if its access to E
was via an API that restricted it to refer to keys by handles, e.g., ask
(i, x, “return”) and receive EKi(x) in return, or (i, x, “key”) and cause
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the value Ki+1 = EKi(x) to be stored, receiving nothing in return. We
refer to such an API as enforcing key-oblivious access (KOA) to E, and
under this access model it is clear that the construction leaks nothing
about the keys beyond what the blockcipher does. Said another way, the
access model supports the intuition that if the initial key K1 is secret, it
and its successors remain so.

The ICM under key-oblivious access. We formalize all of this in a new
model, the ICM under key-oblivious access (ICM-KOA). The construc-
tion has black-box access to the blockcipher via, roughly, the API just
described. On the other hand, the adversary may query the ideal cipher
freely, as in the traditional ICM, capturing a real-world attacker’s abil-
ity to compute (offline) blockcipher input-output pairs under any key it
likes. Before we give more details about our formalism, let us explain
what benefits it provides.

First, the ICM-KOA retains the power of ICM to give sharper bounds
than those found under the standard-model PRP assumption. It can also
expose important quantitative security distinctions among variants of a
given blockcipher-based construction, where these would be hidden by a
standard-model analysis. This may help to guide implementation deci-
sions in practice. We also surface in our model the distinction between
precomputation queries to the blockcipher, offline queries made to the
blockcipher while attacking the construction, and online queries made to
the construction under its secret keys.

Second, security results in the ICM-KOA imply comparable security
results in the traditional ICM and results in the standard-model. The
latter is possible precisely because the model guarantees that the block-
cipher is called on random and secret keys. Thus a single effort yields
multiple viewpoints on a given construction.

Third, while security proofs in this model are still heuristics, their
value is more resilient to the discovery of weak keys and related-key at-
tacks on the real blockcipher that is idealized. In fact, the formalism
provides a clear path to analyzing the security of constructions when the
blockcipher is modeled with explicit non-ideal behaviors. We leave this as
interesting future work.

Finally, the ICM-KOA provides a conceptual bridge between ideal
ciphers and tweakable blockciphers (TBC). This is pleasing because, in-
tuitively, the strong-tweakable-PRP assumption suggests that a secure,
secretly keyed TBC is computationally indistinguishable from an ideal
cipher—both provide a set of random permutations (one permutation for
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each tweak or key, respectively). We show that blockcipher-based con-
structions that are secure in the ICM-KOA have TBC-based analogs that
are secure in the standard model.

Decomposing constructions into modes and schedulers. We want our model
to facilitate results for blockcipher-based constructions that may use many
keys. So the ICM-KOA requires that constructions can be decomposed
into two primitives, a mode M and a potentially stateful key-scheduler S.
Intuitively, the role of the mode is to affect the transformation of construction-
inputs (e.g., plaintexts) into construction-outputs (e.g., ciphertexts), and
the role of the scheduler is to determine what keys the mode must use dur-
ing its execution. Many symmetric-key cryptographic primitives can be
decomposed in this way, including encryption schemes and blockcipher-
based PRFs, PRNGs, KDFs and MACs, whether or not rekeying strate-
gies are applied to them.

Returning to our self-rekeying version of counter-mode encryption,
we might decompose this into a mode M that, on input a key Ki and
a string X, computes C ← CTR[E]0Ki(X); and a scheduler S that (effec-

tively) computes Ki+1 ← CTR[E]
d|X|/ne+1
Ki

(0k). Each will be forced to be
oblivious of the actual key values by our model.

Applying the ICM-KOA to constructions. Given a blockcipher-based con-
struction that admits decomposition, we define what it means for the
construction to produce outputs that are indistinguishable from some
reference-behavior-oracle in the ICM-KOA. To be clear, we do not claim
that this is, on its own, an intuitive security goal. It is a new tool that
provides a means to obtain strong bounds in the ICM that are backed
by a guarantee that keys are kept random and secret. And because of
this guarantee, we gain simultaneous results in the standard model. We
illuminate the usefulness of the ICM-KOA via two case studies.

First we consider the NIST-CTR-DRBG. As the name suggests, it
is a deterministic random-bit generator based on running a blockcipher
in CTR mode. A result by Shrimpton and Terashima [19] shows that
the standard-model security is around q2/2k, where q is the number of
calls the the construction. For k = 128, this bound exceeds 2−40 when
q = 244. This may seem safe; after all, this amounts to many terabytes of
random bits. But the RNG has extremely high throughput—Intel reports
800 MB/s, which equates to 50 million queries per second—meaning the
q = 244 limit in a little more than four days.

We analyze this in the ICM-KOA. For very little work, we recover the
security bound from [19], and also get a much stronger bound in the ICM.
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The latter reveals the lack of a matching attack and shows that, barring
cryptanalysis of AES under random and secret keys, we can permit on
the order of 270 queries before surpassing our 2−40 limit (assuming the
adversary has resources for 280 precomputation and 280 offline queries).
This translates to 750,000 years of runtime, and so is unlikely to be the
limiting factor.

Next we consider three rekeying variants of CTR-mode, distinguished
by how they choose IVs following a key change: (1) The IV is set to
0n; (2) the upper bits of the IV are unique for each key; (3) The IV is
chosen randomly. In each case, we use the same key scheduler that sets
Ki ← EK1(i) (for i > 1). In the standard model, these three schemes all
have the same security bound. Our analysis in the ICM-KOA uncovers
significant quantitative differences their security bounds; in particular, we
show how (1) succumbs to precomputation for shorter key lengths while
(2) and (3) resist such attacks.

Addressing hybrid-loss directly in the standard model. Another, arguably
more natural approach to avoiding a factor of m hybrid-loss when ana-
lyzing a blockcipher-based construction that uses m keys is to generalize
the PRP notion to an m-PRP notion [18]. Here the adversary must dis-
tinguish between the collection of oracles EK1(·), EK2(·), . . . , EKm(·) for
random keys K1, . . . ,Km, and the collection π1(·), π2(·), . . . , πm(·) of ran-
dom permutations. If a construction uses no more than m blockcipher
keys during the time that it is being attacked, reducing the construc-
tion’s security to the blockcipher’s m-PRP security can be done without
a hybrid proof, and therefore does not incur a factor of m loss.

But this may simply sweep problems under the rug: (1) it begs the
question of how the m-PRP security of a given blockcipher relates to its
PRP security (although we note that Hoang and Tessaro [12], building on
the work of [18], have largely answered this question for key-alternating
ciphers with independent round keys) (2) it doesn’t directly model in-
teresting scenarios where the keys are themselves derived from the E
using prior keys, particularly when, as with the NIST-RNG, the mode of
operation is intertwined with key generation.

We explore this further in the full version of the paper. As one expects,
the simplest result states that the m-PRP security of E falls somewhere
between its PRP-security and m times that value. We go on to show
that, under the assumption that a PRP-secure blockcipher E exists: (1)
there is a related blockcipher for which these upper- and lowerbounds on
its m-PRP security are tight; and (2) there is a related blockcipher that
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is PRP-secure but not m-PRP-secure, for sufficiently large values of m.
(Of course, these distinctions are not binary, but the quantitative results
are reasonable for modest m). These results are mainly of theoretical
importance, as no real blockcipher will resemble the ones used to prove
them.

But we also give a result that sheds some light on how much of a gap
exists between any particular blockcipher’s PRP security and m-PRP
security. Given a PRP-adversary A for blockcipher E, the best m-PRP
adversary B[A] (that makes use of A in a black-box fashion) will have an
advantage between Advprp

E (A) and mAdvprp
E (A); moreover, its location

on this continuum can be computed from Advprp
E (A) and, interestingly,

A’s false-positive rate when distinguishing a keyed instance of E from a
random permutation. When A’s false-positive and false-negative rates are
similar, then B[A]’s advantage scales with

√
m, rather than m. Again, see

the full version of this paper for details.

