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Abstract. We present the first chosen-ciphertext secure public-key encryption schemes resilient to
continuous tampering of arbitrary (efficiently computable) functions. Since it is impossible to realize
such schemes without a self-destruction or key-updating mechanism, our proposals allow for either of
them. As in the previous works resilient to this type of tampering attacks, our schemes also tolerate
bounded or continuous memory leakage attacks at the same time. Unlike the previous works, our
schemes have efficient instantiations. We also prove that there is no secure digital signature scheme
resilient to arbitrary tampering functions against a stronger variant of the continuous tampering attack,
even if it has a self-destruction mechanism.

Keywords: public-key encryption, digital signature, continuous tampering attacks, and bounded
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1 Introduction

We study the tampering attack security, or equivalently the related-key attack security, of public-
key cryptosystems. The tampering attacks allow an adversary to modify the secret of a target
cryptographic device and observe the effect of the changes at the output. For instance, the tampering
attacks are mounted on the IND-CCA game of a public-key encryption (PKE) scheme, where an
adversary may tamper with the secret-key and observe the output of the decryption oracle with
the tampered secret.

Theoretical treatment of tampering attack starts independently by Gennaro et al. [21] and
Bellare and Kohno [6]. The former treats arbitrary (efficiently computable) tampering functions,
whereas the latter considers a restricted class of tampering functions. Allowing tampering of all
(efficiently computable) functions is very challenging.

Gennaro et al. [21] make a strong compromise that a trusted-third party may publish its verifi-
cation key (of a secure digital signature scheme) as a part of public parameters where an adversary
is not allowed to modify the parameters, and each user may obtain a digital signature on their se-
cret issued by the trusted-third party. We call this model the on-line model or the algorithmic
tamper-proof security model [21]. Bellare and Kohno [6] assume no trusted party. However,
subsequent works [4, 5, 7, 35, 28, 33, 20] allow a trusted party to play a minimum role, where it makes
a public parameter, but once it did, it does nothing. An adversary is not allowed to modify the
public parameter. We call this model the common reference model.

Gennaro et al. [21] suggested that it is impossible to realize chosen-ciphertext attack (CCA)
secure PKE and digital signature schemes resilient to all tampering functions even in the on-line
model. Therefore, they allowed a cryptosystem to self-destruct, meaning that when detecting
tampering, a cryptographic device can erase all internal data and an adversary cannot gain any
additional information from it.
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Other possible ways to bypass the impossibility result are (1) to allow a device to update its
inner secret with fresh randomness (key-updating mechanism) [26], and (2) to allow an adversary
to submit a bounded number of tampering queries (bounded tampering) [14].

Tampering is further classified into persistent or non-persistent (due to [25]). In the per-
sistent tampering attacks, each tampering is applied to the current version of the secret that
has been overwritten by the previous tampering function, so the previous secret is lost, i.e., when
an adversary queries (φ1, x1) and (φ2, x2) to device G(s, ·) in this order, it receives G(φ1(s), x1)
and G(φ2(φ1(s)), x2), where φ1, φ2 are tampering functions and x1, x2 are inputs to device G. In
the non-persistent tampering attacks, a tampering is always applied to the original secret,
i.e., an adversary receives G(φ1(s), x1) and G(φ2(s), x2) when submitting the same queries above.
We insist that for PKE and digital signature schemes without a key-updating mechanism,
the non-persistent tampering attacks are stronger than the persistent tampering attacks, because an
adversary that breaks a cryptosystem in the persistent tampering attacks also breaks the same sys-
tem in the non-persistent tampering attacks. It is not clear in a cryptosystem with a key-updating
mechanism that the relation holds.

In this paper we focus on the common reference string (CRS) model (as mentioned above),
where we assume a public parameter is generated by a trusted third party and assume that an
adversary is not allowed to modify it. This setting is common in many prior works, e.g., [4, 5, 7, 35,
28, 26, 14, 33, 20].

At Crypto 2011, Kalai, Kanukurthi, and Sahai [26] considered the continual tampering and
leakage (CTL) model, where persistent tampering is assumed, and PKE and digital signature
schemes are allowed to have a key-updating algorithm, which updates a secret key with fresh (non-
tampered) randomness in every time period. This security model is considered in the CRS model.
The proposed PKE scheme is one-bit-message encryption scheme based on [10] and is only chosen-
plaintext attack (CPA) secure. Therefore, in their CTL security model for PKE, an adversary is
NOT allowed to access the decryption oracle, which means that an adversary cannot observe the
effect of tampering at the output of the decryption oracle. Instead, it can observe the effect of
tampering at the output of the leakage oracle. We note that this tampering attack is not trivially
implied by the leakage attack, because tampered secret φ(sk) is updated and the adversary can
observe a partial information on the updated secret, say L(Update(φ(sk))), from the leakage oracle.
Their digital signature scheme (with a key-update mechanism) is constructed based on their CTL
secure PKE scheme with simulation-sound non-interactive zero-knowledge proofs, which is simply
inefficient. They also considered a digital signature scheme without a key-update mechanism and
its security in the so-called continuous tampering and bounded leakage (CTBL) model. The digital
signature scheme may self-destruct (otherwise, it is impossible to prove the security). They claim
the security of the digital signature scheme against the persistent tampering attack. Remember
for a digital signature scheme without a key-updating mechanism, the non-persistent tampering
attacks are stronger than the persistent tampering attacks. We later prove that it is impossible
to construct a digital signature scheme without a key-updating mechanism that is resilient to
continuous tampering against the non-persistent tampering attack (even if the scheme has a self-
destructive mechanism).

At Asiacrypt 2013, Damg̊ard, Faust, Mukherjee, and Venturi [14] proposed the bounded leak-
age and tampering (BLT) model. This setting allows a bounded number of non-persistent
tampering, as well as bounded memory leakage, in the CRS model, where PKE has neither of
self-destructive nor key-updating mechanism. In the BLT model of PKE, in addition to access-
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ing bounded memory leakage oracle, an adversary is allowed to submit a bounded number of
“pre-challenge” tampering queries (φ,CT) to the decryption oracle and receive D(φ(sk),CT). It
may also access the decryption oracle with the original secret-key both in the pre-challenge and
post-challenge stages, as in the normal IND-CCA game. They presented a generic construction of
IND-CCA BLT secure PKE scheme from an IND-CPA BLT secure PKE scheme with tSE NIZK
proofs [15]. An instantiation of an IND-CPA BLT secure PKE scheme is BHHO PKE scheme [9].
Using the technique of [2], they also consider a variant of the floppy model [2], called the ι-Floppy
model, where each user has individual secret y different from secret-key sk and is allowed to exe-
cute “invisible key updates”, i.e., to update their secret key sk with (non-tampered) secret y and
(non-tampered) flesh randomness.

1.1 Our Results

We study continuous tampering attacks of arbitrary functions against PKE and digital signature
schemes, in the presence of bounded or continuous memory leakage attacks. Due to the impossibility
result, we allow PKE and digital signature schemes to have either self-destructive or key-updating
mechanism. There is no IND-CCA PKE scheme resilient to post-challenge tampering of arbitrary
functions [14]. Indeed, one can break any PKE scheme, by observing the output of the decryption
oracle after tampering with the following effciently computable function:

φ(sk) =

{
sk if D(sk,CT∗) = m0, where CT∗ is a challenge ciphertext.

⊥ otherwise.

This attack is unavoidable even with self-destruction, key-updating, and bounded persistent/non-
persistent tampering in the on-line model (i.e., in the strongest compromised model). Therefore,
we allow tampering queries only in the pre-challenge stage against a PKE scheme.

We present the first chosen-ciphertext secure PKE schemes secure against both continuous tam-
pering and bounded or continuous memory leakage of arbitrary functions. Interestingly, we show
that, by putting some parameters in the common reference string and providing a self-destructive
mechanism to the decryption algorithm, Qin and Liu’s PKE scheme [31] is CTBL-CCA secure,
meaning that it is IND-CCA secure resilient to both continuous tampering and bounded mem-
ory leakage attacks. We also propose the first CTL-CCA secure PKE scheme, meaning that it is
IND-CCA secure resilient to both continuous tampering and continual memory leakage attacks.
Our security definitions basically model the non-persistent tampering attack, but it is straightfor-
ward to modify them to the persistent one. It is easy to show that any PKE schemes without a
key-updating mechanism that is CTBL-CCA secure against the non-persistent tampering attack
is still CTBL-CCA secure against the persistent tampering attack. So are our CTBL-CCA secure
PKE schemes. It is not clear in the case of PKE schemes with a key-updating mechanism that the
same relation holds.

We show that it is impossible to construct a secure digital signature scheme resilient to the
(continuous) non-persistent tampering attack even if it has a self-destructive mechanism. If the
key-updating mechanism runs only when a tampering is detected, any digital signature scheme
with the key-updating mechanism is insecure, either.

Comparison Among Continuous Tampering Models. Table 1 classifies the security models
related to our continuous tampering models. Here b-tamp indicates bounded tampering and c-tamp
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indicates continuous tampering. Similarly, b-leak indicates bounded memory leakage and c-tamp
indicates continuous memory leakage. persist indicates persistent tampering and n-persist indicates
non-persistent tampering. per./n-per. indicates that the result in this row is effective for both
persistent and non-persistent tampering. c-tamp− indicates the case of KKS signature scheme with a
key-updating mechanism [26], which allows an adversary to submit a bounded number of tampering
queries within each time period, although the number of tampering queries overall is unbounded.
Our result is given in the gray area. Our CTL model imposes a more severe condition in that the
scheme is allowed to update secret keys only when it detects tampering.

