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Abstract. Fuzzy extractors (Dodis et al., Eurocrypt 2004) convert re-
peated noisy readings of a high-entropy secret into the same uniformly
distributed key. A minimum condition for the security of the key is the
hardness of guessing a value that is similar to the secret, because the
fuzzy extractor converts such a guess to the key.

We define fuzzy min-entropy to quantify this property of a noisy source
of secrets. Fuzzy min-entropy measures the success of the adversary when
provided with only the functionality of the fuzzy extractor, that is, the
ideal security possible from a noisy distribution. High fuzzy min-entropy
is necessary for the existence of a fuzzy extractor.

We ask: is high fuzzy min-entropy a sufficient condition for key extraction
from noisy sources? If only computational security is required, recent
progress on program obfuscation gives evidence that fuzzy min-entropy
is indeed sufficient. In contrast, information-theoretic fuzzy extractors
are not known for many practically relevant sources of high fuzzy min-
entropy.

In this paper, we show that fuzzy min-entropy is sufficient for informa-
tion theoretically secure fuzzy extraction. For every source distribution
W for which security is possible we give a secure fuzzy extractor.

Our construction relies on the fuzzy extractor knowing the precise dis-
tribution of the source W . A more ambitious goal is to design a single
extractor that works for all possible sources. Our second main result is
that this more ambitious goal is impossible: we give a family of sources
with high fuzzy min-entropy for which no single fuzzy extractor is secure.
We show three flavors of this impossibility result: for standard fuzzy ex-
tractors, for fuzzy extractors that are allowed to sometimes be wrong,
and for secure sketches, which are the main ingredient of most fuzzy
extractor constructions.

Keywords: Fuzzy extractors, secure sketches, information theory, bio-
metric authentication, error-tolerance, key derivation, error-correcting
codes.

1 Introduction

Sources of reproducible secret random bits are necessary for many cryptographic
applications. In many situations these bits are not explicitly stored for future
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use, but are obtained by repeating the same process (such as reading a biometric
or a physically unclonable function) that generated them the first time. However,
bits obtained this way present a problem: noise [4,8,12,14,19,30,31,33,37,39,43].
That is, when a secret is read multiple times, readings are close (according to
some metric) but not identical. To utilize such sources, it is often necessary to
remove noise, in order to derive the same value in subsequent readings.

The same problem occurs in the interactive setting, in which the secret chan-
nel used for transmitting the bits between two users is noisy and/or leaky [42].
Bennett, Brassard, and Robert [4] identify two fundamental tasks. The first,
called information reconciliation, removes the noise without leaking significant
information. The second, known as privacy amplification, converts the high en-
tropy secret to a uniform random value. In this work, we consider the nonin-
teractive version of these problems, in which these tasks are performed together
with a single message.

The noninteractive setting is modeled by a primitive called a fuzzy extrac-
tor [13], which consists of two algorithms. The generate algorithm (Gen) takes
an initial reading w and produces an output key along with a nonsecret helper
value p. The reproduce (Rep) algorithm takes the subsequent reading w′ along
with the helper value p to reproduce key. The correctness guarantee is that the
key is reproduced precisely when the distance between w and w′ is at most t.

The security requirement for fuzzy extractors is that key is uniform even to a
(computationally unbounded) adversary who has observed p. This requirement
is harder to satisfy as the allowed error tolerance t increases, because it becomes
easier for the adversary to guess key by guessing a w′ within distance t of w and
running Rep(w′, p).

Fuzzy Min-Entropy We introduce a new entropy notion that precisely mea-
sures how hard it is for the adversary to guess a value within distance t of the
original reading w. Suppose w is sampled from a distribution W . To have the
maximum chance that w′ is within distance t of w, the adversary would want
to maximize the total probability mass of W within the ball Bt(w

′) of radius t
around w′. We therefore define fuzzy min-entropy

Hfuzz
t,∞ (W )

def
= − log max

w′
Pr[W ∈ Bt(w′)].

The security of the resulting key cannot exceed the fuzzy min-entropy (Propo-
sition 1).

However, existing constructions do not measure their security in terms of
fuzzy min-entropy; instead, their security is shown to be the min-entropy of W ,
denoted H∞(W ), minus some loss, for error-tolerance, that is at least log |Bt|.4
Since (trivially) H∞(W )− log |Bt| ≤ Hfuzz

t,∞ (W ), it is natural to ask whether this
loss is necessary. This question is particularly relevant when the gap between

4 We omit w in the notation |Bt| since, as with almost all previous work, we study
metrics where the volume of the ball Bt(w) does not depend on the center w.
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the two sides of the inequality is high.5 As an example, iris scans appear to have
significant Hfuzz

t,∞ (W ) (because iris scans for different people appear to be well-
spread in the metric space [11]) but negative H∞(W ) − log |Bt| [6, Section 5].
We therefore ask: is fuzzy min-entropy sufficient for fuzzy extraction? There is
evidence that it may be sufficient when the security requirement is computational
rather than information-theoretic—see Section 1.2. We provide an answer for the
case of information-theoretic security in two settings.

Contribution 1: Sufficiency of Hfuzz
t,∞ (W ) for a Precisely Known W It

should be easier to construct a fuzzy extractor when the designer has precise
knowledge of the probability distribution function of W . In this setting, we show
that it is possible to construct a fuzzy extractor that extracts a key almost as
long as Hfuzz

t,∞ (W ) (Theorem 1). Our construction crucially utilizes the probabil-
ity distribution function of W and, in particular, cannot necessarily be realized
in polynomial time (this is similar, for example, to the interactive information-
reconciliation feasibility result of [34]). This result shows that Hfuzz

t,∞ (W ) is a
necessary and sufficient condition for building a fuzzy extractor for a given dis-
tribution W .

A number of previous works in the precise knowledge setting have provided
efficient algorithms and tight bounds for specific distributions—generally the
uniform distribution or i.i.d. sequences (for example, [27,28,38,20,41,26]). Our
characterization unifies previous work, and justifies using Hfuzz

t,∞ (W ) as the mea-
sure of the quality of a noisy distribution, rather than cruder measures such as
H∞(W )− log |Bt|. Our construction can be viewed as a reference to evaluate the
quality of efficient constructions in the precise knowledge setting by seeing how
close they get to extracting all of Hfuzz

t,∞ (W ).

Contribution 2: The Cost of Distributional Uncertainty Assuming pre-
cise knowledge of a distribution W is often unrealistic for high-entropy distribu-
tions; they can never be fully observed directly and must therefore be modeled. It
is imprudent to assume that the designer’s model of a distribution is completely
accurate—the adversary, with greater resources, would likely be able to build a
better model. (In particular, the adversary has more time to build the model af-
ter a particular construction is deployed.) Because of this, existing designs work
for a family of sources (for example, all sources of min-entropy at least m with
at most t errors). The fuzzy extractor is designed given only knowledge of the
family. The attacker may know more about the distribution than the designer.
We call this the distributional uncertainty setting.

Our second contribution is a set of negative results for this more realistic
setting. We provide two impossibility results for fuzzy extractors. Both demon-
strate families W of distributions over {0, 1}n such that each distribution in
the family has Hfuzz

t,∞ linear in n, but no fuzzy extractor can be secure for most
distributions in W. Thus, a fuzzy extractor designer who knows only that the
distribution comes from W is faced with an impossible task, even though our

5 For nearly uniform distributions, Hfuzz
t,∞(W ) ≈ H∞(W ) − log |Bt|. In this setting,

standard coding based constructions of fuzzy extractors (using appropriate codes)
yield keys of size approximately Hfuzz

t,∞(W ).
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positive result, Theorem 1, shows that fuzzy extractors can be designed for each
distribution in the family individually.

The first impossibility result (Theorem 2) assumes that Rep is perfectly cor-
rect and rules our fuzzy extractors for entropy rates as high as Hfuzz

t,∞ (W ) ≈ 0.18n.
The second impossibility result (Theorem 3), relying on the work of Holen-
stein and Renner [25], also rules out fuzzy extractors in which Rep is allowed
to make a mistake, but applies only to distributions with entropy rates up to
Hfuzz
t,∞ (W ) ≈ 0.07n.

We also provide a third impossibility result (Theorem 4), this time for an
important building block called “secure sketch,” which is used in most fuzzy
extractor constructions (in order to allow Rep to recover the original w from the
input w′). The result rules out secure sketches for a family of distributions with
entropy rate up to 0.5n, even if the secure sketches are allowed to make mistakes.
Because secure sketches are used in most fuzzy extractors constructions, the
result suggests that building a fuzzy extractor for this family will be very difficult.
We define secure sketches formally in Section 7.

These impossibility results motivate further research into computationally,
rather information-theoretically, secure fuzzy extractors (Section 1.2).

