
Dual System Encryption Framework in
Prime-Order Groups via Computational Pair

Encodings

Nuttapong Attrapadung

National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan.

n.attrapadung@aist.go.jp

Abstract. We propose a new generic framework for achieving fully secure
attribute based encryption (ABE) in prime-order bilinear groups. Previous
generic frameworks by Wee (TCC’14) and Attrapadung (Eurocrypt’14)
were given in composite-order bilinear groups. Both provide abstractions of
dual-system encryption techniques introduced by Waters (Crypto’09). Our
framework can be considered as a prime-order version of Attrapadung’s
framework and works in a similar manner: it relies on a main component
called pair encodings, and it generically compiles any secure pair encoding
scheme for a predicate in consideration to a fully secure ABE scheme
for that predicate. One feature of our new compiler is that although
the resulting ABE schemes will be newly defined in prime-order groups,
we require essentially the same security notions of pair encodings as
before. Beside the security of pair encodings, our framework assumes only
the Matrix Diffie-Hellman assumption (Escala et al., Crypto’13), which
includes the Decisional Linear assumption as a special case.
Recently and independently, prime-order frameworks are proposed also
by Chen et al. (Eurocrypt’15), and Agrawal and Chase (TCC’16-A). The
main difference is that their frameworks can deal only with information-
theoretic encodings, while ours can also deal with computational ones,
which admit wider applications. We demonstrate our applications by
obtaining the first fully secure prime-order realizations of ABE for regular
languages, ABE for monotone span programs with short-ciphertext, short-
key, or completely unbounded property, and ABE for branching programs
with short-ciphertext, short-key, or unbounded property.

Keywords. attribute-based encryption, full security, prime-order groups.

1 Introduction

Attribute based encryption (ABE), initiated by Sahai and Waters [41], is an
emerging paradigm that extends beyond normal public-key encryption. In an
ABE scheme for predicate R : X× Y→ {0, 1}, a ciphertext is associated with a
ciphertext attribute, say, Y ∈ Y, while a key is associated with a key attribute, say,

X ∈ X, and the decryption is possible if and only if R(X,Y) = 1.1 In Key-Policy
(KP) type, X is a set of Boolean functions (often called policies), while Y is a
set of inputs to functions, and we define R(f, x) = f(x). Ciphertext-Policy (CP)
type is the dual of KP where the roles of X and Y are swapped (that is, policies
are associated to ciphertexts). Besides direct applications of fine-grained access
control [22], ABE is also known to imply verifiable computation outsourcing [39].

The standard security requirement for ABE is full security, where an adversary
is allowed to adaptively query keys for any attribute X as long as R(X,Y) = 0,
where Y is an adversarially chosen attribute for a challenge ciphertext. Dual
system encryption techniques introduced by Waters [45] have been successful
approaches for constructing fully secure ABE systems that are based on bilinear
groups. Despite being versatile as they can be applied to ABE systems for many
predicates, until only recently, however, there were no known generic frameworks
that can use the techniques in a black-box and modular manner. Wee [47] and
Attrapadung [3] recently proposed such generic frameworks that abstract the dual
system techniques by decoupling what seem to be essential underlying primitives
and characterizing their sufficient conditions so as to obtain fully-secure ABE
automatically via generic constructions. However, their frameworks are inherently
constructed over bilinear groups of composite-order. Although composite-order
bilinear groups are more intuitive to work with, especially in the case of dual
system techniques, prime-order bilinear groups are more preferable as they provide
more efficient and compact instantiations. This has been motivated already in
a line of research [19,37,35,42,29,23,25,30]. More concretely, group elements in
composite-order groups are more than 12 times larger than those in prime-order
groups for the same security level (3072 bits or 3248 bits for composite-order
vs 256 bits for prime-order in case of 128-bit security, according to NIST or
ECRYPT II recommendations [23]). Regarding time performances, Guillevic [23]
reported that bilinear pairings are 254 times slower in composite-order than in
prime-order groups for the same 128-bit security. Moreover, exponentiations are
also more than 200 times slower [23, table 6]. In this work, our goal is to propose
a generic framework for dual-system encryption in prime-order groups.

The generic frameworks of [47,3] work similarly but with the difference that
the latter [3] captures also dual system techniques with computational approaches,
which are generalized from techniques implicitly used in the ABE of Lewko
and Waters [33]. (The former [47] only captures the traditional dual systems,
which implicitly use information-theoretic approaches). Using computational
approaches, the framework of [3] is able to obtain the first fully secure schemes
for many ABE primitives for which only selectively secure constructions were
known before, including KP-ABE for regular languages [46], KP-ABE for Boolean
formulae2 with constant-size ciphertexts [9], and (completely) unbounded KP-

1Traditionally, ABE refers to only ABE for Boolean formulae predicate [22]. In this
paper, however, we use the term ABE for arbitrary predicate R. Indeed, it corresponds
to the “public-index predicate encryption" class of functional encryption, as per [13].

2Or more precisely, ABE for monotone span programs, which implies ABE for Boolean
formulae [22]. We will use both terms interchangeably.

ABE for Boolean formulae [32,40]. Moreover, Attrapadung and Yamada [10]
recently show that, within the framework of [3], we can generically convert ABE
to its dual scheme, i.e., key-policy to ciphertext-policy type, and vice versa. They
also show a conversion to its dual-policy [8] type, which is the conjunctive of
KP and CP. Many instantiations were then obtained in [10], including the first
CP-ABE for formulae with short keys. We therefore choose to build upon [3].

1.1 Our Contributions on Framework

New Framework. We present a new generic framework for achieving fully
secure ABE in prime-order groups. It is generic in the sense that it can be
applied to ABE for arbitrary predicate. Our framework extends the framework
of [3], which was constructed in composite-order groups, and works in a similar
manner as follows. First, the main component is a primitive called pair encoding
scheme defined for a predicate. Second, we provide a generic construction that
compiles any secure pair encoding scheme for a predicate R to a fully secure ABE
scheme for the same predicate R. The security requirement for the underlying
encoding scheme is exactly the same as that in the framework of [3]; in particular,
our framework can deal with both information-theoretic and computational
encodings. On the other hand, we restrict the syntax of encodings into a class we
call regular encodings, via some simple requirements. This confinement, however,
seems natural and does not affect any concrete pair encoding schemes proposed
so far [47,3,10]. Beside the security of pair encodings, our framework assumes
only the Matrix Diffie-Hellman assumption [18], which includes the Decisional
Linear assumption as a special case.

Conceptually, since our framework uses the same security requirement for
pair encodings as in the composite-order framework of [3], we can view it as an
automatic way for translating ABE from composite-order to prime-order settings.

Prime-order frameworks are recently and independently proposed by Chen,
Gay, and Wee [15] and Agrawal and Chase [2], albeit they can deal only with
information-theoretic encodings. We compare them later in §1.4. As a side result,
we also simplify our scheme using a simpler basis from [15] in §8.

1.2 Our Contributions on Instantiations

New Instantiations (the First in Prime-order Settings). By using exactly
the same encoding instantiations in [3,10], we automatically obtain fully secure
ABE schemes, for the first time in prime-order groups, for various predicates:

− KP-ABE and CP-ABE for regular languages,
− KP-ABE for monotone span programs with constant-size ciphertexts,
− CP-ABE for monotone span programs with constant-size keys,
− Completely unbounded KP-ABE and CP-ABE for monotone span programs.

The assumptions for respective encodings are the same as those in [3] (albeit
with a minor syntactic change to prime-order groups); some are parameterized

Table 1: Composite-order ABE, positioned by properties (for comparing to Table 2)
Predicate Properties Unbounded KP CP DP

Security Universe Input Multi-use
ABE-PDS full - - - A14 [3] AY15 [10] AY15 [10]

Unbounded ABE-MSP

selective large yes yes LW11 [32], sub sub
full small yes yes sub LW12 [33] sub
full large yes no sub sub sub
full large yes yes A14 [3] AY15 [10] AY15 [10]

Short-Cipher ABE-MSP selective large no yes sub sub open
semi large no yes sub AC16 [2] open
full large no yes A14 [3] open open

Short-Key ABE-MSP selective large no yes sub sub open
full large no yes open AY15 [10] open

(Bounded) ABE-MSP

selective large no yes sub sub sub
full small no no LOS+10 [34], LOS+10 [34], AY15 [10]

A14 [3], A14 [3],
W14 [47] W14 [47]

full large no no A14 [3], A14 [3] AY15 [10]

ABE-RL selective small - - sub sub sub
full large - - A14 [3] A14 [3] AY15 [10]

Acronym: “ABE-PDS” = ABE for policy over doubly-spatial relations, “ABE-MSP” = ABE for monotone
span programs, “ABE-RL” = ABE for regular languages, “ABE-BP” = ABE for branching programs.
“KP” = key-policy. “CP” = ciphertext-policy. “DP” = dual-policy. “sub” = subsumed (no previous
work but is subsumed by another system with stronger properties such as full security or prime-order).
“open” = was open problem (before our work and subsequent work that uses ours). “-” = undefined.
“Unbounded input” = unbounded size of attribute set size per ciphertext in KP-ABE-MSP, attribute
set size per key in CP-ABE-MSP, and input string in ABE-BP. “Unbounded Multi-use” = unbounded
multi-use of attributes in a policy in ABE-MSP, and in a branching program in ABE-BP. “semi” =
semi-adaptive security.

assumptions (or often called q-type), as in [3]. Moreover, via the dual-policy
conversion of [10], we also obtain their respective dual-policy variants.

We give their detailed comparisons in Table 5,6 in §7. Here, for high-level
overview, we position our instantiations in Table 2, which show prime-order
schemes by their properties. In Table 2, our instantiations that are the first
such schemes for given predicates and properties are specified by New. Our new
instantiations that are not the first of a kind are specified by New′. Table 1
provides composite-order schemes for comparison.

First Realizations. We also obtain the first-ever realizations of ABE for some
predicates, namely,

− Unbounded KP-ABE and CP-ABE for branching programs (BP),
− KP-ABE for branching programs with constant-size ciphertexts,
− CP-ABE for branching programs with constant-size keys.

Table 2: Prime-order ABE schemes, positioned by properties
Predicate Properties Unbounded KP CP DP

Security Universe Input Multi-use
ABE-PDS full - - - New1 New2 New3

Unbounded ABE-MSP

selective large yes yes RW13 [40] RW13 [40] sub
full small yes yes sub LW12 [33] sub
full large yes no OT12 [38] OT12 [38] sub
full large yes yes New4 New5 New6

Short-Cipher ABE-MSP selective large no yes ALP11 [9] sub sub
semi large no yes CW14,T14 [17,43] AC16 [2] sub
full large no yes New7 AHY15 [7]∗ Newer28

Short-Key ABE-MSP selective large no yes BGG+14 [12]† sub sub
full large no yes AHY15 [7]∗ New8 Newer29

(Bounded) ABE-MSP

selective large no yes GPSW06 [22] W11 [44] AI09 [8]
full small no no CGW15 [15], CGW15 [15], New11

New′9 New′10

full large no no OT10 [37], OT10 [37], New14

New′12 New′13

ABE-RL selective small - - W12 [46] sub sub
full large - - New15 New16 New17

Unbounded ABE-BP full - yes yes New18 New19 New20

Short-Cipher ABE-BP full - no yes New21 Newer27 Newer30

Short-Key ABE-BP selective - no yes GV15 [21]† sub sub
full - no yes Newer26 New22 Newer31

(Bounded) ABE-BP
selective - no yes GVW13 [20]† sub sub
full - no no CGW15 [15], CGW15 [15], New25

New′23 New′24

Acronym: “Newi” = new instantiations from our framework that are the first such schemes for given
predicates and properties. The subscript i is the scheme numbering. “Neweri” = newer instantiations
(that are the first of a kind) obtained here using a subsequent work to our work, namely [7]. “New′i” =
new instantiations but not the first of a kind. † refers to a solution based on LWE. ∗ refers to subsequent
work that essentially uses our work as their building block. Also refer to the acronym of Table 1.

