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Abstract. KDM[F ]-CCA secure public-key encryption (PKE) protects
the security of message f(sk), with f ∈ F , that is computed directly from
the secret key, even if the adversary has access to a decryption oracle.
An efficient KDM[Faff]-CCA secure PKE scheme for affine functions was
proposed by Lu, Li and Jia (LLJ, EuroCrypt2015). We point out that
their security proof cannot go through based on the DDH assumption.

In this paper, we introduce a new concept Authenticated Encryption
with Auxiliary-Input AIAE and define for it new security notions dealing
with related-key attacks, namely IND-RKA security and weak INT-RKA
security. We also construct such an AIAE w.r.t. a set of restricted affine
functions from the DDH assumption. With our AIAE,

– we construct the first efficient KDM[Faff]-CCA secure PKE w.r.t.
affine functions with compact ciphertexts, which consist only of a
constant number of group elements;

– we construct the first efficient KDM[Fdpoly]-CCA secure PKE w.r.t.
polynomial functions of bounded degree d with almost compact ci-
phertexts, and the number of group elements in a ciphertext is poly-
nomial in d, independent of the security parameter.

Our PKEs are both based on the DDH & DCR assumptions, free of
NIZK and free of pairing.

Keywords: Public-key encryption, Key-dependent messages, Chosen-
ciphertext security, Authenticated encryption, Related-key attack

1 Introduction

Traditional Chosen-Ciphertext Attack (CCA) security of a public-key encryption
(PKE) scheme considers the security of messages chosen by an adversary, even if
the adversary obtains the public key pk, challenge ciphertexts of the messages,
and has access to a decryption oracle (which provides decryption services to
the adversary but refuses to decrypt the challenge ciphertexts). Note that the
adversary cannot compute messages directly from secret keys, since it does not
possess the secret keys. Therefore, CCA security does not cover the corner, where
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messages closely depend on the secret keys, say the secret keys themselves or
functions of the secret keys. This issue was first identified in [GM84]. Later the
security of key-dependent messages was formalized as KDM-security [BRS02].
KDM-security is an important notion, and has found wide applications, like hard
disk encryption [BHHO08], cryptographic protocols [CL01], etc.

KDM-security w.r.t. a set of functions F is denoted by KDM[F ]-security.
The larger F is, the stronger the security is. Roughly speaking, n-KDM[F ]-
security of PKE considers such a scenario: an adversary is given public keys
(pk1, pk2, · · · , pkn) of n users and an encryption oracle. Whenever the adversary
queries a function f ∈ F , the encryption oracle will always reply with an encryp-
tion of a constant say 0, or always reply with an encryption of f(sk1, sk2, · · · , skn).
If the adversary cannot tell which case it is, the PKE is n-KDM[F ]-CPA se-
cure. If the adversary has also access to a decryption oracle in the scenario,
then KDM[F ]-CPA security is improved to KDM[F ]-CCA security. Obviously,
KDM-CCA security notion is stronger than KDM-CPA.

KDM[F ]-CPA Security. The BHHO scheme [BHHO08] was the first PKE
achieving KDM[Faff]-CPA security based on the Decisional Diffie-Hellman (DDH)
assumption, where Faff denotes the set of affine functions. It was later generalized
by Brakerski and Goldwasser [BG10] to KDM[Faff]-CPA secure PKE schemes
based on the Subgroup Indistinguishability Assumption (including the QR and
the DCR assumptions). These schemes have incompact ciphertexts containing
O(`) group elements, where ` denotes the security parameter.

A variant of Regev’s scheme [Reg05] was shown to be KDM[Faff]-CPA secure
and has compacter ciphertexts by Applebaum et al. [ACPS09].

Barak et al. [BHHI10] proposed KDM-CPA secure PKE w.r.t. a very large
function set, i.e., the function set of boolean circuits of bounded size p = p(`).
However, their scheme is inflexible and highly impractical, since its encryption
algorithm depends on the bound p and the number of users, and the ciphertext
contains a garbled circuit of size at least p = p(`).

Brakerski et al. [BGK11] amplified the BHHO scheme to KDM[Fdpoly]-CPA
security w.r.t. the set of polynomial functions of bounded degree d. However,
their ciphertext contains O(`d+1) group elements.

It is Malkin et al. [MTY11] who designed the first efficient PKE scheme
achieving KDM[Fdpoly]-CPA security. Their ciphertext contains only O(d) group

elements, thus d can be polynomial in ` in their case. The function set Fdpoly is
characterized by a polynomial-size Modular Arithmetic Circuit in [MTY11].

KDM[F ]-CCA Security. KDM[F ]-CCA security of PKE is far more diffi-
cult to design than KDM[F ]-CPA security. Camenisch et al. [CCS09] gave the
first solution, following Naor-Yung’s paradigm, which needs a KDM-CPA secure
PKE, a CCA-secure PKE and a non-interactive zero-knowledge (NIZK) proving
that the two PKEs encrypt the same message.

NIZK is not practical in general, except Groth-Sahai proofs [GS08]. When
following [CCS09]’s approach, the only possible way to get an efficient KDM-
CCA secure PKE, is using Groth-Sahai proofs together with an efficient KDM-
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CPA secure PKE. However, many existing efficient KDM-CPA secure schemes,
such as [ACPS09, MTY11], are not based on pairing-friendly groups, thus not
compatible with Groth-Sahai’s efficient NIZK.

Another work by Galindo et al. [GHV12] is based on the Matrix DDH as-
sumption over pairing-friendly groups. Their scheme has compact ciphertexts,
but only obtains a bounded form of KDM-CCA security, i.e., the number of
encryption queries is limited to be linear in the size of the secret key.

To get an efficient KDM-CCA secure PKE, Hofheinz [Hof13] proposed an-
other approach, which uses a new tool called “lossy algebraic filter”. His work
results in the first PKE enjoying both KDM-CCA security and compact cipher-
texts (consisting only of a constant number of group elements). However, the
function set Fcirc only consists of selection functions f(sk1, · · · , skn) = ski and
constant functions.

It is quite challenging to enlarge F for KDM[F ]-CCA security while still
keeping PKE efficient. One effort was recently made by Lu, Li and Jia [LLJ15],
who proposed the first efficient KDM[Faff]-CCA secure PKE with compact ci-
phertexts. We call their construction the LLJ scheme. There is an essential
building block called “Authenticated Encryption” (AE) in their scheme. The
KDM[Faff]-CCA security heavily relies on a so-called INT-Faff-RKA security of
AE. INT-Faff-RKA security of AE means that a PPT adversary cannot forge a
fresh forgery (f∗, ae.ct∗) such that AE.Decf∗(k)(ae.ct

∗) 6= ⊥, even if the adversary

observes multiple outputs of AE.Encfj(k)(mj) with his choice of (fj ,mj). Unfor-

tunately, we found that the INT-Faff-RKA security proof of the specific AE does
not go through to the DDH assumption, which in turn affects the KDM[Faff]-
CCA security proof of the LLJ scheme. Our essential observation is that the
DDH adversary is not able to employ the fresh forgery from the adversary of AE
to solve the DDH problem, since the DDH adversary does not have any trapdoor
to convert the computing power (forgery) to a decision bit.

As for KDM[Fdpoly]-CCA security, [CCS09]’s paradigm is the unique path to

it up to now. Unfortunately, the only efficient KDM[Fdpoly]-CPA secure scheme
[MTY11] does not compose well with Groth-Sahai proofs, so it has to resort to
the general NIZK. Other KDM[Fdpoly]-CPA secure schemes either is highly im-

practical [BHHI10] or has ciphertext containingO(`d+1) group elements [BGK11],
which grows exponentially with the degree d.

Our Contribution. We work on the design of efficient PKE with KDM[Faff]-
CCA security and KDM[Fdpoly]-CCA security.

– We identify the proof flaw in [LLJ15], where an efficient KDM[Faff]-CCA
secure PKE was claimed. We show that for “Authenticated Encryption” (AE)
used in the LLJ scheme, the INT-Faff-RKA security reduction to the DDH
assumption does not work. This proof flaw directly affects the KDM[Faff]-
CCA security proof of the LLJ scheme.

– We provide the first efficient KDM[Faff]-CCA secure PKE w.r.t. affine func-
tions with compact ciphertexts. Our scheme has ciphertexts consisting only
of a constant number of group elements and is free of NIZK.
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– We provide the first efficient KDM[Fdpoly]-CCA secure PKE w.r.t. polynomial
functions of bounded degree d with almost compact ciphertexts. Our scheme
is free of NIZK. The number of group elements in a ciphertext is polynomial
in d, independent of the security parameter `.

We summarize known PKEs either achieving KDM-CCA security or against
function set Fdpoly in Table 1.

Table 1. Comparison between PKEs either achieving KDM-CCA security or against
function set Fdpoly. Here ` is the security parameter. Fcirc, Faff and Fdpoly denote the set
of selection functions, the set of affine functions and the set of polynomial functions of
bounded degree d, respectively. “CCA” means the scheme is KDM-CCA secure. “Free
of Pairing” asks whether the scheme is free of pairing. |CT| shows the size of ciphertext.
G, ZN3 , ZN2 and ZN̄ are the underlying groups. s can be any integer greater than 1.
The symbol “?” means that the security proof is not rigorous.

Scheme Set CCA? Free of Pairing? |CT| Assumption

[BHHO08] + [CCS09] Faff
√

− (6`+ 13)|G| DDH

[BGK11] Fdpoly −
√

(`d+1)|G| DDH or LWE

[MTY11] Fdpoly −
√

(d+ 2)|ZNs | DCR

[Hof13] Fcirc
√

− 6|ZN3 | + 49|G| DDH & DCR

[LLJ15] Faff ?
√ 3|ZN2 | + 3|ZNs |

+ |ZN̄ |
DDH & DCR

Our scheme in §5 Faff
√ √ 9|ZN2 | + 9|ZNs |

+ 2|ZN̄ |
DDH & DCR

Our scheme in §6 Fdpoly

√ √ 9|ZN2 | + (8d9 + 1)|ZNs |
+ 2|ZN̄ |

DDH & DCR

Our Approach. The challenge for KDM[F ]-CCA security of PKE lies in the
fact that the adversary A has multiple access to the encryptions of f(sk) and de-
cryption oracle Dec(sk, ·), with f ∈ F and sk the secret key. Let us consider only
one secret key for simplicity. The information of sk might be leaked completely
via encryptions of f(sk).

To solve this problem, we follow a KEM+DEM style and construct our PKE
with three building blocks: KEM, E and AIAE, as shown in Fig. 1.

• We propose a new concept “Authenticated Encryption with Auxiliary-Input”
(AIAE). We define for it new security notions dealing with related-key at-
tacks, namely weak INT-F ′-RKA security and IND-F ′-RKA security.

• We design the other building blocks KEM and E . KEM.Enc encapsulates a
key k for AIAE, and the encapsulation kem.ct serves as an auxiliary input
aux for AIAE.Enc. E .Enc encrypts m to get a ciphertext E .ct, which serves
as an input for AIAE.Enc.

We show how to achieve KDM[F ]-CCA security with our three building blocks.

– E .Enc can behave like an entropy filter (the concept was named in [LLJ15])
for F . That is, through some computationally indistinguishable change, some
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Fig. 1. Our approach of PKE construction. Here KEM and E share the same pub-
lic/secret key pair. AIAE.Enc uses k output by KEM to encrypt E .ct with auxiliary
input aux := kem.ct, and outputs ciphertext aiae.ct.

entropy of sk is always reserved even if multiple encryptions of fj(sk) are
given to A. Here fj ∈ F is chosen by A.

– The fresh keys kj used by AIAE.Enc can be expressed as functions of a base
key k∗, i.e., kj = f ′j(k

∗), where f ′j ∈ F ′ for some function set F ′. We stress
that F ′ might be different from F .

– KEM.Enc is able to use the remaining entropy of sk to protect the base key
k∗, via some computationally indistinguishable change.

– The weak INT-F ′-RKA security of AIAE guarantees: given multiple AIAE
ciphertext-auxiliary input pair (aiae.ctj , auxj) encrypted by f ′j(k

∗), it is in-
feasible for a PPT algorithm to forge a new (f ′, aiae.ct, aux) satisfying (1)
AIAE.Decf ′(k∗)(aiae.ct, aux) 6= ⊥; (2) if aux = auxj for some j then f ′ = f ′j .

– Decryption oracle can reject all invalid ciphertexts that are not properly
generated by the encryption algorithm, via some computationally indistin-
guishable change. If the invalid ciphertext makes KEM.Dec decapsulate a
key f ′(k∗), AIAE.Dec will output ⊥, due to its weak INT-F ′-RKA security.
Otherwise, the invalid ciphertext will be rejected by E .Dec or KEM.Dec, due
to the remaining entropy of sk. As a result, no extra information about sk
is leaked.

– The IND-F ′-RKA security of AIAE ensures: given multiple AIAE ciphertext-
auxiliary input pair (aiae.ctj , auxj) with key f ′j(k

∗) encrypting either m0 or
m1, it is infeasible for a PPT algorithm to distinguish which case it is, even
if f ′j ∈ F ′ is submitted by the algorithm.

– By the IND-F ′-RKA security of AIAE, the encryption of E .ct can be replaced
with an encryption of all zeros. Then the KDM[F ]-CCA security follows.

With this approach, we can construct PKEs possessing KDM[Faff]-CCA and
KDM[Fdpoly]-CCA security respectively, by designing specific building blocks.

Comparison with LLJ. We inherit the idea of utilizing RKA security of AE
to achieve KDM security from LLJ. However, our approach deviates from LLJ
in three aspects.

1. The structure of our scheme is different from LLJ. It is also possible to
explain the LLJ scheme with three components KEM, E and AE. However,
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their components were composed in a different way. In the LLJ scheme, the
output kem.ct of KEM serves as an additional input for E .Enc. With their
structure, E is expected to authenticate kem.ct. In our approach, kem.ct is
the auxiliary input of AIAE, thus can be authenticated by AIAE.

2. The syntax and security requirements of our AIAE are different from LLJ’s
AE. Their AE does not support auxiliary input, and the security proof of
their AE instantiation has some problem, as shown in Section 3.

3. Our KEM and E are newly designed building blocks which compose well
with our AIAE. We give two designs of E to support KDM[Faff]-CCA and
KDM[Fdpoly]-CCA security respectively.