Table 1. Comparison: Continuous Tampering Models and Results

Primitives Self-Dest. Key Update Tampering Leakage Security Notes Results

PKE w/o. w/o. b-tamp b-leak CCA per./n-per. DFMV [14]
PKE w/o. w. c-tamp c-leak CCA ιFloppy DFMV [14]
PKE w. w. b-tamp - CCA post-tamp. Impossible([14])

PKE w/o. w/o. c-tamp - CCA per./n-per. Impossible ([21])
PKE w/o. w. c-tamp c-leak CPA persist KKS [26]

PKE w. w/o. c-tamp b-leak CCA per./n-per. This work
PKE w/o. w. c-tamp c-leak CCA n-persist This work

Sig w/o. w/o. c-tamp - CMA per./n-per. Impossible ([21])
Sig w. w/o. c-tamp b-leak ? persist KKS [26]
Sig w/o. w. c-tamp− c-leak CMA persist KKS [26]
Sig w. w/o. c-tamp - CMA n-persist Impossible

(This work)
Sig w/o. w. c-tamp - CMA n-persist Impossible

(This work)

1.2 Other Related Works

Considering a restricted class of tampering functions, we briefly mention two lines of works.

One research stream derives from Bellare and Kono’s [6], who study tampering (or equivalently
related-key) resilient security against specific primitives, such as pseudo-random function families
(PRFs), PKE, and identity-based encryption (IBE) schemes. By restricting tampering functions,
post-challenge tampering queries can be treated at PKE. Currently, it is known that there is an
IBE scheme (and hence, converted to PKE and digital signature schemes) resilient to polynomial
functions [7] (in the CRS model). Qin et al. [33] recently claimed a broader class, but it is not
correct [20] (Indeed, there is a counter example [3]). Recently, Fujisaki and Xagawa proposed an
IBE scheme resilient to some kind of invertible functions [20]. In the above works, tampering is non-
persistent and the target cryptosystems have neither self-destruction nor key-updating mechanism.

The other line of works comes from algebraic manipulation detection (AMD) codes [11, 12] and
non-malleable codes (NMC) [18], whose codes can detect tampering of a certain class of functions.
Dziembowski, Pietrzak, and Wichs [18] presented NMC and its application to tamper-resilient secu-
rity. In their model, a PKE scheme allows for both self-destruction and key-updating mechanisms.
An adversary submit to a target device G tampering queries (φ, x) with φ ∈ Φ. If the decoding fails,
i.e., Dec(φ(Enc(s)) = ⊥, then G self-destructs. Otherwise, it returns G(s, x) and updates Enc(s).
Faust, Mukherjee, Nielsen, and Ventrui [19] considered continuous NMC and apply it to tamper
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and leakage resilient security (in the split-state model). Recently, Jafargholi and Wichs [25] pre-
sented NMCs for a bounded number of any subset of a very broader class of tampering functions.
However, since an adversary must choose the subset before seeing the parameters of the codes, this
result is not effective against the setting of this paper.

2 Preliminaries

For n ∈ N (the set of natural numbers), [n] denotes the set {1, . . . , n}. We let negl(κ) to denote
an unspecified function f(κ) such that f(κ) = κ−ω(1) = 2−ω(1) log κ, saying that such a function
is negligible in κ. We write PPT and DPT algorithms to denote probabilistic polynomial-time
and deterministic poly-time algorithms, respectively. For PPT algorithm A, we write y ← A(x) to
denote the experiment of running A for given x, picking inner coins r uniformly from an appro-
priate domain, and assigning the result of this experiment to the variable y, i.e., y = A(x; r). Let
X = {Xκ}κ∈N and Y = {Yκ}κ∈N be probability ensembles such that each Xκ and Yκ are random
variables ranging over {0, 1}κ. The (statistical) distance between Xκ and Yκ is Dist(Xκ : Yκ) ,
1
2 · |Prs∈{0,1}κ [X = s] − Prs∈{0,1}κ [Y = s]|. We say that two probability ensembles, X and Y , are

statistically indistinguishable (in κ), denoted X
s≈ Y , if Dist(Xκ : Yκ) = negl(κ). In particular, we

denote by X ≡ Y to say that X and Y are identical. We say that X and Y are computationally

indistinguishable (in κ), denoted X
c≈ Y , if for every non-uniform PPT D (ranging over {0, 1}),

{D(1κ, Xκ)}κ∈N
s≈ {D(1κ, Yκ)}κ∈N.

2.1 Entropy and Extractor

The min-entropy of random variable X is defined as H∞(X) = − log (maxx Pr[X = x]). We say
that a function Ext : {0, 1}ℓs × {0, 1}n → {0, 1}m is an (k, ǫ)-strong extractor if for any random
variable X such that X ∈ {0, 1}n and H∞(X) > k, it holds that Dist((S,Ext(S,X)), (S,Um)) ≤ ǫ,
where S is uniform over {0, 1}ls . Let H = {H} be a family of hash functions H : {0, 1}n → {0, 1}m.
H is called a family of universal hash functions if ∀ x1, x2 ∈ {0, 1}n with x1 6= x2, PrH←H[H(x1) =
H(x2)] = 2−m. Then, The Leftover Hash Lemma (LHL) states the following.

Lemma 1 (Leftover Hash Lemma). Assume that the family H of functions H : {0, 1}n →
{0, 1}m is a family of universal hash functions. Then for any random variable X such that X ∈
{0, 1}n and H∞(X) > m,

Dist((H,H(X)), (H,Um)) ≤ 1

2

√
2−(H∞(X)−m),

where H is a random variable uniformly chosen over H and Um is a random variable uniformly
chosen over {0, 1}m.

Therefore, H constructs a (k, 2−(k/2+1))-strong extractor where k = H∞(X)−m.
We use the notion of the average conditional min-entropy defined by Dodis et al.[17] and its

“chain rule”. Define the average conditional min-entropy of random variable X given random vari-
able Y as

H̃∞(X|Y ) , − log ( E
y←Y

[max
x

Pr[X = x|Y = y]]) = − log ( E
y←Y

[2−H∞(X|Y=y)]).
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Lemma 2 (“Chain Rule” for Average Min-Entropy [17]). When random variable Z takes
at most 2r possible values (i.e., #Supp(Z) = 2r) and X,Y are random variables, then

H̃∞(X|(Y, Z)) ≥ H̃∞((X,Y )|Z)− r ≥ H̃∞(X|Z)− r.

In particular,

H̃∞(X|Z) ≥ H∞(X,Z)− r ≥ H∞(X)− r.

Dodis et al.[17] proved that any strong extractor is an average-case strong extractor for an
appropriate setting of the parameters. As a special case, they showed any family of universal hash
functions is an average-case strong extractor along with the following generalized version of the
leftover hash lemma:

Lemma 3 (Generalized Leftover Hash Lemma [17]). Assume that the family H of functions
H : {0, 1}n → {0, 1}m is a family of universal hash functions. Then for any random variables, X
and Z,

Dist((H,H(X), Z), (H,Um, Z)) ≤ 1

2

√
2−(H̃∞(X|Z)−m),

where H is a random variable uniformly chosen over H and Um is a random variable uniformly
chosen over {0, 1}m.

2.2 Random Subspace Lemmas

The following random subspace lemma was given by Brakerski et al. [10]. We use a better bound
given by Agrawal et al. [2].

Lemma 4 ([10, 2]). Let 2 ≤ d < t ≤ n and λ < (d− 1) log(q). Let W ⊂ F
n
q be an arbitrary vector

subspace in F
n
q of dimension t. Let L : {0, 1}∗ → {0, 1}λ be an arbitrary function. Then, we have

Dist

((
A, L(Av)

)
,
(
A, L(u)

))
≤ n

2

√
2λ

qd−1
,

where A := (a1, . . . ,ad) ←Wd (seen as a n× d matrix), v ← F
d
q , and u←W.

Brakerski et al. bound is
√

2λ

qd−3 . The above bound is better because n
2 < q where n = poly(κ).

The following is an affine version of Lemma 4.

Lemma 5. Let 2 ≤ d < t ≤ n and λ < (d − 1) log(q). Let x ∈ F
n
q be an arbitrary vector. Let

W ⊂ F
n
q be an arbitrary vector subspace in F

n
q of dimension t. Let L : {0, 1}∗ → {0, 1}λ be an

arbitrary function. Then, we have

Dist

((
A, L(x+Av)

)
,
(
A, L(x+ u)

))
≤ n

2

√
2λ

qd−1
,

where A := (a1, . . . ,ad) ←Wd (seen as a n× d matrix), v ← F
d
q , and u←W.
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Proof. Let W ∈ F
n×t
q be a matrix whose column vectors span W, i.e., W = span(W). Now, we

have

Dist

((
A, L(x+Av)

)
,
(
A, L(x+ u)

))

=Dist

((
WRa, L(x+WRav)

)
,
(
Wra, L(x+Wru)

))
( where A = WRa u = Wru)

=Dist

((
WRa, L

′(Rav)
)
,
(
WRa, L

′(ru)
))

( where L′(y) := L(x+Wy))

≤Dist

((
Ra, L

′(Rav)
)
,
(
Ra, L

′(ru)
))
≤ n

2

√
2λ

qd−1
,

where Ra ← F
t×d
q , v ← F

d
q , and ru ← F

t
q.