Unbounded ABE-BP refers to a system that allows an encryptor to associate
a ciphertext with an input string of any length (in the case of KP). All of our
above ABE-BP schemes are the first such schemes for respective variants even
among composite-order or selectively secure schemes. Comparing to the previous
schemes, KP-ABE-BP of [20,26,15] are of bounded type and require linear-size
ciphertexts and keys3, while (selective) KP-ABE-BP of [21] achieves short keys.
We obtain our above ABE-BP schemes by invoking the theorem stating a generic
implication from ABE for monotone span programs (MSP) to ABE-BP (see
Remark 6 for further discussion on this theorem).

3Note that we consider only Boolean branching programs here as in [20], in contrast
with [26,15], where arithmetic branching programs are also considered.

Update after Subsequent Work. Subsequent to our work, Attrapadung,
Hanaoka, and Yamada [7] present various conversions for ABE. By applying
their conversions to some of our instantiations, they obtain CP-ABE with short
ciphertexts and KP-ABE with short keys for (non-)monotone span programs. Now,
by applying the ABE-MSP-to-ABE-BP conversion back to their instantiations,
we obtain further (fully secure) schemes not explicitly achievable before, namely:

− KP-ABE for branching programs with constant-size keys,
− CP-ABE for branching programs with constant-size ciphertexts.

Moreover, we can combine KP-ABE and CP-ABE both with short keys to DP-
ABE with short keys. The same goes for short ciphertexts. We mark the schemes
after this update as Neweri in Table 2. Interestingly, all of our results complete
the whole Table 2, which had been otherwise filled with open problems before.

1.3 Our Techniques

Due to the lack of space, we defer a more detailed discussion on our techniques
to the full version [4]. We provide only a summary here.
Background on [3]. We first briefly review the framework of [3]. In the generic
construction of [3], a ciphertext CT encrypting M , and a key SK take the forms:

CT = (C, C0) = (gc(s,h)
1 , Me(g1, g2)αs0), SK = g

k(α,r,h)
2

where c and k are encodings of attributes Y and X associated to a ciphertext
and a key, respectively. Here, g1, g2 are generators of subgroups of order p1 of
G1,G2, which are asymmetric bilinear groups of composite order N = p1p2p3 with
bilinear map e : G1×G2 → GT . The bold fonts denote vectors. Intuitively, α plays
the role of a master key, h represents common variables (or called parameters).
These define a public key PK = (gh1 , e(g1, g2)α). s, r represents randomness in
the ciphertext and the key, respectively, with s0 being the first element in s. The
pair (c,k) form a pair encoding scheme for predicate R. Informally, the main
theorem of [3] states that if the pair encoding is secure and subgroup decision
assumptions hold, then the ABE scheme (with CT,SK as above) is fully secure.
Our Approach. Towards translating to a new prime-order based framework,
we identify a set of features consisting of element representations, procedures,
properties, and assumptions that are required by the framework of [3]. We list
up the first three categories in §4.

As for assumptions, our goal is to use the security definition of pair encoding
“as is”, since this will allow us to instantly instantiate the encoding schemes already
proposed and proved secure in [3]. If we can leave encoding “as is”, we will only
have to replace subgroup decision assumptions provided by composite-order
groups with some mechanisms from prime-order groups that mimic them.
Candidate Techniques. There are two candidate tools for simulating subgroup
decision in prime-order groups: Dual Pairing Vector Space (DPVS) [36,37,29] and
Prime-order Dual System Group (PDSG) [16]. We argue (in the full version [4])

that DPVS would require modifying one of the encoding (in the pair encoding)
to an “orthogonal form” in order to enable inner-product spaces, which seems
essential in this approach. This, however, would violate our goal to use encoding
“as is”. We thus turn to use the other tool: PDSG. Although PDSG was devised
for specific predicates such as HIBE in the first place [16], it seems compatible
to the pair encoding syntax in terms of element representations since, roughly
speaking, it provides one-to-one translation of elements. (This itself is although
implicit in [16]). Intuitively, each ZN element in s, r,h is mapped to elements of
vector spaces over Zp (such as vectors or matrices), and subgroup assumptions
are emulated by some subspace assumptions.

Difficulties and Our Solutions. We argue that the out-of-the-box formulation
of PDSG [16] is, however, not sufficient for applying to the framework of [3],
mainly due to the following four issues.

First, out-of-the-box PDSG does not allow a direct exponentiation procedure
that is required by [3], such as gh1 . This is since translated elements involve
matrices, of which multiplication is not commutative. We solve this by properly
re-ordering translated elements in multiplicative terms in encoding, and enabling
exponentiation via left multiplication of matrices (in exponents). See §4.

Second, and more importantly, subgroup decision-like assumptions provided
by PDSG would guarantee indistinguishability for elements that have only one
element of randomness in the encoding. On the other hand, pair encodings in
the framework of [3] are formulated to deal with arbitrary number of randomness
elements, that is, s, r can be of any length. We solve this by introducing a new
technique that uses random self-reducibility of the Matrix-DH assumption. We
also note that this technique becomes possible only after our re-formulation,
designed for solving the first issue. We depict this in the proof of lemma 2 in §6.

Third, the syntax of pair encodings [3] allows multiplication such as hkhk′
(and implicitly uses commutativity: hkhk′ = hk′hk), when encodings are paired.
However, these elements would translate to matrices, which do not commute. We
solve this by restricting the syntax of pair encodings so that such multiplication
is not allowed (and using only the associativity property [16]). It turns out that,
however, all available pair encodings still satisfy these new restriction; hence, our
new framework applies to them. We define this as Rule 1 of regularity in §3.1.

The fourth issue is perhaps the most important since it is unique to our
new framework. In order to achieve our goal of using computational security of
encodings “as is”, we need to establish a reduction from the new “matrix-form”
of encodings, exponentiated over prime-order group elements, to the original
encodings, in the security proof. This was not a problem in the original composite-
order framework of [3] since the original hybrid proof uses exactly the same form of
original encodings. Also, it was not a problem for (prime-order) frameworks using
information-theoretic encodings [15,2] since, intuitively, information-theoretic
properties will preserve regardless of whether their elements are in the exponents.
We resolve this issue, for the case of computational encodings, by identifying
which terms will be needed in the aforementioned reduction and enforcing them

Table 3: High-level Conceptual Comparison among Generic Dual-System Frameworks
Framework Settings Applicable Encodings Restrictions on Encodings Additional Features
W14[47] Composite Info.-theoretic - -
A14[3] Composite Info.-theoretic, Computational - Tighter reduction
CGW15[15] Composite, Prime Info.-theoretic One unit of randomness Weak attribute-hiding
AC16[2] Composite, Prime Info.-theoretic Rule 1 of our Regularity Relaxed perfect security
This work Prime Info.-theoretic, Computational Regularity Tighter reduction

to be given out explicitly in encodings by definition. We define this as Rule 2–4
of regularity in §3.1. We provide more intuition on this at the end of §4.

1.4 Independent Works and Their Comparisons

Independently, Chen, Gay, and Wee [15] recently proposed a generic dual-system
framework in prime-order groups. The main difference is that our framework
can deal with computationally secure encodings, while theirs can deal only with
information-theoretic ones. As motivated in [3], computational approaches have
an advantage in that they are applicable to ABE for predicates where information-
theoretic theoretic argument seems insufficient. These include ABE with some
unbounded properties, or constant-size ciphertexts (or keys). We compare some
instantiations of [15] that are relevant to ours in Table 2. Another difference
is that the syntax of encoding in [15] seems more restricted in the sense that
it can deal with only one element of randomness, while our syntax can deal
with arbitrary many elements. On one hand, one unit of randomness is shown
to suffice for all known information-theoretic encodings in [15]. On the other
hand, multi-unit randomness seems essential in more esoteric predicates such
as ABE for regular languages (of which information-theoretic encodings are
not known). An extension with weak attribute-hiding property is also given
in [15] (although currently applicable to small predicate classes such as HIBE,
inner-product). Moreover, a simpler basis of PDSG is proposed in [15]. Although
our main construction is based upon the original basis of [16], it is possible to
use the simplified basis by [15]. We provide this simplification in §8.

In another concurrent4 and independent work, Agrawal and Chase [2] also
presented a prime-order dual system framework. As in [15], their work consider
only information-theoretic encodings, albeit with a useful extension that allows
to relax perfect encodings, which yields CP-ABE with short ciphertexts.

In the conceptual view, both frameworks [15,2] unify both composite-order
and prime-order groups into one generic construction. Contrastingly, we focus
solely on the prime-order generic construction.5 We compare them in Table 3. A
feature of our framework, inherited from [3], is that it enjoys tighter reduction,
of which the cost does not depend on the number of post-challenge queries.
4A preliminary version of our full version [4] has been made available before that of [2].
5Nevertheless, since we use the same notion of pair encoding as in the composite-order
framework of [3], it can be said that our framework together with [3] provide a unified
framework albeit with two generic constructions.

Some technical difficulties we pointed out in §1.3 have been addressed in
these frameworks [15,2]. For instance, the loss of commutativity is coped by
restricting encodings (differently in [15], but similarly in [2]). Also, the random
self-reducibility is implicitly utilized in [2]. On the other hand, the technique that
is all unique to ours is our solution in accommodating computational encodings.

We comment that although computational encodings enjoy much wider appli-
cations than information-theoretic ones, they come with a drawback that some
encodings, especially for esoteric predicates, often use parameterized (q-type)
assumptions. Some plausible future research directions to reduce them to simpler
assumptions may include extending the recent Deja-q method [14,48], or relaxing
encodings analogously to [2], but in computational settings.

Some recent subsequent works that use some of our instantiations include
ABE with parameter tradeoffs [5] and ABE for range attributes [6].

2 Preliminaries
2.1 Definitions of Attribute Based Encryption

Predicate Family. We consider a predicate family R = {Rκ}κ∈Nc , for some
constant c ∈ N, where a relation Rκ : Xκ × Yκ → {0, 1} is a predicate function
that maps a pair of key attribute in a space Xκ and ciphertext attribute in a
space Yκ to {0, 1}. The family index κ = (n1, n2, . . .) specifies the description of
a predicate from the family. We will often neglect κ for simplicity of exposition.

Attribute Based Encryption Syntax. An ABE scheme for predicate family
R consists of the following algorithms. Let M be the message space.

• Setup(1λ, κ)→ (PK,MSK): takes as input a security parameter 1λ and a family
index κ of predicate family R, and outputs a master public key PK and a
master secret key MSK.
• Encrypt(Y,M,PK) → CT: takes as input a ciphertext attribute Y ∈ Yκ, a
message M ∈M, and public key PK. It outputs a ciphertext CT.
• KeyGen(X,MSK,PK) → SK: takes as input a key attribute X ∈ Xκ and the
master key MSK. It outputs a secret key SK.
• Decrypt(CT,SK) → M : given a ciphertext CT with its attribute Y and the
decryption key SK with its attribute X, it outputs a message M or ⊥.

Correctness. Consider all indexes κ, all M ∈ M, X ∈ Xκ, Y ∈ Yκ such that
Rκ(X,Y) = 1. If Encrypt(Y,M,PK) → CT and KeyGen(X,MSK,PK) → SK
where (PK,MSK) is generated from Setup(1λ, κ), then Decrypt(CT,SK)→M .

We use the standard security definition for ABE and refer to the full version [4].

