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Abstract. KDM[F]-CCA secure public-key encryption (PKE) protects
the security of message f(sk), with f € F, that is computed directly from
the secret key, even if the adversary has access to a decryption oracle.
An efficient KDM[Fag]-CCA secure PKE scheme for affine functions was
proposed by Lu, Li and Jia (LLJ, EuroCrypt2015). We point out that
their security proof cannot go through based on the DDH assumption.

In this paper, we introduce a new concept Authenticated Encryption
with Auziliary-Input AIAE and define for it new security notions dealing
with related-key attacks, namely IND-RKA security and weak INT-RKA
security. We also construct such an AIAE w.r.t. a set of restricted affine
functions from the DDH assumption. With our AIAE,

— we construct the first efficient KDM[F,5]-CCA secure PKE w.r.t.
affine functions with compact ciphertexts, which consist only of a
constant number of group elements;

— we construct the first efficient KDM[FZ,,]-CCA secure PKE w.r.t.
polynomial functions of bounded degree d with almost compact ci-
phertexts, and the number of group elements in a ciphertext is poly-
nomial in d, independent of the security parameter.

Our PKEs are both based on the DDH & DCR assumptions, free of
NIZK and free of pairing.

Keywords: Public-key encryption, Key-dependent messages, Chosen-
ciphertext security, Authenticated encryption, Related-key attack

1 Introduction

Traditional Chosen-Ciphertext Attack (CCA) security of a public-key encryption
(PKE) scheme considers the security of messages chosen by an adversary, even if
the adversary obtains the public key pk, challenge ciphertexts of the messages,
and has access to a decryption oracle (which provides decryption services to
the adversary but refuses to decrypt the challenge ciphertexts). Note that the
adversary cannot compute messages directly from secret keys, since it does not
possess the secret keys. Therefore, CCA security does not cover the corner, where
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messages closely depend on the secret keys, say the secret keys themselves or
functions of the secret keys. This issue was first identified in [GM84]. Later the
security of key-dependent messages was formalized as KDM-security [BRS02].
KDM-security is an important notion, and has found wide applications, like hard
disk encryption [BHHOOS], cryptographic protocols [CLO1], etc.

KDM-security w.r.t. a set of functions F is denoted by KDM[F]-security.
The larger F is, the stronger the security is. Roughly speaking, n-KDM|[F]-
security of PKE considers such a scenario: an adversary is given public keys
(pk1,pka,- - ,pky) of n users and an encryption oracle. Whenever the adversary
queries a function f € F, the encryption oracle will always reply with an encryp-
tion of a constant say 0, or always reply with an encryption of f(sky, ska,- -, sky).
If the adversary cannot tell which case it is, the PKE is n-KDM[F]-CPA se-
cure. If the adversary has also access to a decryption oracle in the scenario,
then KDM[F]-CPA security is improved to KDM[F]-CCA security. Obviously,
KDM-CCA security notion is stronger than KDM-CPA.

KDM|[F]-CPA Security. The BHHO scheme [BHHOO08] was the first PKE
achieving KDM[F,g]-CPA security based on the Decisional Diffie-Hellman (DDH)
assumption, where F,g denotes the set of affine functions. It was later generalized
by Brakerski and Goldwasser [BG10] to KDM[F.g]-CPA secure PKE schemes
based on the Subgroup Indistinguishability Assumption (including the QR and
the DCR assumptions). These schemes have incompact ciphertexts containing
O(¥¢) group elements, where ¢ denotes the security parameter.

A variant of Regev’s scheme [Reg05] was shown to be KDM[F,g]-CPA secure
and has compacter ciphertexts by Applebaum et al. [ACPS09].

Barak et al. [BHHI10] proposed KDM-CPA secure PKE w.r.t. a very large
function set, i.e., the function set of boolean circuits of bounded size p = p(¥).
However, their scheme is inflexible and highly impractical, since its encryption
algorithm depends on the bound p and the number of users, and the ciphertext
contains a garbled circuit of size at least p = p(¥).

Brakerski et al. [BGK11] amplified the BHHO scheme to KDM[fgoly]—CPA
security w.r.t. the set of polynomial functions of bounded degree d. However,
their ciphertext contains O(¢9*1) group elements.

It is Malkin et al. [MTY11] who designed the first efficient PKE scheme
achieving KDM[.FgOly]—CPA security. Their ciphertext contains only O(d) group
elements, thus d can be polynomial in £ in their case. The function set fgoly is
characterized by a polynomial-size Modular Arithmetic Circuit in [MTY11].

KDM|[F]-CCA Security. KDM[F]-CCA security of PKE is far more diffi-
cult to design than KDM[F]-CPA security. Camenisch et al. [CCS09] gave the
first solution, following Naor-Yung’s paradigm, which needs a KDM-CPA secure
PKE, a CCA-secure PKE and a non-interactive zero-knowledge (NIZK) proving
that the two PKEs encrypt the same message.

NIZK is not practical in general, except Groth-Sahai proofs [GS08]. When
following [CCS09]’s approach, the only possible way to get an efficient KDM-
CCA secure PKE, is using Groth-Sahai proofs together with an efficient KDM-
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CPA secure PKE. However, many existing efficient KDM-CPA secure schemes,
such as [ACPS09, MTY11], are not based on pairing-friendly groups, thus not
compatible with Groth-Sahai’s efficient NIZK.

Another work by Galindo et al. [GHV12] is based on the Matrix DDH as-
sumption over pairing-friendly groups. Their scheme has compact ciphertexts,
but only obtains a bounded form of KDM-CCA security, i.e., the number of
encryption queries is limited to be linear in the size of the secret key.

To get an efficient KDM-CCA secure PKE, Hofheinz [Hof13] proposed an-
other approach, which uses a new tool called “lossy algebraic filter”. His work
results in the first PKE enjoying both KDM-CCA security and compact cipher-
texts (consisting only of a constant number of group elements). However, the
function set Feir. only consists of selection functions f(sky,- -, sky,) = sk; and
constant functions.

It is quite challenging to enlarge F for KDM[F]-CCA security while still
keeping PKE efficient. One effort was recently made by Lu, Li and Jia [LLJ15],
who proposed the first efficient KDM[F,g]-CCA secure PKE with compact ci-
phertexts. We call their construction the LLJ scheme. There is an essential
building block called “Authenticated Encryption” (AE) in their scheme. The
KDM|[F.g]-CCA security heavily relies on a so-called INT-F,g-RKA security of
AE. INT-F,q-RKA security of AE means that a PPT adversary cannot forge a
fresh forgery (f*,ae.ct*) such that E.Decf*(k)(ﬁ.ct*) # 1, even if the adversary

observes multiple outputs of E.Encfj(k) (m;) with his choice of (f;, m;). Unfor-

tunately, we found that the INT-F,g-RKA security proof of the specific AE does
not go through to the DDH assumption, which in turn affects the KDM[F,g]-
CCA security proof of the LLJ scheme. Our essential observation is that the
DDH adversary is not able to employ the fresh forgery from the adversary of AE
to solve the DDH problem, since the DDH adversary does not have any trapdoor
to convert the computing power (forgery) to a decision bit.

As for KDM[fgoly]—CCA security, [CCS09]’s paradigm is the unique path to
it up to now. Unfortunately, the only efficient KDM[]:goly]—CPA secure scheme
[MTY11] does not compose well with Groth-Sahai proofs, so it has to resort to
the general NIZK. Other KDM[}"gOly]—CPA secure schemes either is highly im-
practical [BHHI10] or has ciphertext containing O(¢4+1) group elements [BGK11],

which grows exponentially with the degree d.

Our Contribution. We work on the design of efficient PKE with KDM[F,g]-
CCA security and KDM[F? | ]-CCA security.

poly

— We identify the proof flaw in [LLJ15], where an efficient KDM|[F,q]-CCA
secure PKE was claimed. We show that for “Authenticated Encryption” (AE)
used in the LLJ scheme, the INT-F,g-RKA security reduction to the DDH
assumption does not work. This proof flaw directly affects the KDM[F,g]-
CCA security proof of the LLJ scheme.

— We provide the first efficient KDM[F,g]-CCA secure PKE w.r.t. affine func-
tions with compact ciphertexts. Our scheme has ciphertexts consisting only
of a constant number of group elements and is free of NIZK.
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— We provide the first efficient KDM[Fg,, ]-CCA secure PKE w.r.t. polynomial
functions of bounded degree d with almost compact ciphertexts. Our scheme
is free of NIZK. The number of group elements in a ciphertext is polynomial

in d, independent of the security parameter £.

We summarize known PKEs either achieving KDM-CCA security or against

function set ]-"goly in Table 1.

Table 1. Comparison between PKEs either achieving KDM-CCA security or against
function set }'goly. Here / is the security parameter. Feirc, Fag and J-"goly denote the set
of selection functions, the set of affine functions and the set of polynomial functions of
bounded degree d, respectively. “CCA” means the scheme is KDM-CCA secure. “Free
of Pairing” asks whether the scheme is free of pairing. |CT| shows the size of ciphertext.
G, Zys, Zyn2 and Zy are the underlying groups. s can be any integer greater than 1.

The symbol “?” means that the security proof is not rigorous.

Scheme Set | CCA? | Free of Pairing? |CT| Assumption
[BHHOO8] + [CCS09]| Farr | +/ - (6¢ + 13)[G]| DDH
[BGK11] Flay| - i (€G] DDH or LWE
IMTY11] Flay| - i (d+ 2)|Zns]| DCR
[Hof13] Fere| v - 6Zys| + 49|G| DDH & DCR
[LLJ15] Fax| 7 v S1Zw2l 4 31Zx1 | ypy g DOR
+ 1Zx|
Our scheme in §5 | Fag v 4 ONZn2| + Oz | DDH & DCR
+ 2|Z|
9
Our scheme in §6  |Fl,| +/ v OIZn| —:_(SIdZ _—7 Dizne| DDH & DCR
N

Our Approach. The challenge for KDM[F]-CCA security of PKE lies in the
fact that the adversary A has multiple access to the encryptions of f(sk) and de-
cryption oracle Dec(sk, -), with f € F and sk the secret key. Let us consider only
one secret key for simplicity. The information of sk might be leaked completely
via encryptions of f(sk).

To solve this problem, we follow a KEM+DEM style and construct our PKE
with three building blocks: KEM, £ and AIAE, as shown in Fig. 1.

e We propose a new concept “Authenticated Encryption with Auziliary-Input”
(AIAE). We define for it new security notions dealing with related-key at-
tacks, namely weak INT-F'-RKA security and IND-F'-RKA security.

e We design the other building blocks KEM and £. KEM.Enc encapsulates a
key k for AIAE, and the encapsulation kem.ct serves as an auxiliary input
aux for AIAE.Enc. &£.Enc encrypts m to get a ciphertext £.ct, which serves
as an input for AIAE.Enc.

We show how to achieve KDM[F]-CCA security with our three building blocks.

— £.Enc can behave like an entropy filter (the concept was named in [LLJ15])
for F. That is, through some computationally indistinguishable change, some
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ENCRYPTION DECRYPTION

kem.ct=aux : kem.ct :
l L L [ KEM.Dec
: : ::Ik

aiae.ct
T T

AIAE.Enc AIAE.Dec | £.ct m
> &.Dec I—v—P-

Fig. 1. Our approach of PKE construction. Here KEM and £ share the same pub-
lic/secret key pair. AIAE.Enc uses k output by KEM to encrypt £.ct with auxiliary
input aux := kem.ct, and outputs ciphertext aiae.ct.

entropy of sk is always reserved even if multiple encryptions of f;(sk) are
given to A. Here f; € F is chosen by A.