2.3 Hash Proof Systems

We recall the notion of the hash proof systems introduced by Cramer and Shoup [13]. Let C,K,SK,
and PK be efficiently samplable sets and let V be a subset in C. Let Λsk : C → K be a hash function
indexed by sk ∈ SK. A hash function family Λ : SK × C → K is projective if there is a projection
µ : SK → PK such that µ(sk) ∈ PK defines the action of Λsk over subset V. That is to say, for
every C ∈ V, K = Λsk(C) is uniquely determined by µ(sk) and C. Λ is called γ-entropic [27] if for
all pk ∈ PK, C ∈ C\V , and all K ∈ K,

Pr[K = Λsk(C)|(pk, C)] ≤ 2−γ ,

where the probability is taken over sk
U← SK with pk = µ(sk). We note that this Λ is originally

called 2−γ-universal1 in [13]. By definition, we note that H∞(Λsk(C)|(pk, C)) ≥ γ for all pk ∈ PK
and C ∈ C\V.

Λ is called ǫ-smooth [13] if Dist((pk, C, Λsk(C)), (pk, C,K)) ≤ ǫ, where sk
U← SK, K U← K and

C
U← C\V are chosen at random and pk = µ(sk).
A hash proof system HPS = (HPS.param, HPS.pub, HPS.priv) consists of three algorithms such

that HPS.param takes 1κ and outputs an instance of params = (group, Λ, C,V,SK,PK, µ), where
group contains some additional structural parameters and Λ is a projective hash function family
associated with (C,V,SK, PK, µ) as defined above. The deterministic public evaluation algorithm
HPS.pub takes as input pk = µ(sk), C ∈ V and a witness w such that C ∈ V and returns Λsk(C).
The deterministic private evaluation algorithm takes sk ∈ SK and returns Λsk(C), without tak-
ing withness w for C (if it exists). A hash proof system HPS as above is said to have a hard
subset membership problem if two random elements C ∈ C and C ′ ∈ C\V are computationally

indistinguishable, that is, {C |C U← C}κ∈N
c≈ {C ′ |C ′ U← C\V}κ∈N.

2.4 All-But-One Injective Functions

We recall all-but-one injective functions (ABO) [32], which is a simple variant of all-but-one injective
trap-door functions [30].

A collection of (n, ℓlf)-all-but-one injective functions with branch collection B = {Bκ}κ∈N is
given by a tuple of PPT algorithms ABO = (ABO.gen,ABO.eval) with the following properties:
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– ABO.gen is a PPT algorithm that takes 1κ and any branch b∗ ∈ Bκ, and outputs a function
index iabo and domain X with 2n elements.

– ABO.eval is a DPT algorithm that takes iabo, b, and x ∈ X , and computes y = ABO.eval(iabo, b, x).

We require that (n, ℓlf)-all-but-one injective functions given by ABO satisfies the following prop-
erties:

1. For any b 6= b∗ ∈ Bκ, ABO.eval(iabo, b, ·) computes an injective function over the domain X .
2. The number of elements in the image of ABO.eval(iabo, b

∗, ·) over the domain X is at most 2ℓlf .

3. For any b, b∗ ∈ Bκ, {ABO.gen(1κ, b)}κ∈N
c≈ {ABO.gen(1κ, b∗)}κ∈N.

We note that ABO functions can be efficiently constructed under the DDH assumption and the
DCR assumption (See Sec. C).

3 Continuous Tampering and Bounded Leakage Resilient CCA (CTBL-CCA)
Secure Public-Key Encryption

A public-key encryption (PKE) scheme consists of the following four algorithmsΠ = (Setup,K,E,D):
The setup algorithm Setup is a PPT algorithm that takes 1κ and outputs public parameter ρ. The
key-generation algorithm K is a PPT algorithm that takes ρ and outputs a pair of public and
secret keys, (pk, sk). The encryption algorithm E is a PPT algorithm that takes public parame-
ter ρ, public key pk and message m ∈ M, and produces ciphertext ct ← Eρ(pk,m); Here M is
uniquely determined by pk. The decryption algorithm D is a DPT algorithm that takes ρ, sk and
presumable ciphertext ct, and returns message m = Dρ(sk, ct). We require for correctness that for
every sufficiently large κ ∈ N, it always holds that Dρ(sk,Eρ(pk,m)) = m, for every ρ ∈ Setup(1κ),
every (pk, sk) generated by K(ρ), and every m ∈M.

We say that PKE Π is self-destructive if the decryption algorithm can erase all inner states
including sk and does not work any more, when receiving an invalid ciphertext ct (i.e., Dρ(sk, ct) =
⊥). We assume that public parameter ρ is system-wide, i.e., fixed beforehand and independent
of users, and the only public and secret keys are subject to the tampering attacks. This model
is justified in the environment where the common public parameter could be hardwired into the
algorithm codes and stored on tamper-proof hardware or distributed via a public channel where
tampering is infeasible or could be easily detected.

CTBL-CCA Security. For PKE Π and an adversary A = (A1, A2), we define the experiment
Exptctbl-ccaΠ,A,(Φ1,Φ2,λ)

(κ) as in Fig. 1. A may adaptively submit (unbounded) polynomially many queries

(φ, ct) to oracle RKDec 1, but it should be in Φi appropriately. A may also adaptively submit
(unbounded) polynomially many queries L to oracle Leak, before seeing the challenge ciphertext
ct∗. The total amount of leakage on sk must be bounded by some λ bit length. We note that if Π
has the self-destructive property, RKDec does not answer any further query, or simply return ⊥,
after it receives an invalid ciphertext such that Dρ(φ(sk), ct) = ⊥. We define the advantage of A
against Π with respects (Φ1, Φ2) as

Advctbl-ccaΠ,A,(Φ1,Φ2,λ)
(κ) , | 2Pr[Exptctbl-ccaΠ,A,(Φ1,Φ2,λ)

(κ) = 1]− 1 |.

We say that Π is (Φ1, Φ2, λ)-CTBL-CCA secure if Advctbl-ccaΠ,A,(Φ1,Φ2,λ)
(κ) = negl(κ) for every PPT A.

1 A tampering function is called a related-key derivation (RKD) function in [6, 4].
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Exptctbl-ccaΠ,A,(Φ1,Φ2,λ)
(κ) :

ρ← Setup(1κ);
(pk, sk)← K(ρ);

(m0,m1, st)← A
RKDecΦ1

(·,·),Leakλ(·)

1 (ρ, pk)
such that |m0| = |m1|;

β∗ ← {0, 1};
ct∗ ← Eρ(pk,mβ∗);

β ← A
RKDecΦ2

(·,·)

2 (st, ct∗);
If β = β∗,

then return 1; otherwise 0.

RKDecΦ(φ, ct) :
If ct = ct∗ queried by A2,

then return ⊥;
If Dρ(φ(sk), ct) = ⊥,

then erase sk.
Return Dρ(φ(sk), ct).

————————————
Leakλ(Li) : (Li: i-th query of A.)

If
∑i

j=1 |Lj(sk)| > λ

then return ⊥;
Else return Li(sk).

Fig. 1. The experiment of the CTBL-CCA game.

We say that Π is CTBL-CCA secure if it is (Φall, {id}, λ)-CTBL-CCA secure, where Φall is
the class of all efficiently computable functions and id denotes the identity function.

Remark 1. This security definition models non-persistent tampering. However, it is obvious that
the persistent tampering version of CTBL-CCA security can be similarly defined.

We now state the following fact.

Theorem 1. Suppose a PKE scheme Π without a key-updating mechanism is CTBL-CCA secure
against the non-persistent tampering attacks. Then, Π is also CTBL-CCA secure against the
persistent tampering attacks.

Proof. For a PKE scheme without a key-updating mechanism, persistent tampering queries

(φ1, ct1), (φ2, ct2), . . . , (φℓ, ctℓ)

can be simulated non-persistent tampering queries as

(φ1, ct1), (φ2 ◦ φ1, ct2), . . . , (φℓ ◦ · · · ◦ φ1, ctℓ).

Leakage functions in the persistent tampering attack are also simulated as L′ = L ◦ φ1 · · · ◦ φell,
where φ1, . . . , φℓ denote all persistent tampering functions submitted before leakage function L is
submitted. So, if Π is CTBL-CCA secure against the non-persistent tampering attacks, then it is
CTBL-CCA secure against the persistent tampering attacks.

4 The CTBL-CCA Secure PKE Scheme

Let HPS = (HPS.param,HPS.pub,HPS.priv) be a hash proof system (described in Sec. 2.3). Let
ABO = (ABO.gen,ABO.eval) be a collection of all-but-one injective (ABO) functions (described in
Sec. 2.4). Let TCH be a target collision resistant hash family. Let H = {H|H : {0, 1}n → {0, 1}ℓm}
be a family of universal hash functions with n = |K|. Let OTSig = (otKGen, otSign, otVrfy) a strong
one-time signature scheme (Appendix A). We assume vk = 0 6∈ otKGen.