2.2 Bilinear Groups, Notations, and Assumptions

In our framework, for maximum generality and clarity, we consider asymmetric
bilinear groups (G1,G2,GT) of prime order p, with an efficiently computable
bilinear map e : G1 ×G2 → GT . The symmetric version of our framework can be
obtained by just setting G1 = G2. We define a bilinear group generator G(λ) that

takes as input a security parameter λ and outputs (G1,G2,GT , e, p). We recall
that e has the bilinear property: e(ga1 , gb2) = e(g1, g2)ab for any g1 ∈ G1, g2 ∈ G2,
a, b ∈ Z and the non-degeneration property: e(g1, g2) 6= 1 ∈ GT whenever
g1 6= 1 ∈ G1, g2 6= 1 ∈ G2.

Notation for Matrix in the Exponents. Vectors will be treated as either
row or column matrices. When unspecified, we shall let it be a row vector. Let
G be a group. Let a = (a1, . . . , an) and b = (b1, . . . , bn) ∈ Gn. We denote
a · b = (a1 · b1, . . . , an · bn), where ‘·’ is the group operation of G. For g ∈ G
and c = (c1, . . . , cn) ∈ Zn, we denote gc = (gc1 , . . . , gcn). We denote by GLp,n
the group of invertible matrices (the general linear group) in Zn×np . Consider
M ∈ Zd×np (the set of all d× n matrices in Zp). We denote the transpose of M
as M>. Denote M−> = (M>)−1. Denote by gM the matrix in Gd×n of which
its (i, j) entry is gMi,j , where Mi,j is the (i, j) entry of M . For Q ∈ Z`×dp , we
denote (gQ)M = gQM . Note that from M and gQ ∈ G`×d, we can compute
gQM without knowing Q, since its (i, j) entry is

∏d
k=1(gQi,k)Mk,j . The same can

be said about gM and Q. For X ∈ Zr×c1
p and Y ∈ Zr×c2

p , denote its pairing as:

e(gX1 , gY2) = e(g1, g2)Y
>X ∈ Gc2×c1

T .

Projection Maps.
(
Id
0
)
denotes the (d+ 1)× d matrix where the first d rows

comprise the identity matrix while the last row is zero. It functions as a left-
projection map. That is, X

(
Id
0
)
∈ Z(d+1)×d

p is the matrix consisting of all left d
columns of X for any X ∈ Z(d+1)×(d+1)

p . Similarly, (0
1) is the (d+ 1)× 1 matrix

where the last row is 1; it functions as a right-projection map.

Matrix-DH Assumptions [18]. We call Dd a matrix distribution if it outputs
(in poly time, with overwhelming probability) matrices in Z(d+1)×(d+1)

p of the
form:

T =
(d 1
d M 0
1 c 1

)
$← Dd. (1)

such that M is an invertible matrix in Zd×dp (i.e., M ∈ GLp,d) and c ∈ Z1×d
p .

We say that the Dd-Matrix Diffie-Hellman Assumption for G holds in G1 if for
all ppt adversaries A, the advantage AdvDd-MatDH

A (λ) :=∣∣∣∣Pr
[
A(G, gT1 , g

T (y0)
1) = 1

]
− Pr

[
A(G, gT1 , g

T
(y
ŷ

)
1) = 1

]∣∣∣∣ (2)

is negligible in λ, where the probability is taken over (G1,G2,GT , e, p) $← G(λ),
g1

$← G1, g2
$← G2, T $← Dd, y $← Zd×1

p , ŷ $← Zp, and the randomness of A.
Denote G = (G1,G2,GT , e, p, g1, g2).

Remark 1. We remark that the assumption is progressively weaker as d increases.
In symmetric bilinear groups, we require that d ≥ 2 (otherwise, it is trivially
broken [18]), while in asymmetric bilinear groups, we can choose also d = 1. The

most well-known special case of the Dd-Matrix-DH Assumption is the Decision
d-Linear Assumption, for which M are restricted to random diagonal matrices
and c is fixed as the vector with all 1’s. The SXDH assumption is a special case
of the Matrix-DH when d = 1 (hence, operates in asymmetric bilinear groups).

Our scheme will use arbitrary Dd for maximal generality. One can directly
tradeoff the weakness of assumption and the sizes of ciphertexts and keys by d.

Random Self Reducibility of Matrix-DH Assumptions. The Dd-Matrix-
DH Assumption is random self reducible, as shown in [18]: the problem instance
defined by (T ,

(y
ŷ

)
) can be randomized to another instance defined by (T ,

(
y′

ŷ′

)
).

This is done by choosing δ $← Zd×1
p , δ̂

$← Zp and setting g
T

(
y′

ŷ′

)
1 = g

T
(y
ŷ

)
δ̂

1 g
T (δ0)
1 ,

and observe that y = 0 iff y′ = 0. We can gather each new instance
(
y′

ŷ′

)
into

columns of a matrix and consider the m-fold Dd-Matrix-DH Assumption for
which the advantage is defined as Advm,Dd-MatDH

A (λ) :=∣∣∣∣∣Pr
[
A(G, gT1 , g

T (Y0)
1) = 1

]
− Pr

[
A(G, gT1 , g

T
(
Y
ŷ

)
1) = 1

]∣∣∣∣∣ , (3)

where the probability is taken over (G1,G2,GT , e, p) $← G(λ), g1
$← G1, g2

$← G2,
T

$← Dd, Y $← Zd×mp , ŷ $← Z1×m
p , and the randomness of A. Again, we denote

G = (G1,G2,GT , e, p, g1, g2). Due to the random self-reducibility, the reduction
to the m-fold variant is tight.

Proposition 1. ([18]) For any integer m, for all ppt adversary A, there exists
a ppt algorithm A′ such that Advm,Dd-MatDH

A′ (λ) = AdvDd-MatDH
A (λ).

3 Definition of Pair Encoding

We recall the definition of pair encoding schemes as given in [3]. A pair encoding
scheme for predicate family R consists of four deterministic algorithms given by
P = (Param,Enc1,Enc2,Pair) as follows:

• Param(κ)→ n. It takes as input an index κ and outputs an integer n, which
specifies the number of common variables in Enc1, Enc2. For the default
notation, let h = (h1, . . . , hn) denote the the list of common variables.
• Enc1(X)→ (k =

(
k1, . . . , km1); m2

)
. It takes as inputs X ∈ Xκ, and outputs

a sequence of polynomials {ki}i∈[1,m1] with coefficients in Zp, and m2 ∈ N. We
require that each polynomial ki is a linear combination of monomials α, rj , hkrj ,
where α, r1, . . . , rm2 , h1, . . . , hn are variables. More precisely, it outputs a set of
coefficients {bi}i∈[1,m1], {bi,j}i∈[1,m1],j∈[1,m2], {bi,j,k}i∈[1,m1],j∈[1,m2],k∈[1,n] that

defines the following sequence of polynomials, where we denote r = (r1, . . . , rm2):

k(α, r,h) =

biα+

 ∑
j∈[1,m2]

bi,jrj

+

 ∑
j∈[1,m2]
k∈[1,n]

bi,j,khkrj

i∈[1,m1]

. (4)

• Enc2(Y)→
(
c = (c1, . . . , cw1); w2

)
. It takes as inputs Y ∈ Yκ, and outputs a

sequence of polynomials {ci}i∈[1,w1] with coefficients in Zp, and w2 ∈ N. We
require that each polynomial ci is a linear combination of monomials sj , hksj ,
where s0, s1, . . . , sw2 , h1, . . . , hn are variables. Denote s = (s0, s1, . . . , sw2).
Indeed, it outputs {ai,j}i∈[1,w1],j∈[0,w2], {ai,j,k}i∈[1,w1],j∈[0,w2],k∈[1,n] which is a
set of coefficients that defines the following sequence of polynomials:

c(s,h) =

 ∑
j∈[0,w2]

ai,jsj

+

 ∑
j∈[0,w2]
k∈[1,n]

ai,j,khksj

i∈[1,w1]

. (5)

• Pair(X,Y)→ E. It takes as inputs X,Y , and output E ∈ Zm1×w1
p .

Correctness. The correctness requirement is defined as follows. Let (k;m2)←
Enc1(X), (c;w2)← Enc2(Y), and E ← Pair(X,Y). We have that if R(X,Y) = 1,
then kEc> = αs0, where the equality holds symbolically.

Note that since kEc> =
∑
i∈[1,m1],j∈[1,w1] Ei,jkicj , the correctness amounts

to check if there is a linear combination of kicj terms summed up to αs0.

3.1 Regular Pair Encoding

Towards proving the security of our framework in prime-order groups, we require
new properties for pair encoding. We formalize them as regularity. This would
generally confine the class of encoding schemes that the new framework can deal
with from the previous framework by [3]. Nonetheless, the confinement seems
natural since all the pair encoding schemes proposed so far [3,47,10] turn out to
be regular, and hence are not affected. Below, we use notation: [m] = {1, . . . ,m}.

Definition 1 (Regular Pair Encoding). We call a pair encoding regular if
the following hold:

1. For all (i, i′) ∈ [m1]×[w1] such that there is (j, k, j′, k′) ∈ [m2]×[n]×[w2]×[n]
where bi,j,k 6= 0 and ai′,j′,k′ 6= 0, we require that Ei,i′ = 0.

2. If rj 6∈ k,6 then bi,j,k = 0 for all i ∈ [m1], k ∈ [n].
3. If sj 6∈ c,6 then ai,j,k = 0 for all i ∈ [w1], k ∈ [n].
4. s0 ∈ c. Wlog, we always let c = (s0, . . .), that is, s0 is the first entry of c.
6For a polynomial u, we say that u ∈ v = (v1, . . . , vq), if u = vi for some i ∈ [q].

Explaining the Definition. The first restriction basically states that the mul-
tiplication of (hkrj) and (hk′sj′) will not be allowed when pairing. The reason
to do so is that the parameter hk, hk′ will be translated to matrices, and the
matrix multiplication does not commute; hence, the multiplication procedure
would not be mimicked correctly (from the composite-order setting) if it were
to be allowed (see Eq. (9)). This restriction is quite natural since the product
rjhk, hk′sj′ can be implemented by grouping hk′′ = hkhk′ , and just using asso-
ciativity (rjhk′′)sj′ = rj(hk′′sj′) instead; therefore, the multiplication of (hkrj)
and (hk′sj′) will not be needed in the first place.

The second restriction basically states that a term hkrj is allowed in the
key encoding only if rj is given out explicitly in the key encoding. The third is
similar but for the ciphertext encoding. These restrictions are also natural since
intuitively to cancel out hkrj (so that the bilinear combination would give only
the term αs0 and no others), one would need rj to multiply with, say hksj′ (since
we cannot do the multiplication concerning two parameters, as depicted above).
The meaning of the fourth is clear: s0 must be given out in the encoding.

These latter three restrictions will be used for the security proofs in hybrid
games that are based on the security of encodings. We explain the intuition why
we require them at the end of §4.

3.2 Security Definitions for Pair Encodings
The security notions of pair encoding schemes are given in [3], with a refinement
regarding the number of queries in [10]. We describe almost the same definitions
here and remark slight differences from [3,10] below.
(Perfect Security). The pair encoding scheme P is perfectly master-key hiding
(PMH) if the following holds. Suppose R(X,Y) = 0. Let n← Param(κ), (k;m2)←
Enc1(X), (c;w2)← Enc2(Y), then the following two distributions are identical:

{c(s,h), k(0, r,h)} and {c(s,h), k(α, r,h)},

where the probability is taken over h $← Znp , α
$← Zp, r $← Zm2

p , s
$← Z(w2+1)

p .
(Computational Security). We define two flavors for computational security
notions: selectively and co-selectively secure master-key hiding (SMH,CMH) in a
bilinear group generator G. We first define the following game template, denoted
as ExpG,P,G,b,A,t1,t2(λ), for pair encoding P, a flavor G ∈ {CMH,SMH}, b ∈ {0, 1},
and t1, t2 ∈ N. It takes as input the security parameter λ and does the experiment
with the adversary A = (A1,A2), and outputs b′ (as a guess of b). Denote by st
a state information by A. The game is defined as:

ExpG,G,b,A,t1,t2(λ) : (G1,G2,GT , e, p)← G(λ); g1
$← G1, g2

$← G2,

α
$← Zp, n← Param(κ),h $← Znp ;

st← A
O1

G,b,α,h(·)
1 (g1, g2); b′ ← A

O2
G,b,α,h(·)

2 (st),

where each oracle O1,O2 can be queried at most t1, t2 times respectively, and is
defined as follows.