— The fresh keys k; used by AIAE.Enc can be expressed as functions of a base
key k*, i.e., kj = fi(k"), where fI € F' for some function set F'. We stress
that 7’ might be different from F.

— KEM.Enc is able to use the remaining entropy of sk to protect the base key
k*, via some computationally indistinguishable change.

— The weak INT-F'-RKA security of AIAE guarantees: given multiple ATAE
ciphertext-auxiliary input pair (aiae.ct;, aux;) encrypted by fj’-(k*), it is in-
feasible for a PPT algorithm to forge a new (f’,aiae.ct, aux) satisfying (1)
AIAE.Dec /(,+)(aiae.ct,aux) # L; (2) if aux = aux; for some j then f’' = fI.

— Decryption oracle can reject all invalid ciphertexts that are not properly
generated by the encryption algorithm, via some computationally indistin-
guishable change. If the invalid ciphertext makes KEM.Dec decapsulate a
key f'(k*), AIAE.Dec will output L, due to its weak INT-F'-RKA security.
Otherwise, the invalid ciphertext will be rejected by £.Dec or KEM.Dec, due
to the remaining entropy of sk. As a result, no extra information about sk
is leaked.

— The IND-F'-RKA security of AIAE ensures: given multiple ATAE ciphertext-
auxiliary input pair (aiae.ct;,aux;) with key f;(k") encrypting either mg or
my, it is infeasible for a PPT algorithm to distinguish which case it is, even
if f; € 7' is submitted by the algorithm.

— By the IND-F-RKA security of AIAE, the encryption of £.ct can be replaced
with an encryption of all zeros. Then the KDM[F]-CCA security follows.

With this approach, we can construct PKEs possessing KDM[F,4]-CCA and

KDM[.FgOly]-CCA security respectively, by designing specific building blocks.

Comparison with LLJ. We inherit the idea of utilizing RKA security of AE
to achieve KDM security from LLJ. However, our approach deviates from LLJ
in three aspects.

1. The structure of our scheme is different from LLJ. It is also possible to
explain the LLJ scheme with three components KEM, £ and AE. However,
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their components were composed in a different way. In the LLJ scheme, the
output kem.ct of KEM serves as an additional input for £.Enc. With their
structure, £ is expected to authenticate kem.ct. In our approach, kem.ct is
the auxiliary input of AIAE, thus can be authenticated by AIAE.

2. The syntax and security requirements of our AIAE are different from LLJ’s
AE. Their AE does not support auxiliary input, and the security proof of
their AE instantiation has some problem, as shown in Section 3.

3. Our KEM and & are newly designed building blocks which compose well
with our AIAE. We give two designs of £ to support KDM[F,g]-CCA and
KDM[F4 | ]-CCA security respectively.

poly

2 Preliminaries

Let ¢ € N denote the security parameter. For ¢, 5 € N with ¢ < j, define [i, j] :=
{t,i +1,---,5} and [j] := {1,2,---,4}. Denote by s +s S the operation of
picking an element s from set S uniformly at random. For an algorithm A, denote
by y <s A(x;r), or simply y <s A(z), the operation of running A with input x
and randomness r and assigning output to y. Let € denote the empty string. For
a primitive XX and a security notion Y'Y, we typically denote the advantage of a
PPT adversary A by Adv;{&’A(E) and define Advyx (¢) := maxppr.4 Adv}g(’A(ﬂ).

Let 2-%() denote the value upper bounded by 2= for some constant ¢ > 0.

Games. Our security proof will be game-based security reductions. A game G
starts with an INITIALIZE procedure and ends with a FINALIZE procedure. There
are also some optional procedures PROCy, - ,PROC, performing as oracles.
All procedures are described using pseudo-code, where initially all variables are
empty strings € and all sets are empty. An adversary A is executed in game G
if it first calls INITIALIZE, obtaining its output. Then the adversary may make
arbitrary oracle-queries to procedures PROC; according to their specification, and
obtain their outputs. Finally it makes one single call to FINALIZE. By G* = b
we means that G outputs b after interacting with A, and b is in fact the output

of FINALIZE. By a £ § we mean that a equals b or is computed as b in game G.

2.1 Public-Key Encryption and KDM-CCA Security

A public-key encryption (PKE) scheme is made up of four PPT algorithms
PKE = (Setup, Gen, Enc, Dec): Setup(1¢) generates a public parameter prm, which
implicitly defines a secret key space SK and a message space M; Gen(prm) takes
as input the public parameter prm and generates a public/secret key pair (pk, sk);
Enc(pk,m) takes as input the public key pk and a message m, and outputs a
ciphertext pke.ct; Dec(sk, pke.ct) takes as input the secret key sk and a ciphertext
pke.ct and outputs either a message m or a failure symbol L. The correctness of
PKE requires that, for all prm s Setup(1¢), all (pk, sk) <—s Gen(prm), all m € M
and all pke.ct <—s Enc(pk, m), it holds that Dec(sk, pke.ct) = m.

Let n € N and F be a family of functions from SK™ to M. We define the
n-KDM[F]-CCA security via the security game in Fig. 2.
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Procedure INITIALIZE: Procedure ENC(f € F,i € [n]):
prm s Setup(1%). my := f(skq,--- ,skn), mg = 0™
For ¢ € [n] pke.ct <—s Enc(pk;, mg).
(pk;, ski) <—s Gen(prm). Qene = Qene U {(pke.ct,i)}.

B +«s{0,1}.  //challenge bit | Return pke.ct.
Return (prm, pky,- -, pk,,).

Procedure DEC(pke.ct,i € [n]):
Procedure FINALIZE(S'): If (pke.ct,i) € Qenc, Return L.
Return (8’ = B). Return Dec(sk;, pke.ct).

Fig. 2. n-KDM[F]-CCA security game for PKE.

Definition 1 (KDMJ[F]-CCA Security for PKE). Scheme PKE is n-KDM|F]-
CCA secure if for any PPT adversary A, Adv’é‘éﬁjca(ﬁ) = Pr[n—KDM[]—"}—CCAA
= 1] — 1/2| is negligible in ¢, where game n-KDM[F]-CCA is specified in Fig. 2.

2.2 Key Encapsulation Mechanism

A key encapsulation mechanism (KEM) consists of three PPT algorithms KEM =
(KEM.Gen, KEM.Enc, KEM.Dec): KEM.Gen(1¢) outputs a public/secret key pair
(pk, sk); KEM.Enc(pk) uses the public key pk to compute a key k and a ciphertext
(or encapsulation) kem.ct; KEM.Dec(sk, kem.ct) takes as input the secret key sk
and a ciphertext kem.ct, and outputs either a key k or a failure symbol L.
The correctness of KEM requires that, for all (pk,sk) <—s KEM.Gen(1¢) and all
(k, kem.ct) <—s KEM.Enc(pk), it holds that KEM.Dec(sk, kem.ct) = k.

2.3 Authenticated Encryption: One-Time Security and Related-Key
Attack Security

Definition 2 (Authenticated Encryption). An authenticated encryption (AE)
scheme AE = (AE.Setup, AE.Enc, AE.Dec) consists of three PPT algorithms:

e AE.Setup(1%) outputs a system parameter prmag, which is an implicit input
to AE.Enc and AE.Dec. The parameter prmag implicitly defines a message
space M and a key space Kag.

e AE.Enc(k,m) takes as input a key k € Kag and a message m € M, and
outputs a ciphertext ae.ct.

e AE.Dec(k, ae.ct) takes as input a key k € Kag and a ciphertext ae.ct, and
outputs a message m € M or a rejection symbol L.

Correctness of AE requires that, for all prmag s AE.Setup(1%), all k € Kag, all
m € M and all ae.ct <—s AE.Enc(k,m), it holds that AE.Dec(k, ae.ct) = m.

The security notions for AE include One-time ciphertext-indistinguishability
(IND-OT) and One-time ciphertext-integrity (INT-OT). The IND-OT and INT-
OT securities of AE are formalized via the security games in Fig. 3.
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Procedure INITIALIZE:

prm,e <s AE.Setup(1°), k s Kae.
B <+s {0,1}. // challenge bit
Return prmpe.

Procedure INITIALIZE:
prmae <—s AE.Setup(19), k < Kae.
Return prmpg.

Procedure ENC(m): // one query
ae.ct <—s AE.Enc(k, m).
Return ae.ct.

Procedure ENc(mg, m1): // one query
If |mo| # |m1|, Return L.

ae.ct <—s AE.Enc(k,mg).

Return ae.ct.

Procedure FINALIZE (ae.ct*) :

If ae.ct™ = ae.ct, Return 0.

Procedure FINALIZE(3'):
&) Return (AE.Dec(k, ae.ct™) # 1).

Return (8" = B).

Fig.3. Games IND-OT (left) and INT-OT (right) for defining securities of AE.

Definition 3 (One-Time Security for AE). Scheme AE is one-time secure
(OT-secure) if it is IND-OT secure and INT-OT secure, i.e., for any PPT ad-
versary A, both Advig' X" (¢) := | Pr[IND-OT# = 1] — 1/2| and Advar 3 (¢) =
Pr[INT-OTA = 1] are negligible in ¢, where games IND-OT and INT-OT are
specified in Fig. 3.

Let F be a family of functions from KCag to Kag. The F-Related-Key Attack
for AE scheme was formalized in [LLJ15], and RKA security notions characterize
the ciphertext indistinguishability (IND-F-RKA) and integrity (INT-F-RKA)
even if the adversary has multiple access to the encryption oracle and designates
a function f € F each time such that the encryption oracle uses f(k) as the key.

Procedure INITIALIZE: Procedure INITIALIZE:
prmag s AE.Setup(1°), k s Kae. || prmag s AE.Setup(1%), k < Kae.
B s {0,1}. // challenge bit Return prmpe.

Return prmpg.
Procedure Enc(m, f € F):
Procedure ENC(mg,m1, f € F): ae.ct s AE.Enc(f(k),m).

If |mo| # |ma|, Return L. Qene = Qenc U {(f,ae.ct)}.
ae.ct <—s AE.Enc(f(k), mg). Return ae.ct.

Return ae.ct.

Procedure FINALIZE(f* e F, ae.ct*):
Procedure FINALIZE(S'): If (f*,ae.ct*) € Qene, Return 0.
Return (8" = B). Return (AE.Dec(f*(k),ae.ct™) # L).

Fig. 4. Games IND-F-RKA (left) and INT-F-RKA (right) for defining securities of AE.

Definition 4 (IND-RKA and INT-RKA Securities for AE). Scheme
AE is IND-F-RKA secure and INT-F-RKA secure, if for any PPT adversary
A, both Advig 3 (£) = |Pr[IND-F-RKA* = 1] — 1/2| and Advar 3" (¢) :=
Pr[INT-F-RKAA = 1] are negligible in ¢, where games IND-F-RKA and INT-F-
RKA are specified in Fig. 4.
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2.4 DCR, DDH, DL and IV Assumptions

Let GenN(1%) be a PPT algorithm outputting (N, p, ¢), where p, q are safe primes
of £ bits and N = pq, such that N = 2N +1 is also a prime. Let s € Nand 7' = 1+
N. Define QR . := {a* mod N* | a € Z}. }, SCRy: := {aQNS_l mod N* | a €
Z}“\,s}, and RUys := {TT mod N*® | rE [stl]}. Then SCRys is a cyclic group
of order ¢(N)/4, and QR ys = SCRys ® RUps, where ® denotes internal direct
product. Let QRy = {a2 mod N ’ a € ZN}, then QRy is a cyclic group of
order N = pq.