1.1 Our Techniques

Techniques for Positive Results for a Precisely Known Distribution
We now explain how to construct a fuzzy extractor for a precisely known dis-
tribution W with fuzzy min-entropy. We begin with distributions in which all
points in the support have the same probability (so-called “flat” distributions).
Gen simply extracts a key from the input w using a randomness extractor. Con-
sider some subsequent reading w′. To achieve correctness, the string p must
permit Rep to disambiguate which point w ∈ W within distance t of w′ was
given to Gen. Disambiguating multiple points can be accomplished by universal
hashing, as long as the size of hash output space is slightly greater than the
number of possible points. Thus, Rep includes into the public value p a “sketch”
of w computed via a universal hash of w. To determine the length of that sketch,
consider the heaviest (according to W ) ball B∗ of radius t. Because the distri-
bution is flat, B∗ is also the ball with the most points of nonzero probability.
Thus, the length of the sketch needs to be slightly greater than the logarithm of
the number of non-zero probability points in B∗. Since Hfuzz

t,∞ (W ) is determined
by the weight of B∗, the number of points cannot be too high and there will
be entropy left after the sketch is published. This remaining entropy suffices to
extract a key.

For an arbitrary distribution, we cannot afford to disambiguate points in the
ball with the greatest number of points, because there could be too many low-
probability points in a single ball despite a high Hfuzz

t,∞ (W ). We solve this problem
by splitting the arbitrary distribution into a number of nearly flat distributions
we call “levels.” We then write down, as part of the sketch, the level of the
original reading w and apply the above construction considering only points in
that level. We call this construction leveled hashing (Construction 1).



When are Fuzzy Extractors Possible? 5

Techniques for Negative Results for Distributional Uncertainty We
construct a family of distributions W and prove impossibility for a uniformly
random W ←W. We start by observing the following asymmetry: Gen sees only
the sample w (obtained via W ← W and w ← W ), while the adversary knows
W .

To exploit the asymmetry, in our first impossibility result (Theorem 2), we
constructW so that conditioning on the knowledge of W reduces the distribution
to a small subspace (namely, all points on which a given hash function produces
a given output), but conditioning on only w leaves the rest of the distribution
uniform on a large fraction of the entire space. An adversary can exploit the
knowledge of the hash value to reduce the uncertainty about key, as follows.

The nonsecret value p partitions the metric space into regions that produce
a consistent value under Rep (preimages of each key under Rep(·, p)). For each of
these regions, the adversary knows that possible w lie at distance at least t from
the boundary of the region (else, the fuzzy extractor would have a nonzero prob-
ability of error). However, in the Hamming space, the vast majority of points lie
near the boundary (this result follows by combining the isoperimetric inequal-
ity [21], which shows that the ball has the smallest boundary, with bounds on the
volume of the interior of a ball, which show that this boundary is large). This
allows the adversary to rule out so many possible w that, combined with the
adversarial knowledge of the hash value, many regions become empty, leaving
key far from uniform.

For the second impossibility result (Theorem 3, which rules out even fuzzy
extractors that are allowed a possibility of error), we let the adversary know
some fraction of the bits of w. Holenstein and Renner [25] showed that if the ad-
versary knows each bit of w with sufficient probability, and bits of w′ differ from
bits of w with sufficient probability, then so-called “information-theoretic key
agreement” is impossible. Converting the impossibility of information-theoretic
key agreement to impossibility of fuzzy extractors takes a bit of technical work.

1.2 Related Settings

Other settings with close readings: Hfuzz
t,∞ is sufficient The security defini-

tion of fuzzy extractors can be weakened to protect only against computationally
bounded adversaries [17]. In this computational setting, for most distance met-
rics a single fuzzy extractor can simultaneously secure all possible distributions
by using virtual grey-box obfuscation for all circuits in NC1 [5]. This construction
is secure when the adversary can rarely learn key with oracle access to the pro-
gram functionality. The set of distributions with fuzzy min-entropy are exactly
those where an adversary learns key with oracle access to the functionality with
negligible probability. Thus, extending our negative result to the computational
setting would have negative implications on the existence of obfuscation.

Furthermore, the functional definition of fuzzy extractors can be weakened
to permit interaction between the party having w and the party having w′. Such
a weakening is useful for secure remote authentication [7]. When both interac-
tion and computational assumptions are allowed, secure two-party computation
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can produce a key that will be secure whenever the distribution W has fuzzy
min-entropy. The two-party computation protocol needs to be secure without
assuming authenticated channels; it can be built under the assumptions that
collision-resistant hash functions and enhanced trapdoor permutations exist [3].

Correlated rather than close readings A different model for the problem
of key derivation from noisy sources does not explicitly consider the distance
between w and w′, but rather views w and w′ as samples of drawn from a
correlated pair of random variables. This model is considered in multiple works,
including [42,10,1,29]; recent characterizations of when key derivation is possible
in this model include [35] and [40]. In particular, Hayashi et al. [22] independently
developed an interactive technique similar to our non-interactive leveled hashing,
which they called “spectrum slicing.” To the best of our knowledge, prior results
on correlated random variables are in the precise knowledge setting; we are
unaware of works that consider the cost of distributional uncertainty.

2 Preliminaries

Random Variables We generally use uppercase letters for random variables
and corresponding lowercase letters for their samples. A repeated occurrence of
the same random variable in a given expression signifies the same value of the
random variable: for example (W, SS(W )) is a pair of random variables obtained
by sampling w according to W and applying the algorithm SS to w.

The statistical distance between random variables A and B with the same
domain is SD(A,B) = 1

2

∑
a |Pr[A = a]−Pr[B = b]| = maxS Pr[A ∈ S]−Pr[B ∈

S].

Entropy Unless otherwise noted logarithms are base 2. Let (X,Y ) be a pair
of random variables. Define min-entropy of X as H∞(X) = − log(maxx Pr[X =
x]), and the average (conditional) min-entropy of X given Y as H̃∞(X|Y ) =
− log(Ey∈Y maxx Pr[X = x|Y = y]) [13, Section 2.4]. Define Hartley entropy
H0(X) to be the logarithm of the size of the support of X, that is H0(X) =
log |{x|Pr[X = x] > 0}|. Define average-case Hartley entropy by averaging the
support size: H̃0(X|Y ) = log(Ey∈Y |{y|Pr[X = x|Y = y] > 0}|). For 0 < a < 1,
define the binary entropy h2(p) = −p log p − (1 − p) log(1 − p) as the Shannon
entropy of any random variable that is 0 with probability p and 1 with probability
1− p.
Randomness Extractors We use randomness extractors [32], as defined for
the average case in [13, Section 2.5].

Definition 1. Let M, χ be finite sets. A function ext :M×{0, 1}d → {0, 1}κ
a (m̃, ε)-average case extractor if for all pairs of random variables X,Y over
M, χ such that H̃∞(X|Y ) ≥ m̃, we have

SD((ext(X,Ud), Ud, Y ), Uκ × Ud × Y ) ≤ ε.
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Metric Spaces and Balls For a metric space (M, dis), the (closed) ball of
radius t around w is the set of all points within radius t, that is, Bt(w) =
{w′|dis(w,w′) ≤ t}. If the size of a ball in a metric space does not depend on w, we
denote by |Bt| the size of a ball of radius t. We consider the Hamming metric over
vectors in Zn for some finite alphabet Z, defined via dis(w,w′) = |{i|wi 6= w′i}|.
Uκ denotes the uniformly distributed random variable on {0, 1}κ.

We will use the following bounds on |Bt| in {0, 1}n, see [2, Lemma 4.7.2,
equation 4.7.5, p. 115] for proofs.

Lemma 1. Let τ = t/n. The volume |Bt| of the ball of radius in t in the Ham-
ming space {0, 1}n satisfies

1√
8nτ(1− τ)

· 2nh2(τ) ≤ |Bt| ≤ 2nh2(τ) .

2.1 Fuzzy Extractors

In this section, we define fuzzy extractors, slightly modified from the work of
Dodis et al. [13, Sections 3.2]. First, we allow for error as discussed in [13, Section
8]. Second, in the distributional uncertainty setting we consider a general family
W of distributions instead of families containing all distributions of a given min-
entropy. Let M be a metric space with distance function dis.

Definition 2. An (M,W, κ, t, ε)-fuzzy extractor with error δ is a pair of ran-
domized procedures, “generate” (Gen) and “reproduce” (Rep). Gen on input w ∈
M outputs an extracted string key ∈ {0, 1}κ and a helper string p ∈ {0, 1}∗. Rep
takes w′ ∈M and p ∈ {0, 1}∗ as inputs. (Gen,Rep) have the following properties:

1. Correctness: if dis(w,w′) ≤ t and (key, p) ← Gen(w), then Pr[Rep(w′, p) =
key] ≥ 1− δ.

2. Security: for any distribution W ∈ W, if (Key, P )← Gen(W ), then
SD((Key, P ), (Uκ, P )) ≤ ε.

In the above definition, the errors must be chosen before p is known in order for
the correctness guarantee to hold.

The Case of a Precisely Known Distribution If in the above definition
we take W to be a one-element set containing a single distribution W , then the
fuzzy extractor is said to be for a precisely known distribution. In this case, we
need to require correctness only for w that have nonzero probability. Note that
we have no requirement that the algorithms are compact or efficient, and so the
distribution can be fully known to them.