• Selective Security.
− O1

SMH,b,α,h(Y) : Run (c;w2)← Enc2(Y); s $← Z(w2+1)
p ; return U ← g

c(s,h)
1 .

− O2
SMH,b,α,h(X) : If R(X,Y) = 1 for some queried Y , then return ⊥.

Else, run (k;m2)← Enc1(X); r $← Zm2
p ; return V ← g

k(bα,r,h)
2 .

• Co-selective Security.
− O1

CMH,b,α,h(X) : Run (k;m2)← Enc1(X); r $← Zm2
p ; return V ← g

k(bα,r,h)
2 .

− O2
CMH,b,α,h(Y) : If R(X,Y) = 1 for some queried X, then return ⊥.

Else, run (c;w2)← Enc2(Y); s $← Z(w2+1)
p ; return U ← g

c(s,h)
1 .

We define the advantage of A against the pair encoding scheme P in the
security game G ∈ {SMH,CMH} for bilinear group generator G with the bounded
number of queries (t1, t2) as

Adv(t1,t2)-G(P)
A (λ) := |Pr[ExpG,P,G,0,A,t1,t2(λ) = 1]− Pr[ExpG,P,G,1,A,t1,t2(λ) = 1]|

We say that P is (t1, t2)-selectively master-key hiding in G if Adv(t1,t2)-SMH(P)
A (λ)

is negligible for all polynomial time attackers A. Analogously, P is (t1, t2)-co-
selectively master-key hiding in G if Adv(t1,t2)-CMH(P)

A (λ) is negligible for all poly-
nomial time attackers A.
Poly-many Queries. We also consider the case where ti is not a-priori bounded
and hence the corresponding oracle can be queried polynomially many times. In
such a case, we denote ti as poly.

Remark 2. The original notions considered in [3] are (1, poly)-SMH, (1, 1)-CMH
for selective and co-selective master-key hiding security, respectively. The re-
finement with (t1, t2) is done recently in [10]. An advantage of this refinement
is that we can have a “dual” conversion that converts between (1, 1)-CMH and
(1, 1)-SMH for dual predicate [10].

Remark 3. The definition of computational security for encoding here is slightly
different from that in [3,10] in that here we define it in asymmetric and prime-order
groups, while it was defined in symmetric and prime-order subgroup of composite-
order groups in [3,10]. We use asymmetric groups for the purpose of generality,
one can obtain schemes in symmetric groups by just setting G1 = G2. Hence,
we can use all the proposed encodings in [3,10] by working on the symmetric
group version of our framework. For the latter issue, the difference of definitions
between prime-order groups and prime-order subgroups are merely syntactic. This
is since although the original definition was defined in prime-order subgroups,
the hardness of factorization was not assumed (i.e., generators of each subgroup
or even factors of composites N can be given out to the adversary). Hence, the
encoding schemes in [3,10] are secure in our definition under the security proofs
in their present forms.

4 Approach for Translation to Prime-Order Groups

Before describing our prime-order framework, we intuitively describe how we
translate elements, procedures, and properties from the composite-order group
setting to the prime-order group setting, following the intuition overview in §1.3.
• Generators. In composite-order groups (C1,C2,CT) of order N = p1p2p3,
we consider generators c1 ∈ C1,p1 , ĉ1 ∈ C1,p2 , c2 ∈ C2,p1 , ĉ2 ∈ C2,p2 , where
Ci,pj is the subgroup of Ci of order pj . In prime-order groups (G1,G2,GT) with
generators g1 ∈ G1, g2 ∈ G2, we use the following elements to mimic generators
c1, ĉ1, c2, ĉ2, respectively:

g
B
(
Id
0
)

1 ∈ G(d+1)×d
1 , g

B(0
1)

1 ∈ G(d+1)×1
1 ,

g
Z
(
Id
0
)

2 ∈ G(d+1)×d
2 , g

Z(0
1)

2 ∈ G(d+1)×1
2 .

where we let (B,Z) $← Sd where the distribution Sd does as follows: sample
B

$← GLp,d+1, D̃ $← GLp,d and set Z := B−>D where D :=
(
D̃ 0
0 1
)
∈ GLp,d+1.

• Variables. The role of parameter hk (in h) in the composite-order setting will
be played by a matrix Hk ∈ Z(d+1)×(d+1)

p . The role of randomness sj , rj (in s, r)
to be exponentiated over c1, c2 in the composite-order setting for a ciphertext
and a key will be played by vectors sj , rj ∈ Zd×1

p , respectively, in the prime-order
setting. The role of randomness ŝj , r̂j (in ŝ, r̂) to be exponentiated over ĉ1, ĉ2
will be used as it is (a scalar in Zp) in the prime-order setting.

• Exponentiation by parameter. To mimic exponentiation chk1 , ĉĥk1 , chk2 , ĉĥk2
in the composite-order setting, we do the following in the prime-order setting:

g
HkB

(
Id
0
)

1 ∈ G(d+1)×d
1 , g

B(0
1)ĥk

1 ∈ G(d+1)×1
1 ,

g
H>k Z

(
Id
0
)

2 ∈ G(d+1)×d
2 , g

Z(0
1)ĥk

2 ∈ G(d+1)×1
2 .

• Exponentiation by randomness. To mimic exponentiation csj1 , ĉŝj1 , crj2 , ĉr̂j2 ,
in the composite-order setting, we do the following in the prime-order setting:

g
B
(
Id
0
)
sj

1 = g
B(sj0)
1 ∈ G(d+1)×1

1 , g
B(0

1)ŝj
1 = g

B
(0
ŝj

)
1 ∈ G(d+1)×1

1 ,

g
Z
(
Id
0
)
rj

2 = g
Z(rj0)
2 ∈ G(d+1)×1

2 , g
Z(0

1)r̂j
2 = g

Z
(0
r̂j

)
2 ∈ G(d+1)×1

2 .

•Exponentiation by randomness over parameter. To mimic (chk1)sj , (ĉĥk1)ŝj ,
(chk2)rj , (ĉĥk2)r̂j , in the composite-order setting, we do as follows:

g
HkB

(
Id
0
)
sj

1 = g
HkB(sj0)
1 ∈ G(d+1)×1

1 , g
B(0

1)ĥk ŝj
1 = g

B

(
0

ĥk ŝj

)
1 ∈ G(d+1)×1

1 ,

g
H>k Z

(
Id
0
)
rj

2 = g
H>k Z(rj0)
2 ∈ G(d+1)×1

2 , g
Z(0

1)ĥk r̂j
2 = g

Z

(
0

ĥk r̂j

)
2 ∈ G(d+1)×1

2 .

• Evaluating Pair Encoding with Vectors/Matrices. We can evaluate the
ciphertext attribute encoding c(s,h), defined in Eq.(5), with each sj being
substituted by a vector xj ∈ Z(d+1)×1

p and each hk being substituted by a
matrix Hk ∈ Z(d+1)×(d+1)

p . Let X = (x0, . . . ,xw2) ∈ Z(d+1)×(w2+1)
p and H =

(H1, . . . ,Hn). We define

c(X,H) :=

 ∑
j∈[0,w2]

ai,jxj

+

 ∑
j∈[0,w2]
k∈[1,n]

ai,j,kHkxj

i∈[1,w1]

. (6)

Similarly for the key attribute encoding k(α, r,h), defined in Eq.(4), we replace
each rj with a vector yj ∈ Z(d+1)×1

p and α with α ∈ Z(d+1)×1
p . Let Y =

(y1, . . . ,ym2) ∈ Z(d+1)×m2
p . We define

k(α,Y ,H) :=

biα+

 ∑
j∈[1,m2]

bi,jyj

+

 ∑
j∈[1,m2]
k∈[1,n]

bi,j,kH
>
k yj

i∈[1,m1]

.

(7)

• Associativity. In the composite-order setting, we have that e(thksj1 , tri2) =
e(tsj1 , t

hkri
2), for any t1 ∈ C1, t2 ∈ C2. In the prime-order setting, we have

e(g
HkB

(
sj
ŝj

)
1 , g

Z
(ri
r̂i

)
2) = e(g

B

(
sj
ŝj

)
1 , g

H>k Z
(ri
r̂i

)
2). (8)

as
(

(r>i r̂i)Z>
)(
HkB

(
sj
ŝj

))
=
(

(r>i r̂i)Z>Hk

)(
B

(
sj
ŝj

))
.

• Unavailable Commutativity. We also give an intuition why commutativity
does not preserve to prime-order settings. In the composite-order setting, we
allow for any t1 ∈ C1, t2 ∈ C2, e(t

hksj
1 , t

hk′ri
2) = e(thk′sj1 , thkri2). However, when

translating to our prime-order setting using our rules so far, an analogous
mechanism would not hold as we can see that:

e(g
HkB

(
sj
ŝj

)
1 , g

H>
k′Z
(ri
r̂i

)
2) 6= e(g

Hk′B

(
sj
ŝj

)
1 , g

H>k Z
(ri
r̂i

)
2), (9)

as
(

(r>i r̂i)Z>Hk′

)(
HkB

(
sj
ŝj

))
6=
(

(r>i r̂i)Z>Hk

)(
Hk′B

(
sj
ŝj

))
, due to the fact

that the matrix multiplication is not commutative. This is exactly why we
will not use this commutativity-based computation in our framework by disal-
lowing exactly this kind of multiplication to occur. We enable this with the first
rule of regular encoding, which exactly prevents multiplying hksj with hk′rj′ .

•Parameter-Hiding. In composite-order groups, we have that: given chk1 , chk2 , c1,
ĉ1, c2, ĉ2, p1, p2; hk mod p2 is information-theoretically hidden (due to the Chinese
Remainder Theorem). In prime-order settings, we have Lemma 1.

Lemma 1. Let (B,Z) $← Sd. For any Hk ∈ Z(d+1)×(d+1)
p , we have that, given

HkB
(
Id
0
)
and H>k Z

(
Id
0
)
, along with B,Z, the quantity of the entry at (d +

1, d+ 1) of the matrix B−1HkB is information-theoretically hidden.