At Asiacrypt 2013, Qin and Liu [31] proposed a new framework of bounded memory leakage
resilient IND-CCA secure PKE schemes. Qin-Liu scheme is obtained by applying a one-time lossy
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filter to a natural hash-proof-system based PKE scheme, such as the encryption of m is constructed
as CT = (C,H, e) where C ← V with w, H ← H, and e = m ⊕H(HPS.pub(PK,C,w)), whereas
the decryption is done by computing m = e ⊕ H(HPS.priv(SK,C)). Naor and Segev [29] proved
that such PKE schemes are resilient to bounded leakage.

We describe a slight modification of Qin-Liu PKE scheme in Fig. 1. The difference is that (1)
our construction divides the original key generation algorithm into the Setup algorithm and the key
generation algorithm and puts ρ in the common reference string, and (2) replaces a one-time lossy
filter with a combination of a strong one-time signature scheme and ABO injective function.

We have the following theorem.

Set-Up Algorithm Setup(1κ):
params← HPS.param(1κ)

where params =
(group, Λ, C,V,SK,PK, µ).

T← TCH where T : {0, 1}∗ → Bκ.
Set b∗ = 0 as the lossy branch.
ιabo ← ABO.gen(1κ, b∗).
A(·, ·) := ABO.eval(ιabo, ·, ·).
Return ρ = (T, params, A(·, ·)).

Key Generation Algorithm K(ρ):
sk ← SK.
Set pk := µ(sk).
Set PK := pk and SK := sk.
Return (PK,SK)

Encryption Algorithm Eρ(PK,m):
To encrypt a message m ∈ G,

C
U
← V with witness w.

K = HPS.pub(pk, C,w).
(vk, otsk)← otKGen(1κ)
π = Ab∗(T(vk),K). H ← H.
e = m⊕H(K).
σ ← otSign(otsk, (C, e, vk, π)).
Return CT = (C, e,H, vk, π, σ).

Decryption Algorithm Dρ(SK,CT):
To decrypt a ciphertext CT,

Parse CT into (C, e,H, vk, π, σ).
If Vrfy(vk, (C, e,H, vk, π), σ) 6= 1,

then aborts.
Else K = Λsk(C).
If π 6= Ab∗(T(vk)),K),

then aborts.
Else return m = e⊕H(K).

Fig. 2. The CTBL-CCA secure PKE scheme based on Qin and Liu’s PKE

Theorem 2. Let HPS be a γ-entropic hash proof system. Let ABO be (n, ℓlf)-all-but-one injective
function where n = log |K|. We assume the PKE scheme in Fig. 2 is self-destructive. Then, it
is (Φall, {id}, λ)-CTBL-CCA secure, as long as λ(κ) ≤ γ − ℓlf − ℓm − η − log(1/ǫ) where η(κ) =
ω(log κ) and ǫ = 2−ω(log κ), and for any PPT adversary A with at most Q queries to RKDec oracle,
Advctbl-ccaΠ,A,(Φall,{id},λ)

(κ) ≤

2ǫtcr + 2ǫotsig + 4ǫlossy + 4ǫSD + 2−η+1 +Q · 2−(γ−η−λ−ℓlf−ℓm−1) + 2ǫ,

where ǫotsig, ǫlossy, and ǫSD denote some negligible functions such that AdvotOTSig,B(κ) ≤ ǫotsig,

AdvlossyABO,B′(κ) ≤ ǫlossy, and AdvSDHPS,D(κ) ≤ ǫSD for any PPT adversaries, B, B′ and D, respec-
tively.

Proof Idea. Qin-Liu PKE scheme is leakage resilient. So, it is tempting to use the leakage oracle
to simulate the RKDec oracle. However, the strategy is ineffective against continual tampering,
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because Qin-Liu PKE scheme is just bounded leakage resilient. We instead adopt the following
proof strategy.

Let CT∗ = (C∗, e∗, H∗, vk∗, π∗, σ∗) be the challenge ciphertext and b∗ be the challenge bit. Let
K∗ = ΛSK(C∗) and e∗ = mb∗ ⊕H∗(K∗).

In the early steps of the proof, we replace C∗ ∈ V with C∗ 6∈ V and set T(vk∗) as a lossy
branch, as expected. We then consider the pre-challenge tampering queries. Our interest in the
pre-challenge stage is how to remain the entropy of K∗ for C∗ 6∈ V , while answering leakage
and tampering queries. When an adversary submits tampering query (φ,CT) and receives ⊥, the
revealing entropy of ΛSK(C∗) is just log(1/p)-bit where p = Pr[D(φ(SK),CT) = ⊥]. This comes
from the following simple lemma.

Lemma 6. For any random variables, X and Z, H∞(X|Z = z) ≥ H∞(X)− log
(

1
Pr[Z=z]

)
.

Proof. For any z ∈ Z,

− log
(
max
x

(
Pr[X = x|Z = z]

))
= − log

(
max
x

(
Pr[X = x ∧ Z = z]

Pr[Z = z]

))

≥ − log
(
max
x

(
Pr[X = x]

))
− log

( 1

Pr[Z = z]

)
. (1)

By the lemma above, we have H∞(ΛSK(C∗)|D(φ(SK),CT) = ⊥) ≥ H∞(ΛSK(C∗))− log(1/p).

We then consider the case of D(φ(SK),CT) 6= ⊥ (still in the pre-challenge stage). This case
is not equivalent to the former case, because RKDec oracle returns D(φ(SK),CT), which would
possibly reveal some additional information on ΛSK(C∗) except forD(φ(SK),CT) 6= ⊥. In a general
case, one can use a “loose” bound such that H̃∞(ΛSK(C∗)|D(φ(SK),CT)) ≥ H∞(ΛSK(C∗)) − λ

where λ = log
(
D(φ(SK),CT)

)
. As mentioned above, it is too loose in the continual tampering

attack. We instead observe that (the slight modified) Qin-Liu PKE scheme satisfies the following
equation.

Hsh

(
D(φ(SK),CT) | (D(φ(SK),CT) 6= ⊥), (φ,CT), PK

)
= 0, (2)

where Hsh(X) denotes the Shannon entropy of random variableX (i.e., Hsh(X) := Ex←X [log 1
Pr[X=x] ]).

This means that, given PK and (φ,CT), D(φ(SK),CT) is fixed if D(φ(SK),CT) 6= ⊥ holds. There-
fore, conditioned that CT is a valid ciphertext with respects to φ(SK),

H̃∞(ΛSK(C∗)|D(φ(SK),CT)) = H̃∞(ΛSK(C∗)|D(φ(SK),CT), (D(φ(SK),CT) 6= ⊥))
= H∞(ΛSK(C∗)|D(φ(SK),CT) 6= ⊥)

≥ H∞(ΛSK(C∗))− log
( 1

D(φ(SK),CT) 6= ⊥)
)
. (3)

Therefore, in the pre-challenge stage of (the slight modified) Qin-Liu PKE scheme, letting
Pr[D(φ(SK),CT) 6= ⊥] = p,

– If RKDec rejects (φ,CT), the entropy loss of ΛSK(C∗) from the output of RKDec is log
(

1
1−p

)
.
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– If RKDec does not reject (φ,CT), the entropy loss on ΛSK(C∗) from the output of RKDec is

log
(
1
p

)
.

As one can see, the adversary can get nothing new about ΛSK(C∗) if p = 1. If p = negl(κ),
it would only get little about ΛSK(C∗) (i.e.,log(1/1− p) ≈ 0) either, because the oracle rejects it
with an overwhelming probability. Remember that the decryption algorithm self-destructs when it
rejects a ciphertext. Hence, the adversary’s best strategy is to submit a sequence of queries with
p = non-negl and to hope that RKDec oracle accepts as long a prefix of the sequence as possible.
The leakage amount of ΛSK(C∗) is bounded by η = ω(log κ) bit.

We now consider the post-challenge (tampering) queries, (id,CT), i.e., the normal decryption
queries, where CT = (C, e,H, vk, π, σ). In the post-challenge stage, our interest is how to prevent
H∗(ΛSK(C∗)) from revealing any partial information. Even one bit leakage would possibly break
the system. To achieve the goal, we need to reject any invalid ciphertext during the decryption
simulation. The “reject” probability relies on the entropy of K = ΛSK(C) for C 6∈ V . Since the
underlying hash proof system is γ-entropic, we can see that the remaining entropy of K is at least
γ − λ− η − ℓlf − ℓm. Here, λ and η are leakage amount via leakage and RKDec oracles in the pre-
challenge stage, respectively. 2ℓlf denotes the number of possible elements of π∗, where A(T(vk∗), ·)
is lossy. ℓm is the length of H∗(ΛSK(C∗)). Then, the probability that the simulator cannot reject
an invalid ciphertext is at most 2−(γ−λ−η−ℓlf−ℓm).

To summarize all the above, (1) just after the pre-challenge stage, the remaining entropy of
ΛSK(C∗) for C∗ 6∈ V is almost H∞(ΛSK(C∗)) − λ− η. By applying an appropriate universal hash
H∗, we can obtain H∗(ΛSK(C∗)) that is statistically close to a true uniform string. So, CT∗ conceals
message mb∗ in the statistical sense. (2) In the post-challenge stage, we can prevent H∗(ΛSK(C∗))
from revealing any partial information with an overwhelming probability 1−Q · 2−(γ−λ−η−ℓlf−ℓm),
where Q is the total number of decryption queries in the post-challenge stage. The proposal now
satisfies the target security.