3 New Notion: Fuzzy Min-Entropy

The fuzzy extractor helper string p allows everyone, including the adversary,
to find the output of Rep(·, p) on any input w′. Ideally, p should not provide
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any useful information beyond this ability, and the outputs of Rep on inputs
that are too distant from w should provide no useful information, either. In this
ideal scenario, the adversary is limited to trying to guess a w′ that is t-close to
w. Letting w′ be the center of the maximum-weight ball in W is optimal, we
measure the quality of a source by (the negative logarithm of) this weight.

Definition 3. The t-fuzzy min-entropy of a distribution W in a metric space
(M, dis) is:

Hfuzz
t,∞ (W ) = − log

max
w′

∑
w∈M|dis(w,w′)≤t

Pr[W = w]


Fuzzy min-entropy measures the functionality provided to the adversary by
Rep (since p is public), and thus is a necessary condition for security. We for-
malize this statement in the following proposition.

Proposition 1. Let W be a distribution over (M, dis) with Hfuzz
t,∞ (W ) = m. Let

(Gen,Rep) be a (M, {W}, κ, t, ε)-fuzzy extractor with error δ. Then

2−κ ≥ 2−m − δ − ε.

If δ = ε = 2−κ, then κ cannot exceed m + 2. Additionally, if fuzzy min-entropy
of the source is only logarithmic in a security parameter while the δ and ε pa-
rameters are negligible, then extracted key must be of at most logarithmic length.

Proof. Let W be a distribution where Hfuzz
t,∞ (W ) = m. This means that there

exists a point w′ ∈ M such that Prw∈W [dis(w,w′) ≤ t] = 2−m. Consider the
following distinguisher D: on input (key, p), if Rep(w′, p) = key, then output 1,
else output 0.

Pr[D(Key, P ) = 1] ≥ 2−m − δ, while Pr[D(Uκ, P ) = 1] = 1/2−κ. Thus,

SD((Key, P ), (Uκ, P )) ≥ δD((Key, P ), (Uκ, P )) ≥ 2−m − δ − 2−κ.

ut

Proposition 1 extends to the settings of computational security and interactive
protocols. Fuzzy min-entropy represents an upper bound on the security from
a noisy source. However, there are many distributions with fuzzy min-entropy
with no known information-theoretically secure fuzzy extractor (or correspond-
ing impossibility result).

We explore other properties of fuzzy min-entropy, not necessary for the proofs
presented here, in the full version [18, Appendix E].

4 Hfuzz
t,∞(W ) is Sufficient in the Precise Knowledge Setting

In this section, we build fuzzy extractors that extract almost all of Hfuzz
t,∞ (W )

for any distribution W . We reiterate that these constructions assume precise
knowledge of W and are not necessarily polynomial-time. They should thus be
viewed as feasibility results. We begin with flat distributions and then turn to
arbitrary distributions.
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4.1 Warm-Up for Intuition: Fuzzy Extractor for Flat Distributions

Let supp(W ) = {w|Pr[W = w] > 0} denote the support of a distribution W . A
distribution W is flat if all elements of supp(W ) have the same probability. Our
construction for this case is quite simple: to produce p, Gen outputs a hash of its
input point w and an extractor seed; to produce key, Gen applies the extractor
to w. Given w′, Rep looks for w ∈ supp(W ) that is near w′ and has the correct
hash value, and applies the extractor to this w to get key.

The specific hash function we use is universal. (We note that universal hash-
ing has a long history of use for information reconciliation, for example [4], [34],
and [36]. This construction is not novel; rather, we present it as a stepping stone
for the case of general distribuions).

Definition 4 ([9]). Let F : K × M → R be a function. We say that F is
universal if for all distinct x1, x2 ∈M:

Pr
K←K

[F (K,x1) = F (K,x2)] =
1

|R|
.

In our case, the hash output length needs to be sufficient to disambiguate
elements of supp(W ) ∩ Bt(w′) with high probability. Observe that there are at

most 2H∞(W )−Hfuzz
t,∞(W ) such elements when W is flat, so output length slightly

greater (by log 1/δ) than H∞(W )−Hfuzz
t,∞ (W ) will suffice. Thus, the output key

length will be Hfuzz
t,∞ (W )− log 1/δ − 2 log 1/ε+ 2 (by using average-case leftover

hash lemma, per [13, Lemma 2.2b, Lemma 2.4]). As this construction is only a
warm-up, so we do not state it formally and proceed to general distributions.

4.2 Fuzzy Extractor for Arbitrary Distributions

The hashing approach used in the previous subsection does not work for arbi-
trary sources. Consider a distribution W consisting of the following balls: B1

t

is a ball with 2H∞(W ) points with total probability Pr[W ∈ B1
t ] = 2−H∞(W ),

B2
t , ..., B

2−H∞(W )

t are balls with one point each with probability Pr[W ∈ Bit] =
2−H∞(W ). The above hashing algorithm writes down H∞(W ) bits to achieve
correctness on B1

t . However, with probability 1− 2−H∞(W ) the initial reading is
outside of B1

t , and the hash completely reveals the point.
Instead, we use a layered approach: we separate the input distribution W

into nearly-flat layers, write down the layer from which the input w came (i.e.,
the approximate probability of w) as part of p, and rely on the construction
from the previous part for each layer. In other words, the hash function output
is now variable-length, longer if probability of w is lower. Thus, p now reveals
a bit more about w. To limit this information and the resulting security loss,
we limit number of layers. As a result, we lose only 1 + logH0(W ) more bits
of security compared to the previous section. We emphasize that this additional
loss is quite small: if W is over {0, 1}n, it is only 1 + log n bits (so, for example,
only 11 bits if W is 1000 bits long, and no more than 50 bits for any remotely
realistic W ). We thus obtain the following theorem.
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Theorem 1. For any metric spaceM, distribution W overM, distance t, error
δ > 0, and security ε > 0, there exists a (M, {W}, κ, t, ε)-known distribution
fuzzy extractor with error δ for κ = Hfuzz

t,∞ (W )−logH0(W )−log 1/δ−2 log 1/ε+1.
(Note that the value logH0(W ) is doubly logarithmic in the size of the support
of W and is smaller than log 1/δ and log 1/ε for typical setting of parameters.)

We provide the construction and the proof in Appendix A. The main idea is that
providing the level information makes the distribution look nearly flat (the prob-
ability of points differs by at most a factor of two, which increases the entropy
loss as compared to the flat case by only one bit). And the level information it-
self increases the entropy loss by logH0(W ) bits, because there are only H0(W )
levels that contain enough weight to matter.

5 Impossibility of Fuzzy Extractors for Family with Hfuzz
t,∞

In the previous section, we showed the sufficiency of Hfuzz
t,∞ (W ) for building fuzzy

extractors when the distribution W is precisely known. However, it may be in-
feasible to completely characterize a high-entropy distribution W . Traditionally,
algorithms deal with this distributional uncertainty by providing security for a
family of distributions W. In this section, we show that distributional uncer-
tainty comes at a real cost.

We demonstrate an example over the binary Hamming metric in which every
W ∈ W has linear Hfuzz

t,∞ (W ) (which is in fact equal to H∞(W )), and yet there

is some W ∈ W where even for 3-bit output keys and high constant ε = 1
4 . In

fact, we show that the adversary need not work hard: even a uniformly random
choice of distribution W from W will thwart the security of any (Gen,Rep).
The one caveat is that, for this result, we require Rep to be always correct (i.e.,
δ = 0). As mentioned in the introduction, this perfect correctness requirement
is removed in Sections 6 and 7 at a cost of lower entropy rate and stronger
primitive, respectively.

As basic intuition, the result is based on the following reasoning: Gen sees
only a random sample w from a random W ∈ W, but not W . The adversary sees
W but not w. Because Gen does not know which W the input w came from, Gen
must produce p that works for many distributions W that contain w in their
support. Such p must necessarily reveal a lot of information. The adversary can
combine information gleaned from p with information about W to narrow down
the possible choices for w and thus distinguish key from uniform.

Theorem 2. Let M denote the Hamming space {0, 1}n. There exists a family
of distributions W over M such that for each element W ∈ W, Hfuzz

t,∞ (W ) =
H∞(W ) ≥ m, and yet any (M,W, κ, t, ε)-fuzzy extractor with error δ = 0 has
ε > 1/4.

This holds as long as κ ≥ 3 and under the following conditions on the entropy
rate µ = m/n, noise rate τ = t/n, and n:

– any 0 ≤ τ < 1
2 and µ > 0 such that µ < 1− h2(τ) and µ < 1− h2

(
1
2 − τ

)
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Fig. 1. The region of τ (x-axis) and µ (y-axis) pairs for which Theorem 2 applies is
the region below both curves.

– any n ≥ max

(
2

1−h2(τ)−µ ,
5

1−h2( 1
2−τ)−µ

)
.

Note that the conditions on µ and τ imply the result applies to any entropy
rate µ ≤ .18 as long as τ is set appropriately and n is sufficiently large (for
example, the result applies to n ≥ 1275 and τ = .6

√
µ when 0.08 ≤ µ ≤ .18;

similarly, it applies to n ≥ 263 and τ =
√
µ when 0.01 ≤ µ ≤ 0.08). The τ vs. µ

tradeoff is depicted in Figure 1.