Proof. Write B−1HkB =
(
M1 M2
M3 δ

)
, where M1 ∈ Zd×dp , M2 ∈ Zd×1

p , M3 ∈ Z1×d
p ,

and δ ∈ Zp. We have

HkB
(
Id
0
)

= B
(
M1 M2
M3 δ

) (
Id
0
)

= B
(
M1
M3

)
,

H>k Z
(
Id
0
)

= H>k B
−> (D̃ 0

0 1
) (

Id
0
)

= B−>
(
M>1 M>3
M>2 δ

) (
D̃
0
)

= B−>
(
M>1 D̃

M>2 D̃

)
,

where in the second line, we use the fact that B>H>k B−> =
(
M>1 M>3
M>2 δ

)
. We

can see that both HkB
(
Id
0
)
,H>k Z

(
Id
0
)
do not contain information on δ. ut

• Using Security of Encodings in Hybrid Games. In the composite-order
setting, intuitively, we embed the security of encodings as it is in one hybrid
game in the proof of the scheme. That is, we simply invoke a trivial implication:

ĉ
k(0,r̂,ĥ)
2 ≈c ĉk(α̂,r̂,ĥ)

2 =⇒ ĉ
k(0,r̂,ĥ)
2 ≈c ĉk(α̂,r̂,ĥ)

2

where we refer the left-hand side as the security of encoding and the right-hand
side as the hybrid in the proof of the scheme. Also, ≈c denotes computational
indistinguishability (informally). In the prime-order setting, contrastingly, we
will need to prove the following reduction: (stated informally here)

g
k(0,r̂,ĥ)
2 ≈c gk(α̂,r̂,ĥ)

2 =⇒ g
k(0,ZR̂,H)
2 ≈c gk(α̂,ZR̂,H)

2

where the left-hand side refers to the same security of encodings as before, so
that we can achieve our goal of using security of encoding “as is”.7 Now, however,
the right-hand side, which refers to one hybrid in our scheme8, is of a different
form, as it contains the matrix-based definition of encodings in Eq.(7). To this
end, we will relate both sides as follows. First, we implicitly define α̂ from α̂,
and R̂ from r̂.9 Second, we invoke the parameter-hiding property to implicitly
replace each Hk with Hk +B

(
0 0
0 ĥk

)
B−1 in H. Our novelty here then lies in

identifying the following sufficient condition: (stated informally here)

g
k(α̂,ZR̂,H)
2 can be fully simulated by gk(α̂,r̂,ĥ)

2 and (gr̂j2)bi,j,k (for all i, j, k),

where α̂, r̂ = (r̂1, . . . , r̂m2), ĥ = (ĥ1, . . . , ĥn) are unknown, and bi,j,k is defined
by the encoding (Eq.(4)). We note that this is quite surprising in the first place,
7The only difference is that now it is defined in prime-order groups, instead of prime-
order subgroups of composite-order groups.

8Looking ahead, it corresponds to the hybrid game between type 1 and 2 keys (cf.
Eq.(20),(21)).

9Details can be found in the proof for the hybrid between the games Gi,1 and Gi,2,
deferred to [4].

since we might expect that only gk(α̂,r̂,ĥ)
2 would suffice to simulate gk(α̂,ZR̂,H)

2
(intuitively due to one-to-one translation of elements into matrix forms). Now, to
establish the reduction, we require the availability of the latter term (gr̂j2)bi,j,k ,
which was not a-priori guaranteed. We simply resolve this by observing that it is
only available if either r̂j is given out in the definition of k(α̂, r̂, ĥ) or bi,j,k = 0.
This is why we thus define this to be exactly one of the rules for regular encodings
(Rule 2 of Def. 1). The case for the encoding c can be argued analogously.

5 Our Generic Construction for Fully Secure ABE

We are now ready to describe our generic construction in prime-order groups. It
is obtained by translating the composite-order scheme of [3], recapped also in
the full version [4], to the prime-order setting using the above rules of §4.

We use the distribution Sd defined in §4. From a pair encoding scheme P for
a predicate R, we construct an ABE scheme for R, denoted ABE(P), as follows.

• Setup(1λ, κ): Run (G1,G2,GT , e, p) $← G(λ). Pick generators g1
$← G1 and

g2
$← G2. Run n← Param(κ). Pick H = (H1, . . . ,Hn) $← (Z(d+1)×(d+1)

p)n and
α

$← Z(d+1)×1
p . Sample (B,Z) $← Sd. Note that B,Z ∈ Z(d+1)×(d+1)

p . Output

PK =
(
e(g1, g2)α

>B
(
Id
0
)
, g
B
(
Id
0
)

1 , g
H1B

(
Id
0
)

1 , . . . , g
HnB

(
Id
0
)

1

)
,

MSK =
(

gα2 , g
Z
(
Id
0
)

2 , g
H>1 Z

(
Id
0
)

2 , . . . , g
H>n Z

(
Id
0
)

2

)
.

(10)

• Encrypt(Y,M,PK): Upon input Y ∈ Y, run (c;w2)← Enc2(Y). Randomly pick
s0, s1, . . . , sw2

$← Zd×1
p . Let S :=

(
(s0

0) , (s1
0) , . . . ,

(sw2
0
))
∈ Z(d+1)×(w2+1)

p .
Output the ciphertext as CT = (C, C0):

C = g
c
(
BS,H

)
1 ∈ (G(d+1)×1

1)w1 ,

C0 = e(g1, g2)α
>B(s0

0) ·M ∈ GT .
(11)

• KeyGen(X,MSK): Upon input X ∈ X, run (k;m2)← Enc1(X). Randomly pick
r1, . . . , rm2

$← Zd×1
p . Let R :=

(
(r1

0) , . . . ,
(rm2

0
))
∈ Z(d+1)×m2

p . Output

SK = g
k
(
α,ZR,H

)
2 ∈ (G(d+1)×1

2)m1 . (12)

• Decrypt(CT,SK): Obtain Y,X from CT,SK. Suppose R(X,Y) = 1. Run E ←
Pair(X,Y). Compute the mask

e(g1, g2)α
>B(s0

0) ←
∏

i∈[1,m1],j∈[1,w1]

e(C[j],SK[i])Ei,j . (13)

where we denote by C[j] ∈ G(d+1)×1
1 the j-th vector in C, and SK[i] ∈ G(d+1)×1

2
the i-th vector in SK. Finally, remove this mask from C0 to get M .

Remark on Computability. We note that C can be computed from PK since

c
(
BS, H

)
=

 ∑
j∈[0,w2]

ai,jB (sj0)

+

 ∑
j∈[0,w2]
k∈[1,n]

ai,j,kHkB (sj0)

i∈[1,w1]

(14)

and thanks to the identity relation
(
X
(
Id
0
))
y = X (y0) for anyX ∈ Z(d+1)×(d+1)

p ,
y ∈ Zd×1

p . Similarly, SK can be computed from MSK since

k
(
α, ZR, H

)
=biα+

 ∑
j∈[1,m2]

bi,jZ (rj0)

+

 ∑
j∈[1,m2]
k∈[1,n]

bi,j,kH
>
k Z (rj0)

i∈[1,m1]

. (15)

Correctness. We would like to prove that if R(X,Y) = 1 then

α>B (s0
0) =

∑
i∈[1,m1],j∈[1,w1]

Ei,j ·
(
k
(
α, ZR, H

)
[i]
)> · c(BS, H)[j].

This is implied from the correctness of the pair encoding which states that: if
R(X,Y) = 1, then αs0 =

∑
i∈[1,m1],j∈[1,w1] Ei,j ·k(α, r,h)[i]·c(s,h)[j]. Intuitively,

since we translate to the prime-order setting by substituting variables and
procedures while preserving their properties as in §4, this relation should also
translate to the above equation. In particular, we use associativity but not use
commutativity, as clarified in §4. We verify the correctness more formally in the
full version [4].

6 Security Theorems and Proofs

We obtain three security theorems for the generic construction. The first one is
the main theorem and is for the case when the pair encoding is (1, poly)-SMH
and (1, 1)-CMH, where we achieve tighter reduction cost, O(q1). The other two
are for the case of PMH and the pair of (1, 1)-SMH, (1, 1)-CMH, where we obtain
normal reduction cost, O(qall). We postpone the latter two to [4].

Theorem 1. Suppose that a pair encoding scheme P for predicate R is (1, poly)-
selectively and (1, 1)-co-selectively master-key hiding in G, and the Matrix-DH
Assumption holds in G. Then the construction ABE(P) in G is fully secure. More
precisely, for any PPT adversary A, let q1 denote the number of queries in phase
1, there exist PPT algorithms B1,B2,B3, whose running times are the same as
A plus some polynomial times, such that for any λ,

AdvABE
A (λ) ≤ (2q1 + 3)AdvDd-MatDH

B1
(λ) + q1Adv(1,1)-CMH

B2
(λ) + Adv(1,poly)-SMH

B3
(λ).

Semi-functional Algorithms. We define semi-functional algorithms which will
be used in the security proof. These are also translated from semi-functional
algorithms from the framework of [3] (also recapped in [4]).

• SFSetup(1λ, κ)→ (PK,MSK, P̂K, M̂SKbase, M̂SKaux) : This is exactly the same
as Setup albeit it additionally outputs also P̂K, M̂SKbase, M̂SKaux defined as

P̂K =
(
e(g1, g2)α

>B(0
1), g

B(0
1)

1 , g
H1B(0

1)
1 , . . . , g

HnB(0
1)

1

)
, (16)

M̂SKbase = g
Z(0

1)
2 , M̂SKaux =

(
g
H>1 Z(0

1)
2 , . . . , g

H>n Z(0
1)

2

)
. (17)

• SFEncrypt(Y,M,PK, P̂K)→ CT: Run (c;w2)← Enc2(Y). Pick S as in Encrypt.
Pick ŝ0, ŝ1, . . . , ŝw2

$← Zp. Let Ŝ :=
((0

ŝ0

)
,
(0
ŝ1

)
, . . . ,

(0
ŝw2

))
∈ Z(d+1)×(w2+1)

p .
Output the ciphertext as CT = (C, C0):

C = g
c
(
BS,H

)
+c
(
BŜ,H

)
1 = g

c
(
B(S+Ŝ),H

)
1 ∈ (G(d+1)×1

1)w1 ,

C0 = e(g1, g2)α
>B
(s0
ŝ0

)
·M. ∈ GT .

(18)

• SFKeyGen(X,MSK, M̂SKbase, M̂SKaux, t ∈ {0, 1, 2, 3}, β ∈ Zp
)
→ SK: Run

(k;m2) ← Enc1(X). Pick R as in KeyGen. Pick r̂1, . . . , r̂m2
$← Zp. R̂ :=((0

r̂1

)
, . . . ,

(0
r̂m2

))
∈ Z(d+1)×m2

p Output the secret key SK:

SK =

g
k
(
α,ZR,H

)
2 if t = 0 (19)

g
k
(
α,ZR,H

)
+k
(

0, ZR̂,H
)

2 = g
k
(
α, Z(R+R̂),H

)
2 if t = 1 (20)

g
k
(
α,ZR,H

)
+k
(
Z
(0
β

)
,ZR̂,H

)
2 = g

k
(
α+Z

(0
β

)
,Z(R+R̂),H

)
2 if t = 2 (21)

g
k
(
α,ZR,H

)
+k
(
Z
(0
β

)
, 0, 0

)
2 = g

k
(
α+Z

(0
β

)
,ZR, H

)
2 if t = 3 (22)

We call t the type of semi-functional keys. Note that
− In computing type 0, 3, M̂SKaux is not required as input (and no R̂ needed).
− In computing type 0, 1, β is not required as input.

Proof (of Theorem 1). We use a sequence of games in the following order:

Greal G0 G1,1

· · ·
Gi−1,3 Gi,1 Gi,2 Gi,3

· · ·
Gq1,3 Gq1+1 Gq1+2 Gq1+3 Gfinal

MatDH MatDH CMH MatDH MatDH SMH MatDH =

where each game is defined as follows.10 Greal is the actual security game. Each of
the following game is defined exactly as its previous game in the sequence except
the specified modification as follows. For notational purpose, let G0,3 := G0.
10For formality and ease of viewing, we depict these game definitions in Fig. 1 in [4].

− G0: We modify the challenge ciphertext to be semi-functional type.
− Gi,t where i ∈ [1, q1], t ∈ {1, 2, 3}: We modify the i-th queried key to be

semi-functional of type-t. We use fresh β for each key (for type t = 2, 3).
− Gq1+t where t ∈ {1, 2, 3}: We modify all keys in phase 2 to be semi-functional

of type-t at once. We use the same β for all these keys (for type t = 2, 3).
− Gfinal: We modify the challenge to encrypt a random message.