2 Preliminaries

Let ` ∈ N denote the security parameter. For i, j ∈ N with i < j, define [i, j] :=
{i, i + 1, · · · , j} and [j] := {1, 2, · · · , j}. Denote by s ← $ S the operation of
picking an element s from set S uniformly at random. For an algorithmA, denote
by y ←$ A(x; r), or simply y ←$ A(x), the operation of running A with input x
and randomness r and assigning output to y. Let ε denote the empty string. For
a primitive XX and a security notion YY, we typically denote the advantage of a
PPT adversary A by AdvYY

XX,A(`) and define AdvYY
XX(`) := maxPPTA AdvYY

XX,A(`).

Let 2−Ω(`) denote the value upper bounded by 2−c·` for some constant c > 0.

Games. Our security proof will be game-based security reductions. A game G
starts with an Initialize procedure and ends with a Finalize procedure. There
are also some optional procedures Proc1, · · · ,Procn performing as oracles.
All procedures are described using pseudo-code, where initially all variables are
empty strings ε and all sets are empty. An adversary A is executed in game G
if it first calls Initialize, obtaining its output. Then the adversary may make
arbitrary oracle-queries to procedures Proci according to their specification, and
obtain their outputs. Finally it makes one single call to Finalize. By GA ⇒ b
we means that G outputs b after interacting with A, and b is in fact the output

of Finalize. By a
G
= b we mean that a equals b or is computed as b in game G.

2.1 Public-Key Encryption and KDM-CCA Security

A public-key encryption (PKE) scheme is made up of four PPT algorithms
PKE = (Setup,Gen,Enc, Dec): Setup(1`) generates a public parameter prm, which
implicitly defines a secret key space SK and a message spaceM; Gen(prm) takes
as input the public parameter prm and generates a public/secret key pair (pk, sk);
Enc(pk,m) takes as input the public key pk and a message m, and outputs a
ciphertext pke.ct; Dec(sk, pke.ct) takes as input the secret key sk and a ciphertext
pke.ct and outputs either a message m or a failure symbol ⊥. The correctness of
PKE requires that, for all prm←$ Setup(1`), all (pk, sk)←$ Gen(prm), all m ∈M
and all pke.ct←$ Enc(pk,m), it holds that Dec(sk, pke.ct) = m.

Let n ∈ N and F be a family of functions from SKn to M. We define the
n-KDM[F ]-CCA security via the security game in Fig. 2.
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Procedure Initialize:

prm←$ Setup(1`).

For i ∈ [n]

(pki, ski)←$ Gen(prm).

β ←$ {0, 1}. // challenge bit

Return (prm, pk1, · · · , pkn).

Procedure Finalize(β′):

Return (β′ = β).

Procedure Enc(f ∈ F , i ∈ [n]):

m1 := f(sk1, · · · , skn), m0 := 0|m1|.

pke.ct←$ Enc(pki,mβ).

QENC := QENC ∪ {(pke.ct, i)}.
Return pke.ct.

Procedure Dec
(
pke.ct, i ∈ [n]

)
:

If (pke.ct, i) ∈ QENC, Return ⊥.

Return Dec(ski, pke.ct).

Fig. 2. n-KDM[F ]-CCA security game for PKE.

Definition 1 (KDM[F ]-CCA Security for PKE). Scheme PKE is n-KDM[F ]-

CCA secure if for any PPT adversary A, Advkdm-cca
PKE,A (`) := |Pr[n-KDM[F ]-CCAA

⇒ 1]− 1/2| is negligible in `, where game n-KDM[F ]-CCA is specified in Fig. 2.

2.2 Key Encapsulation Mechanism

A key encapsulation mechanism (KEM) consists of three PPT algorithms KEM =
(KEM.Gen,KEM.Enc,KEM.Dec): KEM.Gen(1`) outputs a public/secret key pair
(pk, sk); KEM.Enc(pk) uses the public key pk to compute a key k and a ciphertext
(or encapsulation) kem.ct; KEM.Dec(sk, kem.ct) takes as input the secret key sk
and a ciphertext kem.ct, and outputs either a key k or a failure symbol ⊥.
The correctness of KEM requires that, for all (pk, sk) ←$ KEM.Gen(1`) and all
(k, kem.ct)←$ KEM.Enc(pk), it holds that KEM.Dec(sk, kem.ct) = k.

2.3 Authenticated Encryption: One-Time Security and Related-Key
Attack Security

Definition 2 (Authenticated Encryption). An authenticated encryption (AE)
scheme AE = (AE.Setup,AE.Enc,AE.Dec) consists of three PPT algorithms:

• AE.Setup(1`) outputs a system parameter prmAE, which is an implicit input
to AE.Enc and AE.Dec. The parameter prmAE implicitly defines a message
space M and a key space KAE.
• AE.Enc(k,m) takes as input a key k ∈ KAE and a message m ∈ M, and

outputs a ciphertext ae.ct.
• AE.Dec(k, ae.ct) takes as input a key k ∈ KAE and a ciphertext ae.ct, and

outputs a message m ∈M or a rejection symbol ⊥.

Correctness of AE requires that, for all prmAE ←$ AE.Setup(1`), all k ∈ KAE, all
m ∈M and all ae.ct←$ AE.Enc(k,m), it holds that AE.Dec(k, ae.ct) = m.

The security notions for AE include One-time ciphertext-indistinguishability
(IND-OT) and One-time ciphertext-integrity (INT-OT). The IND-OT and INT-
OT securities of AE are formalized via the security games in Fig. 3.
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Procedure Initialize:

prmAE ←$ AE.Setup(1`), k←$ KAE.

β ←$ {0, 1}. // challenge bit

Return prmAE.

Procedure Enc(m0,m1): // one query

If |m0| 6= |m1|, Return ⊥.

ae.ct←$ AE.Enc(k,mβ).

Return ae.ct.

Procedure Finalize(β′):

Return (β′ = β).

Procedure Initialize:

prmAE ←$ AE.Setup(1`), k←$ KAE.

Return prmAE.

Procedure Enc(m): // one query

ae.ct←$ AE.Enc(k,m).

Return ae.ct.

Procedure Finalize
(
ae.ct∗

)
:

If ae.ct∗ = ae.ct, Return 0.

Return (AE.Dec(k, ae.ct∗) 6= ⊥).

Fig. 3. Games IND-OT (left) and INT-OT (right) for defining securities of AE.

Definition 3 (One-Time Security for AE). Scheme AE is one-time secure
(OT-secure) if it is IND-OT secure and INT-OT secure, i.e., for any PPT ad-
versary A, both Advind-ot

AE,A (`) := |Pr[IND-OTA ⇒ 1] − 1/2| and Advint-otAE,A (`) :=

Pr[INT-OTA ⇒ 1] are negligible in `, where games IND-OT and INT-OT are
specified in Fig. 3.

Let F be a family of functions from KAE to KAE. The F-Related-Key Attack
for AE scheme was formalized in [LLJ15], and RKA security notions characterize
the ciphertext indistinguishability (IND-F-RKA) and integrity (INT-F-RKA)
even if the adversary has multiple access to the encryption oracle and designates
a function f ∈ F each time such that the encryption oracle uses f(k) as the key.

Procedure Initialize:

prmAE ←$ AE.Setup(1`), k←$ KAE.

β ←$ {0, 1}. // challenge bit

Return prmAE.

Procedure Enc(m0,m1, f ∈ F):

If |m0| 6= |m1|, Return ⊥.

ae.ct←$ AE.Enc(f(k),mβ).

Return ae.ct.

Procedure Finalize(β′):

Return (β′ = β).

Procedure Initialize:

prmAE ←$ AE.Setup(1`), k←$ KAE.

Return prmAE.

Procedure Enc(m, f ∈ F):

ae.ct←$ AE.Enc(f(k),m).

QENC := QENC ∪
{(
f, ae.ct

)}
.

Return ae.ct.

Procedure Finalize
(
f∗ ∈ F , ae.ct∗

)
:

If
(
f∗, ae.ct∗

)
∈ QENC, Return 0.

Return (AE.Dec(f∗(k), ae.ct∗) 6= ⊥).

Fig. 4. Games IND-F-RKA (left) and INT-F-RKA (right) for defining securities of AE.

Definition 4 (IND-RKA and INT-RKA Securities for AE). Scheme
AE is IND-F-RKA secure and INT-F-RKA secure, if for any PPT adversary
A, both Advind-rka

AE,A (`) := |Pr[IND-F-RKAA ⇒ 1] − 1/2| and Advint-rkaAE,A (`) :=

Pr[INT-F-RKAA ⇒ 1] are negligible in `, where games IND-F-RKA and INT-F-
RKA are specified in Fig. 4.
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2.4 DCR, DDH, DL and IVd Assumptions

Let GenN(1`) be a PPT algorithm outputting (N, p, q), where p, q are safe primes
of ` bits and N = pq, such that N̄ = 2N+1 is also a prime. Let s ∈ N and T = 1+
N . Define QRNs :=

{
a2 mod Ns

∣∣ a ∈ Z∗Ns
}

, SCRNs :=
{
a2Ns−1

mod Ns
∣∣ a ∈

Z∗Ns
}

, and RUNs :=
{
T r mod Ns

∣∣ r ∈ [Ns−1]
}

. Then SCRNs is a cyclic group
of order φ(N)/4, and QRNs = SCRNs ⊗RUNs , where ⊗ denotes internal direct
product. Let QRN̄ :=

{
a2 mod N̄

∣∣ a ∈ ZN̄
}

, then QRN̄ is a cyclic group of
order N = pq.

For X ∈ RUNs , the discrete logarithm dlogT (X) ∈ [Ns−1] can be efficiently
computed given onlyN andX [DJ01]. Note that Z∗Ns = Z2⊗Z′2⊗SCRNs⊗RUNs ,
hence for any u = u(Z2) ·u(Z′2) ·u(SCRNs) ·T x ∈ Z∗Ns , uφ(N) = T x·φ(N) ∈ RUNs
and

dlogT (uφ(N))/φ(N) mod Ns−1 = x. (1)

The formal definitions of the Decisional Composite Residuosity (DCR) and
the Discrete Logarithm (DL) assumptions are in the full version [HLL16]. The
DCR assumption implies the Interactive Vector (IVd) assumption according to
[BG10]. We adopt the version in [LLJ15].

Definition 5 (IVd Assumption). The IVd Assumption holds w.r.t. GenN and
group QRNs if for any PPT adversary A, the following advantage is negligible
in `:

AdvivdGenN,A(`) :=
∣∣Pr

[
AChalbIVd (N, g1, · · · , gd) = b

]
− 1/2

]∣∣,
where (N, p, q) ←$ GenN(1`), g1, · · · , gd ←$ SCRNs , b ←$ {0, 1}, and the oracle
ChalbIVd(·) can be queried by A adaptively. A submits (δ1, · · · , δd) to the oracle.

ChalbIVd(δ1, · · · , δd) selects random r ←$ [bN/4c]. If b = 0, the oracle returns

(gr1, · · · , grd); otherwise it returns (gr1T
δ1 , · · · , grdT δd), where T = 1 +N .

Definition 6 (DDH Assumption). The Decisional Diffie-Hellman (DDH)
Assumption holds w.r.t. GenN and group QRN̄ if for any PPT adversary A,
the following advantage is negligible in `:

AdvddhGenN,A(`) :=
∣∣Pr

[
A(N, p, q, g1, g2, g

x
1 , g

x
2 ) = 1

]
− Pr

[
A(N, p, q, g1, g2, g

x
1 , g

y
2 ) = 1

]∣∣,
where (N, p, q)←$ GenN(1`), g1, g2 ←$ QRN̄ , x, y ←$ ZN \ {0}.

2.5 Collision Resistant Hashing and Universal Hashing

Definition 7 (Collision Resistant Hashing). A family of functions H =
{H : X −→ Y} is collision-resistant if for any PPT adversary A, the following
advantage is negligible in `:

Advcr
H,A(`) := Pr

[
H←$ H, (x, x′)←$ A(H) : H(x) = H(x′) ∧ x 6= x′

]
.

Definition 8 (Universal Hashing). A family of functions H = {H : X −→
Y} is universal, if for all distinct x, x′ ∈ X , it follows that

Pr
[
H←$ H : H(x) = H(x′)

]
≤ 1/|Y|.
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3 AE of the LLJ Scheme and Its INT-RKA Security

The LLJ scheme [LLJ15] makes use of an important primitive “Authenticated
Encryption” AE. Its KDM[Faff]-CCA security heavily relies on the IND-Faff-
RKA security and INT-Faff-RKA security of their AE. LLJ claimed INT-Faff-
RKA security of their AE, however, we point out that their security proof does
not go through to the DDH assumption, which in turn affects the KDM[Faff]-
CCA security proof of the LLJ scheme.

Let us briefly review LLJ’s AE as follows. The public parameter is prmAE =
(N, N̄, g) where N = pq, N̄ = 2N + 1, and g is a generator of group QRN̄ . Let
AE be an IND-OT and INT-OT secure authenticated encryption, and H be a
4-wise independent hash function. The secret key space is ZN .

– AE.Enc(k,m) computes u = gr with r ← $ ZN , κ = H(uk, u) and invokes
χ←$ AE.Enc(κ,m). It outputs the ciphertext 〈u, χ〉.

– AE.Dec(k, 〈u, χ〉) computes κ = H(uk, u) and outputs m/⊥ ← AE.Dec(κ, χ).

In the LLJ scheme, AE should have RKA security w.r.t. Faff = {f : k 7−→ak+
b | a 6= 0}. Let us check their security proof. See Table 2. The proof idea is to
use the DDH assumption to make sure that each κλ, λ ∈ [Qe], is random to the
adversary. Then the INT-OT of AE guarantees that the adversary cannot make a
fresh forgery

(
f∗ = (a∗, b∗), 〈u∗, χ∗〉

)
such that AE.Dec(a∗k + b∗, 〈u∗, χ∗〉) 6= ⊥.

In [LLJ15], the indistinguishability of Game 1.(i − 1) and Game 1.i is re-
duced to the DDH assumption. A PPT algorithm B is constructed to solve the
DDH problem by employing an INT-Faff-RKA adversary A. Given the challenge
(g, gri , gk, Z), B wants to tell whether Z = gkri or Z = gzi for a random zi. B
simulates the INT-Faff-RKA game for A by computing κi = H(Zaigribi , gri). If
Z = gkri , B simulates Game 1.(i− 1) for A; if Z = gzi , B simulates Game 1.i.