Proof (Sketch). Here we describe the family W and provide a brief overview of
the main proof ideas. We provide a full proof in Appendix B. We will show the
theorem holds for an average member of W. Let Z denote a uniform choice of
W from W and denote by Wz the choice specified by a particular value of z.

Let {Hashk}k∈K be a family of hash function with domainM and the follow-
ing properties:

– 2−a-universality: for all v1 6= v2 ∈M, Prk←K[Hashk(v1) = Hashk(v2)] ≤ 2−a,
where a = n · h2

(
1
2 − τ

)
+ 3.

– 2m-regularity: for each k ∈ K and h in the range of Hashk, |Hash−1k (h)| = 2m,
where m ≥ µn.

– preimage sets have minimum distance t + 1: for all k ∈ K, if v1 6= v2 but
Hashk(v1) = Hashk(v2), then dis(v1, v2) > t.

We show such a hash family exists in Appendix B. Let Z be the random
variable consisting of pairs (k, h), where k is uniform in K and h is uniform in the
range of Hashk. Let Wz for z = (k, h) be the uniform distribution on Hash−1k (h).
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By the 2m-regularity and minimum distance properties of Hash, H∞(Wz) =
Hfuzz
t,∞ (Wz) = m. Let W = {Wz}.

The intuition is as follows. We now want to show that for a random z ← Z,
if (key, p) is the output of Gen(Wz), then key can be easily distinguished from
uniform in the presence of p and z.

In the absence of information about z, the value w is uniform on M (by
regularity of Hash). Knowledge of p reduces the set of possible w from 2n to

2n·h2( 1
2−τ), because, by correctness of Rep, every candidate input w to Gen must

be such that all of its neighbors w′ of distance at most t produce the same output
of Rep(w′, p). And knowledge of z reduces the set of possible w by another factor
of 2a, because a hash value with a random hash function key likely gives fresh
information about w.

6 Impossibility in the Case of Imperfect Correctness

The impossibility result in the previous section applies only to fuzzy extractors
with perfect correctness. In this section, we build on the work of Holenstein and
Renner [25] to show the impossibility of fuzzy extractors even when they are
allowed to make mistakes a constant fraction δ (as much as 4%) of the time.
However, the drawback of this result, as compared to the previous section, is
that we can show impossibility only for a relatively low entropy rate of at most
7%. In Section 7, we rule out stronger primitives called secure sketches with
nonzero error (which are used in most fuzzy extractor constructions), even for
entropy rate as high as 50%.

Theorem 3. Let M denote the Hamming space {0, 1}n. There exists a family
of distributions W over M such that for each element W ∈ W, Hfuzz

t,∞ (W ) =

H∞(W ) ≥ m, and yet any (M,W, κ, t, ε)-fuzzy extractor with error δ ≤ 1
25 has

ε > 1
25 .

This holds for any κ > 0 under the following conditions on the entropy rate
µ = m/n, noise rate τ = t/n, and n:

– any 0 ≤ τ ≤ 1
2 and µ such that µ < 4τ(1− τ)

(
1− h2

(
1

4−4τ

))
– any sufficiently large n (as a function of τ and µ)

Note that the conditions on µ and τ imply that the result applies to any
entropy rate µ ≤ 1

15 as long as τ is set appropriately and n is sufficiently large.
The τ vs. µ tradeoff is depicted in Figure 2.

Proof (Proof Sketch). We now describe the family W and provide an overview
of the main ideas. The full proof is in Appendix C.

Similarly to the proof of Theorem 2, we will prove that any fuzzy extractor
fails for an element Wz ofW chosen according to the distribution Z. In this case,
Z will not be uniform but rather binomial (with tails cut off). Essentially, Z will
contain each bit of w with (appropriately chosen) probability β; given Z = z,
the remaining bits of w will be uniform and independent.
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Fig. 2. The region of τ (x-axis) and µ (y-axis) pairs for which Theorem 3 applies is
the region below this curve.

For a string z ∈ {0, 1,⊥}n, denote by info(z) the number of entries in z that
are not ⊥: info(z) = |{i s.t zi 6=⊥}|. Let Wz be the uniform distribution over
all strings in {0, 1}n that agree with z in positions that are not ⊥ in z (i.e., all
strings w ∈ {0, 1}n such that for 1 ≤ i ≤ n, either zi =⊥ or wi = zi).

We will use W to prove the theorem statement. First, we show that every
distribution Wz ∈ W has sufficient Hfuzz

t,∞ . Indeed, z constrains info(z) coordi-
nates out of n and leaves the rest uniform. Thus, Hfuzz

t,∞ (Wz) is the same as Hfuzz
t,∞

of the uniform distribution on the space {0, 1}n−info(z). Second, we now want
to show that SD((Key, P, Z), (Uκ, P, Z)) > 1

25 . To show this, we use a result
of Holenstein and Renner [25, Theorem 4]. Their result shows impossibility of
interactive key agreement for a noisy channel where the adversary observes each
bit with some probability. Several technical results are necessary to apply the
result in our setting (presented in Appendix C).

7 Stronger Impossibility Result for Secure Sketches

Most fuzzy extractor constructions share the following feature with our Con-
struction 1: p includes information that is needed to recover w from w′; both
Gen and Rep simply apply an extractor to w. The recovery of w from w′, known
as information-reconciliation, forms the core of many fuzzy extractor construc-
tions. The primitive that performs this information reconciliation is called secure
sketch. In this section we show stronger impossibility results for secure sketches.
First, we recall their definition from [13, Section 3.1] (modified slightly, in the
same way as Definition 2).
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Fig. 3. The region of τ (x-axis) and µ (y-axis) pairs for which Theorem 4 applies is
the region below both curves.

Definition 5. An (M,W, m̃, t)-secure sketch with error δ is a pair of random-
ized procedures, “sketch” (SS) and “recover” (Rec). SS on input w ∈M returns a
bit string ss ∈ {0, 1}∗. Rec takes an element w′ ∈M and ss ∈ {0, 1}∗. (SS,Rec)
have the following properties:

1. Correctness: ∀w,w′ ∈ M if dis(w,w′) ≤ t then Pr[Rec(w′,SS(w)) = w] ≥
1− δ.

2. Security: for any distribution W ∈ W, H̃∞(W |SS(W )) ≥ m̃.

Secure sketches are more demanding than fuzzy extractors (secure sketches
can be converted to fuzzy extractors by using a randomness extractors like in
our Construction 1 [13, Lemma 4.1]). We prove a stronger impossibility result
for them. Specifically, in the case of secure sketches, we can extend the results
of Theorems 2 and 3 to cover imperfect correctness (that is, δ > 0) and entropy
rate µ up to 1

2 . Since most fuzzy extractor constructions rely on secure sketches,
this result gives evidence that fuzzy extractors even with imperfect correctness
and for high entropy rates are difficult to construct in the case of distributional
uncertainty.

Theorem 4. Let M denote the Hamming space {0, 1}n. There exists a family
of distributions W over M such that for each element W ∈ W, Hfuzz

t,∞ (W ) =
H∞(W ) ≥ m, and yet any (M,W, m̃, t)-secure sketch with error δ has m̃ ≤ 2.

This holds under the following conditions on δ, the entropy rate µ = m/n,
noise rate τ = t/n, and n:

– any 0 ≤ τ < 1
2 and µ > 0 such that µ < h2(τ) and µ < 1− h2(τ)
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– any n ≥ max
(
.5 logn+4δn+4

h2(τ)−µ , 2
1−h2(τ)−µ

)
Note that the result holds for any µ < 0.5 as long as δ < (h2(τ)− µ)/4 and

n is sufficiently large. The τ vs. µ tradeoff is depicted in Figure 3.
We provide the proof, which uses similar ideas to the proof of Theorem 2, in

Appendix D.

A Proof of Theorem 1

We first provide a full description of the layered hashing construction.

Construction 1 Let W be a distribution over a metric spaceM with H∞(W ) =
m.

– Let δ ≤ 1
2 be the error parameter.

– Let ` = m+H0(W )− 1; round ` down so that `−m is an integer (i.e., set
` = m+ b(`−m)c).

– For each i = m,m+1, . . . , `−1, let Li = (2−(i+1), 2−i] and let Fi : Ki×M→
Ri be a family of universal hash functions with log |Ri| = i+ 1−Hfuzz

t,∞ (W ) +

log 1/δ. Let L` = (0, 2−`].
– Let ext be an (m̃, ε)-average-case extractor for m̃ = Hfuzz

t,∞ (W )−logH0(W )−
log 1/δ − 1 with output length κ.

Define GenW ,RepW as:

GenW

1. Input: w.
2. Find i such that

Pr[W = w] ∈ Li.
3. If i = ` then set ss = (i, w, 0).
4. Else sample K ← Ki

and set ss = (i, Fi(K,w),K)
5. Sample a uniform extractor

seed seed

6. Output key = ext(w, seed),
p = (ss, seed).

RepW

1. Input: (w′, p = (ss, seed))
2. Parse ss as (i, y,K)
3. If i = ` then set w∗ = y.
4. Else

(a) Let W ∗ = {w∗|dis(w∗, w′) ≤ t
∧ Pr[W = w∗] ∈ Li}.