In the final game, the advantage of A is trivially 0. We prove the indistin-
guishability between all these adjacent games (under the underlying assumptions
as written in the diagram). Due to the lack of space, we defer most of them to [4]
and show only the proof of the indistinguishability between Greal and G0 under
MatDH here below (Lemma 2). Other MatDH-based transitions can be done
similarly. On the other hand, the transitions based on the security of encodings
(namely, CMH and SMH), although are a bit more involved, will basically follow
the intuition explained at the end of §4. In particular, we will be able to establish
the reduction to the security of encodings thanks to the restriction for regular
encodings (Rule 2–4) and the parameter-hiding lemma. From these, we obtain
Theorem 1. ut

Lemma 2 (Greal to G0). For any adversary A against ABE, there exists an
algorithm B that breaks the Dd-Matrix-DH with |GrealAdvABE

A (λ)−G0AdvABE
A (λ)| ≤

AdvDd-MatDH
B (λ). (Denote GjAdvABE

A (λ) as the advantage of A in the game Gj.)

Proof (of Lemma 2). B obtains an input (G, gT1 , g
T
(y
ŷ

)
1) from the Dd-Matrix

DH Assumption where either ŷ = 0 or ŷ $← Zp, and T $← Dd, y $← Zd×1
p .

Setup. B runs Setup except that it uses G from its input, and that it will set
(B,Z) in an implicit manner as follows. B chooses B̃ $← GLp,d+1, J $← GLp,d
and sets

B = B̃T , Z = B̃−>Z̃ := (B̃−>)
(d 1

d J −M−>c>

1 0 1

)
,

where we recall that T = (M 0
c 1) from Eq.(1). We can see that (B,Z) are properly

distributed as from Sd as follows.

− B is properly distributed due to uniformly random B̃,T ∈ GLp,d+1.
− Z is properly distributed as we observe that D = B>Z is

D = B>Z = (T>B̃>)(B̃−>Z̃) = T>Z̃

=
(d 1

d M> c>

1 0 1

)(d 1

J −M−>c>

0 1

)
=

(d 1

d M>J 0
1 0 1

)
,

where the last equality holds since (M>)(−M−>c>) + (c>)(1) = 0 (for the
upper right block). We can see that D is properly distributed due to uniformly
random M>,J ∈ GLp,d.

B can then compute gB1 = gB̃T1 and g
Z
(
Id
0
)

2 = g
B̃−>(J0)
2 . Here, the first term is

computable from gT1 , while in the second term, the unknown last column of Z
vanishes through the left projection map,

(
Id
0
)
. From these two terms, B can

compute PK,MSK. The public key PK is given to A.
Phase 1,2. B answer all key queries to A using KeyGen (with the known MSK).
Challenge. The adversary A outputs M0,M1 ∈ GT and a target Y ?. B runs
(c;w2) ← Enc2(Y ?) as usual. Using random self reducibility, B extends the
Matrix-DH Assumption to (w2 + 1)-fold and obtains (gT1 , g1

T
(
Y
ŷ

)
) where either

ŷ = 0 or ŷ $← Z1×(w2+1)
p with T $← Dd, Y $← Zd×(w2+1)

p . B chooses b $← {0, 1}
and uses g1

T
(
Y
ŷ

)
to compute CT? = (C?, C?0) as

C? = g
c

(
B̃T
(
Y
ŷ

)
, H
)

1 , C?0 = e(g1, g2)α
>B̃T

(y0
ŷ0

)
·Mb,

where we let
(y0
ŷ0

)
be the first column of

(
Y
ŷ

)
. This can be done since B possesses

α,H, B̃. From this setting, we have

− If ŷ = 0, then CT? is exactly a normal ciphertext as in Eq.(11) with S = (Y0).
− If ŷ $← Z1×(w2+1)

p , then CT? is semi-functional as in Eq.(18) with S+Ŝ =
(
Y
ŷ

)
.

Guess. The algorithm B has properly simulated Greal if ŷ = 0 and G0 if ŷ $← Zp.
Hence, B can use the output of A to break the Matrix DH Assumption. ut

7 Concrete Predicates and Our New Instantiations

In this section, we briefly describe the definitions of considering predicates and
our new instantiations for them. Regarding the instantiations, their specifications
are completely defined in Table 4, where we provide what pair encoding scheme
to be instantiated for each scheme.

Dual, Conjunctive, and Dual-policy. We first define basic operations on
predicates. For a predicate R : X × Y → {0, 1}, its dual predicate is defined
by R̄ : X̄ × Ȳ → {0, 1} where X̄ = Y, Ȳ = X and R̄(X,Y) := R(Y,X). Let
R1 : X1 × Y1 → {0, 1}, R2 : X2 × Y2 → {0, 1} be two predicates. We define the
conjunctive predicate of R1, R2 as [R1 ∧R2] : X̃× Ỹ→ {0, 1} where X̃ = X1×X2,
Ỹ = Y1 × Y2 and [R1 ∧ R2]((X1, X2), (Y1, Y2)) = 1 iff R1(X1, Y1) = 1 and
R2(X2, Y2) = 1. For predicate R, we define its dual-policy predicate (DP) [8,10]
as the conjunctive of itself and its dual predicate, R̄. Generic dual and conjunctive
conversions (and hence also dual-policy conversion) for pair encodings are recently
given in [10]. We mostly use this conjunctive conversion to obtain dual-policy
variants. It is indicated by ‘+’ in Table 4.

ABE for Policy over Doubly-Spatial Relation (ABE-PDS). This predi-
cate was defined in [3] as a generalization that captures doubly-spatial encryp-
tion [24] and ABE for monotone span programs (and hence Boolean formulae)

Table 4: Our Instantiations
Instantiation Scheme Obtained from what encoding
New1 KP-ABE-PDS [3, Scheme 6]
New2 CP-ABE-PDS [10, Scheme 2]
New3 DP-ABE-PDS [3, Scheme 6] + [10, Scheme 2]
New4 Completely unbounded KP-ABE-MSP [3, Scheme 4]
New5 Completely unbounded CP-ABE-MSP [10, Scheme 3]
New6 Completely unbounded DP-ABE-MSP [10, Scheme 4]
New7 KP-ABE-MSP with constant-size ciphertexts [3, Scheme 5]
New8 CP-ABE-MSP with constant-size keys [10, Scheme 5]
New′9 KP-ABE-MSP with small universe [3, Scheme 9]
New′10 CP-ABE-MSP with small universe [3, Scheme 11]
New11 DP-ABE-MSP with small universe [3, Scheme 9] + [3, Scheme 11]
New′12 KP-ABE-MSP with large universe [3, Scheme 12]
New′13 CP-ABE-MSP with large universe [3, Scheme 13]
New14 DP-ABE-MSP with large universe [3, Scheme 12] + [3, Scheme 13]
New15 KP-ABE-RL [3, Scheme 3]
New16 CP-ABE-RL [3, Scheme 7]
New17 DP-ABE-RL [3, Scheme 3] + [3, Scheme 7]
New18 Unbounded KP-ABE-BP New4 & Thm. 2
New19 Unbounded CP-ABE-BP New5 & Thm. 2
New20 Unbounded DP-ABE-BP New6 & Thm. 2
New21 KP-ABE-BP with constant-size ciphertexts New7 & Thm. 2
New22 CP-ABE-BP with constant-size keys New8 & Thm. 2
New′23 Bounded KP-ABE-BP New′9 & Thm. 2
New′24 Bounded CP-ABE-BP New′10 & Thm. 2
New25 Bounded DP-ABE-BP New11 & Thm. 2
Newer26 KP-ABE-BP with constant-size keys KP-ABE-MSP with short keys of [7] & Thm. 2
Newer27 CP-ABE-BP with constant-size ciphertexts CP-ABE-MSP with short ciphertexts of [7] & Thm. 2
Newer28 DP-ABE-MSP with constant-size ciphertexts CP-ABE-MSP with short ciphertexts of [7] + New7

Newer29 DP-ABE-MSP with constant-size keys KP-ABE-MSP with short keys of [7] + New8

Newer30 DP-ABE-BP with constant-size ciphertexts New28 & Thm. 2
Newer31 DP-ABE-BP with constant-size keys New29 & Thm. 2
‘+’ refers to the conjunctive conjunction given in [10].

into one primitive. We refer the definition to [3]. By using exactly the same
encodings as in [3,10], we automatically obtain the first fully-secure prime-order
KP-ABE-PDS, CP-ABE-PDS, DP-ABE-PDS schemes (New1-New3).

ABE for Monotone Span Programs (ABE-MSP). Let U be the universe
of attributes. If |U| is of super-polynomial size, it is called large universe [22,40],
otherwise, it is small universe. In ABE-MSP [22], a policy is specified by a
monotone span program (A, ρ) where A is an integer matrix of dimension m× k
for some m, k, and ρ is a map ρ : [1,m]→ U. For a set of attributes S ⊆ U, let
A|S be the sub-matrix of A that takes all the rows j such that ρ(j) ∈ S. We
say that (A, ρ) accepts S if (1, 0, . . . , 0) ∈ rowspan(A|S). ABE-MSP is the most
popular predicate studied in the literature since it is known to imply ABE for
Boolean formulae [22]. Let t := |S|. Some schemes specifies bounds on maximum

allowed sizes of t,m, k (we denote these bounds as T,M,K). Some may restrict
the maximum number, denoted by R, of attribute multi-use in one policy (that
is, the number of distinct i for the same ρ(i)). We call a large-universe scheme
without any bounds a completely unbounded ABE scheme.

By using the same encodings as in [3,10], we obtain the first fully-secure, prime-
order ABE-MSP with various properties: completely unbounded KP/CP/DP-
ABE, and short-ciphertext KP-ABE, short-key CP-ABE (New4-New8). By using
encodings in [3] for bounded schemes, we also obtain some bounded schemes
New′9-New14; these latter encodings are perfectly master-key hiding, hence the
resulting schemes rely solely on the Matrix-DH assumption. Furthermore, we also
observe that, by using also new encodings in [7] (which is then a subsequent work
based on our work), we further obtain the first DP-ABE with short ciphertexts
(Newer28), or short keys (Newer29).

For concreteness, we explicitly give the description for one of our instantiations,
New4, in the full version [4].

Performances of Our ABE-MSP Schemes. We compare performances of
our KP-ABE-MSP, CP-ABE-MSP to others in the literature in Table 5 and 6,
respectively. For clarity of comparison, we augment schemes in the literature
which were proposed for one-use, to multi-use (with bound R) by using the
transformation in [34]. Available pair encodings in [3,10] were proved secure in
symmetric groups, hence to be able to use them as they are, we will evaluate our
construction at d = 2, which yields the most efficient instantiations in symmetric
settings. In such a case, schemes can rely on DLIN. (See also Remark 5).

The numbers of group elements in our schemes for SK,CT are 3 times as large
as their composite-order counterparts in A14, AY15 [3,10]. But since composite-
order elements are 12 times larger than prime-order ones [23], we achieve improve-
ments of 25% size reduction. More importantly, time performance is significantly
improved. We recall that pairing is 250 times slower in composite-order groups
than in prime-order ones [23]. In unbounded ABE (New4, New5), the dominant
operation is pairing, and the numbers of pairings in decryption are 3 times as
large as their composite-order counterparts in [3,10]. As a result, our decryption
is about 80 times faster. In constant-size ABE (New7, New8), the numbers of
pairing are constant, and exponentiation may dominate (depending on m,T),
but the improvement is similar, since exponentiation (in G1,G2) can be more
than 200 times faster in prime-order groups [23, table 6].