The problem is now that B does not know the value of secret key k (it knows
gk). When A submits a fresh forgery

(
f∗ = (a∗, b∗), 〈u∗, χ∗〉

)
, B is not able to

see whether AE.Dec(a∗k + b∗, 〈u∗, χ∗〉) 6= ⊥ or not without the knowledge of k.
More precisely, B can not compute κ∗ = H(u∗a

∗k+b∗ , u∗) = H
(
(u∗k)a

∗ · u∗b∗ , u∗
)

from gk and u∗, unless it is able to compute the CDH value u∗k from gk and u∗.
Without κ∗, it is hard for B to decide whether AE.Dec(κ∗, χ∗) 6= ⊥ or not. In
other words, B cannot find an efficient (PPT) way to transform the computing
power (forgery) of A into its own decisional power (decision bit) to determine
(g, gri , gk, Z) to be a DDH tuple or a random tuple. The failure of the INT-Faff-
RKA security proof results in the failure of the KDM[Faff]-CCA proof of the
LLJ scheme since INT-Faff-RKA security is used to prevent a KDM[Faff]-CCA
adversary from learning more information about the secret key by querying some
invalid ciphertexts for decryption.

4 Authenticated Encryption with Auxiliary-Input

We do not see any hope of successfully fixing the security proof of the LLJ’s AE
in [LLJ15]. Alternatively, we resort to a different building block, namely AIAE.
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Table 2. INT-Faff-RKA security proof of AE in the LLJ scheme; we point out a flaw

in the security reduction from Game 1.(i− 1) to Game 1.i, denoted by “?”.

Enc(mλ, fλ = (aλ, bλ)) oracle, λ ∈ [Qe],

where Qe is the number of encryption queries
Assumptions

Game 0
rλ ←$ ZN ; uλ := grλ ; κλ := H(u

(aλk+bλ)
λ , uλ);

χλ ←$ AE.Enc(κλ,mλ); return ae.ctλ := 〈uλ, χλ〉.
−

Game 1 Same as Game 0 except κλ := H((gkrλ)aλgrλbλ , grλ). Game 1 = Game 0

Game 1.i
For λ = 1, · · · , i, the same as Game 1 except

κλ := H((gzλ)aλgrλbλ , grλ) with zλ ←$ ZN ;
DDH (?)

For λ = i+ 1, · · ·Qe, the same as Game 1.

Game 2 Game 2 = Game 1.Qe INT-OT of AE

The intuition is as follows. If LLJ’s AE is regarded as (ElGamal + OT-AE), we
can design a new AIAE as (Kurosawa-Desmedt [KD04] + OT-AE). But a new
problem with our design arises: the secret key of KEM [KD04] consists of several
elements, i.e., k = (k1, k2, k3, k4). The affine function of k is too complicated to
prove the INT-Faff-RKA security. Fortunately, (a weak) INT-RKA security fol-
lows w.r.t. a smaller restricted affine function set Fraff =

{
f : (k1, k2, k3, k4) 7−→

a · (k1, k2, k3, k4) + (b1, b2, b3, b4)
∣∣ a 6= 0

}
.

To make AIAE serve KDM-CCA security of our PKE construction in Fig. 1,
we have the following requirements.

• AIAE must have auxiliary input aux.
• A weak INT-F-RKA security is defined for AIAE. Compared to INT-F-

RKA security, the weak version has an additional special rule for the adver-
sary’s forgery (aux∗, f∗, aiae.ct∗) to be successful: if the adversary has already
queried (m, aux∗, f) to the encryption oracle Enc, it must hold that f∗ = f .

Next, we introduce the formal definitions of Authenticated Encryption with
Auxiliary-Input, its IND-F-RKA Security and Weak INT-F-RKA Security.

4.1 AIAE and Its Related-Key Attack Security

Definition 9 (AIAE). An auxiliary-input authenticated encryption (AIAE)
scheme AIAE = (AIAE.Setup,AIAE.Enc,AIAE.Dec) consists of three PPT algo-
rithms:

• AIAE.Setup(1`) outputs a system parameter prmAIAE, which is an implicit
input to AIAE.Enc and AIAE.Dec. The parameter prmAIAE implicitly defines
a message space M, a key space KAIAE and an auxiliary-input space AUX .
• AIAE.Enc(k,m, aux) takes as input a key k ∈ KAIAE, a message m ∈ M and

an auxiliary input aux ∈ AUX , and outputs a ciphertext aiae.ct.
• AIAE.Dec(k, aiae.ct, aux) takes as input a key k ∈ KAE, a ciphertext aiae.ct

and an auxiliary input aux ∈ AUX , and outputs a message m ∈ M or a
rejection symbol ⊥.
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Correctness of AIAE requires that, for all prmAIAE ← $ AIAE.Setup(1`), all k ∈
KAIAE, all m ∈ M, all aux ∈ AUX and all aiae.ct ←$ AIAE.Enc(k,m, aux), we
have that AIAE.Dec(k, aiae.ct, aux) = m.

If the auxiliary-input space AUX = ∅ for all possible parameters prmAIAE,
the above definition is reduced to traditional AE.

Let F be a family of functions from KAIAE to KAIAE. We define the related-key
security notions for AIAE via Fig. 5.

Procedure Initialize:

prmAIAE ←$ AIAE.Setup(1`), k←$ KAIAE.

β ←$ {0, 1}. // challenge bit

Return prmAIAE.

Procedure Enc(m0,m1, aux, f ∈ F):

If |m0| 6= |m1|, Return ⊥.

aiae.ct←$ AIAE.Enc(f(k),mβ , aux).

Return aiae.ct.

Procedure Finalize(β′):

Return (β′ = β).

Procedure Initialize:

prmAIAE ←$ AIAE.Setup(1`), k←$ KAIAE.

Return prmAIAE.

Procedure Enc(m, aux, f ∈ F):

aiae.ct←$ AIAE.Enc(f(k),m, aux).

QENC := QENC ∪
{(

aux, f, aiae.ct
)}

.

QAUXF := QAUXF ∪
{

(aux, f)
}

.

Return aiae.ct.

Procedure Finalize
(
aux∗, f∗ ∈ F , aiae.ct∗

)
:

If
(
aux∗, f∗, aiae.ct∗

)
∈ QENC , Return 0.

// Special rule:

If there exists (aux, f) ∈ QAUXF such that

aux = aux∗ but f 6= f∗, Return 0.

Return (AIAE.Dec(f∗(k), aiae.ct∗, aux∗) 6= ⊥).

Fig. 5. Games IND-F-RKA (left) and weak-INT-F-RKA (right) for defining securities

of auxiliary-input authenticated encryption scheme AIAE. We note that the weak INT-

F-RKA security needs a special rule to return 0 in Finalize as shown in the shadow.

Definition 10 (IND-F-RKA and Weak INT-F-RKA Securities for AIAE).
Scheme AIAE is IND-F-RKA secure and weak INT-F-RKA secure, if for any
PPT adversary A, both Advind-rka

AIAE,A (`) := |Pr[IND-F-RKAA ⇒ 1] − 1/2| and

Advweak-int-rka
AIAE,A (`) := Pr[weak-INT-F-RKAA ⇒ 1] are negligible in `, where

games IND-F-RKA and weak-INT-F-RKA are specified in Fig. 5.

4.2 AIAE from OT-secure AE and DDH Assumption

Let AE = (AE.Setup,AE.Enc,AE.Dec) be a traditional (without auxiliary-input)
authenticated encryption scheme with key space KAE and message spaceM. Let
H1 = {H1 : {0, 1}∗ → ZN} and H2 = {H2 : QRN̄ → KAE} be two families of
hash functions with |KAE|/|QRN̄ | (= |KAE|/N) ≤ 2−Ω(`). The proposed scheme
AIAE = (AIAE.Setup,AIAE.Enc,AIAE.Dec) with key space KAIAE = (ZN )4, mes-
sage space M and auxiliary-input space AUX = {0, 1}∗ is defined in Fig. 6.

The correctness of AIAE follows from the correctness of AE directly. Note that
the factors p, q of N in prmAIAE are not needed in the encryption and decryption
algorithms of AIAE. Jumping ahead, the factors p, q are necessary when the
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prmAIAE ←$ AIAE.Setup(1`):

(N, p, q)←$ GenN(1`), i.e., pick two `-bit safe primes p and q, such that 2pq + 1

is also a prime, and N := pq.

N̄ := 2N + 1 = 2pq + 1. g1, g2 ←$ QRN̄ . H1 ←$ H1, H2 ←$ H2.

Return prmAIAE := (N, p, q, N̄ , g1, g2,H1,H2).

〈c1, c2, χ〉 ←$ AIAE.Enc(k,m, aux):

Parse k = (k1, k2, k3, k4) ∈ Z4
N .

w ←$ ZN\{0}. (c1, c2) := (gw1 , g
w
2 ) ∈ QR2

N̄ .

t := H1(c1, c2, aux) ∈ ZN .

κ := H2

(
ck1+k3t
1 · ck2+k4t

2

)
∈ KAE.

χ←$ AE.Enc(κ,m).

Return 〈c1, c2, χ〉.

m/⊥ ← AIAE.Dec
(
k, 〈c1, c2, χ〉, aux

)
:

Parse k = (k1, k2, k3, k4) ∈ Z4
N .

If (c1, c2) /∈ QR2
N̄ ∨ (c1, c2) = (1, 1),

Return ⊥.

t := H1(c1, c2, aux) ∈ ZN .

κ := H2

(
ck1+k3t
1 · ck2+k4t

2

)
∈ KAE.

Return m/⊥ ← AE.Dec(κ, χ).

Fig. 6. Construction of the DDH-based AIAE from AE.

security of the PKEs presented in Sections 5 and 6 is reduced to the security of
AIAE. We now show the RKA-security of AIAE through the following theorem.

Theorem 1. If the underlying scheme AE is OT-secure, the DDH assumption
holds w.r.t. GenN and QRN̄ , H1 is collision resistant and H2 is universal, then
the resulting scheme AIAE in Fig. 6 is IND-Fraff-RKA and weak INT-Fraff-RKA
secure, where the restricted affine function set is defined as Fraff :=

{
f(a,b) :

(k1, k2, k3, k4) ∈ Z4
N 7−→ (ak1 + b1, ak2 + b2, ak3 + b3, ak4 + b4) ∈ Z4

N

∣∣ a ∈
Z∗N , b = (b1, b2, b3, b4) ∈ Z4

N

}
.

Proof of IND-Fraff-RKA security of AIAE in Theorem 1. The proof pro-
ceeds with a sequence of games. Suppose that A is a PPT adversary against the
IND-Fraff-RKA security of AIAE, who makes at most Qe times of Enc queries.
Let Pri[·] (resp., Pri′ [·]) denote the probability of a particular event occurring in
game Gi (resp., game G′i).

– Game G1: This is the original IND-Fraff-RKA security game. Let Win denote
the event that β′ = β. Then by definition, Advind-rka

AIAE,A (`) =
∣∣Pr1[Win]− 1

2

∣∣.
Denote prmAIAE = (N, p, q, N̄ , g1, g2,H1,H2) and k = (k1, k2, k3, k4). To

answer the λ-th (λ ∈ [Qe]) Enc query (mλ,0,mλ,1, auxλ, fλ), where fλ =
〈aλ, bλ = (bλ,1, bλ,2, bλ,3, bλ,4)〉 ∈ Fraff, the challenger proceeds as follows:
1. pick wλ ←$ ZN\{0} and compute (cλ,1, cλ,2) := (gwλ1 , gwλ2 ) ∈ QR2

N̄ ,
2. compute a tag tλ := H1(cλ,1, cλ,2, auxλ) ∈ ZN ,
3. compute an encryption key for AE scheme using a related key fλ(k):

κλ := H2

(
c
(aλk1+bλ,1)+(aλk3+bλ,3)tλ
λ,1 · c(aλk2+bλ,2)+(aλk4+bλ,4)tλ

λ,2

)
∈ KAE,

4. invoke χλ ←$ AE.Enc(κλ,mλ,β),
and returns the challenge ciphertext 〈cλ,1, cλ,2, χλ〉 to the adversary A.

– Game G1,i, i ∈ [Qe + 1]: This game is the same as game G1, except that, the
challenger does not use secret key k to answer the λ-th (λ ∈ [i − 1]) Enc
query at all, and instead, it changes steps 1, 3 to steps 1′, 3′ as follows:
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1′. pick wλ,1, wλ,2 ←$ ZN\{0} and compute (cλ,1, cλ,2) := (g
wλ,1
1 , g

wλ,2
2 ),

3′. choose an encryption key κλ ←$ KAE randomly for the AE scheme.
The challenger still answers the λ-th (λ ∈ [i, Qe]) Enc query as in G1, i.e.,
using steps 1, 3.

Clearly G1,1 is identical to G1, thus Pr1[Win] = Pr1,1[Win].
– Game G′1,i, i ∈ [Qe]: This game is the same as game G1,i, except that the

challenger answers the i-th Enc query using steps 1′, 3 (rather than steps
1, 3 in game G1,i).

The only difference between G1,i and G′1,i is the distribution of (g1, g2, ci,1,
ci,2). In game G1,i, (g1, g2, ci,1, ci,2) is a DDH tuple, while in game G′1,i, it is
a random tuple. It is straightforward to construct a PPT adversary to solve
the DDH problem w.r.t. GenN and QRN̄ , thus we have that

∣∣Pr1,i[Win] −
Pr1,i′ [Win]

∣∣ ≤ AdvddhGenN(`).
We analyze the difference between G′1,i and G1,i+1 via the following lemma.

Its proof is provided in the full version [HLL16].

Lemma 1. For all i ∈ [Qe],
∣∣Pr1,i′ [Win]− Pr1,i+1[Win]

∣∣ ≤ 1
N−1 + 2−Ω(`).

– Game G2: This game is the same as game G1,Qe+1, except that, to answer
the λ-th (λ ∈ [Qe]) Enc query, the challenger changes step 4 to step 4′:
4′. invoke χλ ←$ AE.Enc(κλ, 0

|mλ,0|).
In game G1,Qe+1, the challenger computes the AE encryption of mλ,β

under encryption key κλ in Enc, while in game G2 it computes the AE
encryption of 0|mλ,0| in Enc. Both in games G1,Qe+1 and G2, we have that
each κλ is chosen uniformly from KAE and independent of other parts of the
game. Therefore we can reduce the differences between G1,Qe+1 and G2 to
the IND-OT security of AE by a standard hybrid argument, and have that∣∣Pr1,Qe+1[Win]− Pr2[Win]

∣∣ ≤ Qe · Advind-ot
AE (`).