Related Work. Abdalla and Bellare [1] were the first to rigorously study
the security of rekeyed symmetric-encryption schemes, under various rekey-
ing strategies. Concretely, they show that CBC-mode over an n-bit block-
cipher, consistently rekeyed after 2n/3 blocks, can have meaningful secu-
rity bounds up to about 22n/3 total message blocks. (Specifically, they
show that 22n/3 one-block messages can be encrypted.) Our KOA model-
ing captures their rekeyed encryption schemes. As one example, they con-
sider a rekeying strategy that computes (Ki+1, Li+1) = (E(Li, 0), E(Li, 1));
we would say the scheduler S computes this (Ki+1, Li+1), where Li (resp.
Li+1) is the current (resp. next) scheduler state.

There are a number of works that analyaze secretly keyed construc-
tions in the ICM. Kilian and Rogaway [14] proved that the DESX con-
struction is a secure SPRP in the ICM. Dai et al. [10] leverage the ICM
to prove the security of multiple encryption. Lee [17] uses the ICM to
consider key-length extension offered by cascade encryption (aka multiple
encryption) and xor-cascade encryption (of which DESX is a simple exam-
ple). Recently there have been a line of nice papers on the security of key-
alternating ciphers (aka xor-cascade encryption), including [15,7,2,8,16],
that perform their analysis in the public-random-permutation model,
which is derivative of the ICM. The randomized message-authentication
code RMAC was analyzed in the ICM [13].

The classic “Luby-Rackoff Backwards” paper by Bellare, Krovetz and
Rogaway [4] addresses the construction of beyond birthday-bound secure
PRFs from PRPs, but they are unable to do so in the standard model be-
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cause of hybrid terms. Thus, their positive security results, which do show
beyond-birthday-bound security of their constructions, are developed in
the ICM, despite the presence of secret keys. It would be interesting to
revisit their construction using the ICM-KOA.

Bellare, Boldyreva and Micali [3] consider multi-key security notions
for public-key encryption, and show that, for left-or-right IND-CPA, the
hybrid loss incurred by reducing from a multi-key instance to a single-
key instance is inherent. Our discussion of the relationship between the
PRP and m-PRP notions takes inspiration from that work, especially the
construction of a cipher for which the bound is tight.

Bellare, Ristenpart and Tessaro [5] consider multi-instance (or multi-
key) security notions, in which the attacker wins only if it breaks all of
the instances. Their notions differ from ours, as it would suffice to break
a single instance in our m-PRP notion.

Recent papers by Mouha and Luykx [18] and Hoang and Tessaro [12]
consider the mutli-key security of key-alternating ciphers, demonstrating
(in the random permutation model) that they do not suffer hybrid-like
security losses. This work complements are own, which provides bounds
for modes of operation that employ blockciphers with idealized behavior
under random, secret keys.

Roadmap. Section 2 introduces the ICM with key-oblivious access. The
central theorems are summarized up-front —that constructions (with cer-
tain properties) that are secure in the ICM-KOA are secure in both the
ICM and standard models— and the bulk of the section is concerned
with technical matters that support the formal theorem statements. The
section ends by using the ICM-KOA framework to relate ideal ciphers
and tweakable ciphers. Section 3 applies the results of Section 2 to var-
ious blockcipher-based constructions, including the NIST CTR-DRBG.
Full proofs of all results are provided. Results on the relationship be-
tween the PRP and m-PRP standard-model notions will appear in the
full version.

2 The ICM with Key-Oblivious Access

In this section, we formalize the notion of decomposing a construction
into a mode (which carries out the cryptographic functionality) and a
scheduler (which creates keys for the mode, as needed). We then define
properties of modes and schedulers sufficient to imply results in both the
standard model and the ICM. Roughly speaking:
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– A mode and a scheduler constitute a decomposition of a construction
if they preserve its black-box behavior.

– A mode is compatible with a scheduler if they query the underlying
blockcipher on different points (and thus maintain an independence
between keys and, e.g., ciphertexts).

– A decomposition has dispersed inputs if there are limits to how many
blockcipher inputs an adversary can predict in advance.

– We quantify the computational resources consumed by the mode and
scheduler using mode efficiency.

The first item and last items are straightforward, and the need for the
second (in proofs) is intuitive after a moment’s thought. Having dispersed
inputs will help to make clear the impact of precomputation on security
bounds. The coarser granularity of the standard model prevents it from
benefiting from dispersed inputs, and we will demonstrate how this ob-
scures the impact of precomputation.

The central theorems of this section, Theorems 1 and 2, have some-
what complicated statements. But, informally, they say the following:

Theorems 1 and 2, informally. If a decomposition (1) has these prop-
erties and (2) is difficult to distinguish from an appropriate reference
oracle (e.g., an encryption oracle that returns random bits) when the un-
derlying blockcipher is replaced by a random function that is inaccessible
to the adversary, then the original construction is likewise hard to dis-
tinguish from the reference oracle in both the standard model and in the
ICM.

We note that the “if” portion specifies indistinguishability when the
blockcipher is treated as a random function that is inaccessible to the
adversary. This isn’t sweeping things under the rug: ICM-based proofs
typically have to “decouple” the actual blockcipher used by the construc-
tion from the blockcipher available to the adversary using ad-hoc meth-
ods. Our informal theorem statement is merely surfacing this proof trick,
and our model will allow us to enforce it cleanly.

The final signifcant contribution of this section is a result that uses
the ICM-KOA framework to formalize a relationship between the ICM
and TBCs.

2.1 Preliminaries

When X,Y are strings, X ‖ Y is the concatenation of those strings, and

X ⊕ Y is their bitwise exclusive-or. When X is a set, X
$←X means to
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Oracle M[S, E](KM,KS)(M):

K1
$←{0, 1}k

return Mquery,register
KM (M)

Procedure query(i,X):

if i > c then return ⊥
return E(Ki, X)

Procedure register():

c← c + 1

(i,X)← SqueryKS ()

Kc ← E(Ki, X)

Fig. 1. A key-access manager exposes the query and register interfaces shown here.
The oracleM[S, E](KM,KS), to which attackers will have oracle access in security exper-
iments, uses these interfaces and a to implement the modeM of a given decomposition
Ê = (M,S,K). Here, c is initially 1.

sample uniformly from X and assign the result to X. When A is a ran-

domized algorithm, then X
$←AO1,O2,...(σ) means to provide A with ora-

cle (black-box) access to O1,O2, . . . and input σ, and to assign the result
of its execution to X. An adversary is a randomized algorithm. The nota-
tion AO1,O2,...⇒ b refers to the event that an algorithm A, when provided
the indicated oracles (if any), ends its execution with output b.

Fix integers k, n > 0. A function family E : {0, 1}k×{0, 1}n → {0, 1}n
is a blockcipher if, for all K ∈ {0, 1}k, the mapping EK(·) = E(K, ·) is a
permutation over {0, 1}n. We write E−1K (·) for the inverse of EK(·). The
set Perm (n) is the set of all permutations π : {0, 1}n → {0, 1}n, and the
set BC(k, n) is the set of all blockciphers E : {0, 1}k × {0, 1}n → {0, 1}n.

If G is some game (in the sense of the game-playing framework of
Bellare and Rogaway [6], where an adversary interacts with oracles) and
E is some event, the notation Pr [G; C ] denotes the probability that the
condition C will hold after G terminates.

2.2 Decompositions and their associated notions

Let E : KE × D → R be some scheme (e.g., CTR mode) that makes
black-box use of a blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n. We write
EEK for the construction being keyed by K ∈ KE , with E as a superscript
to emphasize black-box access.