(b) Find any w∗ ∈W ∗ such that
Fi(K,w

∗) = y;
if none exists, set w∗ =⊥.

5. Output ext(w∗, seed).

We instantiate this construction with the extractor parameters given by [13,
Lemma 2.4] (namely, κ = m̃− 2 log 1/ε+ 2) in order to prove Theorem 1.

Proof (Proof of Theorem 1). We first argue correctness. Fix some w,w′ within
distance t. When Pr[W = w] ∈ L`, then Rep is always correct, so let’s consider
only the case when Pr[W = w] 6∈ L`. The algorithm Rep will never output ⊥
since at least the correct w will match the hash. Thus, an error happens when
another element w∗ ∈ W ∗ has the same hash value F (Ki, w

∗) as F (Ki, w).
Observe that the total probability mass of W ∗ is less than |W ∗| · 2−(i+1) but
greater than or equal to the maximum probability mass in a ball of radius t,



16 Benjamin Fuller, Leonid Reyzin, and Adam Smith

2−H
fuzz
t,∞(W ). Therefore, |W ∗| ≤ 2i+1−Hfuzz

t,∞(W ). Each element of W ∗ has the same
hash as F (K,w) with probability at most 1/|Ri|, and thus correctness with error
|W ∗|/|R| ≤ δ follows by the union bound.

Security: We now argue security of the construction. Let Wi = {w|Pr[W =
w] ∈ Li}. For ease of notation, let us make the special case of i = ` as part of
the general case, as follows: define K` = {0}, F`(0, w) = w, and R` = W`. Also,
denote by SS the randomized function that maps w to ss. First, we set up the
analysis by levels:

2−H̃∞(W |SS(W )) = E
ss

max
w

Pr[W = w |SS(W ) = ss]

=
∑
ss

max
w

Pr[W = w ∧ SS(W ) = ss]

=
∑̀
i=m

∑
K∈Ki

∑
y∈Ri

max
w

Pr[W = w ∧ SS(W ) = (i, y,K)]

≤
∑̀
i=m

∑
K∈Ki

∑
y∈Ri

max
w∈Wi

Pr[W = w ∧ Fi(K,w) = y ∧K output by Gen] .

We now pay the penalty of |Ri| for the presence of y (observe that removing the
condition that Fi(K,w) = y from the conjuction cannot reduce the probability):

2−H̃∞(W |SS(W )) ≤
∑̀
i=m

∑
K∈Ki

∑
y∈Ri

max
w∈Wi

Pr[W = w ∧K is chosen by SS]

=
∑̀
i=m

∑
K∈Ki

|Ri| · max
w∈Wi

Pr[W = w ∧K is chosen by SS] .

We now get rid of the key, because it is independent:

2−H̃∞(W |SS(W )) ≤
∑̀
i=m

∑
K∈Ki

|Ri| · max
w∈Wi

Pr[W = w] · 1

|Ki|

=
∑̀
i=m

|Ri| · max
w∈Wi

Pr[W = w]

≤ |R`| · 2−` +

`−1∑
i=m

|Ri| · 2−i .

Finally, we add everything up, recalling that |Ri| for i < ` is 2i+1−Hfuzz
t,∞(W )+log 1/δ.
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2−H̃∞(W |SS(W )) ≤ 2H0(W ) · 2−` + (`−m) · 21−H
fuzz
t,∞(W )+log 1/δ

(next line uses ` > m+H0(W )− 2)

< 22−m + (`−m) · 21−H
fuzz
t,∞(W )+log 1/δ

(next line uses m ≥ Hfuzz
t,∞ (W ) and log 1/δ ≥ 1)

≤ (`−m+ 1) · 21−H
fuzz
t,∞(W )+log 1/δ

(next line uses ` ≤ m+H0(W )− 1)

≤ H0(W ) · 21−H
fuzz
t,∞(W )+log 1/δ .

Taking the negative logarithm of both sides, we obtain m̃
def
= H̃∞(W |SS(W )) =

Hfuzz
t,∞ (W )− logH0(W )− log 1/δ − 1. Applying the (m̃, ε) randomness extractor

gives us the desired result. ut

B Proof of Theorem 2

Proof. As a reminder, we show the impossibility for an average member of W.
For completeness, we reiterate the family W introduced in the proof sketch.

Let {Hashk}k∈K be a family of hash function with domainM and the follow-
ing properties:

– 2−a-universality: for all v1 6= v2 ∈M, Prk←K[Hashk(v1) = Hashk(v2)] ≤ 2−a,
where a = n · h2

(
1
2 − τ

)
+ 3.

– 2m-regularity: for each k ∈ K and h in the range of Hashk, |Hash−1k (h)| = 2m,
where m ≥ µn.

– preimage sets have minimum distance t + 1: for all k ∈ K, if v1 6= v2 but
Hashk(v1) = Hashk(v2), then dis(v1, v2) > t.

We demonstrate the existence of such a hash family in Lemma 4. Let Z be
the random variable consisting of pairs (k, h), where k is uniform in K and h is
uniform in the range of Hashk. Let Wz for z = (k, h) be the uniform distribution
on Hash−1k (h). By the 2m-regularity and minimum distance properties of Hash,
H∞(Wz) = Hfuzz

t,∞ (Wz) = m. Let W = {Wz}.
We now want to show that for a random z ← Z, if (key, p) is the output of

Gen(Wz), then key can be easily distinguished from uniform in the presence of
p and z. The intuition is as follows: in the absence of information about z, the
value w is uniform on M (by regularity of Hash). Knowledge of p reduces the

set of possible w from 2n to 2n·h2( 1
2−τ), because, by correctness of Rep, every

candidate input w to Gen must be such that all of its neighbors w′ of distance
at most t produce the same output of Rep(w′, p) (see Lemma 2). And knowledge
of z reduces the set of possible w by another factor of 2a, because a hash value
with a random hash function key likely gives fresh information about w (see
Lemma 3).
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To formalize the intuition of the previous two sentences, view the sequence
of events that we are trying to analyze as a game. The adversary chooses a
uniform k ∈ K and uniform h in the range of Hashk. A uniform w from M
s.t. Hashk(w) = h then gets chosen, (key, p) = Gen(w) gets computed, and the
adversary receives p. The output of this game is (k, h, w, p, key). Note that, by
regularity of Hashk, w is uniform in M.

Consider now an alternative game. A uniform w gets chosen fromM and uni-
form key k gets chosen from K. (key, p) = Gen(w) gets computed. The adversary
receives (k, h = Hashk(w), p). The output of the game is (k, h, w, p, key).

The distributions of the adversary’s views and the outputs in the two games
are identical: indeed, in both games, three random variable are uniform and
independent (i.e., w is uniform in M, k is uniform in K, and the random coins
of Gen are uniform in their domain), and the rest are determined fully by these
three. However, the second game is easier to analyze, which is what we now do.

The following lemma shows that the knowledge of p and key reduces the
entropy of w.

Lemma 2. Suppose M is {0, 1}n with the Hamming metric, κ ≥ 2, 0 ≤ t ≤
n/2, and ε ≥ 0. Suppose (Gen,Rep) is a (M,W, κ, t, ε)-fuzzy extractor with error
δ = 0, for some distribution family W over M. Let τ = t/n. For any fixed
p, there is a set GoodKeyp ⊆ {0, 1}κ of size at least 2κ−1 such that for every
key ∈ GoodKeyp,

log |{v ∈M|(key, p) ∈ supp(Gen(v))}| ≤ n · h2
(

1

2
− τ
)
≤ n ·

(
1− 2

ln 2
· τ2
)
,

and, therefore, for any distribution DM on M,

H0(DM|Gen(DM) = (key, p)) ≤ n · h2
(

1

2
− τ
)
≤ n ·

(
1− 2

ln 2
· τ2
)
.

Proof. The set GoodKeyp consists of all keys for which H0(M|Rep(M, p) =
key) ≤ 2n−κ+1.

The intuition is as follows. By perfect correctness of Rep, the input w to
Gen has the following property: for all w′ within distance t of w, Rep(w′, p) =
Rep(w, p). Thus, if we partitionM according to the output of Rep, the true w is
t away from the interior of a part. Interior sets are small, which means the set
of possible of w values is small. (We note that by perfect correctness, Rep has
a deterministic output even if the algorithm is randomized, so this partition is
well-defined.)

To formalize this intuition, fix p and partition M according to the output
of Rep(·, p) as follows: let Qp,key = {w′ ∈ M|Rep(w′, p) = key}. Note that there
are 2κ keys and thus 2κ parts Qp,key. Let GoodKeyp by the set of keys for which
these parts are not too large: key ∈ GoodKeyp ⇔ |Qp,key| ≤ 2 · M/2κ = 2n−κ+1.
Observe that GoodKeyp contains at least half the keys: |GoodKeyp| ≥ 2κ−1 (if not,
then ∪key|Qp,key| > |M|). For the remainder of the proof we focus on elements
in GoodKeyp.
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As explained above, if w is the input to Gen, then every point w′ within
distance t of w must be in the same part Qp,key as w, by correctness of Rep.
Thus, w must come from the interior of some Qp,key, where interior is defined as

Inter(Qp,key) = {w ∈ Qp,key|∀w′ s.t. dis(w,w′) ≤ t, w′ ∈ Qp,key} .