For X € RUys, the discrete logarithm dlog;(X) € [N*~!] can be efficiently
computed given only N and X [DJ01]. Note that Z%;. = Zo®Z,LSCR s QRU v,
hence for any u = u(Zs) - u(Zy) - u(SCRy: ) - T* € Z;., u?N) = T2 ¢(N) ¢ RU .
and

dlogp(u®™) /¢(N) mod N°~t = z. (1)

The formal definitions of the Decisional Composite Residuosity (DCR) and

the Discrete Logarithm (DL) assumptions are in the full version [HLL16]. The

DCR assumption implies the Interactive Vector (IV,) assumption according to
[BG10]. We adopt the version in [LLJ15].

Definition 5 (IV,; Assumption). The IV, Assumption holds w.r.t. GenN and
group QR ys if for any PPT adversary A, the following advantage is negligible
inb:
AdvéveiN7A(€) = | Pr I:'ACHAL?Vd (Nv g1, 7gd) = b] - 1/2] )

where (N, p,q) s GenN(1), g1, , gq s SCRys, b <s {0,1}, and the oracle
CHALi’Vd(-) can be queried by A adaptively. A submits (61, ,84) to the oracle.
CHAL%Vd (61, ,0q4) selects random r «<s [|[N/4|]. If b = 0, the oracle returns
(g%, ,gY); otherwise it returns (giT°,- -+ , g5 T%), where T =1+ N.

Definition 6 (DDH Assumption). The Decisional Diffie-Hellman (DDH)
Assumption holds w.r.t. GenN and group QRy if for any PPT adversary A,
the following advantage is negligible in £:

Advéan,a(0) == | Pr [A(N,p,q,91, 92,91, 95) = 1] — Pr [A(N,p,q,91, 92,91, 9%) = 1]],
where (N, p,q) <—s GenN(1%), g1, g2 s QRy, x,y s Zy \ {0}.

2.5 Collision Resistant Hashing and Universal Hashing

Definition 7 (Collision Resistant Hashing). A family of functions H =
{H: X — Y} is collision-resistant if for any PPT adversary A, the following
advantage is negligible in £:

Adv§] 4(0) :=Pr [H<s H, (z,2') <s AH) : H(z) =H(z") A z#2].
Definition 8 (Universal Hashing). A family of functions H = {H : X —
Y} is universal, if for all distinct x,x’ € X, it follows that

Pr[H<«sH : H(z) =H(")] <1/]Y].



10 S. Han et al.

3 AE of the LLJ Scheme and Its INT-RKA Security

The LLJ scheme [LLJ15] makes use of an important primitive “Authenticated
Encryption” AE. Its KDM[F,.g]-CCA security heavily relies on the IND-F,g-
RKA security and INT-F,g-RKA security of their AE. LLJ claimed INT-F,g-
RKA security of their AE, however, we point out that their security proof does
not go through to the DDH assumption, which in turn affects the KDM|[F,g]-
CCA security proof of the LLJ scheme.

Let us briefly review LLJ’s AE as follows. The public parameter is prmzg =
(N,N,g) where N = pg, N = 2N + 1, and g is a generator of group QRy. Let
AE be an IND-OT and INT-OT secure authenticated encryption, and H be a
4-wise independent hash function. The secret key space is Zy .

— AE.Enc(k,m) computes u = ¢g" with 7 <s Zy, & = H(u¥,u) and invokes
X s AE.Enc(x, m). It outputs the ciphertext (u, x).
— AE.Dec(k, (u, x)) computes k = H(u*,u) and outputs m /L «+ AE.Dec(x, x).

In the LLJ scheme, AE should have RKA security w.r.t. Fog = {f : k —>ak+
b | a # 0}. Let us check their security proof. See Table 2. The proof idea is to
use the DDH assumption to make sure that each kx, A € [Q.], is random to the
adversary. Then the INT-OT of AE guarantees that the adversary cannot make a
fresh forgery (f* = (a*,b*), (u*, x*)) such that AE.Dec(a*k + b*, (u*, x*)) # L.

In [LLJ15], the indistinguishability of Game 1.(4 — 1) and Game 1.7 is re-
duced to the DDH assumption. A PPT algorithm B is constructed to solve the
DDH problem by employing an INT-F,5-RKA adversary A. Given the challenge
(9,97, 9%, Z), B wants to tell whether Z = gk or Z = g* for a random z;. B
simulates the INT-F,g-RKA game for A by computing x; = H(Z% g"i% g"). If
Z = gkt B simulates Game 1.(i — 1) for A; if Z = g%, B simulates Game 1.1.

The problem is now that B does not know the value of secret key k (it knows
g"). When A submits a fresh forgery (f* = (a*,b%), (u*, X*>), B is not able to
see whether AE.Dec(a*k + b*, (u*, x*)) # L or not without the knowledge of k.
More precisely, B can not compute * = H(u** 0" *) = H((u*k)“* ~u*b*,u*)
from ¢g* and u*, unless it is able to compute the CDH value v** from ¢g* and w*.
Without &*, it is hard for B to decide whether AE.Dec(x*, x*) # L or not. In
other words, B cannot find an efficient (PPT) way to transform the computing
power (forgery) of A into its own decisional power (decision bit) to determine
(9,97, 9", Z) to be a DDH tuple or a random tuple. The failure of the INT-F,g-
RKA security proof results in the failure of the KDM[F,g]-CCA proof of the
LLJ scheme since INT-F,g-RKA security is used to prevent a KDM[F,g]-CCA
adversary from learning more information about the secret key by querying some
invalid ciphertexts for decryption.

4 Authenticated Encryption with Auxiliary-Input

We do not see any hope of successfully fixing the security proof of the LLJ’s AE
in [LLJ15]. Alternatively, we resort to a different building block, namely AIAE.
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Table 2. INT-F.g-RKA security proof of AE in the LLJ scheme; we point out a flaw
in the security reduction from Game 1.( — 1) to Game 1.7, denoted by “?”.

ENc(max, fx = (ax,by)) oracle, A € [Q],
where Q. is the number of encryption queries

Game 0 ||™ € ZN; uy = g™ k) = H(u&”lﬁb*),uk); _
Xx <3 AE.Enc(kx, my); return 3e.cty := (ux, xr)-

Game 1 |[Same as Game 0 except xy := H((¢"™ )% g™ ¢g"™*).|Game 1 = Game 0

Assumptions

Game 1. For A=1,--- z,z, ;chersezme Tas Ga.me 1 except DDH (?)
K = H((g")* g™ "> ™) with zx <3 Zn;
For \=7+4+1,---Q., the same as Game 1.
Game 2 Game 2 = Game 1.Q. INT-OT of AE

The intuition is as follows. If LLJ’s AE is regarded as (ElGamal + OT-AE), we
can design a new AIAE as (Kurosawa-Desmedt [KD04] + OT-AE). But a new
problem with our design arises: the secret key of KEM [KD04] consists of several
elements, i.e., k = (k1, ko, k3, k4). The affine function of k is too complicated to
prove the INT-F,4-RKA security. Fortunately, (a weak) INT-RKA security fol-
lows w.r.t. a smaller restricted affine function set Frag = {f i (ky, ko, ks, k) —
a- (k‘l, ko, k3, k‘4) + (bl, ba, b3,b4) ’ a # 0}

To make AIAE serve KDM-CCA security of our PKE construction in Fig. 1,
we have the following requirements.

e AIAE must have auxiliary input aux.

e A weak INT-F-RKA security is defined for AIAE. Compared to INT-F-
RKA security, the weak version has an additional special rule for the adver-
sary’s forgery (aux*, f*, aiae.ct™) to be successful: if the adversary has already
queried (m,aux®, f) to the encryption oracle ENC, it must hold that f* = f.

Next, we introduce the formal definitions of Authenticated Encryption with
Auziliary-Input, its IND-F-RKA Security and Weak INT-F-RKA Security.

4.1 AITAE and Its Related-Key Attack Security

Definition 9 (AIAE). An auziliary-input authenticated encryption (AIAE)
scheme AIAE = (AIAE.Setup, AIAE.Enc, AIAE.Dec) consists of three PPT algo-
rithms:

o AIAE.Setup(1%) outputs a system parameter prmaag, which is an implicit
input to AIAE.Enc and AIAE.Dec. The parameter prmpag implicitly defines
a message space M, a key space Kaag and an auziliary-input space AUX .

e AIAE.Enc(k,m,aux) takes as input a key k € Kaag, a message m € M and
an auziliary input aux € AUX, and outputs a ciphertext aiae.ct.

e AIAE.Dec(k, aiae.ct,aux) takes as input a key k € ICag, a ciphertext aiae.ct
and an auxiliary input aux € AUX, and outputs a message m € M or a
rejection symbol 1.
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Correctness of AIAE requires that, for all prmaag < s AIAE.Setup(1%), all k €
Kaiag, all m € M, all aux € AUX and all aiae.ct s AIAE.Enc(k,m, aux), we
have that AIAE.Dec(k, aiae.ct, aux) = m.

If the auxiliary-input space AUX = @ for all possible parameters prmaag,
the above definition is reduced to traditional AE.

Let F be a family of functions from Kajag to Kaag. We define the related-key
security notions for AIAE via Fig. 5.

Procedure INITIALIZE:
prmaae s AIAE.Setup(19), k <s Kaiae.
Return prmpyag-

Procedure INITIALIZE:
prmyae <s AIAE.Setup(1°), k s Kaae.

B +s {0,1}. // challenge bit Procedure ENc(m, aux, f € F):

Return prmye- aiae.ct <—s AIAE.Enc(f(k), m, aux).
Qene = Qene U {(aux, f,aiae.ct) }.

Procedure ENC(mo, m1,aux, f € F): Quuxr = Qauxr U {(aux, f)}.

If |mo| # |ma|, Return L. Return aiae.ct.

aiae.ct <—s AIAE.Enc(f(k), mg, aux).

0 Procedure FINALIZE (aux™, f* aiae.ct™):
Return aiae.ct. (3 , f7 € Faiaect )

If (aux*, f*,aiae.ct”) € Qene, Return 0.

Procedure FINALIZE(S'): // Special rule:

Return (8’ = ). If there exists (aux, f) € Q auxF such that
aux = aux” but f # f*, Return 0.

Return (AIAE.Dec(f*(k),aiae.ct™,aux™) # L).

Fig.5. Games IND-F-RKA (left) and weak-INT-F-RKA (right) for defining securities
of auxiliary-input authenticated encryption scheme AIAE. We note that the weak INT-
F-RKA security needs a special rule to return 0 in FINALIZE as shown in the shadow.

Definition 10 (IND-F-RKA and Weak INT-F-RKA Securities for ATAE).
Scheme AIAE is IND-F-RKA secure and weak INT-F-RKA secure, if for any
PPT adversary A, both Advyiag 5 (¢) = |Pr[IND-F-RKA* = 1] — 1/2| and
Ade,eA“Ek;jm'Tka(ﬁ) := Pr[weak-INT-F-RKA* = 1] are negligible in ¢, where
games IND-F-RKA and weak-INT-F-RKA are specified in Fig. 5.

4.2 ATAE from OT-secure AE and DDH Assumption

Let AE = (AE.Setup, AE.Enc, AE.Dec) be a traditional (without auxiliary-input)
authenticated encryption scheme with key space Kag and message space M. Let
Hi = {H; : {0,1}* = Zy} and Ha = {Hy : QR — Kag} be two families of
hash functions with |[Kag|/|QR 5| (= [Kag|/N) < 272®. The proposed scheme
AIAE = (AIAE.Setup, AIAE.Enc, AIAE.Dec) with key space Kaag = (Zy)*, mes-
sage space M and auxiliary-input space AUX = {0, 1}* is defined in Fig. 6.
The correctness of AIAE follows from the correctness of AE directly. Note that
the factors p, g of N in prmy g are not needed in the encryption and decryption
algorithms of AIAE. Jumping ahead, the factors p,q are necessary when the
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prmag s AIAE.Setup(19):
(N,p,q) <s GenN(1%), i.e., pick two £-bit safe primes p and ¢, such that 2pg + 1

is also a prime, and N := pq.