Now in game G2, since the challenger always encrypts the constant message
0|mλ,0|, the challenge bit β is completely hidden. Then Pr2[Win] = 1/2.

Taking all things together, the IND-Fraff-RKA security of AIAE follows.

Proof of Weak INT-Fraff-RKA security of AIAE in Theorem 1. Again,
we prove it through a sequence of games. These games are defined almost the
same as those in the previous proof. Suppose that A is a PPT adversary against
the weak INT-Fraff-RKA security of AIAE, who makes at most Qe times of Enc
queries.

– Game G0: This is the original weak-INT-Fraff-RKA security game.
Denote prmAIAE = (N, p, q, N̄ , g1, g2,H1,H2) and k = (k1, k2, k3, k4). To

answer the λ-th (λ ∈ [Qe]) Enc query (mλ, auxλ, fλ), the challenger proceeds
with steps 1∼4, similar to the previous proof, and returns the challenge
ciphertext 〈cλ,1, cλ,2, χλ〉 to the adversary A. Moreover, the challenger will
put

(
auxλ, fλ, 〈cλ,1, cλ,2, χλ〉

)
to a set QENC , put (auxλ, fλ) to a set QAUXF ,

and put (cλ,1, cλ,2, auxλ, tλ) to a set QT AG . Finally, the adversary outputs a
forgery

(
aux∗, f∗ = 〈a∗, b∗ = (b∗1, b

∗
2, b
∗
3, b
∗
4)〉, 〈c∗1, c∗2, χ∗〉

)
.

Let Forge be the event that the following Finalize procedure outputs 1:
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• If
(
aux∗, f∗, 〈c∗1, c∗2, χ∗〉

)
∈ QENC , Return 0.

• If there exists (auxλ, fλ) ∈ QAUXF such that auxλ = aux∗ but fλ 6= f∗,
Return 0.

• If (c∗1, c
∗
2) /∈ QR2

N̄ ∨ (c∗1, c
∗
2) = (1, 1), Return 0.

• t∗ := H1(c∗1, c
∗
2, aux

∗), κ∗ := H2

(
c
∗(a∗k1+b∗1)+(a∗k3+b∗3)t∗

1 ·c∗(a
∗k2+b∗2)+(a∗k4+b∗4)t∗

2

)
.

Return (AE.Dec(κ∗, χ∗) 6= ⊥).
By definition, it follows that, Advweak-int-rka

AIAE,A (`) = Pr0[Forge].
– Game G1: This game is the same as game G0, except that, the challenger

adds the following new rule to the Finalize procedure:
• If there exists (cλ,1, cλ,2, auxλ, tλ) ∈ QT AG such that tλ = t∗ but (cλ,1, cλ,2,

auxλ) 6= (c∗1, c
∗
2, aux

∗), Return 0.
Since tλ = H1(cλ,1, cλ,2, auxλ) and t∗ = H1(c∗1, c

∗
2, aux

∗), any difference be-
tween G0 and G1 will imply a collision of H1. Thus

∣∣Pr0[Forge]−Pr1[Forge]
∣∣ ≤

AdvcrH1
(`).

– Game G1,i, i ∈ [Qe + 1]: This game is the same as game G1, except that,
the challenger does not use secret key k to answer the λ-th (λ ∈ [i − 1])
Enc query at all, and instead, it changes the steps 1, 3 to the steps 1′, 3′

respectively, as in the previous proof.
Clearly Pr1[Forge] = Pr1,1[Forge].

– Game G′1,i, i ∈ [Qe]: This game is the same as game G1,i, except that the
challenger answers the i-th Enc query using steps 1′, 3 (rather than steps
1, 3 in game G1,i), as in the previous proof.

The only difference between G1,i and G′1,i is the distribution of (g1, g2, ci,1,
ci,2). In game G1,i, (g1, g2, ci,1, ci,2) is a DDH tuple, while in game G′1,i, it
is a random tuple. It is straightforward to construct a PPT adversary to
solve the DDH problem w.r.t. GenN and QRN̄ . We stress that the PPT
adversary (simulator) can detect the occurrence of event Forge efficiently
since it can choose the secret key k = (k1, k2, k3, k4) itself. Thus we can
reduce the difference between G1,i and G′1,i to the DDH assumption smoothly.

Lemma 2. For all i ∈ [Qe],
∣∣Pr1,i[Forge]− Pr1,i′ [Forge]

∣∣ ≤ AdvddhGenN(`).

Proof. We construct a PPT adversary B to solve the DDH problem. B is
given (N, p, q, g1, g2, g

x1
1 , gx2

2 ), where (N, p, q)←$ GenN(1`), g1, g2 ←$ QRN̄ ,
and aims to distinguish whether x1 = x2 ←$ ZN \{0} or x1, x2 ←$ ZN \{0}.
B will simulate game G1,i or G′1,i for adversary A. First, B picks H1 ←$ H1,

H2 ←$ H2 randomly, sets prmAIAE := (N, p, q, N̄ = 2N+1, g1, g2,H1,H2) and
sends prmAIAE to A. Then B generates the secret key k = (k1, k2, k3, k4) itself.

To answer the λ-th (λ ∈ [Qe]) Enc query (mλ, auxλ, fλ), where fλ =
〈aλ, bλ = (bλ,1, bλ,2, bλ,3, bλ,4)〉 ∈ Fraff, B proceeds as follows:
• If λ ∈ [i − 1], B proceeds the same as in G1,i and G′1,i. That is, B picks

wλ,1, wλ,2 ← $ ZN\{0} randomly and sets (cλ,1, cλ,2) := (g
wλ,1
1 , g

wλ,2
2 ).

Then B chooses κλ ←$ KAE and invokes χλ ←$ AE.Enc(κλ,mλ).
• If λ ∈ [i+1, Qe], B proceeds the same as in G1,i and G′1,i. That is, B picks
wλ ← $ ZN\{0} randomly and sets (cλ,1, cλ,2) := (gwλ1 , gwλ2 ). Then B
computes tλ := H1(cλ,1, cλ,2, auxλ), κλ := H2

(
c
(aλk1+bλ,1)+(aλk3+bλ,3)tλ
λ,1 ·

c
(aλk2+bλ,2)+(aλk4+bλ,4)tλ
λ,2

)
, and invokes χλ ←$ AE.Enc(κλ,mλ).
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• If λ = i, B embedded its DDH challenge to (ci,1, ci,2) := (gx1
1 , gx2

2 ). Then

it computes ti := H1(ci,1, ci,2, auxi), κi := H2

(
c
(aik1+bi,1)+(aik3+bi,3)ti
i,1 ·

c
(aik2+bi,2)+(aik4+bi,4)ti
i,2

)
, and invokes χi ←$ AE.Enc(κi,mi).

B returns the challenge ciphertext 〈cλ,1, cλ,2, χλ〉 to A, and puts
(
auxλ,

fλ, 〈cλ,1, cλ,2, χλ〉
)

to QENC , (auxλ, fλ) to QAUXF , and (cλ,1, cλ,2, auxλ, tλ)
to QT AG .

In the case of that (N, p, q, g1, g2, g
x1
1 , gx2

2 ) is a DDH tuple, i.e., x1 =
x2 ←$ ZN \ {0}, B simulates game G1,i perfectly for A; in the case of that
(N, p, q, g1, g2, g

x1
1 , gx2

2 ) is a random tuple, i.e., x1, x2 ←$ ZN \ {0}, B simu-
lates game G′1,i perfectly for A.

Finally B receives a forgery
(
aux∗, f∗, 〈c∗1, c∗2, χ∗〉

)
from A, where f∗ =

〈a∗, b∗ = (b∗1, b
∗
2, b
∗
3, b
∗
4)〉 ∈ Fraff. B determines whether or not the Finalize

procedure outputs 1 using the secret key k = (k1, k2, k3, k4). That is,
• If

(
aux∗, f∗, 〈c∗1, c∗2, χ∗〉

)
∈ QENC , B outputs 0 (to its DDH challenger).

• If there exists (auxλ, fλ) ∈ QAUXF such that auxλ = aux∗ but fλ 6= f∗,
B outputs 0.

• If (c∗1, c
∗
2) /∈ QR2

N̄ ∨ (c∗1, c
∗
2) = (1, 1), B outputs 0.

• t∗ := H1(c∗1, c
∗
2, aux

∗), κ∗ := H2

(
c
∗(a∗k1+b∗1)+(a∗k3+b∗3)t∗

1 ·c∗(a
∗k2+b∗2)+(a∗k4+b∗4)t∗

2

)
.

• If there exists (cλ,1, cλ,2, auxλ, tλ) ∈ QT AG such that tλ = t∗ but (cλ,1, cλ,2,
auxλ) 6= (c∗1, c

∗
2, aux

∗), B outputs 0.
• Output (AE.Dec(κ∗, χ∗) 6= ⊥).

With the secret key k = (k1, k2, k3, k4), B simulates Finalize perfectly, the
same as in games G1,i and G′1,i, and B outputs 1 to its DDH challenger if
and only if Finalize outputs 1, i.e., the event Forge occurs.

As a consequence,
∣∣Pr1,i[Forge]− Pr1,i′ [Forge]

∣∣ ≤ AdvddhGenN,B(`).
We analyze the difference between G′1,i and G1,i+1 via the following lemma,

and the proof is in the full version [HLL16] due to the lack of space.

Lemma 3. For all i ∈ [Qe], Pr1,i′ [Forge] ≤ Pr1,i+1[Forge] + Advint-otAE (`) +
1

(N−1) + 2−Ω(`).

Now in game G1,Qe+1, the challenger does not use the secret key k
to compute κλ at all, hence k = (k1, k2, k3, k4) is uniformly random to the
adversary A. As a result, in the Finalize procedure defining the event Forge,

κ∗ = H2

(
g
a∗·((w∗1k1+w∗2wk2)+t∗·(w∗1k3+w∗2wk4))
1 · g(w∗1b

∗
1+w∗2wb

∗
2)+t∗·(w∗1b

∗
3+w∗2wb

∗
4)

1︸ ︷︷ ︸
,Y

)
,

where w = dlogg1g2 ∈ ZN and (w∗1 , w
∗
2) = (dlogg1c

∗
1,dlogg2c

∗
2) ∈ Z2

N\{(0, 0)}.
The term (w∗1k1 +w∗2wk2) is uniformly distributed over ZN . Then as long as
a∗ ∈ Z∗N , Y will be uniformly distributed over QRN̄ and independent of H2.
By the Leftover Hash Lemma, κ∗ = H2(Y ) is statistically close to the uniform
distribution over KAE. Thus AE.Dec(κ∗, χ∗) 6= ⊥ will hold with probability
at most Advint-otAE (`). Then Pr1,Qe+1[Forge] ≤ Advint-otAE (`) + 2−Ω(`).

Taking all things together, the weak INT-Fraff-RKA security of AIAE follows.
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Remark. We stress that the problem in the INT-Faff-RKA security proof of
LLJ’s AE does not appear here. The weak INT-Fraff-RKA security of our AIAE
can be reduced to the DDH assumption smoothly. More precisely, in the security
analysis of games G1,i and G′1,i (cf. Lemma 2), the simulator chooses the secret
key itself and uses it to detect the occurrence of event Forge efficiently. Therefore
the simulator can always make use of the difference between Pr1,i[Forge] and
Pr1,i′ [Forge] to solve the DDH problem.

5 PKE with n-KDM[Faff]-CCA Security

Let AIAE = (AIAE.Setup,AIAE.Enc,AIAE.Dec) be the DDH-based auxiliary-
input authenticated encryption scheme constructed from OT-secure AE, with
key space (ZN )4 and a suitable message space M (cf. Fig. 6). Following our
approach in Fig. 1, we have to design the other two building blocks.

KEM: With respect to this AIAE, we design a KEM which can encapsulate a
key tuple (k1, k2, k3, k4) ∈ (ZN )4.

E : With respect to the affine function Faff, we design a public-key encryption
E such that E .Enc can be changed to an entropy filter for affine functions in
a computationally indistinguishable way.

The proposed PKE = (Setup,Gen,Enc,Dec) is defined in Fig. 7, where the shad-
owed parts describe algorithms of building blocks KEM and E .

The correctness of PKE follows from the correctness of AIAE, E and KEM
directly. We now show its KDM-CCA-security through the following theorem.

Theorem 2. If the underlying scheme AIAE is IND-Fraff-RKA and weak INT-
Fraff-RKA secure, the DCR assumption holds w.r.t. GenN and group QRNs ,
and the DL Assumption holds w.r.t. GenN and group SCRNs , then the resulting
scheme PKE in Fig. 7 is n-KDM[Faff]-CCA secure.

Proof of Theorem 2. Suppose that A is a PPT adversary against the n-
KDM[Faff]-CCA security of PKE, who makes at most Qe times of Enc queries
and Qd times of Dec queries. We prove the theorem by defining a sequence
of games. Before presenting the full detailed proof, we first give a high-level
description how n-KDM[Faff]-CCA security is achieved.

(1) For the n secret key tuples, each tuple can be divided into two parts: for i ∈
[n], ski = (xi,j , yi,j)

4
j=1 =

(
(xi,j , yi,j)

4
j=1 mod N, (xi,j , yi,j)

4
j=1 mod φ(N)/4

)
.

(2) Each secret key tuple can be generated by adding a random shift (xi,j , yi,j)
4
j=1

to a fixed base (xj , yj)
4
j=1, i.e., ski = (xi,j , yi,j)

4
j=1 := (xj , yj)

4
j=1+(xi,j , yi,j)

4
j=1.

(3) Every public key tuple pki = (hi,1, · · · , hi,4) only reveals information about
the (mod φ(N)/4) part of the secret key tuple ski.