We now use the isoperimetric inequality to bound the size of Inter(Qp,key).
Define a near-ball6 centered at x to be any set S that is contained in a ball of
some radius η and contains the ball of radius η − 1 around x. The inequality
of [16, Theorem 1] (the original result is due to Harper [21]) says that for any sets
A,B ⊂ {0, 1}n, there are near-balls X and Y centered at 0n and 1n, respectively,
such that |A| = |X|, |B| = |Y |, and mina∈A,b∈B dis(a, b) ≤ minx∈X,y∈Y dis(x, y).

Letting A be the Inter(Qp,key) and B be the complement of Qp,key and ap-
plying this inequality, we get a near-ball Sp,key centered at 0n and a near-ball
D centered at 1n, such that |Sp,key| = |Inter(Qp,key)|, |D| = 2n − |Qp,key|, and
∀s ∈ Sp,key, d ∈ D, dis(s, d) > t. Note that since key ∈ GoodKeyp and κ ≥ 2, we
have |Qp,key| ≤ 2n−κ+1, and therefore |D| ≥ 2n−1.

Thus, D includes all the strings of Hamming weight dn/2e (because it is
centered at 1n and takes up at least half the space), which means that the
maximum Hamming weight of an element of Sp,key is dn/2e − t − 1 ≤ n/2 − t
(because each element of Sp,key is at distance more than t from D). We can now
use binary entropy to bound the size of Sp,key by Lemma 1:

|Inter(Qp,key)| = |Sp,key| ≤ |{x|dis(x, 0) ≤ n/2− t}| ≤ 2n·h2( 1
2−

t
n ) .

The theorem statement follows by taking the logarithm of both sides and
by observing (using Taylor series expansion at τ = 0 and noting that the third
derivative is negative) that h2

(
1
2 − τ

)
≤ 1− 2

ln 2 · τ
2. ut

We now analyze how the entropy drops further when the adversary learns
Hashk(w). Let K denote the uniform distribution on K. We defer the proof to
the full version of this work [18, Lemma B.2].

Lemma 3. Let L be a distribution. Let {Hashk}k∈K be a family of 2−a-universal
hash functions on the support of L. Assume k is uniform in K and independent
of L. Then

H̃0(L|K,HashK(L)) < log(1 + | supp(L)| · 2−a) ≤ max(1, 1 +H0(L)− a) .

Let M denote the uniform distribution on M. By Lemma 2, for any p,
H0(M|Gen(M) = (key, p) s.t. key ∈ GoodKeyp) ≤ n · h2

(
1
2 −

t
n

)
+ κ (because

there are most 2κ keys in GoodKeyp). Applying Lemma 3 (and recalling that
κ ≥ 3), we get that for any p,

H̃0(M|Gen(M) = (key, p) s.t. key ∈ GoodKeyp,K,HashK(M))

< max

(
1, 1 + n · h2

(
1

2
− t

n

)
+ κ− a

)
≤ κ− 2 .

6 In most statements of the isoperimetric inequality, this type of set is simply called
a ball. We use the term near -ball for emphasis.
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(Note carefully the somewhat confusing conditioning notation above, because
we are conditioning on both events and variables. The event is key ∈ GoodKeyp
and the variables are k and Hashk(M).)

By correctness, for a fixed p, Rep(w, p) can produce only one key—the same
one that was produces during Gen(w). Since applying a deterministic function
(in this case, Rep) cannot increase H0, we get that for each p,

H̃0(key|Gen(M) = (key, p) s.t. key ∈ GoodKeyp,K,HashK(M)) < κ− 2 .

Thus, on average over z = (k, h), over half the keys in GoodKeyp (i.e., over a
quarter of all possible 2κ keys) cannot be produced. Let Implausible be the set
of triples (key, p, z = (k, h)) such that Pr[Gen(Wz) = (key, p)] = 0. Triples drawn
by sampling w from Wz and computing (p, key) = Gen(w) never come from this
set. On other hand, random triples come Implausible at over quarter of the time.
Thus, by definition of statistical distance, ε > 1

4 .

It remains to show that the hash family with the desired properties exists.

Lemma 4. For any 0 ≤ τ < 1
2 , µ > 0, α, and n such that µ ≤ 1 − h2(τ) − 2

n
and µ ≤ 1−α− 2

n , there exists a family of hash functions {Hashk}k∈K on {0, 1}n
that is 2−a-universal for a = αn, 2m regular for m ≥ µn, and whose preimage
sets have minimum distance t+ 1 for t = τn.

Proof. Let C be the the set of all binary linear codes of rate µ (to be precise,
dimension m = dµne), length n, and minimum distance t+ 1:

C = {C|C is a linear subspace of {0, 1}n,dim(C) = m, min
c∈C−{0n}

dis(c, 0n) > t} .

For each C ∈ C, fix HC , an (n−m)×n parity check matrix for C, such that C =
kerHC . For v ∈ {0, 1}n, let the syndrome synC(v) = HC · v. Let {Hashk}k∈K =
{synC}C∈C .

2m regularity follows from the fact that for each h ∈ {0, 1}n−µn, Hash−1k (h) is
a coset of C, which has size 2m. The minimum distance property is also easy: if
v1 6= v2 but synC(v1) = synC(v2), thenHC(v1−v2) = 0n, hence v1−v2 ∈ C−{0n}
and hence dis(v1, v2) = dis(v1 − v2, 0) > t.

We show 2−a-universality by first considering a slightly larger hash family.
Let K′ be the set of all m-dimensional subspaces of {0, 1}n; for each C ′ ∈ K′,
choose a parity check matrix HC′ such that C ′ = kerHC′ , and let synC′(v) =
HC′ · v. Let {Hash′k′}k′∈K′ = {synC′}C′∈K′ . This family is 2m−n-universal: for
v1 6= v2, PrC′∈K′ [HC′ · v1 = HC′ · v2] = PrC′∈K′ [v1 − v2 ∈ kerHC′ = C ′] = 2m

2n ,
because C ′ is a random m-dimensional subspace. Note that this family is not
much bigger than our family {Hashk}k∈K, because, as long as µ < 1 − h2(τ),
almost every subspace of {0, 1}n of dimension m has minimum distance t+ 1 for
a sufficiently large n. Formally,
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Pr
C′∈K′

[C ′ /∈ C] = Pr
C′∈K′

[∃v1 6= v2 ∈ C ′ s. t. dis(v1, v2) ≤ t]

= Pr
C′∈K′

[∃v1 6= v2 ∈ C ′ s. t. dis(v1 − v2, 0n) ≤ t]

= Pr
C′∈K′

[∃v ∈ C ′ − {0n} s. t. dis(v, 0n) ≤ t]

≤
∑

v∈Bt(0n)−{0n}

Pr
C′∈K′

[v ∈ C ′] ≤ 2nh2(τ) · 2m

2n
≤ 1

2

(the penultimate inequality follows by Lemma 1 and the last one from m ≤ µn+1
and µ ≤ 1− h2(τ)− 2

n ).
Since this larger family is universal and at most factor of two bigger than

our family, our family is also universal:

Pr
C∈C

[synC(v1) = synC(v2)] =
|{C ∈ C|synC(v1) = synC(v2)}|

|C|

≤ |{C ∈ K
′|synC(v1) = synC(v2)}|

|K′|
· |K

′|
|C|
≤ 2m−n+1

Thus, we obtain the desired result as long as m−n+1 ≤ −a, which is implied
by the condition µ ≤ 1− α− 2

n and the fact that m ≤ µn+ 1. ut

Applying Lemma 4 with α = h2
(
1
2 − τ

)
+ 3
n , we see that the largest possible

µ is maxτ min
(
1− h2(τ), 1− h2

(
1
2 − τ

))
≈ 0.1887. Using the quadratic approx-

imation to h2
(
1
2 − τ

)
(see Lemma 2), we can let µ be a free variable and set

τ = .6
√
µ, in which case both constraints will be satisfied for all 0 < µ ≤ .18

and sufficiently large n, as in the theorem statement. This concludes the proof
of Theorem 2. ut

C Proof of Theorem 3

Proof. Similarly to the proof of Theorem 2, we will prove that any fuzzy extractor
fails for an average element of W: letting Z denote a choice of W from W, we
will show that SD((Key, P, Z), (Uκ, P, Z)) > 1

25 .
For completeness, we reiterate the family of distributions introduced in the

proof sketch. In this case, Z will not be uniform but rather binomial (with tails
cut off). Essentially, Z will contain each bit of w with (appropriately chosen)
probability β; given Z = z, the remaining bits of w will be uniform and inde-
pendent.