Our goal is to break E into a mode of operation and a key scheduler.
A decomposition is a tuple Ê = (M,S,K) of algorithms: a mode M :
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KM×D → R, a stateful but deterministic scheduler S : KS → N×{0, 1}n,
and a key-generation algorithm K that outputs values in KM ×KS . The
mode M expects two oracles having the signatures of query and register,
which are exposed as part of a key-access manager in Figure 1. (Look
ahead to World 1 of Figure 3 for an illustration). The scheduler S expects
oracle access to query, and is invoked by register.

A natural first attempt at defining key-oblivious access to an ideal
cipher E would be to choose set of keys K1,K2, . . . ,Km up front, and
then give the modeM (e.g., CTR mode) being analyzed black-box access
to some oracle O(i,X) := E(Ki, X) for i ∈ [1..m]. There would be no
explicit scheduler, and the keys themselves would be independent of the
blockcipher E. But we want to capture schemes that do use E to derive
the keys. For example, the Intel RNG [11] and the Abdalla and Bellare
[1] constructions mentioned in the introduction. Hence we surface a key
scheduler S as an explicit component of the decomposition, and must
provide it with some kind of access to E. We cannot provide S unfettered
access to E, however. If we did, then we would not be able to argue that E
is queried only under random (and secret) keys. Concretely, suppose S
sets Ki = E(C,E(C,K ⊕ i)), where C is some constant and K is some
“master key”; this may be secure in the ICM, but if we instantiate E
with DES and C is a one of the weak keys for DES, then we would have
Ki = K ⊕ i. The keys used by the mode of operation would be closely
related, a scenario we wish to preclude. Thus we restrict the scheduler’s
access to E. Similar abuse from M must also be prevented.

The oracles in our key-access manager force both S and M to query
the blockcipher via handles, values that are independent of the particular
values of the keys. Moreover, when preparing to have a value assigned to
the mth key Km, the scheduler S can only request outputs of E under
keys K1 through K(m−1). Note that S is not allowed to “know” the re-
sulting value of Km: instead, S outputs a pair (i,X) and Km is assigned
E(Ki, X). We also force M to query E using handles for keys.

We note that the syntax for both the mode M and the scheduler S
provides them with what appear to be “master” keys KM and KS. This
is to capture initial values (keys, IVs, etc.) provided to the blockcipher-
based construction. We will not assume or demand that KM and KS are
independent of each other, but allowing them to be distinct permits us
to capture more general constructions.

Definition 1 (Decompositions of schemes). Let E : KE×D → R and
Ê = (M,S,K) be defined as above. For K ∈ KM × KS , let M[S, E]K :
D → R be the procedure defined in Figure 1; this procedure combines
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Symbol Upperbound for number of. . .

q Adversary queries
m Blockcipher keys used
σ n-bit blocks per adversary query
µ Key aliases used to encipher any given block
ν Blocks enciphered using any given key alias

Table 1. Symbols used in ICM-KOA security definitions.

the mode of operation M with the key scheduler S and blockcipher E
in the natural way. We say Ê is a faithful decomposition of E if, for

any adversary A and any E ∈ BC(k, n), k = n, Pr
[
AE

E
K′ ,E,E

−1

⇒ 1
]

=

Pr
[
AM[S,E]K ,E,E

−1 ⇒ 1
]
. The probabilities are over the choice of K ′

$←KE ,

K
$←K and the coins of A, M, and E.

That is, the black-box behavior of EEK′ must be identical to the black-
box behavior of M[S, E]K (given the above distribution of keys) for any
blockcipher E and computationally unbounded adversaries.

Note that by using blockcipher outputs as keys, this definition assumes
for the sake of simplicity that the key size k is equal to the blocksize n
(each key is the output of the blockcipher at some point). We note that
our model could easily be extended to the case where k 6= n by truncating
or concatenating the keys produced, as required, at the expense of com-
plicating notation. However, we will use both k and n in our definitions
and security bounds in order to suggest how taking k 6= n would impact
our model and results.

Compatible modes. Our key-access manager formalism does not itself pre-
vent a scheduler S from “cheating” by choosing non-random keys. For
example, S could use its query oracle to search for a point (i,X) such
that E(Ki, X) ends in a zero, then output that point.

Informally, a scheduler S is compatible with a modeM if no adversary
can cause either S orM to invoke query at a point (i,X) used to generate
a key Kj = E(Ki, X). This ensures that both the S andM are oblivious
to the actual values of each key.

We’ll show that as long as each key alias i is used significantly fewer
than 2n/2 times, it follows that in both the ICM and the standard model
there will be enough (computational) randomness in E(Ki, X) for use as
a cryptographic key. (This restriction results from the birthday paradox:
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Procedure main():

(KM,KS,K1)
$←K

c← 1;P ← ∅; Q← ∅
compat← true

AM[S,Π](KM,KS)

compat← compat ∧ (P ∩Q = ∅)
return compat

Oracle query(i,X):

if i > c then return ⊥
Q← Q ∪ {(i,X)}
return ΠKi(X)

Oracle M[S, Π](KM,KS)(M):

returnMquery,register
KM (M)

Oracle register():

c← c + 1

if c > m then return

(i,X)← Squery
KS

if (i,X) ∈ P then compat← false

P ← P ∪ {(i,X)}
Kc ← ΠKi(X)

Fig. 2. Procedures and oracles for Experiment COMPATΠÊ (A), where Ê = (M, S,K).
A mode M is m-compatible with a scheduler S if neither one queries the blockcipher
on a point used to generate one of the first m keys.

since E is being used to generate keys, we need it to behave like a random
function, rather than random permutation.)

Definition 2 (Compatible modes). Let Ê = (M,S,K) be a decompo-

sition over an (k, n)-bit blockcipher, k = n, and set K
$←K. Let m be a

positive integer. Then S is m-compatible with M (with respect to K) if
for any keyed function Π : {0, 1}k × {0, 1}n → {0, 1}n, and any adver-

sary A, Pr
[
COMPATΠÊ (A)⇒ true

]
= 1, where Experiment COMPAT is

defined in Figure 2.

Note that Π need not be a blockcipher. This generality is required to
make some of our later reductions work, and does not appear to exclude
interesting modes.

Some other, arguably more natural definitions fail to capture our goal
of preventing cheating schedulers. For example, suppose we instead query
SKS to obtain keys (K1,K2, . . . ,Km) and require that no adversary with
access to E and E−1 be able to distinguish these keys from truly random
values. This definition proves too strict, as it excludes schedulers that
deterministically derive Ki+1 from Ki.

It may then be tempting to instead allow schedulers to output keys
directly (rather than (i,X) pairs), and task an adversary A to distinguish
M[S, E](KM,KS) fromM[$, E]KM,KS, where $ is a special oracle that sam-

ples and returns fresh random strings from {0, 1}k on each invocation.
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This hides the keys from being directly observed by A, allowing Ki+1 to
depend on Ki deterministically. Such a definition, however, is too weak—
it doesn’t really depart from the familiar ICM. For example, if SKS sets
Ki = KS⊕ i then the keys are not independent, yet A is unlikely to be
able to exploit this (in the ICM). One of our goals is that our security
definition should imply security in the standard model, so this candidate
also isn’t acceptable.

Dispersed inputs. The next two definitions are used to measure some
important combinatorial properties of decompositions. We will require
several symbols to define the relevant parameters, and so provide Table 1
for reference.

Definition 3 (Dispersed inputs). Let k, n, µ and σ be non-negative
integers, and let ε be positive. Let F be a uniformly random function
mapping {0, 1}k×{0, 1}n to {0, 1}n. A decomposition Ê over an (n, n)-bit
blockcipher has (q, σ, µ, ε)-dispersed inputs if for any adversary A making
q queries, each no longer than σn bits,

Pr

[
COMPATFÊ (A) ; max

X
|{i | (i,X) ∈ Q}| > µ

]
< ε,

where Experiment COMPAT is defined in Figure 2, and Q refers to the
final value of the set so named constructed during this experiment (i.e.,
the set of points submitted to the query oracle).