(4) For each encryption query from the adversary (fλ, iλ), if the Enc oracle
encrypts fλ(sk1, · · · , skn), the ciphertext might reveal information about ski
through E .ct. We have to change this fact such that the leaked information
about ski in Enc is bounded.
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prm←$ Setup(1`):

prmAIAE ←$ AIAE.Setup(1`), where

prmAIAE = (N, p, q, N̄ , ḡ1, ḡ2,H1,H2),

N = pq, N̄ = 2N + 1, ḡ1, ḡ2 ∈ QRN̄ .

prm′AIAE := (N, N̄, ḡ1, ḡ2,H1,H2).

g1, g2, g3, g4, g5 ←$ SCRNs .
Return prm := (prm′AIAE, g1, g2, g3, g4, g5).

〈aux, aiae.ct〉 ←$ Enc(pk,m): m ∈
[
Ns−1

]
//
(
k, aux

)
←$ KEM.Enc(pk):

k = (k1, k2, k3, k4)←$ Z4
N .

r ←$

[⌊
N
4

⌋]
.

(u1, u2, u3, u4, u5) := (gr1 , g
r
2 , g

r
3 , g

r
4 , g

r
5)

mod N2.

(e1, e2, e3, e4) := (hr1T
k1 , hr2T

k2 , hr3T
k3 ,

hr4T
k4) mod N2.

aux := (u1, · · · , u5, e1, · · · , e4).

// E .ct←$ E .Enc(pk,m):

r̃1, r̃2, r̃3, r̃4 ←$

[⌊
N
4

⌋]
.

(ũ1, ũ2, ũ3, ũ4, ũ5, ũ6, ũ7, ũ8) := (gr̃11 , gr̃12 ,

gr̃22 , gr̃23 , gr̃33 , gr̃34 , gr̃44 , gr̃45 ) mod Ns.

ẽ := hr̃11 h
r̃2
2 h

r̃3
3 h

r̃4
4 T

m mod Ns.

t := gm1 mod N ∈ ZN .

E .ct := (ũ1, · · · , ũ8, ẽ, t).

aiae.ct←$ AIAE.Enc
(
k, E .ct, aux

)
.

Return 〈aux, aiae.ct〉.

(pk, sk)←$ Gen(prm):

x1, y1, x2, y2, x3, y3, x4, y4 ←$

[⌊
N2

4

⌋]
.

(h1, h2, h3, h4) := (g−x11 g−y12 , g−x22 g−y23 ,

g−x33 g−y34 , g−x44 g−y45 ) mod Ns.

pk := (h1, h2, h3, h4).

sk := (x1, y1, x2, y2, x3, y3, x4, y4).

Return (pk, sk).

m/⊥ ← Dec
(
sk, 〈aux, aiae.ct〉

)
:

// k/⊥ ← KEM.Dec(sk, aux):

Parse aux = (u1, · · · , u5, e1, · · · , e4).

If e1u
x1
1 uy12 , e2u

x2
2 uy23 , e3u

x3
3 uy34 ,

e4u
x4
4 uy45 ∈ RUN2

(k1, k2, k3, k4) :=
(
dlogT (e1u

x1
1 uy12 ),

dlogT (e2u
x2
2 uy23 ), dlogT (e3u

x3
3 uy34 ),

dlogT (e4u
x4
4 uy45 )

)
mod N .

k := (k1, k2, k3, k4).

Else, Return ⊥.

E .ct/⊥ ← AIAE.Dec
(
k, aiae.ct, aux

)
.

//m/⊥ ← E .Dec(sk, E .ct):
Parse E .ct = (ũ1, · · · , ũ8, ẽ, t).

If ẽũx11 ũy12 ũx23 ũy24 ũx35 ũy36 ũx47 ũy48 ∈ RUNs
m := dlogT (ẽũx11 ũy12 ũx23 ũy24 ũx35 ũy36

ũx47 ũy48 ) mod Ns−1.

If t = gm1 mod N , Return m.

Else, Return ⊥.

Fig. 7. Construction of PKE from AIAE. The shadowed parts describe algorithms of

building blocks KEM and E . Here p, q contained in prmAIAE are not provided in prm′AIAE,

since they are not necessary in the encryption and decryption algorithms of AIAE.

– By IVd assumption, we can change the generation of E .ct by oracle Enc
such that it does not reveal any information about (xj , yj)

4
j=1 mod N ,

i.e., the (mod N) part of the base secret key tuple.

– By IVd assumption, we can change the generation of kem.ct(= aux) by
Enc such that it encapsulates a different key, other than the key used in
AIAE.Enc. If AIAE.Enc uses key (rλk

∗
j +sλ,j)

4
j=1, then KEM.Enc encapsu-

lates
(
rλ(k∗j −αjxj−αj+1yj)−rλ(αj x̄iλ,j+αj+1ȳiλ,j)+sλ,j

)4
j=1

mod N .

Thus, (k∗1 , · · · , k∗4) is now protected by (xj , yj)
4
j=1 mod N .

(5) Oracle Dec might also leak information about (xj , yj)
4
j=1 mod N . There-

fore, we change how oracle Dec works so that decryption does not use
(xj , yj)

4
j=1 mod N any more. Observe that as long as the ciphertext queried
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by the adversary satisfies ∀j ∈ [5], uj ∈ SCRN2 and ∀j ∈ [8], ũj ∈ SCRNs ,
Dec can use φ(N) and the (mod φ(N)/4) part of secret key for decryption.
– If ∃j ∈ [5], uj /∈ SCRN2 in the ciphertext queried by the adversary, we

expect that AIAE.Dec will reject, due to its weak INT-Fraff-RKA security.
– If ∃j ∈ [8], ũj /∈ SCRNs in the ciphertext queried by the adversary, we

expect decryption will result in t 6= gm1 mod N , so E .Dec will reject.
(6) Consequently, both (xj , yj)

4
j=1 mod N and (k∗1 , · · · , k∗4) are random to the ad-

versary, and AIAE.Enc always uses the restricted affine function of (k∗1 , · · · , k∗4)
for encryption. Then IND-Fraff-RKA security of AIAE implies the n-KDM[Faff]-
CCA security.

In the proof, G1-G2 are dedicated to deal with the n-user case; the aim of
G3-G4 is to eliminate the use of the (mod N) part of (xj , yj)

4
j=1 in Enc; the aim

of G5-G6 is to use (xj , yj)
4
j=1 mod N to hide the AIAE’s base key (k∗1 , · · · , k∗4)

in Enc, however, Dec may still leak the information about (xj , yj)
4
j=1 mod N ;

the aim of G7-G8 is to eliminate the use of (xj , yj)
4
j=1 mod N in Dec; finally, in

G9-G10, the IND-Fraff-RKA security of AIAE is used to prove the n-KDM[Faff]-
CCA security of PKE, since (k∗1 , · · · , k∗4) is perfectly hided by (xj , yj)

4
j=1 mod N .

– Game G0: This is the original n-KDM[Faff]-CCA game. Let Win denote the
event that β′ = β. Then by definition, Advkdm-cca

PKE,A (`) =
∣∣Pr0[Win]− 1

2

∣∣.
Denote by pki = (hi,1, · · · , hi,4) and ski = (xi,1, yi,1, · · · , xi,4, yi,4) the

public and secret keys of the i-th user respectively, i ∈ [n].
– Game G1: This game is the same as game G0, except that, when answering the

Dec query (〈aux, aiae.ct〉, i ∈ [n]), the challenger outputs ⊥ if 〈aux, aiae.ct〉 =
〈auxλ, aiae.ctλ〉 for some λ ∈ [Qe], where 〈auxλ, aiae.ctλ〉 is the challenge
ciphertext for the λ-th Enc query (fλ, iλ).
Case 1: (〈aux, aiae.ct〉, i) = (〈auxλ, aiae.ctλ〉, iλ).

Dec will output ⊥ in game G0 since (〈auxλ, aiae.ctλ〉, iλ) is prohibited.
Case 2: 〈aux, aiae.ct〉 = 〈auxλ, aiae.ctλ〉 but i 6= iλ.

We show that in game G0, Dec will output ⊥, due to eλ,1u
xi,1
λ,1 u

yi,1
λ,2 /∈

RUN2 , with overwhelming probability. Recall that uλ,1 = grλ1 , uλ,2 =
grλ2 , eλ,1 = hrλiλ,1T

kλ,1 , so

eλ,1u
xi,1
λ,1 u

yi,1
λ,2 = hrλiλ,1T

kλ,1 ·(grλ1 )xi,1(grλ2 )yi,1 = (hiλ,1h
−1
i,1 )rλT kλ,1 mod N2,

where hiλ,1 and hi,1 are parts of public key of different users iλ and i
respectively and are uniformly distributed over SCRNs . So hiλ,1h

−1
i,1 6= 1,

hence eλ,1u
xi,1
λ,1 u

yi,1
λ,2 /∈ RUN2 , except with probability 2−Ω(`).

By a union bound, G0 and G1 are identical except with probabilityQd·2−Ω(`),
therefore

∣∣Pr0[Win]− Pr1[Win]
∣∣ ≤ Qd · 2−Ω(`).

– Game G2: This game is the same as game G1, except that, the challenger sam-
ples the secret keys ski = (xi,1, yi,1, · · · , xi,4, yi,4), i ∈ [n], in a different way.
First, it chooses random (x1, y1, · · · , x4, y4) and (x̄i,1, ȳi,1, · · · , x̄i,4, ȳi,4), i ∈
[n], from

[
bN2/4c

]
, then it computes (xi,1, yi,1, · · · , xi,4, yi,4) = (x1, y1, · · · ,

x4, y4) + (xi,1, yi,1, · · · , xi,4, yi,4) mod bN2/4c for i ∈ [n].
Obviously, the secret keys ski = (xi,1, yi,1, · · · , xi,4, yi,4) are uniformly

distributed. Hence G2 is identical to G1, and Pr1[Win] = Pr2[Win].
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– Game G3: This game is the same as game G2, except that, when responding to
the adversary’s λ-th (λ ∈ [Qe]) Enc query (fλ, iλ), instead of using the public
keys pkiλ = (hiλ,1, · · · , hiλ,4), the challenger uses the secret keys skiλ =
(xiλ,1, yiλ,1, · · · , xiλ,4, yiλ,4) to prepare (eλ,1, · · · , eλ,4) and ẽλ as follows:

• (eλ,1, · · · , eλ,4) := (u
−xiλ,1
λ,1 u

−yiλ,1
λ,2 T kλ,1 , · · · , u−xiλ,4λ,4 u

−yiλ,4
λ,5 T kλ,4) mod N2,

• ẽλ := ũ
−xiλ,1
λ,1 ũ

−yiλ,1
λ,2 ũ

−xiλ,2
λ,3 ũ

−yiλ,2
λ,4 ũ

−xiλ,3
λ,5 ũ

−yiλ,3
λ,6 ũ

−xiλ,4
λ,7 ũ

−yiλ,4
λ,8 Tmβ mod Ns.

Observe that for j ∈ {1, 2, 3, 4},

eλ,j
G2= hrλiλ,jT

kλ,j = (g
−xiλ,j
j g

−yiλ,j
j+1 )rλT kλ,j

G3= u
−xiλ,j
λ,j u

−yiλ,j
λ,j+1 T

kλ,j mod N2,

ẽλ
G2= h

r̃λ,1
iλ,1
· · ·hr̃λ,4iλ,4

Tmβ = (g
−xiλ,1
1 g

−yiλ,1
2 )r̃λ,1 · · · (g−xiλ,44 g

−yiλ,4
5 )r̃λ,4Tmβ

G3= ũ
−xiλ,1
λ,1 ũ

−yiλ,1
λ,2 · · · ũ−xiλ,4λ,7 ũ

−yiλ,4
λ,8 Tmβ mod Ns.

Thus G3 is identical to G2, and Pr2[Win] = Pr3[Win].
– Game G4: This game is the same as game G3, except that, in the case of the

challenge bit β = 1, to answer the λ-th (λ ∈ [Qe]) Enc query (fλ, iλ), the
challenger does not use (x1, y1, · · · , x4, y4) mod N to compute ẽλ any more,
and instead, it computes (ũλ,1, · · · , ũλ,8) and ẽλ as follows:

• (ũλ,1, · · · , ũλ,8) := (g
r̃λ,1
1 T

∑n
i=1 ai,1 , g

r̃λ,1
2 T

∑n
i=1 bi,1 , g

r̃λ,2
2 T

∑n
i=1 ai,2 , g

r̃λ,2
3

· T
∑n
i=1 bi,2 , g

r̃λ,3
3 T

∑n
i=1 ai,3 , g

r̃λ,3
4 T

∑n
i=1 bi,3 , g

r̃λ,4
4 T

∑n
i=1 ai,4 , g

r̃λ,4
5 T

∑n
i=1 bi,4),

• ẽλ := h
r̃λ,1
iλ,1
· · ·hr̃λ,4iλ,4

T
∑n
i=1

∑4
j=1(ai,j(x̄i,j−x̄iλ,j)+bi,j(ȳi,j−ȳiλ,j))+c mod Ns,

where fλ = ({ai,1, bi,1, · · · , ai,4, bi,4}i∈[n], c) ∈ Faff.

Observe that,

ẽλ
G4=

∏4
j=1 h

r̃λ,j
iλ,j
· T

∑n
i=1

∑4
j=1(ai,j(x̄i,j−x̄iλ,j)+bi,j(ȳi,j−ȳiλ,j))+c

=
∏4
j=1 h

r̃λ,j
iλ,j
· T

∑n
i=1

∑4
j=1(ai,j(xi,j−xiλ,j)+bi,j(yi,j−yiλ,j))+c

=
∏4
j=1(g

−xiλ,j
j g

−yiλ,j
j+1 )r̃λ,j · Tm1−

∑n
i=1

∑4
j=1(ai,jxiλ,j

+bi,jyiλ,j
)

=
∏4
j=1

(
g
r̃λ,j
j T

∑n
i=1 ai,j

)−xiλ,j (gr̃λ,jj+1 T
∑n
i=1 bi,j

)−yiλ,j · Tm1

= ũ
−xiλ,1
λ,1 ũ

−yiλ,1
λ,2 · · · ũ−xiλ,4λ,7 ũ

−yiλ,4
λ,8 Tm1 mod Ns,

where the third equality follows from m1 =
∑n
i=1

∑4
j=1(ai,jxi,j + bi,jyi,j) + c.

Therefore, ẽλ can be computed from (ũλ,1, · · · , ũλ,8) in the same way as in
G3 and G4. Hence the only difference between G3 and G4 is the distribution
of (ũλ,1, · · · , ũλ,8) themselves. We analyze the difference via the following
lemma, and the proof is presented in the full version [HLL16].