For a string z ∈ {0, 1,⊥}n, denote by info(z) the number of entries in z that
are not ⊥: info(z) = |{i s.t zi 6=⊥}|. Let Wz be the uniform distribution over
all strings in {0, 1}n that agree with z in positions that are not ⊥ in z (i.e., all
strings w ∈ {0, 1}n such that for 1 ≤ i ≤ n, either zi =⊥ or wi = zi).

Let 0 ≤ β′ ≤ 1 be a parameter (we will set it at the end of the proof).
Let Z ′ denote the distribution on strings in {0, 1,⊥}n in which each symbol is,



22 Benjamin Fuller, Leonid Reyzin, and Adam Smith

independently of other symbols, ⊥ with probability 1 − β′, 0 with probability
β′/2, and 1 with probability β′/2. Let β = β′ + 1.4√

n
. Consider two distribution

families: W ′ = {Wz}z←Z′ and a smaller family W = {Wz}z←Z , where Z =
Z ′|info(Z ′) ≤ βn (the second family is smaller because, although on average
info(Z ′) = β′n, there is a small chance that info(Z ′) is higher than even βn).

We will use W to prove the theorem statement. First, we will show that
every distribution Wz ∈ W has sufficient Hfuzz

t,∞ . Indeed, z constrains info(z)
coordinates out of n and leaves the rest uniform. Thus, Hfuzz

t,∞ (Wz) is the same as

Hfuzz
t,∞ of the uniform distribution on the space {0, 1}n−info(z). Let a = n−info(z).

By Lemma 1

Hfuzz
t,∞ (Wz) ≥ a

(
1− h2

(
t

a

))
≥ n(1− β)

(
1− h2

(
t

n(1− β)

))
= n(1− β)

(
1− h2

(
τ

1− β

))
.

and therefore

µ = (1− β)

(
1− h2

(
τ

1− β

))
. (1)

Note that smaller β gives a higher fuzzy entropy rate.
Second, we now want to show, similarly to the proof of Theorem 2, that

SD((Key, P, Z), (Uκ, P, Z)) > 1
25 . We will do so by considering the family W.

Observe that by triangle inequality

SD((Key, P, Z), (Uκ, P, Z)) ≥ SD((Key, P, Z ′), (Uκ, P, Z
′))

− SD((Key, P, Z ′), (Key, P, Z))

− SD((Uκ, P, Z), (Uκ, P, Z
′))

≥ SD((Key, P, Z ′), (Uκ, P, Z
′))− 2 · SD(Z ′, Z)

≥ SD((Key, P, Z ′), (Uκ, P, Z
′))− 1

25
.

The last line follows by Hoeffding’s inequality [23],

SD(Z ′, Z) = Pr[info(Z ′) > βn] ≤ exp

(
−2n

(
1.4√
n

)2
)
<

1

50
.

Denote SD((Key, P, Z ′), (Uκ, P, Z
′)) by ε′. To bound ε′, we recall a result of

Holenstein and Renner [25, Theorem 4] (we will use the version presented in
[24, Lemma 4.4]). For a random variable W with a values in {0, 1}n, let Wnoisy

denote a noisy copy of W : namely, the random variable obtained by passing W
through a binary symmetric channel with error rate 1−α

2 (that is, Wnoisy
i = Wi

with probability 1+α
2 and Wnoisy

i = 1−Wi with probability 1−α
2 , independently

for each position i). Holenstein and Renner show that if α2 ≤ β, then Shannon
entropy of Key conditioned on P and Wnoisy is greater than Shannon entropy
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of Key conditioned on Z and Wnoisy . Intuitively, this means that the Rep, when
given P and Wnoisy , knows less about Key than the adversary (who knows P
and Z).

Recall the definitions of Shannon entropy H1(X)
def
= Ex←X − log Pr[X = x]

and conditional Shannon entropy H1(X|Y )
def
= Ey←Y H1(X|Y = y).

Theorem 5 ([25, Theorem 4]; [24, Lemma 4.4]). Suppose that (P,Key) is
a pair of random variables derived from W . If α2 ≤ β′, then

H1(Key|P,Z ′) ≤ H1(Key|P,W noisy)

where H1 denotes Shannon entropy, Wnoisy is W passed through a binary sym-
metric channel with error rate 1−α

2 , and Z ′ is W passed through a binary erasure
channel with erasure rate 1− β′.

(For a reader interested in how our statement of Lemma 5 follows from [24,
Lemma 4.4], note that what we call Key, P,W noisy , and Z ′ are called U, V, Y ,
and Z, respectively, in [24]. Note also that we use only the part of the lemma
that says that secret key rate S→ = 0 when α2 ≤ β, and the definition [24,
Definition 3.1] of the notion S→ in terms of Shannon entropy.)

We now need to translate this bound on Shannon entropy to the language of
statistical distance ε of the key from uniform, reliability δ of the procedure Rep,
and key length κ, as used in the definition of fuzzy extractors. First, we will do
this translation for the case of noisy rather than worst-case input to Rep.

Corollary 1. Let (W,Wnoisy , Z ′) be a triple of correlated random variables such
that

– W and Wnoisy are uniform over {0, 1}n,
– Wnoisy is W passed through a binary symmetric channel with error rate

1−α
2 (that is, each bit position of W agrees with corresponding bit position

of Wnoisy with probability 1+α
2 ), and

– Z ′ is W passed through a binary erasure channel with erasure rate 1 − β′
(that is, each bit position of Z ′ agrees with the corresponding bit position of
W with probability β′ and is equal to ⊥ otherwise).

Suppose Gen(W ) produces (Key, P ) with Key of length κ. Suppose Pr[Rep(Wnoisy ,
P ) = Key] = 1 − δ′]. Suppose further that SD((Key, P, Z ′), (Uκ, P, Z

′)) = ε′. If
α2 ≤ β′, then

κ ≤ h2(ε′) + h2(δ′)

1− ε′ − δ′
.

In other words, if α2 ≤ β′, ε′ ≤ 1
12 , and δ′ ≤ 1

12 , then even a 1-bit Key is
impossible to obtain.

(We note that a similar result follows from [24, Theorem 3.17] if we set the
variables S→, γ, and m in that theorem to 0, δ, and κ, respectively. However, we
could not verify the correctness of that theorem due to its informal treatment of
what “ε-close to uniform” means; it seems that the small correction term −h2(ε),
just like in our result, is needed on the right-hand side to make that theorem
correct.)



24 Benjamin Fuller, Leonid Reyzin, and Adam Smith

Proof. Reliability allows us to bound the entropy of the key. By Fano’s inequality
[15, Section 6.2, p. 187], H1(Key|P,W noisy) ≤ κδ′+h2(δ′). Hence, by Theorem 5
(and the assumption that α2 > β′), we have

H1(Key|P,Z ′) ≤ κδ′ + h2(δ′). (2)

We now need the following lemma, which shows that near-uniformity implies
high entropy.

Lemma 5. For a pair of random variables (A,B) such that the statistical dis-
tance between (A,B) and Uκ ×B is ε, then H1(A|B) ≥ (1− ε)κ− h2(ε) .

Proof. Let E denote a binary random variable correlated with (A,B) as follows:
when A = a and B = b, then E = 0 with probability

max(Pr[(A,B) = (a, b)]− Pr[Uκ ×B = (a, b)], 0) .

Similarly, let F denote a binary random variable correlated with Uκ × B as
follows: when Uκ = a and B = b, then F = 0 with probability

max(Pr[Uκ ×B = (a, b)]− Pr[(A,B) = (a, b)], 0) .

Note that Pr[E = 0] = Pr[F = 0] = ε, by definition of statistical distance.
Note also that (A,B|E = 1) is the same distribution as (Uκ × B|F = 1). Since
conditioning cannot increase Shannon entropy (by a simple argument — see,
e.g., [2, Theorem 1.4.4]), we get

H1(A|B) ≥ H1(A|B,E)

= Pr[E = 1]H1(A|B,E = 1) + Pr[E = 0]H1(A|B,E = 0)

≥ (1− ε)H1(A|B,E = 1) = (1− ε)H1(Uκ|B,F = 1).

To bound this latter quantity, note that (the first line follows from the chain
rule H1(X) ≤ H1(X,Y ) = H1(X|Y ) +H1(Y ) [2, Theorem 1.4.4])

κ = H1(Uκ|B) ≤ H1(Uκ|B,F ) +H1(F )

= (1− ε)H1(Uκ|B,F = 1) + ε ·H1(Uκ|B,F = 0) + h2(ε)

≤ (1− ε)H1(Uκ|B,F = 1) + ε · κ+ h2(ε)

Rearranging terms, we get H1(Uκ|B,F = 1) ≥ κ− h2(ε)/(1− ε), and thus

H1(A|B) ≥ (1− ε)κ− h2(ε) .

This concludes the proof of Lemma 5. ut

Combining (2) and Lemma 5 (applied to A = Key, B = (P,Z ′), and ε = ε′),
we get the claimed bound. This concludes the proof of Corollary 1. ut
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Next, we translate this result from the noisy-input-case to the worst-case

input case. Set α =
√
β′. Suppose t ≥ n

(
1−
√
β′

2 + 1.4√
n

)
. By Hoeffding’s inequal-

ity [23],

Pr[dis(W,Wnoisy) > t] ≤ exp

(
−2n

(
1.4√
n

)2
)
<

1

50
.