The condition states that no single input is evaluated under more than
µ key aliases except with probability ε. Small values of µ and ε limit the
effectiveness of brute-force attacks by putting a cap on how many of the
m keys can be attacked in parallel with a single blockcipher invocation.

Mode efficiency. A final definition is used to bound the computational
work done by M and S given restrictions on an adversary.

Definition 4 (Mode efficiency). Let Ê be a decomposition over an
(k, n)-bit blockcipher E, with k = n. Let COMPAT be the experiment
defined in Figure 2, and let A be any adversary making q queries, each of
length at most σn bits. We say Ê is (q, σ,m, ν)-efficient if after an execu-
tion of COMPATEÊ (A), c < m and for each i, |{X | (i,X) ∈ P ∪Q}| ≤ ν.
Here, c, P , and Q refer to the final values of the random variables con-
structed in the experiment’s definition.

That is, given such an adversary, the mode and scheduler will query
the key manager using at most m key aliases, and will use each alias to
encipher at most ν blocks.

13



World 0 World 1 World 2 World 3 World 4

Fig. 3. Here, F is an ideal cipher and E is some cryptographic scheme based on a
(concrete) blockcipher E that should be indistinguishable from some reference oracle
I. For example, E maybe an encryption scheme and I an oracle that returns a random
string. From A’s perspective, World 0 = World 1 if Ê = (M,S,K) is a decomposition of
E ; World 1 ≈World 2 if Ê has dispersed inputs and E is a PRP; World 2 ≈World 3 if the
scheduler S is compatible with the modeM; World 3 ≈World 4 if Ê is indistinguishable
from I in the ICM-KOA.

2.3 Generic results about IND-KOA-ICM

We can now define what it means for a construction E to be indistin-
guishable from a reference oracle I in the ICM-KOA, the ICM, and the
standard model. In general, we’re interested in I that provide the desired
idealized behavior of E . For example, if E is an encryption algorithm, then
we may want I to be the oracle that accepts a plaintext and outputs ran-
dom bits.

We then show that ICM-KOA indistinguishability implies insecurity
in both the ICM and the standard model, with a loss that is determined
by the parameters of E ’s decomposition as surfaced by the efficiency and
input-dispersion definitions. Figure 3 provides a graphical overview of how
our key-access manager formalism will be used to argue indistinguisha-
bility of E and I.

We emphasize that unlike most security definitions of this form, we
do not claim that ICM-KOA indistinguishability offers an intuitive, com-
pelling security goal on its own. Instead, it is a means to obtaining strong
bounds in the ICM that are backed by a guarantee that keys are kept
random and secret. And because of this guarantee, we gain simultaneous
results in the standard model.

Definition 5 (ICM-KOA indistinguishability). Let Ê = (M,S,K)
be a decomposition over an (k, n)-bit blockcipher, k = n, with M[S, E]K :

14



D → R. Let I : D → R be some reference scheme. Then the ICM-KOA-I
advantage of an adversary A is

Advkoa-ind-I
Ê (A) = Pr

[
AM[F ]K ,E,E

−1 ⇒ 1
]
− Pr

[
AI,E,E

−1 ⇒ 1
]
.

Here, F
$← Func(k + n, n) and M[F ]K behaves identically to M[S, F ]K

(as defined in Figure 1), except register assigns Kc
$←{0, 1}k instead of

Kc ← EKi(X).

Note that in this definition, the mode M does not interact with E,
and so, without loss of generality, neither does A. ICM-KOA indistin-
guishability is only a useful notion for compatible decompositions with
dispersed inputs, as these properties will allow us to “decouple” the ideal
cipher used by the mode from the ideal cipher directly accessible by an
adversary when proving results in the ICM.

Definition 6 (ICM indistinguishability). Let Ê = (M,S,K) be a de-
composition over an (k, n)-bit blockcipher, k = n, whereM[S, E]K : D →
R. Let I : D → R be some reference scheme (for example, an encryption
algorithm with D = R = {0, 1}∗). Then the ICM-IND-I advantage of an
adversary A is

Advicm-ind-I
Ê (A) = Pr

[
AM[S,E]K ,E,E

−1 ⇒ 1
]
− Pr

[
AI,E,E

−1 ⇒ 1
]
,

where K
$←K, and E

$← BC(k, n) is an ideal cipher.

Precomputation, offline and online queries. One benefit of the ICM-KOA
model is that it can quantify the effectiveness of precomputation against
specific modes. The following definition is general, but in it we have in
mind f2 = E, f3 = E−1 for some blockcipher E, while f1 is an oracle for
some blockcipher-based construction.

Definition 7 (Precomputation, offline, and online queries). Let
Af1,f2,f3 be an adversary. We say A makes qP precomputation queries,
qE offline queries, and q online queries if

– A makes qP combined queries to f2 and f3 before making its first query
to f1,

– and afterwards makes a combined qE queries to f2 and f3,

– while interleaving q queries to f1.
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Relating the ICM-KOA and the ICM. We now give the first of our two
main model-implication results. Namely, that security in the ICM-KOA
implies security in the ICM.

Theorem 1 (ICM-KOA indistinguishability implies ICM indis-
tinguishability). Let Ê = (M,S,K) be a decomposition over an (k, n)-
bit blockcipher with k = n, and let I be some reference scheme. Fix a pos-
itive integer c. Let A be an adversary making qP precomputation queries,
qE offline queries, and q online queries, the latter of at most σn bits each.
Suppose

1. M is compatible with S,

2. Ê is (q, σ,m, ν)-efficient,

3. Ê has (q, σ, µ, ε)-dispersed inputs, and

4. For any adversary B making q queries, Advkoa-ind-I
Ê (B) ≤ δ.

Further suppose3 that qE + qP < 2n. Then

Advicm-ind-I
Ê (A) ≤ δ +

2qEcν

2k(2n − qE − qP )
+

(qE + qP )mν

2k+n
+
cmν2

2n

+
qE(2µ+ c) + (qP +m)µ

2k
+
mc+1(1 + νc+1)

2nc(c+ 1)!
+ 3ε.

Although this general bound is complex, it simplifies substantially for
various modes of operation. We will see this when we apply the general
result to real constructions in Section 3. We note that the constant c can
be chosen more-or-less arbitrarily to minimize the bound. This permits
the possibility of “beyond birthday-bound security” when c > 1. (The
cmν2/2n term gives a birthday bound with respect to the amount of data
ν processed with a single key, but mν blocks are enciphered in total.)
Before proving this theorem, we give the following useful lemma.

Lemma 1 (c-wise birthday bound). Let c, q, and n be positive inte-
gers, with c ≤ q. Let X1, . . . , Xq be iid uniformly random n-bit strings.
Then Pr [ ∃S ⊆ {1, . . . , q} s.t. |S| = c,Xj = Xi for all i, j ∈ S ] ≤ qc

2n(c−1)c!
.

Proof. Fix some x ∈ {0, 1}n and some c-sized index set S ⊆ {1, 2, . . . , q}.
Then Pr [ ∀i ∈ S : x = Xi ] = 2−cn. Since there are 2n choices for x and(
q
c

)
< qc/c! choices for S, a union bound provides us with the desired

upper bound. �
3 The proof permits us to omit this final restriction by changing the first term in the

bound to 2/2k
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Proof (Theorem 1). Let F
$← Func(k + n, n). Then Pr

[
AM[F ]K ⇒ 1

]
−

Pr
[
AI ⇒ 1

]
≤ δ, where K

$←K and M[F ]K is defined as Definition 5.