Remark 4. The underlying pair encodings of our schemes New4,New7 are those
proposed in [3, §7.1-7.2], of which security rely on parameterized assumptions,
namely, EDHE3, EDHE4, also given in [3]. We indeed use prime-order group
versions, hence denoted as EDHE3p, EDHE4p, instead of prime-order subgroup
in composite-order group as defined in [3]. These are defined exactly the same as
the original except only that the group generator G outputs a prime-order group
instead of a composite-order group (see [3, Def.6-7]). For self-containment, we
recapture them in the full version [4]. This modification is merely syntactic, see
Remark 3.

Table 5: Performance by each KP-ABE for monotone span programs
Scheme |PK| |SK| |CT| Decryption complexity Sec. Assumptions Reduction

Pairing ExpG ExpGT cost
LW11 [32] 5 4m 3t + 1 4m 0 m sel. SD O(qall)
A14 8 3m + 3 2t + 4 3m + 3 0 m full SD, O(q1)
[3, Scheme 4] (1, t)-EDHE3, 1

(1, m, k)-EDHE4 O(q1)
A14 T + 8 T m + 3m 6 6 T m + 3m 0 full SD, O(q1)
[3, Scheme 5] +3 (T + 1, 1)-EDHE3, 1

(T + 1, m, k)-EDHE4 O(q1)
CW14 [17] U + 1 Um + m 2 2m U m semi 3DHsub O(U)

SD O(1)
L+10 [34] UR + 1 2m tR + 1 2m 0 m full SD O(qall)
A14 UR + 1 m + 1 tR + 1 2 2m 0 full SD O(qall)
[3, Scheme 9]
W14 [47] UR + 1 m + 1 tR + 1 2 2m 0 full SD O(qall)
A14 16(M + T R)2 m + 1 tR + 1 2 2m 0 full SD O(qall)
[3, Scheme 12] × log(UR)
KL15 [28] 2 log(UR) + 1 3m 3tR 3m 0 m full DLIN, O(URqall)

Co
m

po
sit

e-
or

de
r

sc
he

m
es

SD O(qall)
RW13 [40] 4 3m 2t + 1 3m 0 m sel. t-RW2 1
OT12 [38] 99 14m + 5 14tR + 5 14m + 5 0 m full DLIN O(t2R2qall)
New4 42 9m + 9 6t + 12 9m + 9 0 m full DLIN, O(q1)

(1, t)-EDHE3p, 1
(1, m, k)-EDHE4p O(q1)

ALP11 [9] T + 1 T m + m 3 3 T m + m 0 sel. T -DBDHE 1
T14 [43] 12T 2 + 15 6T m + 6T 17 17 6T m + 6T 0 semi DLIN O(T)
New7 6T + 42 3T m + 9m 18 18 3T m + 9m 0 full DLIN, O(q1)

+9 (T + 1, 1)-EDHE3p, 1
(T + 1, m, k)-EDHE4p O(q1)

GPSW06 [22] T + 3 2m t + 1 2m 0 m sel. DBDH 1
CGW15 [15] 6UR + 6 3m + 3 3tR + 3 6 6m 0 full DLIN O(qall)
New′9 6UR + 6 3m + 3 3tR + 3 6 6m 0 full DLIN O(qall)
OT10 [37] 21T R + 15 7m + 5 7tR + 5 7m + 5 0 m full DLIN O(qall)
New′12 96(M + T R)2 3m + 3 3tR + 3 6 6m 0 full DLIN O(qall)

× log(UR)
KL15 [28] 24 log2(UR) 3m log UR 3tR log UR 3m log UR 0 m full DLIN O(URqall)

Pr
im

e-
or

de
r

sc
he

m
es

+48 log(UR) +6m +6tR +6m

1 Variables:
− t is the attribute set size; T is the maximum size for t (if bounded).
−m× k is the dimension of the matrix for the span program (the policy); M, K are the maximum sizes for m, k (if bounded).
−U is the size of the attribute universe (if bounded small-universe).
−R is the maximum number of attribute multi-use in one policy (if bounded).
− q1 is the number of key queries in phase 1 (before the challenge). qall is the number of all key queries.

2 |PK|, |SK|, |CT| depict the number of source group elements (G1 or G2) in public key, secrete key, and ciphertext, respectively.
Composite-order group elements are about 12 times larger than prime-order group elements [23]. We omit target group
elements (GT): in PK, all the schemes above have at most 3 elements; in CT, all schemes contain 1 element.

3 In Decryption complexity, ‘Pairing’ = the number of pairings, ‘ExpG’ = the number of exponentiations in source groups (G1
or G2), ‘ExpGT ’ = the number of exponentiations in the target group (GT).

4 Sec. is for security. ‘sel.’= selective; ‘full’= full security. ‘semi’= semi-adaptive security [17,43] (an intermediate of selective/full).
5 We refer assumptions to corresponding papers. Particularly, SD refers to some subgroup decision assumptions in composite-
order groups [31,34].

6 The reduction cost refers to the security factor loss to the corresponding assumption in the same line in the table. The
security of each scheme relies on all assumptions for it combined.

Table 6: Performance by each CP-ABE for monotone span programs
Scheme |PK| |SK| |CT| Decryption complexity Sec. Assumptions Reduction

Pairing ExpG ExpGT cost
LW12 [33] U + 3 t + 3 2m + 2 2m + 2 0 m full SD, O(qall)

3DHsub, O(q1)
max{m, k}-SPBDHE O(q2)

AY15 10 2t + 6 3m + 5 3m + 5 0 m full SD, O(q1)
[10, Scheme 3] (1, t)-EDHE3, O(q1)

(1, m, k)-EDHE4dual 1
AY15 T + 10 8 T m + 3m 8 T m + 3m 0 full SD, O(q1)
[10, Scheme 5] +5 (T + 1, 1)-EDHE3, O(q1)

(T + 1, m, k)-EDHE4dual 1
L+10 [34] UR + 2 tR + 2 2m + 1 2m + 1 0 m full SD O(qall)
A14 UR + 2 tR + 2 m + 2 3 2m 0 full SD O(qall)
[3, Scheme 11]
W14 [47] UR + 2 tR + 2 m + 2 3 2m 0 full SD O(qall)
A14 16(M + T R)2 tR + 2 m + 2 3 2m 0 full SD O(qall)
[3, Scheme 13] × log(UR)
AC16 [2] M(K + T) M2(T + 1) 2 2 M2(K + T) 0 semi SD O((M + K)qall)

Co
m

po
sit

e-
or

de
r

sc
he

m
es

+M +M(K + t− T)
RW13 [40] 5 2t + 2 3m + 1 3m + 1 0 m sel. max{m, k}-RW1 1
LW12 [33] 24U + 12 6t + 6 6m + 6 6m + 9 0 m full DLIN, O(qall)

3DH, O(q1)
max{m, k}-SPBDHEp O(q2)

OT12 [38] 99 14tR + 5 14m + 5 14m + 5 0 m full DLIN O(t2R2qall)
New5 54 6t + 18 9m + 15 9m + 15 0 m full DLIN, O(q1)

(1, t)-EDHE3p, O(q1)
(1, m, k)-EDHE4dualp 1

New8 6T + 54 24 3T m + 9m 24 3T m + 9m 0 full DLIN, O(q1)
+15 (T + 1, 1)-EDHE3p, O(q1)

(T + 1, m, k)-EDHE4dualp 1
W11 [44] U + 2 t + 2 2m + 1 2m + 1 0 m sel. max{m, k}-PDBDH 1
CGW15 [15] 6UR + 12 3tR + 6 3m + 3 6 6m 0 full DLIN O(qall)
New′10 6UR + 12 3tR + 6 3m + 6 9 6m 0 full DLIN O(qall)
OT10 [37] 21T R + 15 7tR + 5 7m + 5 7m + 5 0 m full DLIN O(qall)
New′13 96(M + T R)2 3tR + 6 3m + 6 9 6m 0 full DLIN O(qall)

× log(UR)
AC16 [2] 6M(K + T) 3M2(T + 1) 6 6 3M2(K + T) 0 semi DLIN O((M + K)qall)

Pr
im

e-
or

de
r

sc
he

m
es

+6M +3M(K + t− T)
1 q2 is the number of queries in phase 2 (after the challenge).
2 We refer for the remaining parameters to the note under Table 5.

Remark 5. As mentioned above, we use d = 2 so that the security and assump-
tions for available pair encoding schemes can be argued in the present form.
On the other hand, if we are willing to modify the assumptions and security
proofs of pair encodings in [3,10] to asymmetric groups, we can also instantiate
at d = 1, where we can rely on the SXDH assumption (for framework). This
yields even more efficient construction. The modification for assumptions (such
as EDHE3p, EDHE4p) to asymmetric settings can be done straightforwardly by
defining all elements in both groups G1,G2 (instead of G in symmetric settings).
The proof can be modified by using G1 for all elements of ciphertexts, and G2
for all elements of keys, as defined in our construction. To optimize the size of
assumptions (which is otherwise two times larger than the original), we can use
automated tools of [1].

ABE for Regular Languages (ABE-RL). In ABE-RL [46], a policy is a
deterministic finite automata (DFA) M , and an input to policy is a string w,
and R(M,w) = 1 if the automata M accepts the string w. We defer the detailed
definition to [3,4]. We obtain the first fully-secure prime-order KP-ABE, CP-ABE,
DP-ABE for regular languages (New15-New17).
ABE for Branching Programs (ABE-BP). In ABE-BP [20], a policy is
associated to a branching program Γ , which is a directed acyclic graph in which
every non-terminal node has exactly two outgoing edges labeled (i, 0) and (i, 1)
for some i ∈ N. For an edge j, denote its label as `j . Moreover, there is a
distinguished terminal node called accept node. We can also assume wlog that
there is exactly one start node. We can assume wlog that there is at most only
one edge connecting any two nodes in Γ (See [20]).

An input to policy is a binary string w. Every input binary string w induces
a subgraph Γw that contains exactly all the edges labeled (i, wi) for i ∈ [1, |w|],
where we write w = (w1, . . . , w|w|) as the binary representation of w. We say that
Γ accepts w if there is a path from the start node to the accept node in Γw. If
the allow length of w is bounded, we say that it is a bounded ABE-BP, otherwise,
it is an unbounded scheme. In the latter, a label (i, b) has no bound on i.

We invoke the following theorem, which holds unconditionally.

Theorem 2. Large-universe ABE-MSP implies ABE-BP.

Remark 6. Karchmer and Wigderson proved in 1993 [27] that SL ⊆ PSP (Sym-
metric Logspace ⊆ Poly-size Span Program). Thus, the ABE-MSP-to-ABE-BP
implication can be inferred from this. (We thank an anonymous reviewer for
pointing this out.) Nevertheless, to the best of our knowledge, there is no explicit
use of this theorem in the context of ABE, as ABE-MSP and ABE-BP were often
studied separately. For self-containment and independent interest, we offer our
alternative proof for this ABE-MSP-to-ABE-BP implication in the full version [4].

Our proof for this implication in [4] is constructive and the conversion preserves
efficiency and the unbounded property (if satisfied) of the original ABE-MSP.
Therefore, by using our instantiated ABE-MSP, we obtain the first schemes for
the following schemes of ABE-BP: unbounded, short-ciphertext, short-key for all
KP/CP/DP variants of ABE-BP (See Table 4). Our schemes are the first such
schemes for each given property, not to mention that they are fully-secure and
prime-order schemes. (This is with the only exception to the selectively-secure
short-key KP-ABE-BP of [21]).

8 Generic Construction From Simpler Basis

Our main construction in §5 is based upon the original basis of PDSG in [16],
where both B,B−> are required for setup. Chen, Gay, and Wee [15] proposed
a simpler basis where the inverse matrix is not required. This substantially
simplifies the proofs for subgroup decision-like assumptions provided by PDSG.
In this section, we provide a simplification of our scheme using the basis from [15].