Lemma 4. There exists a PPT adversary B1 against the IV5 assumption
w.r.t. GenN and QRNs , such that

∣∣Pr3[Win]− Pr4[Win]
∣∣ ≤ Adviv5GenN,B1

(`).

– Game G5: This game is the same as game G4, except that, the challenger
chooses random r∗ ∈

[
bN/4c

]
and α1, · · · , α5 ∈ ZN beforehand (in Initial-

ize). In addition, to respond to the λ-th (λ ∈ [Qe]) Enc query (fλ, iλ), the
challenger computes (uλ,1, · · · , uλ,5) as follows:
• (uλ,1, · · · , uλ,5) := ((gr

∗

1 Tα1)rλ , · · · , (gr∗5 Tα5)rλ) mod N2.
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The only difference between G4 and G5 is the distribution of (uλ,1, · · · , uλ,5).
In game G4, it equals (grλ1 , · · · , grλ5 ) mod N2, while in game G5, it equals
((gr

∗

1 Tα1)rλ , · · · , (gr∗5 Tα5)rλ) mod N2. Similar to the previous lemma, it is
straightforward to construct a PPT adversary to solve IV5 problem by em-
ploying the power of adversary A. Thus

∣∣Pr4[Win]−Pr5[Win]
∣∣ ≤ Adviv5GenN(`).

– Game G6: This game is the same as game G5, except that, the challenger
chooses a random tuple k∗ = (k∗1 , k

∗
2 , k
∗
3 , k
∗
4) beforehand (in Initialize).

In addition, to respond to the λ-th (λ ∈ [Qe]) Enc query (fλ, iλ), the
challenger uses a different way to generate kλ = (kλ,1, kλ,2, kλ,3, kλ,4) and
(eλ,1, · · · , eλ,4):
• pick sλ = (sλ,1, sλ,2, sλ,3, sλ,4)←$ Z4

N and rλ ←$

[⌊
N/4

⌋]
uniformly, and

compute kλ = (kλ,1, kλ,2, kλ,3, kλ,4) := (rλk
∗
1 + sλ,1, · · · , rλk∗4 + sλ,4).

• (eλ,1, · · · , eλ,4) :=

(hr
∗rλ
iλ,1

T rλ(k∗1−α1xiλ,1−α2yiλ,1)+sλ,1 , · · · , hr∗rλiλ,4
T rλ(k∗4−α4xiλ,4−α5yiλ,4)+sλ,4).

Clearly kλ is uniformly distributed over Z4
N , as in game G5. At the same

time, observe that for j ∈ {1, 2, 3, 4},
eλ,j

G5= u
−xiλ,j
λ,j u

−yiλ,j
λ,j+1 T

kλ,j = (gr
∗

j T
αj )−rλ·xiλ,j (gr

∗

j+1T
αj+1)−rλ·yiλ,jT kλ,j

= (g
−xiλ,j
j g

−yiλ,j
j+1 )r

∗rλT kλ,j−rλ·(αjxiλ,j+αj+1yiλ,j)

G6= hr
∗rλ
iλ,j

T rλ·(k
∗
j−αjxiλ,j−αj+1yiλ,j)+sλ,j mod N2.

Thus G6 is identical to G5, and Pr5[Win] = Pr6[Win].
– Game G7: This game is the same as game G6, except for a modification to an-

swering the Dec queries (〈aux, aiae.ct〉, i ∈ [n]). The challenger uses the i-th
user’s secret key ski = (xi,1, yi,1, · · · , xi,4, yi,4) together with φ(N) to com-
pute the decryption of ciphertext 〈aux, aiae.ct〉, where aux = (u1, · · · , u5, e1,
· · · , e4). More precisely, it computes k = (k1, · · · , k4) and m as follows:

• (α′1, · · · , α′5) :=
(
dlogT (u

φ(N)
1 )/φ(N), · · · ,dlogT (u

φ(N)
5 )/φ(N)

)
mod N ,

(γ′1, · · · , γ′4) :=
(
dlogT (e

φ(N)
1 )/φ(N), · · · ,dlogT (e

φ(N)
4 )/φ(N)

)
mod N ,

k = (k1, · · · , k4) := (α′1xi,1+α′2yi,1+γ′1, · · · , α′4xi,4+α′5yi,4+γ′4) mod N ,
• E .ct = (ũ1, · · · , ũ8, ẽ, t)/⊥ ← AIAE.Dec

(
k, aiae.ct, aux

)
,

• (α̃1, · · · , α̃8) :=
(
dlogT (ũ

φ(N)
1 )/φ(N), · · · ,dlogT (ũ

φ(N)
8 )/φ(N)

)
mod Ns−1,

γ̃ := dlogT (ẽφ(N))/φ(N) mod Ns−1, and m := α̃1xi,1 + α̃2yi,1 + α̃3xi,2 +
α̃4yi,2 + α̃5xi,3 + α̃6yi,3 + α̃7xi,4 + α̃8yi,4 + γ̃ mod Ns−1.

According to Eq. (1), for j ∈ {1, 2, 3, 4}, we have that

kj
G6= dlogT (eju

xi,j
j u

yi,j
j+1) = dlogT

(
(eju

xi,j
j u

yi,j
j+1)φ(N))/φ(N) mod N

= dlogT (u
φ(N)·xi,j
j )/φ(N) + dlogT (u

φ(N)·yi,j
j+1 )/φ(N) + dlogT (e

φ(N)
j )/φ(N)

G7= dlogT (u
φ(N)
j )/φ(N)︸ ︷︷ ︸
α′j

·xi,j + dlogT (u
φ(N)
j+1 )/φ(N)︸ ︷︷ ︸
α′j+1

·yi,j + dlogT (e
φ(N)
j )/φ(N)︸ ︷︷ ︸
γ′j

,

m
G6= dlogT (ẽũ

xi,1
1 ũ

yi,1
2 ũ

xi,2
3 ũ

yi,2
4 ũ

xi,3
5 ũ

yi,3
6 ũ

xi,4
7 ũ

yi,4
8 ) mod Ns−1

G7= dlogT (ũ
φ(N)
1 )/φ(N)︸ ︷︷ ︸
α̃1

·xi,1 + · · ·+ dlogT (ũ
φ(N)
8 )/φ(N)︸ ︷︷ ︸
α̃8

·yi,4 + dlogT (ẽφ(N))/φ(N)︸ ︷︷ ︸
γ̃

.
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These changes are conceptual. So G7 is identical to G6, Pr6[Win] = Pr7[Win].
– Game G8: This game is the same as game G7, except that, the challenger

adds an additional rejection rule when answering Dec queries as follows:

• if α′1 6= 0 ∨ · · · ∨ α′5 6= 0 ∨ α̃1 6= 0 ∨ · · · ∨ α̃8 6= 0, return ⊥.

That is, the challenger will not output m in Dec unless α′1 = · · · = α′5 = 0
and α̃1 = · · · = α̃8 = 0 holds. Thus the values of (xi,j , yi,j)

4
j=1 mod N , in

particular (xj , yj)
4
j=1 mod N , are not used any more in Dec.

Let Bad denote the event that A makes a Dec query
(
〈aux, aiae.ct〉, i ∈

[n]
)
, such that

e1u
xi,1
1 u

yi,1
2 , · · · , e4u

xi,4
4 u

yi,4
5 ∈ RUN2 ∧ AIAE.Dec

(
k, aiae.ct, aux

)
6= ⊥ (2)

∧ ẽũxi,11 ũ
yi,1
2 ũ

xi,2
3 ũ

yi,2
4 ũ

xi,3
5 ũ

yi,3
6 ũ

xi,4
7 ũ

yi,4
8 ∈ RUNs ∧ t = gm1 mod N (3)

∧
(
α′1 6= 0 ∨ · · · ∨ α′5 6= 0 ∨ α̃1 6= 0 ∨ · · · ∨ α̃8 6= 0

)
.

Clearly, games G7 and G8 are the same until Bad happens. Therefore, we
have that

∣∣Pr7[Win]− Pr8[Win]
∣∣ ≤ Pr8[Bad].

To prove that G7 and G8 are indistinguishable, we have to show that
Pr8[Bad] is negligible. This is not an easy task, and we further divide Bad to
two disjoint sub-events:

∗ Bad′ denotes the event that A makes a Dec query such that

Conditions (2), (3) hold ∧
(
α′1 6= 0 ∨ · · · ∨ α′5 6= 0

)
.

∗ B̃ad denotes the event that A makes a Dec query such that

Con. (2), (3) hold ∧
(
α′1 = · · · = α′5 = 0

)
∧
(
α̃1 6= 0 ∨ · · · ∨ α̃8 6= 0

)
.

Then Pr8[Bad] ≤ Pr8[Bad′]+Pr8[B̃ad]. We give an upper bound for Pr8[Bad′]
via the following lemma. See the full version [HLL16] for the proof. The

analysis of Pr8[B̃ad] is deferred to subsequent games.

Lemma 5. Pr8[Bad′] ≤ 2Qd · Advweak-int-rka
AIAE (`) +Qd · 2−Ω(`).

– Game G9: This game is the same as game G8, except that, the challenger
chooses another random tuple k

∗
= (k̄∗1 , k̄

∗
2 , k̄
∗
3 , k̄
∗
4) besides k∗ = (k∗1 , k

∗
2 , k
∗
3 , k
∗
4)

in Initialize. In addition, to answer the λ-th (λ ∈ [Qe]) Enc query (fλ, iλ),
the challenger uses a different key for AIAE to compute aiae.ctλ:

• set kλ = (k̄λ,1, k̄λ,2, k̄λ,3, k̄λ,4) := (rλk̄
∗
1 + sλ,1, · · · , rλk̄∗4 + sλ,4);

• invoke aiae.ctλ ←$ AIAE.Enc
(
kλ, E .ctλ, auxλ

)
.

But the challenger still uses k∗ = (k∗1 , k
∗
2 , k
∗
3 , k
∗
4) to compute (eλ,1, · · · , eλ,4).

In game G8, the only place that needs the value of (x1, y1, · · · , x4, y4) mod N
is the computation of (eλ,1, · · · , eλ,4) in Enc. More precisely, for j ∈ {1, 2, 3, 4},

eλ,j = hr
∗rλ
iλ,j

T rλ·(k
∗
j−αjxiλ,j−αj+1yiλ,j)+sλ,j mod N2

= hr
∗rλ
iλ,j

T rλ·(k
∗
j−αjxj−αj+1yj−αj x̄iλ,j−αj+1ȳiλ,j)+sλ,j mod N2.

We stress that the computation of tλ = g
mβ
1 mod N in Enc only uses the
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values of (x1, y1, · · · , x4, y4) mod φ(N)/4, since the order of g1 ∈ SCRNs is
φ(N)/4. We also note that neither k∗ = (k∗1 , k

∗
2 , k
∗
3 , k
∗
4) nor (xj , yj)

4
j=1 mod N

is involved in Dec since Dec rejects the ciphertext unless α′1 = · · · = α′5 = 0
and α̃1 = · · · = α̃8 = 0. As a result, k∗ = (k∗1 , k

∗
2 , k
∗
3 , k
∗
4) is totally hidden by

the entropy of (x1, y1, · · · , x4, y4) mod N and is uniformly random to A.

Thus the challenger can use an independent k
∗

= (k̄∗1 , · · · , k̄∗4) to compute
kλ, and use kλ to do the encryption of the AIAE scheme in Enc, as in G9.

Then games G8 and G9 are identically distributed from the point of view

of A, thus we have Pr8[Win] = Pr9[Win] and Pr8[B̃ad] = Pr9[B̃ad].
– Game G10: This game is the same as game G9, except that, to answer the λ-

th (λ ∈ [Qe]) Enc query (fλ, iλ), the challenger computes aiae.ctλ as follows:

• invoke aiae.ctλ ←$ AIAE.Enc
(
kλ, 0

`M , auxλ
)
.

That is, the challenger computes the AIAE encryption of a constant 0`M

instead of E .ctλ in Enc. Note that in games G9 and G10, the key k
∗

=
(k̄∗1 , k̄

∗
2 , k̄
∗
3 , k̄
∗
4) is used only in the computation of the AIAE encryption, where

it uses kλ = rλ · k
∗

+ sλ, sλ = (sλ,1, · · · , sλ,4), as the encryption key. The
difference between G9 and G10 can be reduced to the IND-Fraff-RKA se-
curity of the AIAE scheme directly. Thus we have that both

∣∣Pr9[Win] −
Pr10[Win]

∣∣,
∣∣Pr9[B̃ad]− Pr10[B̃ad]

∣∣ ≤ Advind-rka
AIAE (`).

Now in G10, the challenger computes the AIAE encryption of a constant 0`M

in Enc, thus the challenge bit β is completely hidden. Then Pr10[Win] = 1
2 .

We give an upper bound for Pr10[B̃ad] via the following lemma, and
present its proof in the full version [HLL16].

Lemma 6. Pr10[B̃ad] ≤ (Qd + 1) · 2−Ω(`) + AdvdlGenN(`).

Taking all things together, the n-KDM[Faff]-CCA security of PKE follows.

6 PKE with n-KDM[Fd
poly]-CCA Security

6.1 The Basic Idea

We consider how to construct a PKE which is n-KDM-CCA secure w.r.t. the set
of polynomial functions of bounded degree d, denoted by Fdpoly, where d can be
polynomial in security parameter `. We will consider adversaries submitting f in
the format of Modular Arithmetic Circuit (MAC) [MTY11], i.e., a polynomial-
size circuit which computes f . In particular, we do not require a prior bound
on the size of circuits, but only require a prior bound d on the degree of the
polynomials. Our construction still follows the approach in Fig. 1. In fact, our
n-KDM[Fdpoly]-CCA secure PKE shares the same building blocks KEM and AIAE
with the previous PKE in Fig. 7 which has n-KDM[Faff]-CCA security. What we
should do is to design a new building block E , which can function as an entropy
filter for polynomial functions. Our new E still share the same secret/public key
pair with KEM. Hence for i ∈ [n], we have ski = (xi,1, yi,1, · · · , xi,4, yi,4) and

pki = (hi,1, · · · , hi,4) with hi,1 = g
−xi,1
1 g

−yi,1
2 , · · · , hi,4 = g

−xi,4
4 g

−yi,4
5 mod Ns.
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6.2 Reducing Polynomials of 8n Variables to Polynomials of 8
Variables

How to Reduce 8n-Variable Polynomial fλ in Enc(fλ, iλ ∈ [n]). In the n-
KDM[Fdpoly]-CCA game, the adversary will submit (fλ, iλ ∈ [n]) to Enc as its λ-th

KDM encryption query. Here fλ is a degree-d polynomial fλ
(

(xi,j , yi,j)i∈[n],j∈[4]

)

of the n secret keys, which has 8n variables. Note that fλ will contain at most(
8n+d

8n

)
= Θ(d8n) monomials, which is exponentially large.