Game G1(A) (Figure 4), which excludes the boxed statements, faith-
fully simulates AM[S,F ]K . In this figure, and for the remainder of the
proof, F , E, and E−1 (without subscripts) refer to oracles, while FK and
EK (with subscripts) refer to the lazily-defined functions the game builds
to help implement these oracles. We’ve moved the calls to register to the
start of the game, without loss of generality.

In G1(A), the behavior of F is independent of the behavior of E and
E−1. Consequently, the value of each key Ki is information theoretically
hidden from the adversary; the adversary can at best learn information
about whether two key aliases correspond to the same key.

Recall that the difference between M[F ]K and M[S, F ]K is that the
former’s register procedure always assigns keys a uniformly random value
that is independent of the other coins in the experiment. Hence, the oracle
M[F ]K behaves identically to M[S, F ]K until there is some query input
(i,X) and some S output (j,X) with Ki = Kj .

Let us bound the probability of this happening during an execution
of AM[F ]K . (The Fundamental Lemma of Game Playing implies that this
probability is equal in both games; we are free to choose whichever best
expedites the proof.) Fix one of the m−1 pairs (j,X) output by S. AsM
and S are compatible, query never receives an input (j,X). Except with
probability ε, there are at most µ aliases i such that query receives an input
(i,X). For each such alias i, Pr [Ki = Kj ] = 1/2k; hence, some such alias
exists with probability at most µ/2k. Taking a union bound over the m−1
pairs (j,X) gives us Pr

[
AM[F ]K ⇒ 1

]
− Pr

[
AM[S,F ]K ⇒ 1

]
≤ mµ

2k
+ ε.

In Game G1, the E and E−1 oracles behave independently of the
others. However, in Game G2, which includes the boxed statements, the F
and E oracles have been coupled together (turning F into a blockcipher).

So Pr [ G2(A)⇒ 1 ] = Pr
[
AM[S,E]K ,E,E

−1 ⇒ 1
]
.

We therefore wish to bound Pr [ G1(A)⇒ 1 ]− Pr [ G2(A)⇒ 1 ]. The
Fundamental Lemma of Game Playing allows us to do so by bounding the
probability that one of the boolean “bad flags” of Figure 4 is set during
an execution of G1(A).

Let Cc be the event that for some key K, |{i : Ki = K}| > c. By

Lemma 1, Pr [ G1(A) ; Cc ] ≤ mc+1

2nc(c+1)! .
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Now, in Game G1(A), bad1 is set on a particular query (K,X) to E
only if the initial value for Y is in Rng (FK):

Pr [ Y ∈ FK | ¬Cc ] =
∑
Ki

Pr [K = Ki | ¬Cc ] Pr
[
Y ∈ FK

∣∣ K = K ′,¬Cc
]

≤
∑
K′

1

2k
|Dom (FK′)|
2n − qE − qP

≤ cν

2k(2n − qE − qP )
.

Hence Pr [ G1(A) ; bad1 | ¬Cc ] ≤ qEcν
2k(2n−qE−qP )

. A symmetric argument

shows the same bound applies to Pr [ G1(A) ; bad3 | ¬Cc ].
Similarly, bad2 is set on a particular query (K,X) to E only if X ∈

Dom (FK). Except with probability ε, There are at most µ key aliases i
such that X ∈ Dom (FKi). Hence, Pr [ G1(A) ; bad2 ] ≤ qEµ

2k
+ ε.

Note that bad4 is only set if the adversary makes a query (K,Y ) to E−1

for some Y ∈ Rng (FK). Over the course of the game, the probability that
there will exist some Y ′ ∈ {0, 1}n with |{(K,X) : FK(X) = Y ′}| > c is at

most (mν)c

2n(c−1) ; i.e., except with this probability, |{K ′ : Y ∈ Rng (FK′)}| ≤
c. (This follows from the fact that points in the range of each FK are uni-
form and mutually independent; see Lemma 1). Thus Pr [ G1(A) ; bad4 ] ≤
qEc
2k

+ (mν)c

2n(c−1) .
To bound Pr [ G1(A) ; bad5 ], consider a query (i,X) to F . We sam-

ple a uniformly random Y
$←{0, 1}n and set bad5 if Y ∈ Rng (EKi) or

Y ∈ Rng (FKi). Using an argument similar to that for our bound for
bad1, Pr [ Y ∈ Rng (EKi) ] ≤ qE+qP

2k+n
. Again fix a positive integer c. So as

long as no key corresponds to more than c aliases, Y ∈ Rng (FKi) with
probability at most cν/2n. Taking a union bound over each of mν queries

gives Pr [ G1(A) ; bad5 | ¬ Cc ] ≤ (qE+qP )mν
2k+n

+ cmν2

2n .
Finally, we need to bound Pr [ G1(A) ; bad6 ]. This flag is set only if

some E or E−1 query defines the point EK(X) = Y such that K =
Ki and X = X ′, where (i,X ′) is some (future) F -query. Let us first
consider a precomputation query that defines EK(X) = Y . Then bad6
will be triggered by this precomputation query only if K is one of the at
most µ keys under which X is queried. Hence, the probability that some
precomputation query will define a point on E that triggers bad6 is at
most qPµ/2

k.
Now let us consider an offline query that defines EK(X) = Y . Except

with probability ε, there are at most µ key aliases i that will be used to
encipher X; the probability that one of these µ keys will be K is at most
µ
2k

. Hence, the probability that some offline query will define a point on

E that triggers bad6 is at most qEµ/2
k. Therefore Pr [ G1(A) ; bad6 ] ≤
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Games G1, G2

Procedure main(A):

for j = 1 to m− 1 do

register()

b← Af,E,E
−1

return b

Oracle F (i,X):

if X ∈ Dom
(
FKi

)
then

return FKi
(X)

Y
$←{0, 1}n

if Y ∈ Rng
(
EKi

)
∪ Rng

(
FKi

)
then

bad5 ← true

Y
$← Rng

(
EKi

)
∪ Rng

(
FKi

)
if X ∈ Dom

(
EKi

)
then

bad6 ← true

Y ← EKi
(X)

FKi
(X)← Y

return Y

Oracle query(i,X):

if i > c then return ⊥
return F (i,X)

Oracle register():

(i,X)← SquerySK

Kc+1 ← F (i,X)

c← c+ 1

Oracle E(K,X):

Y
$← Rng (EK)

if Y ∈ Rng (FK) then

bad1 ← true

Y
$← Rng (EK) ∪ Rng (FK)

if X ∈ Dom(FK) then

bad2 ← true

Y ← FK(X)

EK(X)← Y

return EK(X)

Oracle E−1(K,Y ):

X
$←Dom(EK)

if X ∈ Dom(FK) then

bad3 ← true

X
$←Dom(EK) ∪Dom(FK)

if Y ∈ Rng
(
FKi

)
then

bad4 ← true

X ← F−1
K (Y )

E−1
K (Y )← X

return E−1
K (Y )

Oracle f(M):

returnMquery,register
KM (M)

Fig. 4. In Game G2, A, M, and S access the same blockcipher (directly, through
queryE , and through queryF , respectively). In Game G1, the behavior of queryF is
decoupled from E and queryE , in effect giving the scheduler S it’s own blockcipher.
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µ(qE + qP )/2k + ε. The Fundamental Lemma of Game-Playing gives us:

Pr [ G1(A)⇒ 1 ]− Pr [ G2(A)⇒ 1 ]

≤ Pr [ bad1 ∨ bad3 ∨ bad5 | ¬Cc ] + Pr [ Cc ]

+ Pr [ bad2 ∨ bad4 ∨ bad6 ]

≤ 2qEcν

2k(2n − qE − qP )
+

(qE + qP )mν

2k+n
+
cmν2

2n
+

mc+1

2ncc+ 1!