Proof of Theorem 2. Here we provide the formal proof of Theorem 2 by using the standard
game-hopping strategy. We denote by Si the event that adversary A wins in Game i.

– Game 0: This game is the original CTBL-CCA game, where CT∗ = (C∗, e∗, H∗, vk∗, π∗, σ∗)
denotes the challenge ciphertext. By definition, Pr[S0] = Pr[β = β∗] and Advtbl-ccaΠ,A,(Φall,{id},λ)

(κ) =
|2Pr[S0]− 1|.

– Game 1: This game is identical to Game 0, except that when we produce the challenge
ciphertext CT∗, we instead computes K∗ = HPS.priv(sk, C∗) and do the same experiment at the
other steps. The change is just conceptual and hence, it holds that Pr[S0] = Pr[S1].

– Game 2: This game is identical to Game 1, except that we change the rule of the winning
condition of A as follows: When adversary A submits (φ,CT) to oracle RKDec where CT =
(C, e,H, vk, π, σ), we aborts the game and regard A as a loser, if T(vk) = T(vk∗) but CT is still
valid. This happens only when T(vk) = T(vk∗) with vk 6= vk∗ or the case that A breaks the
strong one-time signature scheme. Hence, we have Pr[S1]−Pr[S2] ≤ ǫtcr + ǫotsig (by Lemma 9).

– Game 3: This game is identical to Game 2, except that we produce ρ and CT∗ as follows:
Before the step 3 in the set-up Setup, we run (vk∗, otsk∗) ← otKGen(1κ) and set b∗ = T(vk∗).
Then we do the same things in the subsequent steps. We produce the challenge ciphertext CT∗

similarly in Game 2 except that we instead use (vk∗, otsk∗) generated in the set-up phase. The

12

Submission number 132 to Asiacrypt 2016: DO NOT DISTRIBUTE!



difference between the probabilities of events, S2 and S3, are close because of indistinguishability
between injective and lossy branches. Indeed, we have Pr[S2]−Pr[S3] ≤ 2ǫlossy (by Lemma 11).

– Game 4: This game is identical to Game 3, except that when producing CT∗, we instead picks
up C∗

U← C\K. We then have Pr[S3]− Pr[S4] ≤ 2ǫSD (by Lemma 11).
– Game 5: In this game, we change the rule of the game as described below. Let (φ,CT) be a

tampering query of A and m be the reply of RKDec, where CT = (C, e,H, vk, π, σ), and let view
be A’s view just before sending query (φ,CT). Here, we stress that when D(φ(SK),CT) 6= ⊥,

Hsh

(
Λφ(SK)(C) | (φ,CT), (D(φ(SK),CT) 6= ⊥), view

)
= 0

where Hsh(X) denotes the Shannon entropy of random variable X, because A(T(vk), ·) is a
injective function and hence, given π (in CT), Λφ(SK)(C) is already fixed. This means that
returning m = D(φ(SK), C) does not reveal any additional information except D(φ(SK), C) 6=
⊥ in the information theoretical sense. Here, we say that a sequence of tampering queries made
by A is η-challenging, if there is a prefix of the sequence made by A such that oracle RKDec
does not accept the prefix except with probability of 2−η. Let RDview be the random variable
of the transcript between adversary A and oracle RKDec in the pre-challenge stage and let

rdv = {(φ1,CT1,m1), . . . , (φq′ ,CTq′ ,mq′)} where q′ ≤ Q.

be a transcript. If rdv is η-challenging, there is the minimum q′′ ≤ q′ such that

Pr[RDview = rdv] ≤ Pr
[
∧q”i=1

(
D(φi(SK),CTi) 6= ⊥

)]
≤ 2−η.

We now describe the rule of this game. This game is identical to the previous game except that
RKDec “self-destructs” at the q′′-th tampering query of η-challenging rdv, even if RKDec accepts
the q′′-th tampering query. (If it can reject an earlier tampering query, it self-destructs at the
point.) This experiment is just conceptual and is not required to be executed in a polynomial
time. By Lemma 9, Pr[S4]− Pr[S5] ≤ 2−η, because the prefix is accepted at most 2−η.

– Game 6: In this game, for all post-challenge (decryption) query (id,CT) of A, we return ⊥ if
C ∈ C\V. This experiment is just conceptual and is not required to be executed in a polynomial
time. We evaluate the min-entropy of K = ΛSK(C) derived from the post-challenge tampering
query. Let Lview be the random variable of the transcript between adversary A and oracle
Leak in the pre-challenge stage. When the first post-challenge decryption query is made, by the
“chain rule” of the average-min entropy,

H̃∞(K|(RDview,Lview, π∗, H∗(K∗))) ≥ H̃∞(K|RDview)− λ− ℓlf − ℓm,

where 2ℓlf denotes the number of elements in the image of “lossy” function π∗ = A(T(vk∗), ·),
and ℓm is the length of H∗(K∗).
By lemma 6, we have

H∞(K|RDview = rdv) ≥ H∞(K)− log
( 1

Pr[RDview = rdv]

)
≥ H∞(K)− η.

The second inequality comes from Pr[RDview = rdv] ≥ 2−η, because if rdv is η-challenging, the
adversary cannot make a post-challenge decryption query. Therefore, for C ∈ C\V,

H̃∞(K|RDview) = − log
(

E
rdv←RDview

[2−H∞(K|RDview=rdv)]
)
≥ γ − η,
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because Λ is γ-entropic. Therefore,

H̃∞(K|(RDview,Lview, π∗, H(K∗))) ≥ γ − η − λ− ℓlf − ℓm.

Since T(vk∗) 6= T(vk),

H̃∞(π|(RDview,Lview, π∗, H(K∗))) = H̃∞(K|(RDview,Lview, π∗, H(K∗))),

where π = AT(vk∗)(T(vk),K) (injective). This means that RKDec accepts CT with C ∈ C\V only

with probability 2−(γ−η−λ−ℓlf−ℓm). Assuming that A submits Q queries to RKDec in total, the
probability that RKDec accepts at least one CT with C ∈ C\V is bounded by Q·2−(γ−η−λ−ℓlf−ℓm).
Hence, we have (by Lemma 9),

Pr[S5]− Pr[S6] ≤ Q · 2−(γ−η−λ−ℓlf−ℓm).

– Game 7: This is the last game we make. This game is identical to Game 6 except that we
replace H∗(K∗) with a uniformly random string from {0, 1}ℓm . Then it is clear that Pr[S7] =

1
2

because the view of A is independent of β∗. We now show that the advantages between Game
6 and Game 7 are statistically close. Since all post-challenge queries of “invalid” ciphertexts
are rejected, the average min-entropy of K∗ even after all post-challenge queries are made is
equivalent to

H̃∞(K∗|(RDview,Lview, π∗)) ≥ H̃∞(K∗|RDview)− λ− ℓlf ≥ γ − η − λ− ℓlf .

Remember that λ ≤ γ − η − ℓlf − ℓm − log(1/ǫ) and H∗ is independent of the view of the
post-challenge decryption. By the generalized left-over hash lemma, H∗(K∗) is ǫ-close to the
uniform distribution on {0, 1}ℓm . So, Lemma 10 gives us Pr[S6]− Pr[S7] ≤ ǫ.

By summing up the above inequalities, we have

Pr[S0] ≤
1

2
+ ǫtcr + ǫotsig + 2ǫlossy + 2ǫSD + 2−η +Q · 2−(γ−η−λ−ℓlf−ℓm) + ǫ,

and conclude the proof of the theorem, with Advctbl-ccaΠ,A,(Φall,{id},λ)
(κ) = 2Pr[S0]− 1.

An Instantiation of CTBL-CCA Secure PKE with 1 − o(1) Leakage Rate. We remark
that even if we start with a hash proof system resilient to 1− o(1) leakage rate, we cannot obtain
a CTBL-CCA secure PKE scheme with 1 − o(1) leakage rate in general. To obtain an optimal
leakage rate, we require γ

|SK| = 1 − o(1) for a γ-entropic hash proof system. The cryptosystems

of Boneh et al. [9] and Naor-Segev [29] do not satisfy the condition, although they are IND-CPA
secure resilient to 1− o(1) leakage rate.

Let n = pq be a composite number of distinct odd primes, p and q, and 1 ≤ d < p, q be a
positive integer. It is known that Z

×
nd+1

∼= Znd × (Z/nZ)× and any element in Z
×
nd+1 is uniquely

represented as (1 + n)δγn
d
(mod nd+1) for some δ ∈ Znd and γ ∈ (Z/nZ)×. For δ ∈ Znd , we write

Edj(δ) to denote a subset in Z
×
nd+1 such that Edj(δ) = {(1 + n)δγn

d | γ ∈ (Z/nZ)×}. It is well
known that for any two distinct δ, δ′ ∈ Znd , it is computationally hard to distinguish a random
element in Edj(δ) from a random element in Edj(δ′) as long as the decision computational residue
(DCR) assumption holds true. Let C = Z

×
nd+1 and V = Edj(0). Let SK = {0, 1, . . . , nd+1} ⊂ Z.
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Let g ∈ V and PK = {µ(sk) |µ(sk) = gsk (mod nd+1) where sk ∈ SK} (= Edj(0)). For C ∈ C,
define Λsk(C) = Csk (mod nd+1). Then, Λ : SK × C → V is projective and d log(n)-entropic and

a hash proof system HPS is constructed on Λ. In addition, leakge bound
the length of secret-key = d log(n)−ω(log(κ))

(d+1) log(n)

= 1− o(1).