N:=2N+1=2pg+1. gi,92 s QRy. Hi s H1, Hz s Ho.
Return PrMaiag ‘= (N7pa qaﬁvglag27 H17 H2)

(c1, ¢2,x) s AIAE.Enc(k, m, aux): m/L < AIAE.Dec(k, (c1, c2, x),aux):
Parse k = (ku, ko, ks, ka) € Z4. Parse k = (ki1, k2, k3, k1) € Z.

w s Zy\{0}. (c1,¢2) := (g¢’, %) € QR%. | If (c1,c2) & QR V (c1,¢2) = (1, 1),
t:=Hi(c1,c2,aux) € Zn. Return L.

K= Hg(clf1+k3t -c§2+k4t) € Kae.- t ;= Hi(c1,c2,aux) € Zy.

X +s AE.Enc(k, m). ko= Ha (et T80 - k2 ht) € Kpg.
Return (c1, c2, X)- Return m/L < AE.Dec(k, X).

Fig. 6. Construction of the DDH-based AIAE from AE.

security of the PKEs presented in Sections 5 and 6 is reduced to the security of
AIAE. We now show the RKA-security of AIAE through the following theorem.

Theorem 1. If the underlying scheme AE is OT-secure, the DDH assumption
holds w.r.t. GenN and QR g, H1 is collision resistant and Ha is universal, then
the resulting scheme AIAE in Fig. 6 is IND-Fq5-RKA and weak INT-Fqp-RKA
secure, where the restricted affine function set is defined as Frop = {f(a,b) :
(kl,k271€3,k4) S Z;lv — (ak1 + by, aky + by, aks + b3, aky + b4) S Z?V | a €
Zy, b= (b1,b2,b3,bs) € Z‘}V}.

Proof of IND-F,,#~-RKA security of AIAE in Theorem 1. The proof pro-
ceeds with a sequence of games. Suppose that A is a PPT adversary against the
IND-Frag-RKA security of AIAE, who makes at most Q. times of ENC queries.
Let Pr;[-] (resp., Pr;/[-]) denote the probability of a particular event occurring in
game G; (resp., game G}).

— Game Gi: This is the original IND-F,.5-RKA security game. Let Win denote
the event that 8" = 8. Then by definition, Adviﬁzgi{l(ﬁ) = | Pry[Win] — 3|.
Denote Prmaiae = (N7p7Qa N7gl792a H17 HQ) and k = (kla k27 k37 k4) To
answer the A-th (A € [Q.]) ENC query (my 0, mx1,auxy, f), where fy =
(ax,bx = (ba,1,bx,2,0x,3,bx4)) € Fram, the challenger proceeds as follows:
1. pick wy <s Zy\{0} and compute (cx1,cxz2) := (g1, g5*) € QR%,
2. compute a tag ty := Hyi(ca1,¢0,2,auxy) € Zy,
3. compute an encryption key for AE scheme using a related key fy(k):
Koy 1= H2(Cg\lﬁ\kl+bx,1)+(a>\k3+bx,3)t>\ . cg\cjgk2+b>\,2)+(GAk4+b>\74)t/\) c KAE,
4. invoke x <—s AE.Enc(kx, m) 3),
and returns the challenge ciphertext (cx 1,cx.2,xa) to the adversary A.
— Game Gy, @ € [Qe + 1]: This game is the same as game Gy, except that, the
challenger does not use secret key k to answer the A-th (A € [i — 1]) ENc
query at all, and instead, it changes steps 1, 3 to steps 1/, 3’ as follows:
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1. pick wy 1, wx2 s Zy\{0} and compute (cx1,crz2) == (9, ", 95 ),
3’. choose an encryption key k) <s Kag randomly for the AE scheme.
The challenger still answers the A\-th (A € [i,Q.]) ENC query as in Gy, i.e.,
using steps 1, 3.

Clearly Gy is identical to Gy, thus Pry[Win] = Pry 1 [Win].

Game G} ;, i € [Qc]: This game is the same as game Gy ;, except that the
challenger answers the i-th ENC query using steps 1, 3 (rather than steps
1, 3 in game Gy ;).

The only difference between Gy ; and G ; is the distribution of (g1, ga, ¢i 1,
¢i2). In game Gy 4, (91,92, Ci1,¢i2) is a DDH tuple, while in game G’Li, it is
a random tuple. It is straightforward to construct a PPT adversary to solve
the DDH problem w.r.t. GenN and QRy, thus we have that ‘PrLi[Win} -
Pry i [Win] | < Advéai (6).

We analyze the difference between G} ; and Gy ;11 via the following lemma.
Its proof is provided in the full version [HLL16].

Lemma 1. For all i € [Q.], | Pr1,#[Win] — Pry ;41 [Win] | < 325 + 2790,

Game Gg: This game is the same as game Gy, g 41, except that, to answer
the A-th (A € [Q]) ENC query, the challenger changes step 4 to step 4':
4", invoke x» s AE.Enc(ky, 0™ ol).

In game Gy,g.41, the challenger computes the AE encryption of my g
under encryption key k) in ENC, while in game Gs it computes the AE
encryption of 0/™*ol in ENc. Both in games G1,0.+1 and Gg, we have that
each k) is chosen uniformly from fCag and independent of other parts of the
game. Therefore we can reduce the differences between G; g, 41 and Gy to
the IND-OT security of AE by a standard hybrid argument, and have that

Pry g, +1[Win] — Pra[Win] | < Q. - Advir'(£).
Now in game G, since the challenger always encrypts the constant message
0l™x.0l the challenge bit 3 is completely hidden. Then Pry[Win] = 1/2.

Taking all things together, the IND-F,,g-RKA security of AIAE follows. |

Proof of Weak INT-F,..4-RKA security of AIAE in Theorem 1. Again,
we prove it through a sequence of games. These games are defined almost the

same as those in the previous proof. Suppose that A is a PPT adversary against

the weak INT-F,.g-RKA security of AIAE, who makes at most Q. times of ENC

queries.

— Game Gq: This is the original weak-INT-F,.5-RKA security game.

Denote prmpag = (N,p,q, N, g1, 92, H1,H2) and k = (ky, ko, ks, ks). To
answer the A\-th (A € [Q.]) ENC query (my, auxy, f)), the challenger proceeds
with steps 1~4, similar to the previous proof, and returns the challenge
ciphertext (cx 1,c¢x,2,xa) to the adversary A. Moreover, the challenger will
put (auxy, fx, (ex,1,¢x2, XA)) to aset Qenre, put (auxy, fr) to a set Qayxr,
and put (cx1,cx2,auxy, ty) to a set Q7 4g. Finally, the adversary outputs a
forgery (aux*, f* = (a*,b* = (b}, b3,5,b3)), (ci,c3, x™)).

Let Forge be the event that the following FINALIZE procedure outputs 1:
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If (aux*,f*, <c’{,c§,x*)) € Qene, Return 0.

If there exists (auxy, fa) € Qauxr such that aux), = aux® but fy # f*,

Return 0.

If (¢, ¢c5) & QR% V (cf,¢5) = (1,1), Return 0.

= Hy(c}, b, aux’), k* == H2(Ci(a*k1+bf>+<a*k3+b§)t*_C;(a*kz+b§>+<a*k4+bl)t*)'

Return (AE.Dec(k*, x*) # L). ,

By definition, it follows that, Ade,eA“E’fj"t'Tk“(é) = Pry[Forge].

— Game Gi: This game is the same as game Gy, except that, the challenger
adds the following new rule to the FINALIZE procedure:

o If there exists (ca 1, € 2,auxy, ty) € Q7 .ag such that £y = t* but (cx 1, cx 2,
auxy) # (cf, ¢, aux™), Return 0.

Since ty = Hi(ea 1, ¢a,2,auxy) and t* = Hy(cf, ¢3, aux®), any difference be-
tween Go and G; will imply a collision of Hy. Thus | Pro[Forge] —Pry [Forge] | <
Advyy (€).

— Game Gy, i € [Q. + 1]: This game is the same as game Gy, except that,
the challenger does not use secret key k to answer the A-th (A € [i — 1])
ENC query at all, and instead, it changes the steps 1, 3 to the steps 1/, 3’
respectively, as in the previous proof.

Clearly Pry[Forge] = Pry 1[Forge].

— Game G} ;, i € [Qc]: This game is the same as game G ;, except that the
challenger answers the i-th ENC query using steps 1/, 3 (rather than steps
1, 3 in game Gy ;), as in the previous proof.

The only difference between G ; and Gll,i is the distribution of (g1, g2, ¢i 1,
¢i2). In game Gy, (91,92,¢i1,¢i2) is a DDH tuple, while in game G’M, it
is a random tuple. It is straightforward to construct a PPT adversary to
solve the DDH problem w.r.t. GenN and QRy. We stress that the PPT
adversary (simulator) can detect the occurrence of event Forge efficiently
since it can choose the secret key k = (k1,ka, ks, kq) itself. Thus we can
reduce the difference between G, ; and G} ; to the DDH assumption smoothly.

Lemma 2. For alli € [Q.], |Pry;[Forge] — Pry ;[Forge] | < Advdh ().

Proof. We construct a PPT adversary B to solve the DDH problem. B is

given (N7p7 q, 91, 92, 9f1a9§2)a where (N7p7 Q) s GenN(le)’ 91,92 <8 QRN’
and aims to distinguish whether z1 = 3 <—s Zy \ {0} or z1, 22 < Zy \ {0}.
B will simulate game Gy ; or Gll,i for adversary A. First, B picks Hy +—s H;,

Ho s Ho randomly, sets prmpjag := (N, p, ¢, N = 2N +1, g1, g2, H1, Ha) and
sends prmajag to A. Then B generates the secret key k = (k1, ka, k3, k4) itself.
To answer the A\-th (A € [Q.]) ENC query (my,auxy, fr), where f\ =
(ax,bx = (ba,1,bx,2,bx,3, br.a)) € Frasr, B proceeds as follows:
o If X € [i — 1], B proceeds the same as in Gy ; and G} ;. That is, B picks

wx,1, W2 s Zy\{0} randomly and sets (cx1,cxr2) = (g™, 99™%).

Then B chooses k) <s Kag and invokes x <—s AE.Enc(kx, m)).
o If X € [i+1,Q.], B proceeds the same as in Gy ; and Gll,i' That is, BB picks
wy s Zy\{0} randomly and sets (cx1,crz2) == (97,95"). Then B

. 3 (axki+bx,1)+(axks+bx3)tx
computes ty := Hi(ca1,¢a,2,aUxy), Kx 1= Hg(ck,1 .

kotb atbx.a)t .
cg\ag 2+ba2)+(anka+baq) A), and invokes x» s AE.Enc(ky,my).
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o If A =4, B embedded its DDH challenge to (¢;1,¢i2) := (97", 952). Then

it computes t; := Hi(ci1,ci2,aux;), ki == Hg(cg_al" 1+bi1)+(aiksFbis)ti |
ika+b; ika+b; a)t; . ’
cgaz 2+bi2)H(aikatbia) ), and invokes x; <—s AE.Enc(k;,m;).

B returns the challenge ciphertext (cx1,cx2, X)) to A, and puts (auxA,
fas{ext,eaz, xa)) to Qene, (auxa, fr) to Qauxr, and (cx1,cx 2, auxy, ty)
to Q7 ag.