+
2qEµ

2k
+
qEc

2k
+

(mν)c

2n(c−1)c!
+
qPµε

2k
+ 3ε

=
2qEcν

2k(2n − qE − qP )
+

(qE + qP )mν

2k+n
+
cmν2

2n

+
qE(2µ+ c) + qPµ

2k
+
mc+1(1 + νc+1)

2nc(c+ 1)!
+ 3ε.

Collecting our results completes the proof. �

Relating the ICM-KOA to the standard model. We now move on to a
standard-model analogue. The indistinguishability advantage definition
is the same, except now A has an implicit description of E rather than
oracle access:

Definition 8 (Standard model indistinguishability). Let E : K ×
D → R be a scheme over an (n, n)-bit blockcipher and let I : D → R be
some oracle. Let E be an (n, n)-bit blockcipher. We define standard model
indistinguishability advantage of an adversary A (with respect to E and

I) as: Advind-I
E;E (A) = Pr

[
AM[S,E]K ⇒ 1

]
−Pr

[
AI ⇒ 1

]
, where K

$←K
is a random key and E is an (n, n)-bit blockcipher.

We now give the second of our two main model-implication results.
Namely, that security in the ICM-KOA implies security in the standard
model.

Theorem 2 (ICM-KOA indistinguishability implies standard model
indistinguishability). Let E be an (k, n)-bit blockcipher-based scheme,
and let Ê = (M,S,K) be a decomposition of E. Suppose

1. M is compatible with S,
2. Ê is (q, σ,m, ν)-efficient,
3. For any adversary B′ making q queries, Advkoa-ind-I

Ê (B′) ≤ δ.

Then for any adversary A running in time t and making q queries, each at
most σn bits in length, there exists some adversary B running in time t′ ≈
t and making ν queries such that Advind-I

E;E (A) ≤ mAdvprf
E (B) + m2

2k
+ δ.
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Oracle G(KM,KS)(M):

K1
$←{0, 1}k

return Mquery,register
KM (M)

Procedure query(i,X):

if i > c then return ⊥
return R(i,X)

Procedure register():

(i,X)← SqueryKS

Kc+1 ← R(i,X)

c← c + 1

Fig. 5. Replacing E with a random function R

This theorem relates ICM-KOA security to the PRF security of the under-
lying blockcipher. This implies a relationship between ICM-KOA security
and PRP security via the PRP-PRF switching lemma, at the expense of
an additional mσ2/2n+1 term. This term beats the birthday bound by a
factor of m.

Proof (Theorem 2). We will use a game-playing proof. First A’s oracle
will transition from M[S, E]K into G, where references to EKi(X) are
replaced with R(i,X) for some random function R (see Figure 5).

This transition will itself involve a sequence of games. Define the ora-

cle G` to be identicalM[S;E]K for K
$←K, except that query and register

compute R(i,X) in place of E(Ki, X) when i < `. This gives us

Pr
[
AM[S,E]K ⇒ 1

]
− Pr

[
AG⇒ 1

]
≤

m−1∑
j=0

(
Pr
[
AGj+1 ⇒ 1

]
− Pr

[
AGj ⇒ 1

])
.

Now in Gj+1, we have Kj+1 = R(i,X) for some i ≤ j, where the com-
patibility condition ensures that this is the only time R is evaluated at
the point (i,X). Consequently, Kj+1 is uniformly distributed and inde-
pendent of the other coins of the experiment. It can therefore be freely
discarded and replaced with some other value draw from this distribu-
tion without affecting the black-box behavior of Gj+1. Therefore from A

we can construct a PRF adversary Bj with the property Advprf
E (Bj) =

Pr
[
AGj+1 ⇒ 1

]
−Pr

[
AGj ⇒ 1

]
. This is accomplished by having Bf

j sim-
ulate Gj for A, but using its own oracle to set query(j + 1, ·) = f(·). So
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Bf
j in behaves identically to either Gj (when f is EK) or Gj+1 (when f

is a random function). We note that Bj makes at most ν queries and has
roughly the same running time as A.

Setting B to be the Bj with maximal advantage (1 ≤ j ≤ m) gives us

Pr
[
AM[S,E]K ⇒ 1

]
− Pr

[
AG⇒ 1

]
≤ mAdvprf

E (B).

We observe that the G and M[F ] differ in behavior only when Ki =
Kj for some i 6= j, which happens with probability at most m2/2k. Hence,
Pr
[
AG⇒ 1

]
− Pr

[
AM[F ]⇒ 1

]
< m2/2k.

Finally, by hypothesis Pr
[
AM[F ]⇒ 1

]
−Pr

[
AI ⇒ 1

]
≤ δ. Combin-

ing these results provides the desired bound. �

2.4 Connection to TBC-based constructions

A tweakable blockcipher Ẽ is a (strong) TPRP if a keyed instance of Ẽ
is computationally indistinguishable from an ideal cipher. This suggests
that there ought to be some formal relationship between TBCs and the
ideal cipher model, but the fact that TBCs are a keyed construction means
the two objects cannot be directly compared. However, the key managers
we have introduced are keyed constructions that mediate access between
modes of operation and an underlying cipher. They thus offer a means of
bridging the conceptual gap between TBCs and ideal ciphers: specifically,
the following theorem states that any mode of operation secure in the
ICM-KOA can be transformed into a TBC-based construction secure in
the standard model. In the following theorem statement, ε denotes the
empty string.

Theorem 3 (Decompositions imply TBC-based constructions).
Let E be a scheme over a (k, n)-bit blockcipher, and fix a decomposition
Ê = (M,S,K). Let be Ẽ : {0, 1}k × T × {0, 1}n → {0, 1}n be an n-bit

TBC. Sample K
$←{0, 1}k and (KM,KS)

$←K.

Define an oracle F〈ẼK〉KM as follows: On input M , the output of
F〈ẼK〉KM is the value returned by the oracle M[S,E](KM,ε)(M) in Fig-
ure 1 when (1) the register procedure is replaced by a procedure register-nop
that does nothing, and (2) the query procedure is modified so that, on input
(i,X), it returns ẼK(i,X).4 (This assumes that the maximum number of
key aliases permitted by the mode is at most |T |.) For any adversary A
running in time t and making q queries, each of length at most σn bits,
there exists some adversary B making mν queries and running in time

4 With these changes, the parameter E is unused.
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t′ ≈ t such that

Pr
[
AF〈ẼK〉KM ⇒ 1

]
− Pr

[
AI ⇒ 1

]
≤ Advp̃rp

Ẽ
(B) +

mν2

2n
+
m2

2k
+ δ

where K
$←K.

Proof. Let Π
$← BC(k, n) be an ideal cipher and F

$← Func(k + n, n) be
a random function. By a standard reduction argument, there exists some

adversary B with the stated resources such that Pr
[
AF〈ẼK〉KM ⇒ 1

]
−

Pr
[
AF〈Π〉KM ⇒ 1

]
≤ Advp̃rp

Ẽ
(B). By the m applications of the Switch-

ing Lemma, Pr
[
AF〈Π〉KM ⇒ 1

]
−Pr

[
AF〈FK〉KM ⇒ 1

]
≤ mν2/2n. Finally,

note that F〈FK〉KM and F [F ](KM,ε) behave identically unless the m ran-
dom keys generated by the latter oracle’s register procedure are not pair-
wise distinct, an event that happens with probability m2/2k. Collecting
results completes the proof. �

3 ICM-KOA analysis of constructions

We now put the ICM-KOA to work, using it to analyze example blockcipher-
based constructions. We begin with the NIST-CTR-DRBG, as used in
Intel’s recent hardware random-number generator [11], whose standard-
model security bounds [19] can become quite weak when an adversary is
co-located on the same physical machine, due to the rate at which such
an adversary can make queries. The weakness of these bounds is do to
a hybrid-factor loss. Our ICM-KOA analysis yields considerably better
bounds, and suggests that the multiplicative loss in the standard-model
isn’t “real”.