Corollary 1. By applying the DCR-based hash proof system above and the DCR based instantiation
of ABO injective function in Appendix C to the PKE scheme in Fig. 2, it becomes a CTBL-CCA

secure PKE scheme with 1− o(1) bounded memory leakage rate under the DCR assumption.

5 Continuous Tampering and Leakage Resilient CCA (CTL-CCA) Secure
Public-Key Encryption

We say that PKE has a key-updating mechanism if there is a PPT algorithm Update that takes ρ
and sk and returns an “updated” secret key sk′ = Updateρ(sk). We assume that the key-updating
mechanism Update can be activated only when the decryption algorithm rejects a ciphertext. There-
fore, one cannot update his secret key unless the decryption algorithm has detected tampering. We
require for Π = (Setup,Update,K,E,D) that for every sufficiently large κ ∈ N and ever I ∈ N, it
always holds that Dρ(ski,Eρ(pk,m)) = m, for every ρ ∈ Setup(1κ), every (pk, sk0) ∈ K(ρ), and
every ski ∈ Updateρ(ski−1) for i ∈ [I], and every m ∈M.

CTL-CCA Security. For PKE with a key-updating mechanism Π ′ = (Setup,Update, K,E,D)
and an adversary A = (A1, A2), we define the experiment Exptctl-ccaΠ,A,(Φ1,Φ2,λ)

(κ) as in Fig. 3. A may
adaptively submit (unbounded) polynomially many queries (φ, ct) to oracle RKDec, but it should
be φ ∈ Φi appropriately. We remark that secret key sk is updated using (non-tampered) flesh
randomness only when the decryption algorithm rejects a ciphertext. A may also adaptively submit
(unbounded) polynomially many queries L to oracle Leak, before seeing the challenge ciphertext
ct∗. The total amount of leakage on sk must be bounded by some λ bit length within each one
period between the key-updating mechanism are activated. We define the advantage of A against
Π ′ with respects to (Φ1, Φ2) as

Advctl-ccaΠ,A,(Φ1,Φ2,λ)
(κ) , | 2Pr[Exptctl-ccaΠ,A,(Φ1,Φ2,λ)

(κ) = 1]− 1 |.

We say that Π is (Φ1, Φ2, λ)-CTL-CCA secure if Advctl-ccaΠ,A,(Φ1,Φ2,λ)
(κ) = negl(κ) for every PPT A.

We say that Π is simply CTL-CCA secure if it is (Φall, {id}, λ)-CTL-CCA secure, where Φall

denotes the class of all efficiently computable functions and id denotes the identity function.

Remark 2. This security definition models non-persistent tampering. However, it is obvious that
the persistent tampering version of CTL-CCA security can be similarly defined.

6 The CTL-CCA Secure PKE Scheme

In this section, we present a CTL-CCA-secure PKE scheme. We first provide the intuition behind
our construction.

Our starting point is a hash proof system based PKE scheme proposed by Agrawal et al. [2], that
is IND-CPA secure resilient to continuous memory leakage in the so-called Floppy model, where a
decryptor additionally owns secret α to refresh its secret key sk using fresh randomness. The Floppy
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Exptctl-ccaΠ,A,(Φ1,Φ2,λ)
(κ) :

ρ← Setup(1κ);
(pk, sk)← K(ρ);
leaksum := 0;

(m0,m1, st)← A
RKDecΦ1

(·,·),Leakλ(·)

1 (ρ, pk)
such that |m0| = |m1|;

β∗ ← {0, 1};
ct∗ ← Eρ(pk,mβ∗);

β ← A
RKDecΦ2

(·,·)

2 (st, ct∗);
If β = β∗,

then return 1; otherwise 0.

RKDecΦ(φ, ct) :
If ct = ct∗ queried by A2,

then return ⊥;
Return Dρ(φ(sk), ct).
If Dρ(φ(sk), ct) = ⊥,

Set sk← Updateρ(sk),
Set leaksum := 0.

Else do nothing.
————————————
Leakλ(L) :

If leaksum
:= leaksum+ |L(sk)| > λ.
then return ⊥;

Else return L(sk).

Fig. 3. The experiment of the CTL-CCA game.

model assumes secret α is not leaked. The Agrawal et al. scheme is as follows: pk = (g, gα, f) is a
public key and sk = s is the corresponding secret-key such that f = g<α,s>, where g is a generator
of cyclic group G of prime order q, α, s ∈ (Z/qZ)n. In addition, the decryptor owns α as the
key-update key. The encryption of message m ∈ G under pk is ct = (gc, e) = (grα,m · f r), while
the decryption is computed as e · (g<c,sk>)−1. The secret key sk is refreshed between each two time
periods as sk := sk+β where β ← ker(α) is chosen using secret α. Here, f = g<α,s> = g<α,s+β>,
because < α,β >= 0.

We first convert this scheme to an IND-CPA secure PKE scheme that is resilient to continuous
memory leakage in the model of [10], where the key-update is done without additional secret α.
To do so, we pick up ℓ independent vectors, v1, . . . ,vℓ ∈ ker(α), where ℓ < n − 1 = dim(ker(α)),
and publish g̃V where V = (v1, . . . ,vℓ) ∈ (Z/qZ)n×ℓ is n × ℓ matrix with vi as i-th column.
Here we assume asymmetric pairing groups (e,G1,G2,GT ) where g, g̃ are generators of G1 and G2,
respectively. We then set pk = (g, g̃, gα, g̃V, Y ) and sk = gs such that Y = e(g, g̃)<α,s>. Here, the
encryption of message m ∈ GT under pk is ct = (gc, e) = (grα,m · Y r), while the decryption is
computed as e ·K−1, where K = e(gc, sk) = e(g, g̃)<c,s>. The secret key sk is refreshed between
each two time periods as sk := sk · g̃β where β ← span(V) ⊂ ker(α). We note that random
g̃β = g̃Vr′

can be computed using public g̃V with random vector r′ ∈ F
ℓ
q. This construction is an

IND-CPA secure PKE scheme resilient to continuous memory leakage in the sense of [10] under
the extended matrix d-linear assumption (on G1), which is implied by the SXDH assumption. We
provide the proof in Appendix E.

This continuous memory leakage CPA secure PKE scheme is hash proof system based where
K = HPS.pub(Y, grα, r) = HPS.priv(grα, sk) = e(g, g̃)<α,s>. Then, we then filter the hash key K
using the one-time lossy filter [31] and finally obtain our construction.

We now describe our full-fledged scheme in Fig. 4.

Asymmetric Pairing. Let GroupG be a PPT algorithm that on input a security parameter 1κ

outputs a bilinear paring (G1,G2,GT , e, q, g, g̃) such that; G1, G2, and GT are cyclic groups of
prime order q, g, g̃ are generators of G1 and G2, respectively, and a map e : G1×G2 → GT satisfies
the following properties:

– (Bilinear:) for any g ∈ G1, h ∈ G2, and any a, b ∈ Zq, e(g
a, hb) = e(g, h)ab,
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– (Non-degenerate:) e(g, g̃) has order q in GT , and

– (Efficiently computable:) e(·, ·) is efficiently computable.

Symmetric External Diffie-Hellman (SXDH) Assumption. The symmetric external DH
assumption (SXDH) (on GroupG) is that the DDH problem is hard in both groups, G1 and G2. The
assumption implies that there is no efficiently computable mapping between G1 and G2.

We now present our CTL-CCA secure PKE scheme in Fig. 4.

Set-Up Algorithm Setup(1κ):
(G1,G2,GT , e, q, g, g̃)← GroupG. α = (α1, . . . , αn)← (Z/qZ)n.

V = (v1, . . . ,vℓ)←
(

Ker(α)
)ℓ

, where V ∈
(

Z/qZ
)n×ℓ

and ℓ ≤ n− 2.

gα := (g1, . . . , gn) = (gα1 , . . . , gαn). g̃V := (g̃v1 , . . . , g̃vℓ) where vi ∈ (Z/qZ)n is a column vector.
T← TCH where T : {0, 1}∗ → Bκ. Set b∗ = 0 as the lossy branch.
ιabo ← ABO.gen(1κ, b∗). A(·, ·) := ABO.eval(ιabo, ·, ·).
Return ρ = (g, g̃, gα, g̃V,T, A(·, ·)).

Key Generation Algorithm K(ρ):

s = (s1, . . . , sn)←
(

Z/qZ
)n

.

g̃s = (g̃s1 , . . . , g̃sn).

Y = e(gα, g̃s) = e(g, g̃)〈α,s〉.
Set pk := Y and sk := g̃s.
Return (pk, sk).

Key Updating Algorithm Update(ρ, sk):

r′ ←
(

Z/qZ
)ℓ

,

Let sk = g̃s. (See g̃s as a column vector.)