In the case of that (N,p,q,91,92,97",95°) is a DDH tuple, i.e., 1 =
x9 <s Zn \ {0}, B simulates game Gy ; perfectly for A; in the case of that
(N,p,q,91, 92, 91", 952) is a random tuple, i.e., x1, 22 s Zy \ {0}, B simu-
lates game G/Li perfectly for A.

Finally B receives a forgery (aux*, f*,(c},cs,x*)) from A, where f* =
(a*,b* = (b3,b5,b5,b%)) € Fragr. B determines whether or not the FINALIZE
procedure outputs 1 using the secret key k = (k1, ko, k3, k4). That is,

If (aux®, f*,{(ci, ¢}, x*)) € Qenc, B outputs 0 (to its DDH challenger).

o If there exists (auxy, f) € Qauxr such that aux), = aux* but fy # f*,
B outputs 0.

If (¢, c5) ¢ QR% V (¢}, ¢5) = (1,1), B outputs 0.

o "= Hi(c],ch,aux’), K" = H2(c;(a*k1+b{)+(a*k3+b§)t*.C;(a*k2+b§)+(a*k4+b2)t* )
If there exists (cx,1, Cx,2, auxy, tx) € Q7.ag such that ty = t* but (cx 1, cx 2,
auxy) # (¢, ¢5,aux*), B outputs 0.

e Output (AE.Dec(x*,x*) # L1).

With the secret key k = (k1, k2, k3, k4), B simulates FINALIZE perfectly, the
same as in games Gi; and G'Li, and B outputs 1 to its DDH challenger if
and only if FINALIZE outputs 1, i.e., the event Forge occurs.

As a consequence, | Pry ;[Forge] — Pry ;s [Forge] | < Advé‘éﬁN’B(ﬁ). |

We analyze the difference between G’Li and Gy ;41 via the following lemma,
and the proof is in the full version [HLL16] due to the lack of space.

Lemma 3. For all i € [Q.], Pryi[Forge] < Pry,1[Forge] + Advag ! (¢) +
_1 9=
(N-1) ‘

Now in game Gy .41, the challenger does not use the secret key k
to compute k) at all, hence k = (k1, k2, k3, k4) is uniformly random to the
adversary A. As a result, in the FINALIZE procedure defining the event Forge,

* a* - ((wik1+wiwk)+t* - (w] kz+w3wky)) (wib}+wswby)+t* (wibs+wswb})
K = H2(91 “ 91 )7

sy
where w = dlog, go € Zy and (w},ws) = (dlog,, ci,dlog,,c5) € Z3\{(0,0)}.
The term (wik1 +wiwks) is uniformly distributed over Zy. Then as long as
a* € Zy, Y will be uniformly distributed over QR 5 and independent of Hs.
By the Leftover Hash Lemma, k* = Ho(Y') is statistically close to the uniform
distribution over Kag. Thus AE.Dec(k*, x*) # L will hold with probability
at most AdviE " (¢). Then Pry g, 11[Forge] < Advie ! (¢) + 2~ 9O,

Taking all things together, the weak INT-F;,5-RKA security of AIAE follows. |
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Remark. We stress that the problem in the INT-F,g-RKA security proof of
LLJ’s AE does not appear here. The weak INT-F,.g-RKA security of our AIAE
can be reduced to the DDH assumption smoothly. More precisely, in the security
analysis of games Gy ; and G} ; (cf. Lemma 2), the simulator chooses the secret
key itself and uses it to detect the occurrence of event Forge efficiently. Therefore
the simulator can always make use of the difference between Pr; ;[Forge] and
Pry i/ [Forge] to solve the DDH problem.

5 PKE with n-KDM|[F,4]-CCA Security

Let AIAE = (AIAE.Setup, AIAE.Enc, AIAE.Dec) be the DDH-based auxiliary-
input authenticated encryption scheme constructed from OT-secure AE, with
key space (Zy)* and a suitable message space M (cf. Fig. 6). Following our
approach in Fig. 1, we have to design the other two building blocks.

KEM: With respect to this AIAE, we design a KEM which can encapsulate a
key tuple (k1, ks, k3, k) € (Zn)*.

E: With respect to the affine function F,g, we design a public-key encryption
& such that £.Enc can be changed to an entropy filter for affine functions in
a computationally indistinguishable way.

The proposed PKE = (Setup, Gen, Enc, Dec) is defined in Fig. 7, where the shad-
owed parts describe algorithms of building blocks KEM and &.

The correctness of PKE follows from the correctness of AIAE, £ and KEM
directly. We now show its KDM-CCA-security through the following theorem.

Theorem 2. If the underlying scheme AIAE is IND-F,o5-RKA and weak INT-
Frag-RKA secure, the DCR assumption holds w.r.t. GenN and group QRy.,
and the DL Assumption holds w.r.t. GenN and group SCRys, then the resulting
scheme PKE in Fig. 7 is n-KDM[F.5/-CCA secure.

Proof of Theorem 2. Suppose that A is a PPT adversary against the n-
KDM[F,g]-CCA security of PKE, who makes at most @, times of ENC queries
and Qg times of DEC queries. We prove the theorem by defining a sequence
of games. Before presenting the full detailed proof, we first give a high-level
description how n-KDM|[F,4]-CCA security is achieved.

(1) For the n secret key tuples, each tuple can be divided into two parts: for i €
(], ski = (2i5,9i5)j=1 = (i, Yij)j=1 mod N, (i, yi ;)= mod ¢(N)/4).

(2) Each secret key tuple can be generated by adding a random shift (7; ;,7; j)?’:l
to a fixed base (2,y;)j_1, L-e., ski = (24,5, 4i)j=1 = (5, 95) =1+ (Ti T j)j=1-

(3) Every public key tuple pk; = (hj1,--- ,hi4) only reveals information about
the (mod ¢(N)/4) part of the secret key tuple sk;.

(4) For each encryption query from the adversary (fx,i), if the ENC oracle
encrypts fa(sky, -+ ,sky), the ciphertext might reveal information about sk;
through £.ct. We have to change this fact such that the leaked information
about sk; in ENC is bounded.
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prm s Setup(L'):

prmyae s AIAE.Setup(1¢), where
prmaine = (N,p,¢, N, 1, G2, Hi, Ha),
N =pg, N=2N+1, g1,g2 € QRy.

prmhae := (N, N, g1, g2, H1, Ha).

g1,92, 93,94, 9s s SCRys.

Return prm := (prmjjag, 91, 92, g3, 94, g5 )-

(aux, aiae.ct) <= Enc(pk,m): m € [N*7']

J/ (k,aux) <s KEM.Enc(pk):

k = (kl, k2, k3, k4) s Z;l\r

res [|7]]

(w1, u2,us, us, us) := (91, 92, 93, 94, 95)
mod NZ.

(61, €2, €3, 64) = (h’lnTkl, hngz’ hng3,
RET*) mod N2.

aux := (U1, ,Us, €1,

/] E.ct +—s E.Enc(pk, m):

fl,Fz,f3,f4 <—$ H%J]

(ﬂl, 112, 1137 ﬁ4, ﬁ5, ﬁe, ﬁ77 118) = (gfl ) g;l,
95,9595 95°, 95" 95*) mod N°.

€:=hi*h3?hs®h)*T™ mod N°.

t:=g" mod N € Zy.

E.ct:= (U1, ,Us,Et).

aiae.ct <—s AIAE.Enc(k7 E.ct, aux).

Return (aux, aiae.ct).

,€4).

(pk, sk) <—s Gen(prm):

N2
T1,Y1,T2,Y2,T3,Y3, T4, Y4 <8 HTJ]
(h1,h2,hs, ha) == (97 " g2 ", 92 295 2,

ggzsgzys,glzzlggyzt) rnOd NS.

pk = (h1,h2,h3, h4).
sk := (@1, Y1, T2, Y2, T3, Y3, T4, Y4 )-
Return (pk, sk).

m/ L « Dec(sk, (aux, aiae.ct)):
// k/L < KEM.Dec(sk, aux):
Parse aux = (u1, -+ ,us,€1, "+ ,€4).
If equi'ul', eaus?ub?, esuz® ul®,
equytu¥t € RUp2
(K1, k2, ks, ka) := (dlogp(exui*ud?),

dlogy (eaus?uz?), dlogy (ezuy™ug®),

dlogy (esug*u¥*)) mod N.
k= (1, ka, ks, ka).
Else, Return L.
Ecct/L + AIAE.Dec(k,aiae.ct7 aux).
/) m/L < E.Dec(sk, & .ct):
Parse E.ct = (a1, - ,Us, &, 1).

If 601 G a2 a2 AP a3 a4 alt € RUye

m := dlogp(euit ayt as?uyaz’ug®
aZ4a¥*) mod N1,
If t = gi* mod N, Return m.
Else, Return L.

Fig. 7. Construction of PKE from AIAE. The shadowed parts describe algorithms of
building blocks KEM and £. Here p, g contained in prmyae are not provided in prmjyag,

since they are not necessary in the encryption and decryption algorithms of AIAE.

— By IV4 assumption, we can change the generation of £.ct by oracle ENC
such that it does not reveal any information about (x;, yj);*:l mod N,
i.e., the (mod N) part of the base secret key tuple.

— By IV, assumption, we can change the generation of kem.ct(= aux) by
ENC such that it encapsulates a different key, other than the key used in
AIAE.Enc. If AIAE.Enc uses key (7\k +5x,5)4_1, then KEM.Enc encapsu-

i=1
_ _ 4
lates (rx(k} —oyaj —jr1y;) —ra(ayTiy 5+ 0518y 5) +5x,5) j—y mod N.

Thus, (kf,---, k) is now protected by (z;,;)j-; mod N.
(5) Oracle DEC might also leak information about (x;,y;)j_; mod N. There-

fore, we change how oracle DEC works so that decryption does not use
(@, yj);*:l mod N any more. Observe that as long as the ciphertext queried
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by the adversary satisfies Vj € [5],u; € SCRy2 and Vj € [8],4; € SCRys,

DEC can use ¢(N) and the (mod ¢(N)/4) part of secret key for decryption.

— If 3j € [5],u; ¢ SCRy2 in the ciphertext queried by the adversary, we

expect that AIAE.Dec will reject, due to its weak INT-F,,-RKA security.

— If 3j € [8],4; ¢ SCRy= in the ciphertext queried by the adversary, we
expect decryption will result in ¢ # g7* mod N, so £.Dec will reject.

(6) Consequently, both (z;,;)j—; mod N and (kf,--- , k}) are random to the ad-
versary, and AIAE.Enc always uses the restricted affine function of (kj,--- , k})
for encryption. Then IND-F,.4-RKA security of AIAE implies the n-KDM[F,g]-
CCA security.

In the proof, G;-G5 are dedicated to deal with the n-user case; the aim of
Gs3-Gy is to eliminate the use of the (mod N) part of (z;, yj);Ll in ENC; the aim
of Gs-Gg is to use (z,y;)j=, mod N to hide the AIAE’s base key (kf,--- ,k})
in ENc, however, DEC may still leak the information about (z;, yj);*:l mod N;
the aim of G7-Gg is to eliminate the use of (z;, yj)?:1 mod N in DEC; finally, in
Gg-Gig, the IND-F,.g-RKA security of AIAE is used to prove the n-KDM[F,g]-
CCA security of PKE, since (kf,-- - , k}) is perfectly hided by (2,;)j—, mod N.

— Game Gg: This is the original n-KDM[F,g]-CCA game. Let Win denote the

event that 8 = 8. Then by definition, Adv’édK@"jca(E) = | Pro[Win] — 3|.
Denote by pk; = (hj1, -+ ,hi4) and sk; = (i 1,%i1, * ,Ti4,Yia) the
public and secret keys of the i-th user respectively, i € [n].