Next, we give an example of when the standard-model fails to surface
quantitative differences between the security of closely related schemes.
In particular, we consider various rekeying and nonce-choice strategies
for CTR mode. Although these schemes yield similar bounds in the stan-
dard model, we show that the best-possible black-box attacks tell quite a
different story. These results are of particular importance when CTR is
built over a lightweight blockciphers, where the standard-model security
bounds for all of the strategies suggest that problems may arise quickly.
Our ICM-KOA analysis (and the implied ICM results) offers a different
viewpoint on these concerns, and identifies the best strategies from among
the choices.

23



Oracle Mquery,register
KM ():

if stateM = ε then

IV1 ← KM

i← 1

else

(i, IVi)← stateM
register()

R← query(i, IVi)

IV← query(i, IVi + 2))

stateM ← (i+ 1, IVi)

return R

Oracle SKS():

if stateS = ε then

stateS ← (1,KS)

(i, IVi)← stateS
IVi+1 ← query(i, IVi + 2)

stateS ← (i+ 1, IVi+1)

return (i, IVi + 1)

Oracle K:

IV
$←{0, 1}n

K0
$←{0, 1}k

return (IV, IV,K0)

Fig. 6. The NIST CTR-DRBG decomposes into the mode and scheduler described
above. The key-generation algorithm K ensures KM = KS.

3.1 Analysis of NIST CTR-DRBG Generation algorithm

As the name suggests, CTR-DRBG is a deterministic random-bit gener-
ator based on running a blockcipher in CTR mode. Here, we analyze its
generation algorithm5, specializing for the sake of simplicity to the case
where AES-128 is used (so n = k = 128), and where 128 bits are re-
quested on each invocation. This case is of special interest because these
parameters are used inside of Intel’s hardware random number generator.

Concretely, we consider the scheme ISK-RNG : {0, 1}2n × {0, 1}0 →
{0, 1}n over an (n, n)-bit blockcipher defined in Figure 6. The system
maintains an initially random internal state (K, IV), and on each query
computes (R,K, IV) ← (EK(IV), EK(IV + 1), EK(IV + 2)), updating the
state, and returns R. In order to decompose this into a model, we need
the mode and scheduler to share the IV portion of the state. This is ac-
complished by using the initial IV as part of both the mode and scheduler
key (these keys are not required to be independent).

We define Rand : {0, 1}0 → {0, 1}n to be the oracle that on each query

samples R
$←{0, 1}n and then returns R.

5 The specification also includes algorithms for, e.g., reseeding.
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Stronger than standard-model results desirable. A result by Shrimpton
and Terashima [19] shows, as one might expect, that the standard-model
security bound for q queries includes an O(qAdvprp

E (B)) term, where B
is an adversary making three queries. However, B also has time t to run,
where t is sufficient time to evaluate E on 3q inputs. Hence even if B
conducts a näıve brute-force attack, Advprp

E (B) ≈ 3q/2k. So the security
bound becomes roughly q2/2k. For k = 128, this bound exceeds 2−40

when q = 244.
This may seem safe; after all, this amounts to many terabytes of ran-

dom bits. But the RNG has extremely high throughput—Intel reports
800 MB/s, which equates to 50 million queries per second. This means
an attacker who shares a physical machine with his target can reach the
q = 244 limit in a little more than four days.

The following lemma provides a security bound for the ISK-RNG in
the ICM-KOA. For very little work, we recover the security bound of
Shrimpton and Terashima [19], and immediately also get a much stronger
bound in the ICM. The ICM bound reveals the lack of a matching attack,
and shows that barring cryptanalysis of AES under random and secret
keys, we can permit on the order of 270 queries before surpassing our 2−40

limit (assuming the adversary has resources for 280 precomputation and
280 offline queries). This translates to 750,000 years of ISK-RNG runtime,
and so is unlikely to be the limiting factor.

Lemma 2. For any positive integers µ and any adversary A making
at most q online queries, ISK-RNG is (q, 0, q, 3)-efficient, has (q, 0, c, ε)-

dispersed inputs, and Advkoa-ind-Rand
ISK-RNG (A) ≤ δ, where δ = 5q2

22n
and ε =

δ + (3q)3

22n3!
.

Proof. If A makes q queries (0 bits each), the RNG will make three queries
using each of q distinct key aliases. Hence Ê is (q, 0, q, 3)-efficient.

Let R : {0, 1}k × {0, 1}n → {0, 1}n be an oracle that samples and
returns a fresh random string on each query (so R may return different
outputs on the same input). Consider Experiment COMPATRÊ (A). Let

(Ki, IVi)
q
i=1 be the sequence of keys and IVs generated during this experi-

ment. Then the probability that there exists some string x ∈ {0, 1}n that

is enciphered under more than c key aliases is less than (3q)c+1

2nc(c+1)! .

Let F
$← Func(k + n, n). Then Experiment COMPATFÊ (A) proceeds

identically to COMPATRÊ (A) unless an F -query is repeated; i.e., unless
there exists i < j such that Kj = Ki and IVj ∈ {IVi + ` : −2 ≤ ` ≤ 2}.
The probability that this happens (which is identical in both games, but
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easier to compute with respect to the R oracle), is less than q2

2k

(
5
2n

)
.

Therefore Ê has (q, 0, c, ε)-dispersed inputs for ε = 5q2

2k+n
+ (3q)c+1

2nc(c+1)! .

Finally, we need to bound Pr
[
AM[F ]K ⇒ 1

]
−Pr

[
ARand⇒ 1

]
. As be-

fore Pr
[
AM[F ]K ⇒ 1

]
−Pr

[
AM[R]K ⇒ 1

]
≤ 5q2

2k+n
, and Pr

[
AM[R]K ⇒ 1

]
−

Pr
[
ARand⇒ 1

]
= 0. �

Combining this result with Theorem 2 and immediately gives the fol-
lowing results:

Corollary 1. Let A be an adversary making q queries and running in
time t. Then there exists an adversary B making 3 queries and running

in time t′ ≈ t such that Advind-Rand
ISK-RNG[E](A) ≤ qAdvprf

E (B) + q2

2n + 5q2

22n
.

Note that up to a small constant factor, we’ve recovered, essentially
the security bound from [19]. But we can do better:

Corollary 2. Let A be an adversary making qP precomputation queries,
qE offline queries, and q online queries, where qE + qP < 2n−1. Then

Advicm-ind-Rand
ISK-RNG (A) ≤ 20q2 + 24qE + 3q(qE + qP ) + 19q3

22n
+

20q + 6qE + 2qP
2n

Here we have set c = 2 for the sake of notational cleanliness.
Taking qE = qP = 280 allows the upper bound to stay below 2−40

even when q = 270, a substantial improvement over the previous q = 244

(which only applied to attackers with qP = 244). This is a significantly
stronger result than we could obtain in the standard model, and it retains
the standard model’s strength of only relying on random, secret keys. A
brute-force attack on the key would obtain about the same success rate.

3.2 Analysis of CTR-mode variants

We consider three variants on CTR mode, distinguished by how they
choose IVs following a key change: (1) The IV is set to 0n; (2) the upper
bits of the IV are unique for each key; (3) The IV is chosen randomly. In
each case, we use the same key scheduler that sets Ki ← EK1(i) (for i >
1). See Figure 7. For simplicity, we consider the case where the key changes
with each message. This models a situation where the counter state is
retained between messages with the same key. The loss of adaptivity
within the lifetime of a given key does not hamper a chosen-plaintext
adversary in this context because the nature of CTR mode permits him
to compute what a ciphertext would have been with a different plaintext.
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The variants are distinguished by the choice of iv-gen : N→ {0, 1}n, which
on input i outputs some IVi. Define the reference scheme R[iv-gen] to be
the stateful function that on its ith query M , computes IV ← iv-gen(i),

samples C
$←{0, 1}|M |, and returns (IV, C).