Set sk := sk · g̃Vr
′

= g̃s+Vr
′

.
(

where β := Vr′ ∈ span(V).
)

Return sk.

Encryption Algorithm Eρ(pk,m):
To encrypt a message m ∈ GT ,

r ← Z/qZ. K = Y r.
(vk, otsk)← otKGen(1κ).
π = A(T(vk),K).
C = (gα)r. e = m ·K.
σ ← otSign(otsk,C, e, vk, π)).
Return CT = (C, e, vk, π, σ).

Decryption Algorithm Dρ(sk,CT):
To decrypt a ciphertext ct,

Parse ct into (gc, e, vk, π, σ).
If Vrfy(vk, (gc, e, vk, π), σ) 6= 1,

then aborts.

Else K = e(gc, sk) = e(g, g̃)r〈α,s〉.
If π 6= A(T(vk)),K),

then aborts.
Else return m = e ·K−1.

Fig. 4. Our CTL-CCA secure PKE Scheme

Theorem 3. The PKE scheme in Fig. 4 is (Φall, {id}, λ)-CTL-CCA secure, as long as λ(κ) <
log(q) − ℓlf − ℓm − η − ω(log κ) with η(κ) = ω(log κ), and for any PPT adversary A with at most
Q queries to RKDec oracle, Advctl-ccaΠ,A,(Φall,{id},λ)

(κ) ≤

2ǫtcr + 2ǫotsig + 4ǫlossy + 4ǫex + 2−η+1 +Q · 2−(log(q)−η−λ−ℓlf−ℓm−1) + nQ ·
√

2λ

qℓ−1
+

√
2λ+ℓlf

qn−2
,

ǫotsig, ǫlossy, and ǫex denote some negligible functions such that AdvotOTSig,B(κ) ≤ ǫotsig, Adv
lossy
ABO,B′(κ) ≤

ǫlossy, and AdvexD (κ) ≤ ǫex for any PPT adversaries, B, B′ and D, respectively.
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Proof of Theorem 3. Here we prove the theorem by using the standard game-hopping strategy.
We denote by Si the event that adversary A wins in Game i.

– Game 0: This game is the original CTL-CCA game, where CT∗ = (C∗, E∗, vk∗, π∗, σ∗) de-
notes the challenge ciphertext. By definition, Pr[S0] = Pr[b = b∗] and Advctl-ccaΠ,A,(Φall,{id},λ)

(κ) =
|2Pr[S0]− 1|.

– Game 1: In this game, we compute CT∗ using sk as follows: Compute K∗ = e(gc
∗

, sk) =
e(g, g̃)r〈α,s〉 and set e∗ = mb∗ ·K∗. This change is just conceptual. Then, Pr[S0] = Pr[S1].

– Game 2: This game is identical to Game 1, except that we change the rule of the winning
condition of A as follows: When adversary A submits (φ,CT) to oracle RKDec where CT =
(C, e, vk, π, σ), we aborts the game and regard A as being lost, if T(vk) = T(vk∗) but CT is still
valid. This happens only when T(vk) = T(vk∗) with vk 6= vk∗ or the case that A breaks the
strong one-time signature scheme. Hence, we have Pr[S1]−Pr[S2] ≤ ǫtcr + ǫotsig (by Lemma 9).

– Game 3: This game is identical to Game 2, except that we produce ρ and CT∗ as follows: In
the set-up Setup, we run (vk∗, otsk∗) ← otKGen(1κ) and set the lossy branch as b∗ = T(vk∗).
We produce the challenge ciphertext CT∗ similarly in Game 2 except that we instead use
(vk∗, otsk∗) generated in the set-up phase. The difference between the probabilities of events,
S2 and S3, are close because of indistinguishability between injective and lossy branches. Then,
we have Pr[S2]− Pr[S3] ≤ 2ǫlossy.

– Game 4: This game is identical to the previous game, except that we choose ℓ independent
vectors v1, . . . ,vℓ ← ker(α, c∗) and set V = (v1, . . . ,vℓ). Since c∗ = r∗α, ker(α, c∗) = ker(α).
Hence, Pr[S3] = Pr[S4].

– Game 5: This game identical to the previous game, except that when producing CT∗, we
instead pick up random vector c∗ ← F

n
q . We note that since dim(ker(α, c∗)) = n − 2 ≥ ℓ, we

can still choose ℓ independent vectors v1, . . . ,vℓ. The difference between these two games is
bounded by the extended matrix d-linear assumption. Then, we have Pr[S4] − Pr[S5] ≤ 2ǫex.
We omit the detail, due to the similarity of the proof of Lemma 12 in Appendix E.

– Game 6: This game is identical to the previous game, except that in the key-update mechanism,
we instead choose β ← ker(α) and update sk := sk · g̃β. By the same analysis at Game 4 in

the proof of Appendix E, we have Pr[S5]− Pr[S6] ≤ nQ
2

√
2λ

qℓ−1 . We note that the total number

of key-updates is, by definition, less than the total number of tampering queries, i.e., Q′ ≤ Q.

– Game 7: In this game, we change the rule of the key-updating mechanism. Suppose A submits
η-challenging tampering queries. Remember that we say that a sequence of tampering queries
is η-challenging, if there is a prefix of the sequence of tampering queries made by A such that
RKDec does not accepts the prefix except a probability less than 2−η. In this game, we update
the secret key when A submits the last query of the minimum prefix of the sequence such that
the acceptance probability is less than 2−η. By the same analysis at Game 5 in the proof of
Theorem 2, we have Pr[S6]− Pr[S7] ≤ 2−η.

– Game 8: In this game, for all post-challenge (decryption) query (id,CT) of A, we return ⊥ if
C ∈ C\V. By the same analysis at Game 6 in the proof of Theorem 2, we have Pr[S7]−Pr[S8] ≤
Q · 2−(log(q)−η−λ−ℓlf−ℓm), where γ = log(q) because the underlying hash proof system is log(q)-
entropic.

– Game 9: This game is identical to the previous game, except that we pick up random k∗ ← Z/qZ
and compute K∗ = e(g, g̃)k

∗
. This k∗ is statistically close to < c∗, s + β >. The analysis is

similar to that at Game 5 in the proof of Appendix E, except that CT∗ additionally reveals
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π∗ = A(T(vk∗),K∗). Therefore, we have Pr[S8]− Pr[S9] ≤ 1
2

√
2λ+ℓlf

qn−2 . By construction, Pr[S9] =
1
2 .

To summarize all the above, we have the theorem statement.

An Instantiation of CTL-CCA Secure PKE with 1
4
−o(1) Leakage Rate. We remark that

the underlying hash proof system is log(q)-entropic and we have |sk| = n log(q). By construction,
we require 2 ≤ ℓ < n− 1. Hence, the best parameter for leakage rate is n = 4 and ℓ = 2, where the
resulting CTL-CCA secure PKE scheme has 1

4 − o(1) leakage rate.

7 Impossibility of Non-Persistent Tampering Resilient Signatures

We show that there is no secure digital signature scheme resilient to the non-persistent tampering
attacks, if it does not have a key-updating mechanism (See for definition Appendix F). This fact
does not contradict [26] (in which they claim a tampering resilient digital signature scheme), because
the persistent tampering attack is weaker than the non-persistent attack. To prove our claim, we
consider the following adversary. The adversary runs the key-generation algorithm, Gen, and obtains
two legitimate pairs of verification and signing keys, (vk0, sk0) and (vk1, sk1). Then, it sets a set of
functions {φi

(sk0,sk1)
}, such that

φi
(sk0,sk1)

(sk) =

{
sk0 if the i-th bit of sk is 0,

sk1 otherwise.

For i = 1, . . . , |sk|, the adversary submit (φi
(sk0,sk1)

,m) to the signing oracle and receives σi’s. Then

the adversary finds bit bi such that Vrfy(vkbi ,m, σi) = 1 for all i and retrieves the entire secret
key sk. This attack is unavoidable because both sk0 and sk1 are real secret keys and the signing
algorithm cannot detect the tampering attack and cannot self-destruct.

If the key-updating algorithm is allowed to run only when a tampering is detected (which is
the case of our definition), then there is no secure digital signature scheme resilient to the non-
persistent tampering attacks, even if it has both self-destructive and key-updating mechanisms (See
for definition Appendix F).
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A Definitions

A.1 Collision-Resistant Hash Function Families

Let H = {Hι}ι∈I be a keyed hash family of functions from {0, 1}∗ to {0, 1}p(κ), indexed by ι ∈ Iκ
(= I ∩ {0, 1}κ), i.e., Hι : {0, 1}∗ → {0, 1}p(κ) for every ι ∈ Iκ.

A keyed hash-function family H is called collision-resistant (CR) if, for every non-uniform PPT
adversary A, Pr[ι← Iκ; (x, y)← A(ι) : x 6= y ∧ Hι(x) = Hι(y)] = negl(κ).

A.2 Target Collision-Resistant Hash Function Family

Let H = {Hι}ι∈I be a keyed hash family of functions from {0, 1}∗ to {0, 1}p(κ), indexed by ι ∈ Iκ
(= I ∩{0, 1}κ), i.e., Hι : {0, 1}∗ → {0, 1}p(κ) for every ι ∈ Iκ. A keyed hash function family TCH =
{Ti}i∈I is target collision-resistant (TCR) if, for every PPT A = (A1, A2), Adv

tcr
TCH,A(κ) = negl(κ)

where

AdvtcrTCH,A(κ) := Pr



(x, s)← A1(1

κ);
ι← Iκ;
y ← A2(ι, s)

: x 6= y and Tι(x) = Tι(y)


 .