— Game Gi: This game is the same as game Gg, except that, when answering the
DEC query ({aux, aiae.ct), i € [n]), the challenger outputs L if (aux, aiae.ct) =
(auxy, aiae.cty) for some A € [Q.], where (auxy,aiae.cty) is the challenge
ciphertext for the A-th ENC query (fx, 7).

Case 1: ((aux, aiae.ct),i) = ((auxy, aiae.cty),iy).
DEc will output L in game Gg since ((auxy, aiae.cty), iy ) is prohibited.
Case 2: (aux, aiae.ct) = (auxy, aiae.cty) but ¢ # iy.
We show that in game Gy, DEC will output L, due to eAJuf\ff u7/<121
RU 2, with overwhelming probability. Recall that ux1 = ¢1*,ur2 =
G ean = 2 TR so0

Ti,1, Yi,1 _ TN Ex1.(4TA\Ti,1( ,TA\Yi,1 — . —I\rxgka 1 2
EX1UN 7 Uy o =hi T (g1)* 0t (ga*)"r = (hu,lhm) T mod N<,

where h;, 1 and h;; are parts of public key of different users iy and ¢
respectively and are uniformly distributed over SCRys. So hiy 1h; 11 #1,
hence e,\71uf\f’11 uizl ¢ RU 2, except with probability 27 (),
By a union bound, Gy and G; are identical except with probability Qq-2~()
therefore | Pro[Win] — Pri[Win] | < Qq - 2920,

— Game Ga: This game is the same as game Gy, except that, the challenger sam-
ples the secret keys sk; = (%1, ¥i1,** s Tia,¥ia), ¢ € [n], in a different way.
First, it chooses random (21, y1,- - , %4, y4) and (Z;1,Gi1, - s Tia,Yia), § €
[n], from [LN2/4H, then it computes (z;1,¥i1, > Ti4,Yia) = (T1, Y1, »
x47y4) + (fi,layi,lv T 7fi,47yi,4) mod LN2/4J for i € [n]

Obviously, the secret keys sk; = (241, ¥i,1, - ,%i4,Yia) are uniformly
distributed. Hence G is identical to Gy, and Pri[Win] = Pry[Win].
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— Game Ggz: This game is the same as game Go, except that, when responding to

the adversary’s A-th (A € [Q.]) ENC query (fa, )), instead of using the public

keys pk;, = (hiy,1, - ,hiy ), the challenger uses the secret keys sk;, =
(xh’l,yihl, “ee Ty, 4,Yiy4) to prepare (ex 1, - ,ex4) and €y as follows:
Zq Yi —Tg Yi
o (ex1,,exa) = (u/\ I TAE S A ST Uy g Huy gAY mod N2,

TR A S SO NP L NED S ONC P At ONED St SNE P At VR S s
’6/\—%1 Uy o™ Uy 3 Ty g Ty 5Ty g Ty Y Uy g T mod N

Observe that for j € {1,2,3,4},

T; —Yi —x; —Yi
e,\d 2 pIx ThRAG = (gj T gl ayraka Sz o, TTnd Vg kA nod NZ,

ix,J gj+ AJ )\J+1
~ Go ; 7y Tx.4 mg _ Tiy,1 —Yiy,1\Fy 1 Tiy4 ~Yix,4\Fx 4mp
e,\—hik1-~hu4T (91 9o ) ’ "'(94 Js ) AT
G Tiy,1 ~—Yiy,1 T4 4~ Yiy,4
=y MUy QN ey Ny g T™ mod NP

Thus Gs is identical to Gz, and Pra[Win] = Prs[Win].
Game Gy4: This game is the same as game Gg, except that, in the case of the
challenge bit f = 1, to answer the A-th (A € [Q.]) ENC query (fx,ix), the

challenger does not use (z1,y1," - ,24,94) mod N to compute €, any more,
and instead, it computes (@ 1, - ,Uxs) and €y as follows:
o (fixg,: - 7{M g) = ( (BN Apyiisg ai, v U i b, 1, ’2"% 2 ai,27g§%2

STz iz 7">\ JTE, 1043 ’* 3TZ?=1 b'i*?’,gZ)‘ATELl a¢,47g§>u4TZ?=1 biay,
° &y = h” 1. .hU ATXin ijl<am'(iw'—im‘j)+bi,j(@7i,j—@7n,j))+c mod N°?,
2%

where f) = ({ai,h b, -, a4, biA}iE[n]’c) € Fag-
Observe that,
éx G Hj L hf;‘; L TXi=1 i (@i @ —Fiy 5)+bi j(Fij—Tiy )+

_ H4 1h"">\9 T L X5 (@i =y ) +bi 5 (Ui =iy 5)) e
J= tX»J

= HJ 1(g] Tixs ’gj_i’i»j )";)\,j .T’M*E?:1 E?:l(ai,jzik,_j+bi,_jyi>\,j)

= I, (gjk R S ’fMTZ?’Zl bing) TYird L

_ ﬁ/\rlll\ 1&>\y2u ~>\“;u 477’)2” dpmi oq N,
where the third equality follows from m; =" Z?Zl(ai,jazi,j + bijyi5) +c

Therefore, €5 can be computed from (@y 1, - , %y g) in the same way as in

Gz and G4. Hence the only difference between G3 and G4 is the distribution
of (Gx1, -+ ,Uxg) themselves. We analyze the difference via the following
lemma, and the proof is presented in the full version [HLL16].

Lemma 4. There exists a PPT adversary By against the IV assumption
w.r.t. GenN and QR ., such that | Pr3|Win] — Pry[Win] | < Advian s, (6)-

Game Gy: This game is the same as game Gy, except that, the challenger

chooses random r* € [|N/4]] and o, -+ , a5 € Zy beforehand (in INITIAL-
1ZE). In addition, to respond to the A-th (A € [Q.]) ENC query (fx,ix), the
challenger computes (ux 1, ,ux5) as follows:

o (Un1, -+ ,Uxp) = ((g’l"*Tal)“, cee (gg*TO‘S)”) mod N2.
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The only difference between G4 and Gy is the distribution of (uy 1, -+, ux5)-

In game Gy, it equals (¢7*, -+ ,¢t*) mod N2, while in game Gs, it equals
(g7 T )™, -+, (g8 T*)™) mod N2. Similar to the previous lemma, it is
straightforward to construct a PPT adversary to solve IV5 problem by em-
ploying the power of adversary A. Thus | Pry[Win] —Prs;[Win] | < Advs (0).

— Game Gg: This game is the same as game Gy, except that, the challenger
chooses a random tuple k* = (kf, k3, k3, k;) beforehand (in INITIALIZE).
In addition, to respond to the A-th (A € [Qe]) ENC query (fx,ir), the
challenger uses a different way to generate ky = (kx1,kx2,kx3,kx4) and

(ek,la o 76)\,4):
o pick sy = (sx,1,51,2,51,3,514) <5 Z3 and Ty s HN/4H uniformly, and
compute ky = (kx1,kx2,kx3, kaa) = (raky +sx1,-- ,mak] +sa4).
o (ex1, " ,exa) =
(hr*TATTA(kf7041Ii)\,17042yi>\,1)+8>\,1 . hr*rATTA(kZ*044mi>\,4*045'yi>\,4)+sk,4)
ix,1 ) > 1, 4 .

Clearly ky is uniformly distributed over Z%;, as in game Gs. At the same
time, observe that for j € {1,2, 3,4},

Gs  —Tiy,j —VYiy,j . * IN—TLi i * B Py Y i R
exg Zuy Uy YA TRNG = (g T )TN T (g T ) T Vi TR

= Uxn; Aj+1
— (o Tixod TYinadr rapk —rac (0 Ty it 1Yiy g
= (gj gj+1 ) TFEx.d (ovj@iy jt+aj1yiy,5)

G S Ak —a s —ous o )
26 h;/\7j?\T7"A (k]‘ QjTiy,j O‘J+1yt>\,y)+5kd mod N2.
>

Thus Gg is identical to Gs, and Prs[Win] = Prg[Win].

— Game G7: This game is the same as game Gg, except for a modification to an-
swering the DEC queries ((aux, aiae.ct), i € [n]). The challenger uses the i-th
user’s secret key sk; = (@;1,¥i1, - ,%i4,Yi4) together with ¢(N) to com-
pute the decryption of ciphertext (aux,aiae.ct), where aux = (uq,- - , us, €1,

,€4). More precisely, it computes k = (k1,--- ,k4) and m as follows:
o (at,-o,ab) = (dlogy(uf™) /@(N), -, dlogr(uf ™) /$(N)) mod N,
N N
(75, 5 74) = (dlogg (ef™)/$(N), -, dlog(e] ™) /¢(N)) mod N,
k= (kla te 7k4) = (0/11‘11'714»0/2:%,1 +’Yia o aaﬁlxi,4+a%yi,4+’¥i) mod Na
E.ct=(ay, - ,us, € 1t)/L < AIAE.Dec(k, aiae.ct, aux),

- - _&(N - o
(a1, a) == (dlogp (™) /@(N), -, dlogr(al™) /¢(N)) mod N*~1,
7 := dlogy(6*N)) /¢p(N) mod N*71 and m 1= G121 + @y + GaTio+
@4Yio + 53 + GeYis + Q7T 4 + AsYia + 7 mod N1,

According to Eq. (1), for j € {1,2,3,4}, we have that

k; S dlogT(eju;”’j u;/rl) = dlogT((eju;i’j ugi’i)(b(N))/qS(N) mod N
= dlogy (u] ") J6(N) + dlogy(ufy) ™) /$(N) + dlog(e] ™) /6(N)

< dlogy (uf™) /$(N) -ij + dlogr (uf) /S(N) -yi.; + dlogy(e? ™) /$(N),

’ ’ ’
“j Yit1 7

Gg <~ T 1 ~Yi 1 ~Ti,2 ~Yi,2 ~Ti3 ~Yi 3 ~Ti 4 ~Yi4 -1
m = dlogp(€a; "ty Uy Uy P Uy P g P, gt ) mod N®

< dlogy (@f™)/$(N) i1 + - -~ + dlogg (@l ™) /S(N) -yia + dlogr (%) /$(N) .

ol ag Y
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These changes are conceptual. So Gz is identical to Gg, Prg[Win] = Pr7[Win].
Game Gg: This game is the same as game Gy, except that, the challenger
adds an additional rejection rule when answering DEC queries as follows:

e ifa] A0V ---Val#0 V & #0V---Vag #0, return L.

That is, the challenger will not output m in DEC unless af = --- =af =0
and &; = -+ = @g = 0 holds. Thus the values of (x”,y”) -1 mod N, in
particular (xj,y])j:1 mod N, are not used any more in DEC.

Let Bad denote the event that A makes a DEC query ((aux, aiae.ct),i €
[n]), such that
eruy st equytugd™ € RUy2 A AIAE.Dec(k,aiae.ct,aux) # L (2)
NG G G T G GG € RN, N = g mod N (3)
Ay #0V---Vahb#0 V a #0V---Vag #0).
Clearly, games G7; and Gg are the same until Bad happens. Therefore, we
have that | Prz[Win] — Prg[Win] | < Prg[Bad].
To prove that G; and Gg are indistinguishable, we have to show that

Prg[Bad] is negligible. This is not an easy task, and we further divide Bad to
two disjoint sub-events:

* Bad’ denotes the event that A makes a DEC query such that
Conditions (2), (3) hold A (af 0V ---Vaf #0).