To reduce the number of monomials, we can always change the polynomial
fλ
(

(xi,j , yi,j)i∈[n],j∈[4]

)
of 8n variables to a polynomial f ′λ

(
(xiλ,j , yiλ,j)j∈[4]

)
of

8 variables as follows. Then f ′λ will contain at most
(

8+d
8

)
= Θ(d8) monomials,

which is polynomial in `.
In Initialize, the secret keys can be generated with xi,j := xj + x̄i,j and

yi,j := yj + ȳi,j mod bN2/4c for i ∈ [n] and j ∈ [4]. Then with the values of
(x̄i,j , ȳi,j)i∈[n],j∈[4], we can represent (xi,j , yi,j)i∈[n],j∈[4] as shifts of (xiλ,j , yiλ,j)j∈[4]:

xi,j = xiλ,j + x̄i,j − x̄iλ,j , yi,j = yiλ,j + ȳi,j − ȳiλ,j ,

and reduce the polynomial fλ in 8n variables (xi,j , yi,j)i∈[n],j∈[4] to a polynomial
f ′λ in 8 variables (xiλ,j , yiλ,j)j∈[4]:

fλ
(

(xi,j , yi,j)i∈[n],j∈[4]

)
= fλ

(
(xiλ,j + x̄i,j − x̄iλ,j︸ ︷︷ ︸

xi,j

, yiλ,j + ȳi,j − ȳiλ,j︸ ︷︷ ︸
yi,j

)i∈[n],j∈[4]

)
= f ′λ

(
(xiλ,j , yiλ,j)j∈[4]

)
=

∑
0≤c1+···+c8≤d

a(c1,··· ,c8) · xc1iλ,1y
c2
iλ,1

xc3iλ,2y
c4
iλ,2

xc5iλ,3y
c6
iλ,3

xc7iλ,4y
c8
iλ,4

.

The resulting polynomial f ′λ is also of degree at most d, and the coefficients
a(c1,··· ,c8) are determined by (x̄i,j , ȳi,j)i∈[n],j∈[4] completely.

How to Determine Coefficients a(c1,··· ,c8) for f ′λ Efficiently with Only
(x̄i,j , ȳi,j)i∈[n],j∈[4]. Repeat choosing values of (xiλ,j , yiλ,j)j∈[4] randomly, feed-
ing MAC (which functions as fλ) with input of (xiλ,j + x̄i,j − x̄iλ,j , yiλ,j + ȳi,j −
ȳiλ,j)i∈[n],j∈[4], where (x̄i,j , ȳi,j)i∈[n],j∈[4] always takes the values chosen in Ini-

tialize, and recording the output of MAC. After about
(

8+d
8

)
= Θ(d8) times,

we can extract all a(c1,··· ,c8) by simply solving a system of linear equations (with
a(c1,··· ,c8) unknowns):

fλ
(

(xiλ,j + x̄i,j − x̄iλ,j , yiλ,j + ȳi,j − ȳiλ,j)i∈[n],j∈[4]

)
=

∑
0≤c1+···+c8≤d

a(c1,··· ,c8) · xc1iλ,1y
c2
iλ,1

xc3iλ,2y
c4
iλ,2

xc5iλ,3y
c6
iλ,3

xc7iλ,4y
c8
iλ,4

.

This can be done in time polynomial in `.

6.3 How to Design E: A Warmup

Let us first consider a simple case: design E w.r.t. a specific type of monomials

f ′λ
(

(xiλ,j , yiλ,j)j∈[4]

)
= a · xiλ,1yiλ,1xiλ,2yiλ,2xiλ,3yiλ,3xiλ,4yiλ,4.

We describe the encryption and decryption algorithms E .Enc, E .Dec in Fig. 8.
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E .ct←$ E .Enc
(
pk = (h1, h2, h3, h4),m

)
:

For l ∈ [0, 8],

r̃l,1, r̃l,2, r̃l,3, r̃l,4 ←$

[⌊
N
4

⌋]
.

(ũl,1, · · · , ũl,8) := (g
r̃l,1
1 , g

r̃l,1
2 , g

r̃l,2
2 ,

g
r̃l,2
3 , g

r̃l,3
3 , g

r̃l,3
4 , g

r̃l,4
4 , g

r̃l,4
5 ).

ṽl := h
r̃l,1
1 h

r̃l,2
2 h

r̃l,3
3 h

r̃l,4
4 .

table :=

ũ0,1 ũ0,2 · · · ũ0,8

ũ1,1 · ṽ0 ũ1,2 · · · ũ1,8

ũ2,1 ũ2,2 · ṽ1 · · · ũ2,8

...
...

. . .
...

ũ8,1 ũ8,2 · · · ũ8,8 · ṽ7

ẽ := ṽ8 · Tm mod Ns.

t := gm1 mod N ∈ ZN .

Return E .ct := (table, ẽ, t).

m/⊥ ← E .Dec
(
sk = (x1, y1, · · · , x4, y4), E .ct

)
:

Parse E .ct = (table, ẽ, t).

Parse table =

û0,1 û0,2 · · · û0,8

û1,1 û1,2 · · · û1,8

...
...

. . .
...

û8,1 û8,2 · · · û8,8

v̂0 := û−x10,1 û−y10,2 û
−x2
0,3 û−y20,4 · · · û

−x4
0,7 û−y40,8 .

v̂1 := (û1,1/v̂0)−x1 û−y11,2 û
−x2
1,3 û−y21,4 · · · û

−x4
1,7 û−y41,8 .

v̂2 := û−x12,1 (û2,2/v̂1)−y1 û−x22,3 û−y22,4 · · · û
−x4
2,7 û−y42,8 .

...

v̂8 := û−x18,1 û−y18,2 û
−x2
8,3 û−y28,4 · · · û

−x4
8,7 (û8,8/v̂7)−y4 .

If ẽ/v̂8 ∈ RUNs , m := dlogT (ẽ/v̂8) mod Ns−1.

If t = gm1 mod N , Return m.

Otherwise, Return ⊥.

Fig. 8. E designed for specific monomials a · xiλ,1yiλ,1xiλ,2yiλ,2xiλ,3yiλ,3xiλ,4yiλ,4.

Security proof. We can prove KDM-CCA security w.r.t. the specific type of
monomials, i.e., a ·xiλ,1yiλ,1 xiλ,2yiλ,2xiλ,3yiλ,3xiλ,4yiλ,4, in a similar way as the
proof of Theorem 2. The only difference lies in games G3-G4, which are related
to E . We replace G3-G4 with the following three steps (Step 1 - Step 3). More
precisely, we change the E .Enc part of Enc so that it can reserve the entropy
of (x1, y1, · · · , x4, y4) mod N , behaving like an entropy filter w.r.t. this specific
kind of monomials.

Suppose that the adversary submits (fλ, iλ ∈ [n]) to Enc. Our aim is to re-
serve the entropy of (xj , yj)

4
j=1 mod N from E .Enc

(
pkiλ , fλ

(
(xi,j , yi,j)i∈[n],j∈[4]

))
.

Step 0: In Initialize, the secret keys are generated with xi,j := xj + x̄i,j and
yi,j := yj + ȳi,j mod bN2/4c for i ∈ [n], j ∈ [4]. This is the same as G2 in
the proof of Theorem 2.

Step 1: Use (x̄i,j , ȳi,j)i∈[n],j∈[4] to re-explain (fλ, iλ ∈ [n]) as (f ′λ, iλ ∈ [n]), and
determine the coefficient a of the monomial

f ′λ
(

(xiλ,j , yiλ,j)j∈[4]

)
= a · xiλ,1yiλ,1xiλ,2yiλ,2xiλ,3yiλ,3xiλ,4yiλ,4.

Step 2: Use secret key skiλ = (xiλ,j , yiλ,j)j∈[4] (together with public key pkiλ =
(hiλ,j)j∈[4]) to implement E .Enc (This corresponds to G3 in the proof of
Theorem 2).

– Setup table, just like E .Enc.
– Compute v̂0, · · · , v̂8 from table, just like E .Dec.
– Use v̂8 instead of ṽ8 to compute ẽ with ẽ := v̂8·T f

′
λ( (xiλ,j ,yiλ,j)j∈[4] ) mod Ns,

and t := g
f ′λ( (xiλ,j ,yiλ,j)j∈[4] )

1 mod N .
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It is easy to check that v̂0, · · · , v̂8 computed from table (via E .Dec) are identi-
cal to ṽ0, · · · , ṽ8 that are used to generate table (via E .Enc). Thus this change
is conceptual.

Step 3: This corresponds to G4 in the proof of Theorem 2.
– table is set up in a similar way as in E .Enc, but with the following dif-

ference. The item of row 1 and column 1 in table now is computed as
û1,1 = (ũ1,1T

a) · ṽ0 instead of û1,1 = ũ1,1 · ṽ0. This change is compu-
tationally indistinguishable, due to the IV5 assumption. (We refer to a
detailed analysis in the full version [HLL16].)

– Compute v̂0, · · · , v̂8 from table, just like E .Dec.
– ẽ := v̂8·T f

′
λ( (xiλ,j ,yiλ,j)j∈[4] ) mod Ns, and t := g

f ′λ( (xiλ,j ,yiλ,j)j∈[4] )

1 mod N .
It is easy to check that v̂0 = ṽ0, v̂1 = ṽ1 · T−axiλ,1 , v̂2 = ṽ2 · T−axiλ,1yiλ,1 ,
· · · , v̂8 = ṽ8 · T−axiλ,1yiλ,1···xiλ,4yiλ,4 = ṽ8 · T−f

′
λ( (xiλ,j ,yiλ,j)j∈[4] ), thus ẽ =

v̂8 ·T f
′
λ( (xiλ,j ,yiλ,j)j∈[4] ) = ṽ8. Therefore we can also implement Step 3 equiv-

alently as follows.
Step 3 (Equivalent Form):

– table is set up in a similar way as in E .Enc, but with the following
difference. The item of row 1 and column 1 in table is computed as
û1,1 = (ũ1,1T

a) · ṽ0 instead of û1,1 = ũ1,1 · ṽ0.

– ẽ := ṽ8 mod Ns, and t := g
f ′λ( (xiλ,j ,yiλ,j)j∈[4] ) mod φ(N)/4

1 mod N .
In this step, E .Enc does not use (x1, y1, · · · , x4, y4) mod N at all (only uses
(x̄i,j , ȳi,j)i∈[n],j∈[4] and (x1, y1, · · · , x4, y4) mod φ(N)/4).

Consequently, through the computationally indistinguishable change, the en-
tropy of (x1, y1, · · · , x4, y4) mod N is reserved by the E .Enc part of Enc.

Similarly, Dec can be changed to do decryptions without (xj , yj)
4
j=1 mod N .

This can be done with φ(N) and the (mod φ(N)/4) part of secret key. (This
corresponds to G7-G8 in the proof of Theorem 2). Use φ(N) to make sure that
all items in table of E .ct belong to SCRNs . If not, reject immediately. As a result,
Dec does not leak any information of (x1, y1, · · · , x4, y4) mod N . This change
is computationally indistinguishable, just like the analysis of Pr[Bad] as in the
proof of Theorem 2.

6.4 The General E Designed for Fd
poly

The previous subsection showed how to design E for a specific type of monomials.
A general f ′λ of degree d contains at most

(
8+d

8

)
= Θ(d8) monomials. To design a

general E for Fdpoly, we have to consider all possible types of monomials. For each
type of non-constant monomial, we create a table and each table is associated
with a ṽ, which is called a title, and those ṽ’s are used to hide message in ẽ. We
describe E .Enc and E .Dec in Fig. 9.

There are totally
(

8+d
8

)
−1 types of non-constant monomials of degree at most

d if we neglect the coefficients. Each type of non-constant monomial xc1iλ,1y
c2
iλ,1

xc3iλ,2
yc4iλ,2x

c5
iλ,3

yc6iλ,3x
c7
iλ,4

yc8iλ,4 is associated with a tuple c = (c1, · · · c8), which deter-
mines degrees of each variable. Denote by S the set containing all such tuples,
i.e., S :=

{
c = (c1, · · · c8)

∣∣ 1 ≤ c1 + · · ·+ c8 ≤ d
}

.
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E .ct←$ E .Enc
(
pk,m

)
:

For each c = (c1, · · · , c8) ∈ S
(table(c), ṽ(c))←$ TableGen(pk, c).

ẽ :=
∏

c∈S ṽ
(c) · Tm mod Ns.

t := gm1 mod N ∈ ZN .

Return E .ct :=
(
(table(c))c∈S , ẽ, t

)
.

m/⊥ ← E .Dec
(
sk, E .ct

)
:

Parse E .ct =
(
(table(c)

)
c∈S , ẽ, t

)
.

For each c = (c1, · · · , c8) ∈ S
v̂(c) ← CalculateV

(
sk, table(c), c

)
.

If ẽ ·
(∏

c∈S v̂
(c)
)−1 ∈ RUNs

m := dlogT
(
ẽ ·
(∏

c∈S v̂
(c)
)−1)

mod Ns−1.
If t = gm1 mod N , Return m.

Otherwise, Return ⊥.

TableGen
(
pk = (h1, h2, h3, h4), c = (c1, · · · , c8)

)
:

For each l ∈ {0, 1, · · · ,
∑8
j=1 cj}

r̃l,1, r̃l,2, r̃l,3, r̃l,4 ←$

[⌊
N
4

⌋]
.

(ũl,1, · · · , ũl,8) := (g
r̃l,1
1 , g

r̃l,1
2 , g

r̃l,2
2 , g

r̃l,2
3 , g

r̃l,3
3 , g

r̃l,3
4 , g

r̃l,4
4 , g

r̃l,4
5 ).