Simpler Basis from CGW [15]. Let Wd be an efficiently samplable distribu-
tion of pair (A,a⊥) over Z(d+1)×d

p × Z(d+1)×1
p so that (a⊥)>A = 0 and a⊥ 6= 0.

A useful property of Wd is the Basis Lemma [15], which we also recap in [4].

Our Simplified Construction. From a pair encoding scheme P, our simplified
generic construction, denoted SimplerABE(P), can be described as follows. The
correctness, the security theorem, and the security proof are similar to our main
construction and are deferred to [4].

• Setup(1λ, κ): Run (G1,G2,GT , e, p) $← G(λ). Pick generators g1
$← G1 and

g2
$← G2. Run n ← Param(κ). Pick H = (H1, . . . ,Hn) $← (Z(d+1)×(d+1)

p)n.
Sample (A,a⊥) $←Wd and (B, b⊥) $←Wd. Choose α $← Z(d+1)×1

p . Output

PK =
(
e(g1, g2)α

>A, gA1 , g
H1A
1 , . . . , gHnA

1

)
,

MSK =
(

gα2 , gB2 , g
H>1 B
2 , . . . , g

H>n B
2

)
.

(23)

• Encrypt(Y,M,PK): Upon input Y ∈ Y, run (c;w2)← Enc2(Y). Randomly pick
S := (s0, s1, . . . , sw2) $← Zd×(w2+1)

p . Output the ciphertext as CT = (C, C0):

C = g
c
(
AS,H

)
1 ∈ (G(d+1)×1

1)w1 ,

C0 = e(g1, g2)α
>As0 ·M ∈ GT .

(24)

• KeyGen(X,MSK): Upon input X ∈ X, run (k;m2)← Enc1(X). Randomly pick
R := (r1, . . . , rm2) $← Zd×m2

p . Output

SK = g
k
(
α,BR,H

)
2 ∈ (G(d+1)×1

2)m1 . (25)

• Decrypt(CT,SK): Obtain Y,X from CT,SK. Suppose R(X,Y) = 1. Run E ←
Pair(X,Y). Compute e(g1, g2)α>As0 =

∏
i∈[1,m1],j∈[1,w1] e(C[j],SK[i])Ei,j . Fi-

nally, remove this mask from C0 to get M .

References

1. M. Abe, J. Groth, M. Ohkubo, T. Tango. Converting Cryptographic Schemes from
Symmetric to Asymmetric Bilinear Groups. In Crypto 2014, LNCS, pp. 241–260,
2014.

2. S. Agrawal, M. Chase. A study of Pair Encodings: Predicate Encryption in prime
order groups. In TCC 2016-A, LNCS, pp. 259–288, 2016.

3. N. Attrapadung. Dual System Encryption via Doubly Selective Security: Framework,
Fully-secure Functional Encryption for Regular Languages, and More. In Eurocrypt
2014, LNCS, pp. 557–577, 2014. Full version available at Cryptology ePrint Archive:
Report 2014/428.

4. N. Attrapadung. Dual System Encryption Framework in Prime-Order Groups
via Computational Pair Encodings. Full version of this paper. Cryptology ePrint
Archive: Report 2015/390, 2015.

5. N. Attrapadung, G. Hanaoka, T. Matsumoto, T. Teruya, S. Yamada. Attribute
Based Encryption with Direct Efficiency Tradeoff. In ACNS 2016, LNCS, pp.
249–266, 2016.

6. N. Attrapadung, G. Hanaoka, K. Ogawa, G. Ohtake, H. Watanabe, S. Yamada.
Attribute-Based Encryption for Range Attributes. In SCN 2016, LNCS, pp. 42–61,
2016.

7. N. Attrapadung, G. Hanaoka, S. Yamada. Conversions among Several Classes of
Predicate Encryption and Applications to ABE with Various Compactness Tradeoffs.
In Asiacrypt 2015, LNCS, pp. 575–601, 2015.

8. N. Attrapadung, H. Imai. Dual-Policy Attribute Based Encryption. In ACNS’09,
LNCS 5536, pp. 168–185, 2009.

9. N. Attrapadung, B. Libert, E. Panafieu. Expressive Key-Policy Attribute-Based
Encryption with Constant-Size Ciphertexts In PKC 2011, LNCS, pp. 90–108, 2010.

10. N. Attrapadung, S. Yamada. Duality in ABE: Converting Attribute Based Encryp-
tion for Dual Predicate and Dual Policy via Computational Encodings. In CT-RSA
2015, LNCS, pp. 87–105, 2015. Full version available at Cryptology ePrint Archive:
Report 2015/157.

11. J. Bethencourt, A. Sahai, B. Waters. Ciphertext-Policy Attribute-Based Encryption.
IEEE Symposium on Security and Privacy (S&P), pp. 321–334, 2007.

12. D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev, V. Vaikun-
tanathan, D. Vinayagamurthy. Fully Key-Homomorphic Encryption, Arithmetic
Circuit ABE and Compact Garbled Circuits. In Eurocrypt 2014, LNCS, pp. 533–556,
2014.

13. D. Boneh, A. Sahai, B. Waters. Functional Encryption: Definitions and Challenges.
In TCC 2011, LNCS 6597, pp. 253–273, 2011.

14. M. Chase, S. Meiklejohn, Déjà Q: Using Dual Systems to Revisit q-Type Assump-
tions. In Eurocrypt 2014, LNCS, pp. 622–639, 2014.

15. J. Chen, R. Gay, H. Wee. Improved Dual System ABE in Prime-Order Groups via
Predicate Encodings. In Eurocrypt 2015, LNCS, 2015.

16. J. Chen, H. Wee. Fully, (Almost) Tightly Secure IBE from Standard Assumptions.
In Crypto 2013, LNCS, pp. 435-460, 2013.

17. J. Chen, H. Wee. Semi-Adaptive Attribute-Based Encryption and Improved Dele-
gation for Boolean Formula. In SCN 2014, LNCS, pp. 277–297, 2014.

18. A. Escala, G. Herold, E. Kiltz, C. Rafols, J. L. Villar. An Algebraic Framework for
Diffie-Hellman Assumptions. In Crypto’13, LNCS, pp. 129–147, 2013.

19. D. M. Freeman. Converting Pairing-Based Cryptosystems from Composite-Order
Groups to Prime-Order Groups. In Eurocrypt’10, LNCS, pp. 44–61, 2013.

20. S. Gorbunov, V. Vaikuntanathan, H. Wee. Attribute-based encryption for circuits.
In STOC’13, 2013.

21. S. Gorbunov, D. Vinayagamurthy. Riding on Asymmetry: Efficient ABE for Branch-
ing Programs. In Asiacrypt 2015, LNCS, pp. 550–574, 2015.

22. V. Goyal, O. Pandey, A. Sahai, B. Waters. Attribute-based encryption for fine-
grained access control of encrypted data. In ACM CCS’06, pp. 89–98, 2006.

23. A. Guillevic. Comparing the Pairing Efficiency over Composite-Order and Prime-
Order Elliptic Curves. In ACNS 2013, LNCS, pp. 357–372, 2013.

24. M. Hamburg. Spatial Encryption. Cryptology ePrint Archive: Report 2011/389.
25. G. Herold, J. Hesse, D. Hofheinz, C. Ràfols, A. Rupp. Polynomial Spaces: A New

Framework for Composite-to-Prime-Order Transformations. In Crypto 2014, LNCS,
pp. 261–279, 2014.

26. Y. Ishai, H. Wee. Partial Garbling Schemes and Their Applications. In ICALP (1)
2014, LNCS, pp. 650–662, 2014.

27. M. Karchmer, A. Wigderson. On Span Programs. In Structure in Complexity Theory
Conference, 1993.

28. L. Kowalczyk, A. Lewko. Bilinear Entropy Expansion from the Decisional Linear
Assumption. In Crypto 2015 (1), LNCS, pp. 524–541, 2015. Cryptology ePrint
Archive: Report 2014/754 (retrieved version: Sep 4, 2015).

29. A. Lewko Tools for Simulating Features of Composite Order Bilinear Groups in
the Prime Order Setting. In Eurocrypt 2012, LNCS, pp. 318–335, 2012.

30. A. Lewko, S. Meiklejohn. A Profitable Sub-prime Loan: Obtaining the Advantages
of Composite Order in Prime-Order Bilinear Groups. In PKC 2015, LNCS, pp.
377–398.

31. A. Lewko, B. Waters. New Techniques for Dual System Encryption and Fully
Secure HIBE with Short Ciphertexts. In TCC 2010, LNCS 5978, pp. 455–479, 2010.

32. A. Lewko, B. Waters. Unbounded HIBE and Attribute-Based Encryption In
Eurocrypt 2011, LNCS, pp. 547–567, 2011.

33. A. Lewko, B. Waters. New Proof Methods for Attribute-Based Encryption: Achiev-
ing Full Security through Selective Techniques. In Crypto 2012, LNCS, pp. 180–198.

34. A. Lewko, T. Okamoto, A. Sahai, K. Takashima, B. Waters. Fully Secure Func-
tional Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product
Encryption. In Eurocrypt 2010, LNCS, pp. 62–91, 2010.

35. S. Meiklejohn, H. Shacham, D. M. Freeman. Limitations on Transformations from
Composite-Order to Prime-Order Groups: The Case of Round-Optimal Blind
Signatures. In Asiacrypt 2010, LNCS, pp. 519–538, 2010.

36. T. Okamoto, K. Takashima. Hierarchical Predicate Encryption for Inner-Products.
In Asiacrypt 2009, LNCS 5912, pp. 214–231, 2009.

37. T. Okamoto, K. Takashima, Fully secure functional encryption with general
relations from the decisional linear assumption. In Crypto 2010, LNCS 6223, pp.
191–208, 2010.

38. T. Okamoto, K. Takashima, Fully Secure Unbounded Inner-Product and Attribute-
Based Encryption. In Asiacrypt 2012, LNCS, pp. 349–366, 2012.

39. B. Parno, M. Raykova, V. Vaikuntanathan. How to Delegate and Verify in Public:
Verifiable Computation from Attribute-Based Encryption. TCC 2012, LNCS, pp.
422–439.

40. Y. Rouselakis, B. Waters Practical constructions and new proof methods for large
universe attribute-based encryption. In ACM CCS 2013, pp. 463–474, 2013.

41. A. Sahai, B. Waters. Fuzzy Identity-Based Encryption In Eurocrypt 2005, LNCS
3494, pp. 457–473, 2005.

42. J. H. Seo, J. H. Cheon. Beyond the Limitation of Prime-Order Bilinear Groups,
and Round Optimal Blind Signatures. In TCC 2012, LNCS, pp. 133–150, 2012.

43. K. Takashima. Expressive Attribute-Based Encryption with Constant-Size Cipher-
texts from the Decisional Linear Assumption. In SCN 2014, LNCS, pp. 298–317,
2014.

44. B. Waters. Ciphertext-Policy Attribute-Based Encryption: An Expressive, Efficient,
and Provably Secure Realization. In PKC 2011, LNCS, pp. 53-70, 2011.

45. B. Waters. Dual System Encryption: Realizing Fully Secure IBE and HIBE under
Simple Assumptions. In Crypto 2009, LNCS, pp. 619–636, 2009.

46. B. Waters. Functional Encryption for Regular Languages. In Crypto 2012, LNCS,
pp. 218–235, 2012.

47. H. Wee. Dual System Encryption via Predicate Encodings. In TCC 2014, LNCS,
pp. 616–637, 2014.

48. H. Wee. Déjà Q: Encore! Un Petit IBE. In TCC 2016-A, LNCS, pp. 237–258, 2016.

	 Dual System Encryption Framework in Prime-Order Groups via Computational Pair Encodings