% Bad denotes the event that A makes a DEC query such that
Con. (2), (3) hold A (af =---=af=0) A (G1#0V---Vag#0).

Then Prg[Bad] < Prg[Bad’] +Pr8[§a/d]. We give an upper bound for Prg[Bad’]
via the following lemma. See the full version [HLL16] for the proof. The

analysis of Prg[é\a/d] is deferred to subsequent games.
Lemma 5. Prg[Bad’] < 2Qq - Adviyiae ™™ " (0) + Q4 - 272,

Game Gg: This game is the same as game Gg, except that, the challenger
chooses another random tuple k= (k7 k3, k3, k;) besides k* = (kf, k3, k3, k})
in INITIALIZE. In addition, to answer the A-th (A € [Q.]) ENC query (fx, %)),
the challenger uses a different key for AIAE to compute aiae.cty:

o set ky = (/_€A,1, I_CA,Q, 7@\,3,7_6,\,4) = (rak} + SA1, raky + Sx4);

e invoke aiae.cty s AIAE.Enc(ky, £.cty, auxy).
But the challenger still uses k™ = (kf, k3, k3, k}) to compute (ex 1, ,€x4).

In game Gg, the only place that needs the value of (1,41, - , %4, ys) mod N
is the computation of (ex 1, - - - , ex,4) in ENC. More precisely, for j € {1,2, 3,4},

exrj = h;?T” (kj —ajmiy 5 —aj+19i5,5) 45505 mod N2
— priraprac (k] —aizi—ag1yi— a3y j—oydiy )50 mod N2,
ix,J

We stress that the computation of ¢, = g;* mod N in ENC only uses the
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values of (1,91, , x4, ysa) mod ¢(N)/4, since the order of g; € SCRys is
¢(N)/4. We also note that neither k* = (k}, k3, k3, k}) nor (z;,y;)j-, mod N
is involved in DEC since DEC rejects the ciphertext unlessaj =---=af =0
and & = -+ = ag = 0. As a result, k* = (k}, k3, k3, k) is totally hidden by
the entropy of (z1,y1, -+ ,Z4,y4) mod N and is uniformly random to A.
Thus the challenger can use an independent kK = (kt,--- ,k}) to compute
kx, and use ky to do the encryption of the AIAE scheme in ENC, as in Gg.
Then games Gg and Gg are identically distributre\c_l/ from the point of view
of A, thus we have Prg[Win] = Prg[Win] and Prg[Bad] = Prg[Bad].
— Game Gig: This game is the same as game Gg, except that, to answer the A-
th (A € [Q.]) ENC query (fx,%y), the challenger computes aiae.cty as follows:
e invoke aiae.cty <s AIAE.Enc(E,\,OZM,auxA).
That is, the challenger computes the AIAE encryption of a constant 0%
instead of £.cty in ENC. Note that in games Gy and Gjg, the key kK =
(k¥, k3, k%, k3) is used only in the computation of the AIAE encryption, where
it uses ky = 7\ -k + Sx, Sx = (a1, ,8x4), as the encryption key. The
difference between Gg and Gig can be reduced to the IND-F,,4-RKA se-
curity of the AIAE scheme directly. Thus we have that both | Pre[Win] —
Prio[Win] |, | Pro[Bad] — Prig[Bad] | < Adviyiag ™ (0).
Now in Gyg, the challenger computes the AIAE encryption of a constant 0
in ENc, thus the challenge bit 8 is completely hidden. Then Prqo[Win] = %
We give an upper bound for Prlg[é_;j] via the following lemma, and
present its proof in the full version [HLL16].

Lemma 6. Prig[Bad] < (Qq+ 1) 279" 4+ AdviL \(0).

Taking all things together, the n-KDM[F,g]-CCA security of PKE follows. |

6 PKE with n-KDM[F?  ]-CCA Security

6.1 The Basic Idea

We consider how to construct a PKE which is n-KDM-CCA secure w.r.t. the set
of polynomial functions of bounded degree d, denoted by ]—'goly, where d can be
polynomial in security parameter £. We will consider adversaries submitting f in
the format of Modular Arithmetic Circuit (MAC) [MTY11], i.e., a polynomial-
size circuit which computes f. In particular, we do not require a prior bound
on the size of circuits, but only require a prior bound d on the degree of the
polynomials. Our construction still follows the approach in Fig. 1. In fact, our
n—KDM[FgOIy]—CCA secure PKE shares the same building blocks KEM and AIAE
with the previous PKE in Fig. 7 which has n-KDM|[F,g]-CCA security. What we
should do is to design a new building block £, which can function as an entropy
filter for polynomial functions. Our new & still share the same secret/public key
pair with KEM. Hence for ¢ € [n], we have sk; = (z;1,¥51, - ,Zi4,¥54) and

pk; = (hi1, -+ hia) with hyp = g7 g ¥, oo  hia =gy "' g5 ”"" mod N*.
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6.2 Reducing Polynomials of 8n Variables to Polynomials of 8
Variables

How to Reduce 8n-Variable Polynomial f) in ENC(fy,ix € [n]). In the n-

KDM[}"gOly]—CCA game, the adversary will submit (fy,ix € [n]) to ENC as its A-th

KDM encryption query. Here f) is a degree-d polynomial fy ( (T35, Yij)ien).jel4) )
of the n secret keys, which has 8n variables. Note that fy will contain at most
(ngd): O(d®") monomials, which is exponentially large.

To reduce the number of monomials, we can always change the polynomial
fA((xm,yiyj)ie[nme[;q) of 8n variables to a polynomial fg\((xix,jvyix,j)je[ﬁ) of
8 variables as follows. Then f{ will contain at most (Sgd) = O(d®) monomials,
which is polynomial in ¢.

In INITIALIZE, the secret keys can be generated with z; ; := z; + Z;; and
Yij = Y; + ¥i,; mod [N?/4| for i € [n] and j € [4]. Then with the values of
(T4, gi,j)ie[n],j€[4]a we can represent (z;,;, yi,j)ie[n],je[4] as shifts of (z, j, yix,j)j€[4]:

Tij =Tirg +Tij — Tings  Yij = Yirg t Yig — Ying>

and reduce the polynomial fy in 8n variables (4 ;, i, ;)ic[n],je[4] tO @ polynomial
fx in 8 variables (2, j,¥i.j)je[4]:

I((@ig,yi5)icmger) = IN((iyg 4 Tig — Tiy g, Yin,g + Ting — Uin,j)ienljela])

T, Yi,j

— f! o ). _ . C1 c2 c3 c4 cs c6 c7 cg

= fk((xumy%\d)JEH]) = > ey, heg)  Tiy1Yiy 1%45 2%y 2%y ,3Yiy 3T iy ,4Yiy 4
0<er 4o des<d

The resulting polynomial f} is also of degree at most d, and the coefficients
A(cy,... ,cg) are determined by (Z; ;, Ui j)ie[n],je[a] cOmpletely.

How to Determine Coefficients a, ... ., for f} Efficiently with Only
(T4,4,Yi.j)ien).jela)- Repeat choosing values of (4, j, ¥, j)je[4) randomly, feed-
ing MAC (which functions as fx) with input of (x5, j + Zij — Tiy j: Yirj + Yij —
Uix,j)icin),jcl4]>, Where (Zij, Ui j)ien),je[4) always takes the values chosen in INI-

TIALIZE, and recording the output of MAC. After about (8Jgd) = O(d®) times,

we can extract all a(, ... ;) by simply solving a system of linear equations (with
A(cy ... ,cg) UNKNOWNS):

In(@ing 4 Zij — Tingy Ying + Uig — Yin.dicinl,jela])
_ c1 co c3 cyq cs c6 cr cg
= > Oy, ,es) " Tiy 1Yiy,1%4y 2Yiy ,2T0y 3Yiy ,3%iy aYiy -
0<ci+-+ecg<d
This can be done in time polynomial in £.
6.3 How to Design £: A Warmup

Let us first consider a simple case: design £ w.r.t. a specific type of monomials

/
fA ( (xix,ﬁ yz')\,j)je[zl] ) = Q- Tiy 1Yin,1T0y,2Yix,2Ti5,3Yi5,3Tiy,4Yiy 4-

We describe the encryption and decryption algorithms £.Enc, £.Dec in Fig. 8.
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E.ct s E.Enc(pk = (h1,ha, b, ha),m): | m/L < E.Dec(sk = (z1,y1, - , 24, ya), E.Ct):

For I € [0, 8], Parse £.ct = (table, é,t).
1,1, 71,2, 71,3, T4 43 [L 1] fioq |Go.2| - - |fio.s
(tu, Lo yiyg) = (91l ’ggl 1’9;"1 % Uy,1|U1,2| - |U1,8
g, 2,g§L 37921 37921 47g:1 4. Parse table =
1’-}[ = hIllh;l2h213th4. ’EL a ,a
8,1|Us,2| - |Us,s
Uo,1 Uo,2 | *c| Uos Do = g 1 g 5 Ug 5 To 47 -+ Tg 77 g &* -
Ui, Po| U2 |-cc| Uis 01 := (G1,1/00) "1y 5 Gy 52Uy 47 -y 7ty gt
table:= | @21 |22 01| --| U2 Vg 1= Gy (G2,2/01) T Mg 52 Un 42 -+ - Uy 7 5 g1

Gy | dise |- |iss - Ur| | Os = dg T ag Y ag s2ag Y - - - g 24 (s, /07) V1.
é:= g - T™ mod N*. If é/9s € RUns, m := dlogy(é/ds) mod N1,
t:=gi" mod N € Zn. If t = g7* mod N, Return m.

Return €.ct := (table, &, ). Otherwise, Return L.

Fig. 8. £ designed for specific monomials a - iy, 1Yi,,1Tiy,2Yiy,2%iy,3Yix,3Tiy,4Yiy 4-

Security proof. We can prove KDM-CCA security w.r.t. the specific type of
monomials, i.e., @ - X, 1Yiy,1 Tiy,2Yiy,2%iy,3Yis,3%iy ,4Yiy 4, i1 & similar way as the
proof of Theorem 2. The only difference lies in games G3-G4, which are related
to £. We replace G3-G4 with the following three steps (Step 1 - Step 3). More
precisely, we change the £.Enc part of ENC so that it can reserve the entropy
of (z1,y1, - ,24,ys) mod N, behaving like an entropy filter w.r.t. this specific
kind of monomials.

Suppose that the adversary submits (fx,ix € [n]) to ENC. Our aim is to re-
serve the entropy of (;,y;)j=; mod N from €.Enc(pk;, , fx (%, ¥ij)iem.jeul) )-

Step 0: In INITIALIZE, the secret keys are generated with z; ; := x; + Z; ; and
Yij = y; + ¥i; mod |[N?/4] for i € [n], j € [4]. This is the same as Gy in
the proof of Theorem 2.

Step 1: Use (4,5, ¥i,j)ic[n],jef4] tO Te-explain (fx,ix € [n]) as (f3,ix € [n]), and
determine the coefficient a of the monomial

!
f)\((xi)\,jayihj)je[ﬂ) = G Ty 1Yix,1Tiy,2Yiy,2Tiy,3Yix,3Tiy,4Yiy ,4-

Step 2: Use secret key sk;, = (i, j,¥iy,j)je[4] (together with public key pk; =
(hiy,j)jera)) to implement £.Enc (This corresponds to Gz in the proof of
Theorem 2).

— Setup table, just like £.Enc.

— Compute 0g, - - - , g from table, just like £.Dec.