ṽl := h
r̃l,1
1 h

r̃l,2
2 h

r̃l,3
3 h

r̃l,4
4 .

table(c) :=

ũ0,1 ũ0,2 · · · ũ0,8

ũ1,1 · ṽ0 ũ1,2 · · · ũ1,8

...
...

. . .
...

ũc1,1 · ṽc1−1 ũc1,2 · · · ũc1,8

ũc1+1,1 ũc1+1,2 · ṽc1 · · · ũc1+1,8

...
...

. . .
...

ũc1+c2,1 ũc1+c2,2 · ṽc1+c2−1 · · · ũc1+c2,8

...
...

...
...

ũ∑7
j=1 cj+1,1 ũ∑7

j=1 cj+1,2 · · · ũ∑7
j=1 cj+1,8 · ṽ∑7

j=1 cj

...
...

. . .
...

ũ∑8
j=1 cj ,1

ũ∑8
j=1 cj ,2

· · · ũ∑8
j=1 cj ,8

· ṽ∑8
j=1 cj−1





c1
rows





c2
rows





c8
rows

Return (table(c), ṽ(c) := ṽ∑8
j=1 cj

).

CalculateV
(
sk = (x1, y1, · · · , x4, y4), table(c), c = (c1, · · · , c8)

)
:

Parse table(c) =
{
ûl,1 ûl,2 · · · ûl,8

}
l∈{0,1,··· ,

∑8
j=1 cj}

.

v̂0 := û−x10,1 û−y10,2 û
−x2
0,3 û−y20,4 û

−x3
0,5 û−y30,6 û

−x4
0,7 û−y40,8 .

For each l ∈ {1, · · · , c1}
v̂l := (ûl,1/v̂l−1)−x1 û−y1l,2 û−x2l,3 û−y2l,4 û−x3l,5 û−y3l,6 û−x4l,7 û−y4l,8 .

For each l ∈ {c1 + 1, · · · , c1 + c2}
v̂l := û−x1l,1 (ûl,2/v̂l−1)−y1 û−x2l,3 û−y2l,4 û−x3l,5 û−y3l,6 û−x4l,7 û−y4l,8 .

...

For each l ∈ {
∑7
j=1 cj + 1, · · · ,

∑8
j=1 cj}

v̂l := û−x1l,1 û−y1l,2 û−x2l,3 û−y2l,4 û−x3l,5 û−y3l,6 û−x4l,7 (ûl,8/v̂l−1)−y4 .

Return v̂(c) := v̂∑8
j=1 cj

.

Fig. 9. Top: E .Enc (left) and E .Dec (right) of E designed for Fdpoly; Middle: TableGen,

which generates table(c) together with a title ṽ(c); Bottom: CalculateV, which calculates
a title v̂(c) from table(c) using secret key.

For each c = (c1, · · · c8) ∈ S, we generate table(c) and its title ṽ(c) for mono-
mial xc1iλ,1y

c2
iλ,1

xc3iλ,2y
c4
iλ,2

xc5iλ,3y
c6
iλ,3

xc7iλ,4y
c8
iλ,4

via the algorithm TableGen illustrated

in Fig. 9. Intuitively, TableGen generates table(c) of 1 + c1 + · · · + c8 rows. The
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0-th row of table(c) is ũ0,1, · · · , ũ0,8. The form of other rows are similar to row 0
with a small difference: the next c1 rows in the 1-st column are multiplied with
ṽ0, ṽ1, · · · , ṽc1−1 respectively; the next c2 rows in the 2-nd column are multiplied
with ṽc1 , ṽc1+1, · · · , ṽc1+c2−1 respectively, and so forth. TableGen also generates

a title ṽ(c) for table(c). The product of all the titles, i.e.,
∏

c∈S ṽ
(c), is used to

hide Tm in ẽ.
On the other hand, the title v̂(c) = ṽ(c) can be recovered from table(c) with

secret key sk = (x1, y1, · · · , x4, y4) via the CalculateV algorithm in Fig. 9. There-
fore, one can always use the secret key to extract the titles (ṽ(c))c∈S from tables(
table(c)

)
c∈S one by one with CalculateV and then recover m correctly.

Security proof. The proof of KDM[Fdpoly]-CCA security is similar to that of
Theorem 2. But games G3-G4 should be replaced with the following three steps
(Step 1 - Step 3), so that the E .Enc part of Enc can be changed to work as an
entropy filter, i.e., reserving the entropy of (x1, y1, · · · , x4, y4) mod N , w.r.t. any
polynomial of degree at most d.

Suppose that the adversary submits (fλ, iλ ∈ [n]) to Enc. Our aim is to re-
serve the entropy of (xj , yj)

4
j=1 mod N from E .Enc

(
pkiλ , fλ

(
(xi,j , yi,j)i∈[n],j∈[4]

))
.

Step 0: In Initialize, the secret keys are generated with xi,j := xj + x̄i,j and
yi,j := yj + ȳi,j mod bN2/4c for i ∈ [n], j ∈ [4]. This is the same as G2 in
the proof of Theorem 2.

Step 1: Use (x̄i,j , ȳi,j)i∈[n],j∈[4] to re-explain (fλ, iλ ∈ [n]) as (f ′λ, iλ ∈ [n]), and
determine the coefficients a(c1,··· ,c8) of each monomial of f ′λ, as discussed in
Subsection 6.2. Note that a(c1,··· ,c8) = 0 if the associated monomial does not
appear in f ′λ. Then

f ′λ
(
(xiλ,j , yiλ,j)j∈[4]

)
=

∑
(c1,··· ,c8)∈S

a(c1,··· ,c8)·xc1iλ,1y
c2
iλ,1

xc3iλ,2y
c4
iλ,2

xc5iλ,3y
c6
iλ,3

xc7iλ,4y
c8
iλ,4

+δ,

where δ = a(0,··· ,0) denotes the constant term of f ′λ.
Step 2: Use secret key skiλ = (xiλ,j , yiλ,j)j∈[4] (together with public key pkiλ =

(hiλ,j)j∈[4]) to implement E .Enc (This corresponds to G3 in the proof of
Theorem 2).
– For each c = (c1, · · · , c8) ∈ S

(1) (table(c), ṽ(c))←$ TableGen(pkiλ , c),

(2) v̂(c) ← CalculateV(skiλ , table
(c), c).

– Use
(
v̂(c)
)
c∈S instead of

(
ṽ(c)
)
c∈S to compute ẽ with ẽ :=

∏
c∈S v̂

(c) ·
T f
′
λ( (xiλ,j ,yiλ,j)j∈[4] ) mod Ns, and t := g

f ′λ( (xiλ,j ,yiλ,j)j∈[4] )

1 mod N .
It is easy to check that for each c = (c1, · · · , c8) ∈ S, v̂(c) computed from

table(c) via CalculateV is identical to ṽ(c) associated with table(c) via TableGen.
Thus this change is conceptual.

Step 3: This corresponds to G4 in the proof of Theorem 2.
– For each c = (c1, · · · , c8) ∈ S

(1) Compute table(c) via (table(c), ṽ(c)) ←$ TableGen(pkiλ , c), but with
one difference. The item of row 1 and column j := min{i | 1 ≤ i ≤
8, ci 6= 0} in table(c) now is computed as û1,j = (ũ1,jT

a(c1,··· ,c8)) · ṽ0
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instead of û1,j = ũ1,j · ṽ0. This change is computationally indistin-
guishable, due to the IV5 assumption.

(2) Invoke v̂(c) ← CalculateV(skiλ , table
(c), c) to extract a title v̂(c) from

the modified table(c).

– ẽ :=
∏

c∈S v̂
(c)·T f ′λ( (xiλ,j ,yiλ,j)j∈[4] ), and t := g

f ′λ( (xiλ,j ,yiλ,j)j∈[4] )

1 mod N .

Observe that for each c = (c1, · · · , c8) ∈ S,

v̂(c) = ṽ(c) · T−a(c1,··· ,c8)x
c1
iλ,1

y
c2
iλ,1

x
c3
iλ,2

y
c4
iλ,2

x
c5
iλ,3

y
c6
iλ,3

x
c7
iλ,4

y
c8
iλ,4 .

Then ẽ =
∏

c∈S v̂
(c) · T f ′λ( (xiλ,j ,yiλ,j)j∈[4] )

=
∏

c∈S
(
ṽ(c) · T−a(c1,··· ,c8)x

c1
iλ,1

y
c2
iλ,1

x
c3
iλ,2
···yc6iλ,3x

c7
iλ,4

y
c8
iλ,4
)
· T f ′λ( (xiλ,j ,yiλ,j)j∈[4] )

=
∏

c∈S ṽ
(c) · T δ,

where δ is the constant term of f ′λ. Therefore we can implement Step 3
equivalently as follows.

Step 3 (Equivalent Form):

– For each c = (c1, · · · , c8) ∈ S
Compute table(c) via (table(c), ṽ(c)) ←$ TableGen(pkiλ , c), but with

one difference. The item of row 1 and column j := min{i | 1 ≤ i ≤
8, ci 6= 0} in table(c) now is computed as û1,j = (ũ1,jT

a(c1,··· ,c8)) · ṽ0

instead of û1,j = ũ1,j · ṽ0.

– ẽ :=
∏

c∈S ṽ
(c) · T δ, and t := g

f ′λ( (xiλ,j ,yiλ,j)j∈[4] ) mod φ(N)/4

1 mod N .

In this step, E .Enc does not use (x1, y1, · · · , x4, y4) mod N at all (only uses
(x̄i,j , ȳi,j)i∈[n],j∈[4] and (x1, y1, · · · , x4, y4) mod φ(N)/4).

As a result, through the computationally indistinguishable change, the entropy
of (x1, y1, · · · , x4, y4) mod N is reserved by the E .Enc part of Enc.

Similarly, Dec can be changed to do decryptions without (xj , yj)
4
j=1 mod N ,

the same argument as in Subsection 6.3.

Acknowledgments. The authors are supported by the National Natural Sci-
ence Foundation of China Grant (Nos. 61672346, 61373153 and 61133014). We
thank the anonymous reviewers for their comments and suggestions.

References

[ACPS09] Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic prim-
itives and circular-secure encryption based on hard learning problems. In:
Halevi, S. (ed.) CRYPTO 2009, LNCS, vol. 5677, pp. 595–618. Springer
(2009)

[BG10] Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key
encryption under subgroup indistinguishability - (or: Quadratic residuosity
strikes back). In: Rabin, T. (ed.) CRYPTO 2010, LNCS, vol. 6223, pp.
1–20. Springer (2010)



30 S. Han et al.

[BGK11] Brakerski, Z., Goldwasser, S., Kalai, Y.T.: Black-box circular-secure en-
cryption beyond affine functions. In: Ishai, Y. (ed.) TCC 2011, LNCS, vol.
6597, pp. 201–218. Springer (2011)

[BHHI10] Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded key-dependent
message security. In: Gilbert, H. (ed.) EUROCRYPT 2010, LNCS, vol.
6110, pp. 423–444. Springer (2010)

[BHHO08] Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryp-
tion from decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008,
LNCS, vol. 5157, pp. 108–125. Springer (2008)

[BRS02] Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the
presence of key-dependent messages. In: Nyberg, K., Heys, H.M. (eds.)
Selected Areas in Cryptography 2002, LNCS, vol. 2595, pp. 62–75. Springer
(2002)

[CCS09] Camenisch, J., Chandran, N., Shoup, V.: A public key encryption scheme
secure against key dependent chosen plaintext and adaptive chosen cipher-
text attacks. In: Joux, A. (ed.) EUROCRYPT 2009, LNCS, vol. 5479, pp.
351–368. Springer (2009)

[CL01] Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001, LNCS, vol. 2045, pp. 93–118. Springer (2001)

[DJ01] Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some ap-
plications of Paillier’s probabilistic public-key system. In: Kim, K. (ed.)
PKC 2001, LNCS, vol. 1992, pp. 119–136. Springer (2001)

[GHV12] Galindo, D., Herranz, J., Villar, J.L.: Identity-based encryption with mas-
ter key-dependent message security and leakage-resilience. In: Foresti, S.,
Yung, M., Martinelli, F. (eds.) ESORICS 2012, LNCS, vol. 7459, pp. 627–
642. Springer (2012)

[GM84] Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci.
vol. 28(2), pp. 270–299 (1984)

[GS08] Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear
groups. In: Smart, N.P. (ed.) EUROCRYPT 2008, LNCS, vol. 4965, pp.
415–432. Springer (2008)

[HLL16] Han, S., Liu, S., Lyu, L.: Efficient KDM-CCA secure public-key encryp-
tion for polynomial functions. IACR Cryptology ePrint Archive, Report
2016/829 (2016)

[Hof13] Hofheinz, D.: Circular chosen-ciphertext security with compact cipher-
texts. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013, LNCS,
vol. 7881, pp. 520–536. Springer (2013)

[KD04] Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme.
In: Franklin, M.K. (ed.) CRYPTO 2004, LNCS, vol. 3152, pp. 426–442.
Springer (2004)

[LLJ15] Lu, X., Li, B., Jia, D.: KDM-CCA security from RKA secure authenticated
encryption. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I,
LNCS, vol. 9056, pp. 559–583. Springer (2015)

[MTY11] Malkin, T., Teranishi, I., Yung, M.: Efficient circuit-size independent pub-
lic key encryption with KDM security. In: Paterson, K.G. (ed.) EURO-
CRYPT 2011, LNCS, vol. 6632, pp. 507–526. Springer (2011)

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. In: Gabow, H.N., Fagin, R. (eds.) STOC 2005, pp. 84–93.
ACM (2005)


	Efficient KDM-CCA Secure Public-Key Encryption for Polynomial Functions
	Introduction
	Preliminaries
	Public-Key Encryption and KDM-CCA Security
	Key Encapsulation Mechanism
	Authenticated Encryption: One-Time Security and Related-Key Attack Security
	DCR, DDH, DL and IVd Assumptions
	Collision Resistant Hashing and Universal Hashing

	AE of the LLJ Scheme and Its INT-RKA Security
	Authenticated Encryption with Auxiliary-Input
	AIAE and Its Related-Key Attack Security
	AIAE from OT-secure AE and DDH Assumption

	PKE with n-KDM[Faff]-CCA Security
	PKE with n-KDM[Fpolyd]-CCA Security
	The Basic Idea
	Reducing Polynomials of 8n Variables to Polynomials of 8 Variables
	How to Design E: A Warmup
	The General E Designed for Fpolyd