Thus, a fuzzy extractor that corrects t errors with reliability δ implies that
Pr[Rep(Wnoisy , P ) = Key] ≥ 1− δ′] for δ′ = δ+ 1

50 . Since δ ≤ 1/25, we have δ′ <
1/12 and Corollary 1 applies to gives us ε′ > 1/12 and ε > 1/12− 1/25 > 1/25
as long as κ > 0.

Finally, we work out the relationship between µ and τ and eliminate β, as
follows. Recall that β = β′ + 1.4√

n
; therefore

√
β ≤

√
β′ + 1.2

n1/4 , and it suffices to

take τ ≥ 1−
√
β

2 + 2
4
√
n

. Thus, we can set any τ > 1−
√
β

2 as long as n is sufficiently

large. Solving for β (that is, taking any β > (1 − 2τ)2) and substituting into

Equation 1, we can get any µ < 4τ(1 − τ)
(

1− h2
(

1
4−4τ

))
for a sufficiently

large n. ut

D Proof of Theorem 4

Proof. Similarly to the proof of Theorem 2, we will prove that any secure sketch
algorithm fails for an average element of W: letting Z denote a uniform choice
of W from W, we will show that H̃∞(WZ |SS(WZ), Z) ≤ 2. The overall proof
strategy is the same as for Theorem 2. We highlight only the changes here.
Recall that |Bt| denotes the volume of the ball of radius t in the space {0, 1}n.
The parameters of the hash family are the same, except for universality: we
require 2−a-universality for a = (n− log |Bt|+ h2(2δ))/(1− 2δ) .

We postpone the question of the existence of such a hash family until the
end of the proof.

We can now state and the analogue of Lemma 2. This result is an extension
of lower bounds from [13, Appendix C], which handles only the case of perfect
correctness. It shows that the value of the sketch reduces the entropy of a uniform
point by approximately log |Bt|.

Lemma 6. Let M denote the Hamming space {0, 1}n and |Bt| denote the vol-
ume of a Hamming ball of radius t in {0, 1}n. Suppose (SS,Rec) is a (M,W, m̃, t)
secure sketch with error δ, for some distribution family W overM. Then for ev-
ery v ∈ M there exists a set GoodSketchv such that Pr[SS(v) ∈ GoodSketchv] ≥
1/2 and for any fixed ss,

log |{v ∈M|ss ∈ GoodSketchv}| ≤
n− log |Bt|+ h2(2δ)

1− 2δ
,

and, therefore, for any distribution DM over M,

H0(DM|ss ∈ GoodSketchDM) ≤ n− log |Bt|+ h2(2δ)

1− 2δ
.
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Proof. For any v ∈ M , define Neight(v) be the uniform distribution on the ball
of radius t around v and let

GoodSketchv = {ss| Pr
v′←Neight(v)

[Rec(v′, ss) 6= v] ≤ 2δ]} .

We prove the lemma by showing two propositions.

Proposition 2. For all v ∈M, Pr[SS(v) ∈ GoodSketchv] ≥ 1/2.

Proof. Let the indicator variable 1v′,ss be 1 if Rec(v′, ss) = v and 0 otherwise.
Let qss be the quality of the sketch on the ball Bt(v):

qss = Pr
v′←Neight(v)

[Rec(v′, ss) = v] = E
v′∈Neight(v)

1v′,ss .

By the definition of correctness for (SS,Rec), for all v′ ∈ Bt(v),

Pr
ss←SS(v)

[Rec(v′, ss) = v] ≥ 1− δ .

Hence, Ess←Gen(v) 1v′,ss ≥ 1− δ. Therefore,

E
ss←Gen(v)

qss = E
ss
E
v′

1v′,ss = E
v′
E
ss

1v′,ss ≥ E
v′

(1− δ) = 1− δ .

Therefore, applying Markov’s inequality to 1 − qss, we get Pr[qss ≥ 1 − 2δ] =
Pr[1− qss ≤ 2δ] ≤ 1/2. ut

To finish the proof of Lemma 6, we will show that the set {v ∈ M|ss ∈
GoodSketchv} forms a kind of error-correcting code, and then bound the size of
the code.

Definition 6. We say that a set C is an (t, δ)-Shannon code if there exists a
(possibly randomized) function Decode such that for all c ∈ C,

Pr
c′←Neight(c)

[Decode(c′) 6= c] ≤ δ.

The set {v ∈ M|ss ∈ GoodSketchv} forms (t, 2δ) Shannon code if we set
Decode(y) = Rec(y, ss). We now bound the size of such a code.

Proposition 3. If C ⊆ {0, 1}n is a (t, δ)-Shannon code, then

log |C| ≤ n− log |Bt|+ h2(δ)

1− δ
.

Proof. Let the pair of random variables (X,Y ) be obtained as follows: let X be
a uniformly chosen element of C and Y be a uniformly chosen element of the
ball of radius t around Y . By the existence of Decode and Fano’s inequality [15,
Section 6.2, p. 187], H1(X|Y ) ≤ h2(δ) + δ log |C|. At the same time, H1(X|Y ) =
H1(X)−H1(Y )+H1(Y |X) (because H1(X,Y ) = H1(X)+H1(Y |X) = H1(Y )+
H1(X|Y )), and therefore H1(X|Y ) ≥ log |C|−n+log |Bt| (because H1(Y ) ≤ n).
Therefore, log |C| − n + log |Bt| ≤ h2(δ) + δ log |C|, and the lemma follows by
rearranging terms. ut
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Lemma 6 follows from Proposition 3. ut

We now show that entropy drops further when the adversary learns Hashk(w).
Let M denote the uniform distribution on M and K denote the uniform distri-
bution on K. Applying Lemma 3 to Lemma 6, we get that for any ss,

H̃0(M|ss ∈ GoodSketchM,K,HashK(M))

< max

(
1, 1 +

n− log |Bt|+ h2(2δ)

1− 2δ
− a
)
. (3)

To complete the proof, we will use this bound on H̃0 as a bound on H̃∞,
as justified by the following lemma (proof in the full version of this work [18,
Lemma D.7]).

Lemma 7. For any random variables X and Y , H̃∞(X|Y ) ≤ H̃0(X|Y ).

We need just one more lemma before we can complete the result, an analogue
of [13, Lemma 2.2b] for conditioning on a single value Z = z rather than with Z
on average (we view conditioning on a single value as equivalent to conditioning
on an event). The proof of this lemma is natural and is shown in the full version
of this work [18, Lemma D.8].

Lemma 8. For any pair of random variables (X,Y ) and event η that is a (pos-
sibly randomized) function of (X,Y ), H̃∞(X|η, Y ) ≥ H̃∞(X|Y )− log 1/Pr[η].

Combining Lemmas 8 and 7 with Equation 3, we get

H̃∞(WZ |Z,SS(WZ)) = H̃∞(M|SS(M),K,HashK(M))

≤ log
1

Pr[SS(M) ∈ GoodSketchM]
+

H̃∞(M|ss s.t. ss = SS(M) and ss ∈ GoodSketchM,K,HashK(M))

≤ log
1

Pr[SS(M) ∈ GoodSketchM]
+

H̃0(M|ss s.t. ss = SS(M) and ss ∈ GoodSketchM,K,HashK(M))

< log
1

Pr[SS(M) ∈ GoodSketchM]
+ max

(
1, 1 +

n− log |Bt|+ h2(2δ)

1− 2δ
− a
)
.

We can have shown that H̃∞(WZ |Z,SS(WZ)) ≤ 2, because the first term of the
above sum is at most 1 by Proposition 2 and the second term is 1 by our choice

of a as a = n−log |Bt|+h2(2δ)
1−2δ .

It remains to show that the desired hash family exists. Note in that (be-
cause δ < .25) setting any α ≥ 1 − h2(τ) + .5 logn+4δn+2

n and choosing an
αn-universal hash function will be sufficient, because, by Lemma 1, log |Bt| ≥
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nh2(τ)− 1
2 log n− 1, and so

a =
n− log |Bt|+ h2(2δ)

1− 2δ
≤n · 1− h2(τ) + (.5 log n+ 1 + h2(2δ))/n

1− 2δ

<n · (1− h2(τ) +
.5 log n+ 1 + h2(2δ)

n
+ 4δ)

≤n ·
(

1− h2(τ) +
.5 log n+ 4δn+ 2

n

)
≤n · α

(the second inequality is true because for any x < 1 and 0 < y < .5, x/(1− y) <
x+2y, because x < (x+2y)(1−y), because 0 < y(2−x−2y); the third inequality
follows from h2(2δ) < 1).

Such a hash family exists by Lemma 4 as long as µ ≤ 1−α− 2/n ≤ h2(τ)−
(.5 log n+ 4δn+ 4)/n and µ ≤ 1− h2(τ)− 2/n). ut
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