— Use 0g instead of 9g to compute € with € := ’lAjg'Tf;( (@iy.3:¥ix.a)iel)) mod N?,
and ¢ — f)\((xi)\,hyi,\,j)jeﬂ]) mod N.
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It is easy to check that ¥, - - - , g computed from table (via £.Dec) are identi-
cal to ¥g, - - - , Ug that are used to generate table (via £.Enc). Thus this change
is conceptual.
Step 3: This corresponds to G4 in the proof of Theorem 2.
— table is set up in a similar way as in £.Enc, but with the following dif-
ference. The item of row 1 and column 1 in table now is computed as
G11 = (@11T7%) - U instead of G171 = @71 - Up. This change is compu-
tationally indistinguishable, due to the IV assumption. (We refer to a
detailed analysis in the full version [HLL16].)
— Compute 0g, - - ,0g from table, just like £.Dec.
— &:= g T/ ((@ixswini)ie) mod N*, and t := g{ﬂ(ziw%,j)jaﬂ) mod N.
It is easy to check that 09 = Ug, 01 = U1 - T~ N1 09 = Vg - T~ ¥Wix1¥ix1,
o, By = Dg - T EiAAYin LT Vi = g Tff,,\((xix,hyi,\,j)je[q), thus é =
Ug TI@iy iy )ie) = vg. Therefore we can also implement Step 3 equiv-
alently as follows.
Step 3 (Equivalent Form):
— table is set up in a similar way as in £.Enc, but with the following
difference. The item of row 1 and column 1 in table is computed as
ﬁ171 = (’ELLlTa) . ’LN)O instead of ’lAJ,Ll = ’111,1 . ’L~)0.

— &:= g mod N*, and ¢ := glf;((zi/\,j’yi)\,j)je[él]) mod ¢(N)/4 mod N.

In this step, £.Enc does not use (z1,y1, - ,Z4,y4) mod N at all (only uses
(fi,jvgi,j)ie[n],je[ﬂ and (21,y1," "+, ¥4,y4) mod ¢(N)/4).

Consequently, through the computationally indistinguishable change, the en-
tropy of (x1,y1,-"+ , 4, ya) mod N is reserved by the £.Enc part of ENc.

Similarly, DEC can be changed to do decryptions without (z;, yj);*:l mod N.
This can be done with ¢(N) and the (mod ¢(N)/4) part of secret key. (This
corresponds to G7-Gg in the proof of Theorem 2). Use ¢(N) to make sure that
all items in table of £.ct belong to SCR ys. If not, reject immediately. As a result,
DEC does not leak any information of (x1,y1,- - ,%4,y4) mod N. This change
is computationally indistinguishable, just like the analysis of Pr[Bad] as in the
proof of Theorem 2.

6.4 The General £ Designed for T§o1y

The previous subsection showed how to design £ for a specific type of monomials.
A general f} of degree d contains at most (*}%) = ©(d®) monomials. To design a
general £ for fgoly, we have to consider all possible types of monomials. For each
type of non-constant monomial, we create a table and each table is associated
with a v, which is called a title, and those ©’s are used to hide message in ¢. We
describe £.Enc and £.Dec in Fig. 9.

There are totally (8+d) —1 types of non-constant monomials of degree at most

8
d if we neglect the coefficients. Each type of non-constant monomial x5! 52 252
ix,19x,17i5,2
Yit oY 3Yi? awyT 4yie 4 is associated with a tuple ¢ = (c1,---cg), which deter-

mines degrees of each variable. Denote by S the set containing all such tuples,
i_e_’ 8:: {C: (017"'08) ‘ 1 Scl+"'+c8 Sd}
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&.ct s £.Enc(pk,m):

m/L € Dec(sk,E.ct):

Parse £.ct =

((table(c))ces

For each ¢ = (c1,- -

7Cg) S

For each ¢ = (c1,--- ,cs

,6,t).
)ES

(table®, 5(9)) «s TableGen(pk,c).

%) « CalculateV (sk, table(®, c) .

27

& ([[es®9)™" € RUys
&:=[les ' - T™ mod N*. m = dlogy (¢ - ([Loes #©) ") mod N*~2.
t:=g1" mod N € Zn. If t = g1* mod N, Return m.
Return €.ct := ((table!”)ces,é,t). | Otherwise, Return L.
TabIeGen(pk = (h17 hz, h3, h4), c= (Cl, s ,Cg)):
For each | € {0,1,--- ,szzl ¢}
Fius T2, s, fra s [[]]0 ) ) )
(@, s) = (90 00 92 g5 g5 ga ght g,
= hTL lh” zhn thL 4
Ug,1 Up,2 Up,8
1,1+ Up U1,2 1,8
(&1
rows
Uey 1 Vey—1 Ue, 2 Ue, 8
Uey 41,1 Uey 41,2 - Ve, Uey+1,8
co
table(® := rows
aCl‘FCz,l ﬂc1+02,2 . 7]C1+cz—1 7101+62,8
ﬁzjzl cj+1,1 ’ﬁzjzl cj+1,2 112 L ct+18 LZJ ¢
R . . cg
_ _ _ rows
UZJ 1651 u218=1 cjy2 u218=1 8 UZ]8=1 ci—1
Return (table®, 59 := 62§:1 e;)
CalculateV/(sk = (z1,y1, - ,24,ya), table@, c = (c1,- -+ ,cs)):
Parse table = {[aw [ Jaus]| :
1e{0,1,- _1¢5}
0o := “01 uog “03 ﬂoi “05 ﬁog Uo?%é :
For each | € {1, - c1}
O = (ﬂl,l/ﬁl—l) Uzzyluls P USSR SR T o
Foreachl € {c1+1,--- ,c1 + 02}
Oy = ﬁz_,fl(ﬁlﬁ/@l—l) y U‘l 3 uzf “15 “ze 111_; ﬁz_g :
For each [ 6 {27 Cj + 1 Z? 16}
O = uf % Vg gty Py Py g 2y Py 7t (s /D) TV
Return 9'¢ := Uijl o
Fig.9. Top: £.Enc (left) and £.Dec (right) of £ designed for F Dly, Middle: TableGen,

which generates table(® together with a title %(©); Bottom: CalculateV, which calculates
a title 99 from table(® using secret key.

For each c= (cl,
mial 27} ;Y77

33 2Yin 2
in Fig. 9. Intuitively, TableGen generates table® of 14+ ¢; +---

08) €S, we generate table!® and its title o
T sYiy 3Til 4Yis 4 via the algorithm TableGen illustrated

) for mono-

+ cg rows. The
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0-th row of table( is Up,1, - ,Uo,g. The form of other rows are similar to row 0
with a small difference: the next ¢; rows in the 1-st column are multiplied with
Vg, V1, -+ , Ve, —1 respectively; the next co rows in the 2-nd column are multiplied
with Oc,, Uey41, +** , Uey +cy—1 Tespectively, and so forth. TableGen also generates
a title © for table!®. The product of all the titles, i.e., [les 909, is used to
hide T™ in e.

On the other hand, the title $(© = (9 can be recovered from table(®) with

secret key sk = (z1,y1, -, T4, ys4) via the CalculateV algorithm in Fig. 9. There-
fore, one can always use the secret key to extract the titles (ﬁ(c))ceg from tables
(table(c))ces one by one with CalculateV and then recover m correctly.
Security proof. The proof of KDM[ngly]—CCA security is similar to that of
Theorem 2. But games G3-G4 should be replaced with the following three steps
(Step 1 - Step 3), so that the £.Enc part of ENC can be changed to work as an
entropy filter, i.e., reserving the entropy of (z1,y1, - ,%4,y4) mod N, w.r.t. any
polynomial of degree at most d.

Suppose that the adversary submits (fy,ix € [n]) to ENC. Our aim is to re-
serve the entropy of (z;, yj);’le mod N from 5.Enc( Pk, fa ( (T4, Yi,j)ien],jcl4) ) )

Step 0: In INITIALIZE, the secret keys are generated with x; ; := x; + Z; ; and
Yij = y;j + Ui; mod |[N?/4] for i € [n], j € [4]. This is the same as Gy in
the proof of Theorem 2.

Step 1: Use (Z; 5, Ui j)ic[n],je[a] to re-explain (fx,ix € [n]) as (f},ix € [n]), and
determine the coefficients a, ... o,) of each monomial of f{, as discussed in
Subsection 6.2. Note that a, ... ) = 0 if the associated monomial does not
appear in f{. Then

PA(@ingsYing)ier) = ( 2 s ey, or ) Tiy 1Yin 1 %oy 2Vin 25y 3Yiy 8Tiy aYin,at0,
1 os
where § = a(g,... o) denotes the constant term of f.

Step 2: Use secret key sk;, = (i, j,¥iy,j)je[4] (together with public key pk;, =
(hiy,j)jera)) to implement £.Enc (This corresponds to Gz in the proof of
Theorem 2).

— For each c = (¢q, -+ ,c3) €S
(1) (table!®,5(®)) ¢ TableGen(pk;, , c),
(2) 9© « CalculateV(sk;, ,table® ).
— Use (f;(c))ces instead of (ﬁ(C))CES to compute & with € := [[.cs O

Tf;((wz‘,\vj’yix,j)je[zl]) mod NS, and ¢ := g{;\((ziw]’*yix,j)je[ﬂ) mod N.
It is easy to check that for each ¢ = (c1,--- ,cg) € S, 9© computed from
table(®) via CalculateV is identical to (¢) associated with table(®) via TableGen.
Thus this change is conceptual.
Step 3: This corresponds to G4 in the proof of Theorem 2.
— For each c = (¢1,--- ,c3) €S
(1) Compute table'® via (table!,3(%)) +s TableGen(pk, ,c), but with

one difference. The item of row 1 and column j := min{i | 1 <14 <
8,¢; # 0} in table(® now is computed as Uy j = (Uy,; T es)) - Ty
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instead of ;1 ; = 1 ; - 9. This change is computationally indistin-
guishable, due to the IV5 assumption.
(2) Invoke 9 < CalculateV(sk;, , table®, ¢) to extract a title 3(°) from

the modified table(®. ,
— €= Hces 5@ pIA(iy 5yiy ) jel4) )’ and t ‘= g{*((miw"yim)jelﬂ) mod N.

Observe that for each ¢ = (¢q,--+ ,c3) € S,

%)

_ ©1 €2 €3 ,c4 ,C5 | C6 C7 | cg
{)(C) — 1~}(c) LT ers e see) iy 1Y 1%y 2V 2%y 3Yiy 3 Tiy aYiy 4

Then é = [ cs 50 @iy 5y i) je4))
— H s (@(C) LT % e ,cg)mfi,ﬁﬁf,fffi,z'“yff,sm?;,w;f,zl) i@y iy i) jel))
Cc
— MO
- HCGS v T ’

where § is the constant term of fi. Therefore we can implement Step 3
equivalently as follows.
Step 3 (Equivalent Form):
— For each c = (¢y,--+ ,c3) €S
Compute table'® via (table®,(9)) «—s TableGen(pk;, ,c), but with
one difference. The item of row 1 and column j := min{i | 1 < i <
8,¢; # 0} in table!® now is computed as iy ; = (@ ;T 1)) - G
instead of IALLJ' = INLLJ' . ’Do.

— €:=[[ees 9 - T9, and t := glg((zi*’j’y“’j)ja‘”) mod $(N)/4 1110d N.
In this step, £.Enc does not use (z1,y1, - ,Z4,y4) mod N at all (only uses
(Tij,ij)iem],jea) and (z1,y1,- -, 24,y4) mod ¢(N)/4).

As a result, through the computationally indistinguishable change, the entropy
of (z1,y1, - , 24, y4) mod N is reserved by the £.Enc part of ENC.

Similarly, DEC can be changed to do decryptions without (z;, yj)§:1 mod N,
the same argument as in Subsection 6.3.
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