Theorem 4. Fix positive integers σ, q, and b with q < σ < 2b and b < n.
Let const(i) = 0n, let unique(i) = 〈i〉b0n−b (where 〈i〉b is a b-bit encoding

of i), and let rand(i) sample and return R
$←{0, 1}n on each invocation.

Let A be an adversary making q online queries, each at most σn bits long,
qP precomputation queries, and qE offline queries. Then:

(1) Adv
ind-R[const]
CTR[const] (A) ≤ 4qEσ

2k(2n − qE − qP )
+

(qE + qP )qσ

2k+n
+

2qσ2

2n

+
2qE(q + 1) + qP q + 2q2

2k
+
q3(1 + σ3)/6

22n

(2) Adv
ind-R[unique]
CTR[unique] (A) ≤ 4qEσ

2k(2n − qE − qP )
+

(qE + qP )qσ

2k+n
+

2qσ2

2n

+
6qE + 2qP + 2q

2k
+
q3(1 + σ3)/6

22n

(3) Adv
ind-R[rand]
CTR[rand] (A) ≤ 4qEσ

2k(2n − qE − qP )
+

(qE + qP )qσ + (qσ)2

2k+n
+

2qσ2

2n

+
6qE + 2qP

2k
+
q3(1 + 4σ3)/6

22n

Proof. Each decomposition is (q, σ, q+1, σ)-efficient. Sample F
$← Func(k+

n, n). Let iv-gen ∈ {const, unique, rand}. Let bad be the event that during
an execution ACTR[iv-gen][F ], CTR[iv-gen][F ] repeats a query to F . Barring
this event, the outputs of CTR[iv-gen][F ] are independent and uniformly
random (with the possible exception of the IV component). Therefore
Pr
[
ACTR[iv-gen][F ]⇒ 1

]
−Pr

[
AR[iv-gen]⇒ 1

]
≤ Pr [ bad ]. We want to find

an upper bound δ for Pr [ bad ], and do so for each method of generating
the IV. Specifically,

– When iv-gen = const, Pr [ bad ] ≤ Pr [ ∃i 6= j : Ki = Kj ] ≤ q2/2k
– When iv-gen = unique, Pr [ bad ] = 0 because regardless of what value

the keys have, the inputs never repeat.
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Oracle CTR[iv-gen]query,registerKM (M):

if stateM = ε then

i← 1

else

i← stateM
register()

IVi ← iv-gen(i)

M1M2 · · ·M` ←n M

for j = 1 to ` do

Cj ← query(i+ 1, IVi + j)⊕Mj

stateM ← i+ 1

return (IVi, C1C2 · · ·C`)

Oracle SKS():

if stateS = ε then

stateS ← KS

i← stateS
stateS ← i+ 1 mod 2n

return (1, stateS)

Oracle K:

K1
$←{0, 1}k

V
$←{0, 1}n

return (ε, V,K1)

Fig. 7. A general decomposition of CTR parameterized by the IV selection function,
iv-gen.

– When iv-gen = rand, any two queries to F collide with probabil-
ity 1/2k+n because both keys and IVs are uniform and independent.
There are fewer than (qσ)2 pairs of queries, so Pr [ bad ] < (qσ)2/2k+n.

To apply Theorem 1 (with c = 2), we need to measure how much each
variant disperses its inputs.

– CTR[const] has (q, σ, q+1, 0)-dispersed inputs because 0n is evaluated
under each of the q + 1 keys.

– CTR[unique] has (q, σ, 2, 0)-dispersed inputs because each input is guar-
anteed to be used at most twice (including once by the scheduler).

– CTR[rand] has (q, σ, c, (qσ)c+1/2nc(c+1)!). The argument here follows
that of Lemma 1, except each that we are interested in the probability
that x ∈ {Xi, Xi + 1, . . . , Xi + (σ − 1)}, instead of x = Xi, where Xi

plays the role of IVi.

Plugging these values into Theorem 1 gives us the previously stated
bounds. �

Interpretation. Assume qP � qE , q. Using the const IV generation func-
tion permits σ = 2n/3, q = 2n/3 (up to constants) as long as 2k−n/3 � qP .
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This allows on the order of 22n/3 n-bit blocks of data to be securely en-
crypted, beating the birthday bound. However, the constraint on qP may
be worrisome for, e.g., n = 64, k = 80 , which is only secure against
adversaries for which qP � 259. Using a predictable IV amplifies the
effectiveness of precomputation because the adversary knows what pre-
computations will likely be helpful (in this case, finding preimages of
EK(0n)). On the other hand, unique and rand also permit σ = q = 2n/3,
but the O(qP q/2

k) term is now O(qP /2
k). Precomputation is no longer

nearly as much of a threat.
This O(qP q/2

k) term for const corresponds to the following attack:
Precompute Y = EK(0n) for qP arbitrary keys K, and store each K in a
hash table using Y as the hash table key. Encrypt the string 02n q times,
and perform a hash table lookup of the first n bits of the ciphertext. This
recovers the key if it happened to be one of the qP values used during
precomputation. False positives can be all but eliminated by verifying the
second n bits of the ciphertext.

References

1. Michel Abdalla and Mihir Bellare. Increasing the lifetime of a key: a comparative
analysis of the security of re-keying techniques. In Tatsuaki Okamoto, editor,
ASIACRYPT 2000, volume 1976 of LNCS, pages 546–559. Springer, December
2000.

2. Elena Andreeva, Andrey Bogdanov, Yevgeniy Dodis, Bart Mennink, and John P.
Steinberger. On the indifferentiability of key-alternating ciphers. In Ran Canetti
and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages
531–550. Springer, August 2013.

3. Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption in
a multi-user setting: Security proofs and improvements. In Bart Preneel, editor,
EUROCRYPT 2000, volume 1807 of LNCS, pages 259–274. Springer, May 2000.

4. Mihir Bellare, Ted Krovetz, and Phillip Rogaway. Luby-Rackoff backwards: In-
creasing security by making block ciphers non-invertible. In Kaisa Nyberg, editor,
EUROCRYPT’98, volume 1403 of LNCS, pages 266–280. Springer, May / June
1998.

5. Mihir Bellare, Thomas Ristenpart, and Stefano Tessaro. Multi-instance security
and its application to password-based cryptography. In Reihaneh Safavi-Naini
and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 312–329.
Springer, August 2012.

6. Mihir Bellare and Phillip Rogaway. The security of triple encryption and a
framework for code-based game-playing proofs. In Advances in Cryptology–
EUROCRYPT 2006, pages 409–426. Springer, 2006.

7. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, François-Xavier Standaert,
John P. Steinberger, and Elmar Tischhauser. Key-alternating ciphers in a provable
setting: Encryption using a small number of public permutations - (extended ab-
stract). In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 45–62. Springer, April 2012.

29



8. Shan Chen and John P. Steinberger. Tight security bounds for key-alternating
ciphers. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014,
volume 8441 of LNCS, pages 327–350. Springer, May 2014.

9. Recommendation for random number generation using deterministic random bit
generators. National Institute of Standards and Technology, NIST Special Publi-
cation 800-90A, U.S. Department of Commerce, January 2012.

10. Yuanxi Dai, Jooyoung Lee, Bart Mennink, and John P. Steinberger. The security
of multiple encryption in the ideal cipher model. In Juan A. Garay and Rosario
Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 20–38.
Springer, August 2014.

11. Mike Hamburg, Paul Kocher, and Mark E Marson. Analysis of Intel’s Ivy
Bridge digital random number generator. Online: http://www. cryptography.
com/public/pdf/Intel TRN G Report 20120312. pdf, 2012.

12. Viet Tung Hoang and Stefano Tessaro. Key-Alternating Ciphers and Key-Length
Extension: Exact Bounds and Multi-user Security, pages 3–32. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2016.
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