A.3 One-Time Digital Signature Schemes

A digital signature scheme [23, 22] is given by a triple, Σ = (KGen, Sign,Vrfy), of PPT algorithms,
where for every (sufficiently large) κ ∈ N, KGen, the key-generation algorithm, takes as input
security parameter 1k and outputs a pair comprising the verification and signing keys, (vk, sk).
Sign, the signing algorithm, takes as input (vk, sk) and message m and produces signature σ.
Vrfy, the verification algorithm, takes as input verification key vk, message m and signature σ,
and outputs a bit. For completeness, it is required that for all (vk, sk) ∈ KGen(1κ) and for all
m ∈ {0, 1}∗, it holds Vrfy(vk,m, Sign(sk,m)) = 1.
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We say that a digital signature scheme is one-time if it can be allowed to sign a message only
once per a verification-key. For such a signature scheme, it is natural that an adversary is allowed
to access the signing algorithm only once. We say that Σ is strongly one-time secure signature, if
for all PPT adversary A, AdvotΣ,A(κ) = negl(κ), where AdvotΣ,A(κ) :=

Pr




(v, sk)← otKGen(1κ);
(m, s)← A(vk);

σ ← otSign(sk,m);
(m∗, σ∗)← A(s, σ∗)

:
Vrfy(vk,m∗, σ∗) = 1
and (m,σ) 6= (m∗, σ∗).


 .

B Computational Hardness Assumptions

Let G be a PPT algorithm that takes security parameter 1κ and outputs a triplet G = (G, q, g)
where G is a group of prime order q that is generated by g ∈ G.

d-Linear Assumption. The d-linear assumption [24, 29] (where d ≥ 1), a generalization of the
linear assumption [8], states that there is a PPT algorithm G such that the following two ensembles
are computationally indistinguishable,

{(
G, g1, . . . , gd, gd+1, g

r1
1 , . . . , grdd , g

∑d
i=1 ri

d+1

)}

κ∈N

c≈
{(

G, g1, . . . , gd, gd+1, g
r1
1 , . . . , grdd , g

rd+1

d+1

)}

κ∈N

where G← G(1κ), and the elements g1, . . . , gd+1 ∈ G and r1, . . . , rd+1 ∈ Z/qZ are chosen indepen-
dently and uniformly at random. The DDH assumption (on G) is equivalent to 1-linear assumption
(on G) and these assumptions are progressively weaker: For every d ≥ 1, the (d+1)-linear assump-
tion is weaker than the d-linear assumption.

Matrix d-Linear Assumption. We denote by Rki(F
m×n
q ) the set of all m× n matrices over Fq

with rank i. The matrix d-linear assumption [29] states that there is a PPT algorithm G such that,
for any integers, m and n, and for any d ≤ i ≤ j ≤ min(m,n), the following two ensembles are
computationally indistinguishable,

{
(G, g, gx) | G← G(1κ); x← Rki(F

m×n
q )

}

κ∈N

c≈
{
(G, g, gx) | G← G(1κ); x← Rkj(F

m×n
q )

}

κ∈N
.

It is known that breaking the matrix d-Linear assumption implies breaking the d-Linear assumption
(on the same G). The following statement holds.

Lemma 7 ([29]). Breaking the matrix d-Linear assumption is at least as hard as breaking the
d-Linear assumption (on the same G).
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Extended Matrix d-Linear Assumption. We state a stronger version of the matrix d-linear
assumption, called the extended matrix d-linear assumption [2]. For matrix x ∈ F

n×m
q , we write

ker(x) to denote the left kernel of x, i.e.,

ker(x) = {v ∈ F
n
q |vTx = 0 ∈ F

1×m
q }.

Here ker(x) is a subspace in F
n
q of dimension (n− rank(x)). The matrix d-linear assumption means

that it is infeasible to distinguish gxi from gxj , where rank-i matrix xi and rank-j matrix xi are
chosen independently and uniformly for any d ≤ i < j ≤ min(n,m). Since dim(ker(xi)) = n − i
and dim(ker(xj)) = n− j (with n− j < n− i), the matrix d-linear assumption does not hold if an
adversary additionally receive n− i independent vectors orthogonal to x. However, one cannot yet
distinguish them even if n− j independent vectors orthogonal to x are given, as long as the matrix
d-linear assumption holds true. The extended matrix d-linear assumption [2] states that there is a
PPT algorithm G such that, for any integers, m and n, for any d ≤ i ≤ j ≤ min(m,n), and for any
ℓ ≤ n− j, the following two ensembles are computationally indistinguishable,

{
(G, g, gx,v1, . . . ,vℓ) |G← G(1κ); x← Rki(F

m×n
q ); v1, . . . , vℓ ← ker(x)

}

κ∈N

c≈
{
(G, g, gx,v1, . . . ,vℓ) |G← G(1κ); x← Rkj(F

m×n
q ); v1, . . . , vℓ ← ker(x)

}

κ∈N
.

The following statement holds.

Lemma 8 ([10, 2]). Breaking the extended matrix d-Linear assumption is at least as hard as
breaking the d-Linear assumption (on the same G).

The proof is implicitly in [10].

Decision Computational Residue (DCR) Assumption. Let n = pq be a composite number
of distinct odd primes, p and q, and 1 ≤ d < p, q be a positive integer. We say that the DCR
assumption holds if for every PPT A, there exists a parameter generation algorithm Gen such that
AdvdcrA (κ) =

Pr[Exptdcr−0A (κ) = 1]− Pr[Exptdcr−1A (κ) = 1]

is negligible in κ, where

Exptdcr−0A (κ) :

n← Gen(1κ); R
U← Z

×
n2

c = Rn mod n2

return A(n, c).

Exptdcr−1d,A (κ) :

n← G(1κ); R
U← Z

×
n2

c = (1 + n)Rn mod n2

return A(n, c).

C Instantiation of ABO Injective Functions

C.1 A Matrix Instantiation Based On DDH

Let G be a PPT algorithm that takes security parameter 1κ and outputs a triplet G = (G, q, g)
where G is a group of prime order q that is generated by g ∈ G. Let B = {Z/qZ} be a branch
collection associated with G = (G, q, g) generated by G.
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– ABO.gen(1κ, b∗) where b∗ ∈ Z/qZ: Pick up a random column vector u = (ui) ∈ Gµ and a
random column vector v = (vj) ∈ Gµ. Compute matrix A = (Ai,j) ∈ Gµ×µ as

A = (u · vT )⊞ g−(b
∗)Iµ =

(
uivjg

−(b∗)δi,j
)
∈ Gµ×µ

where ⊞ denotes the componet-wise product of matrices over G, Iµ ∈ (Z/qZ)µ×µ is the identity
matrix and δi,j is Kronecker’s delta, i.e., δi,j = 1 if i = j and 0 otherwise. We note that
rank(u · vT ) = 1 and, at least with probability 1− 2µ

q , rank(A) = µ. We let A(b) to denote

A(b) := A⊞ gbIµ =
(
uivjg

(b−b∗)δi,j
)
∈ Gµ×µ.

Finally, output ιabo = A(·).
– ABO.eval(ιabo, b, x): On input matrix X ∈ (Z/qZ)µ×d, output

ABO.eval(ιabo, b, x) = A(b) ·X ∈ Gµ×d.

This implementation realizes a collection of (µ · d log(q), (µ − 1)d log(q))-all-but-one injective
functions (under the DDH assumption).

C.2 DCR Based Instantiation

Let n = pq be a composite number of distinct odd primes, p and q, and 1 ≤ d < p, q be a positive
integer. It is known that Z×

nd+1
∼= Znd × (Z/nZ)× and any element in Z

×
nd+1 is uniquely represented

as (1 + n)δγn
d
(mod nd+1) for some δ ∈ Znd and γ ∈ (Z/nZ)×. For δ ∈ Znd , we write Edj(δ) to

denote a subset in Z
×
nd+1 such that Edj(δ) = {(1 + n)δγn

d | γ ∈ (Z/nZ)×}. It is known that for any

two distinct δ, δ′ ∈ Znd , it is computationally hard to distinguish a random element in Edj(δ) from
a random element in Edj(δ′) as long as the decision computational residue (DCR) assumption holds
true.

– ABO.gen(1κ, b∗) where b∗ ∈ {0, 1}dκ: Pick up κ/2-bit distinct odd primes p, q and compute
n = pq. Then choose ιabo ← Edj(−b∗). Output ιabo.

– ABO.eval(ιabo, b, x): On input matrix x ∈ Znd , output

ABO.eval(ιabo, b, x) =
(
ιabo · (1 + n)b

)x
(∈ Edj(b− b∗)x).

This implementation realizes a collection of (d log(n), log((p − 1)(q − 1)))-all-but-one injective
functions (under the DCR assumption).

D Useful Lemmas

Lemma 9. Let A1, A2, and F be events on some probability space. Suppose that A1 ∩ ¬F occurs
if and only if A2 ∩ ¬F occurs. Then, Pr[A1]− Pr[A2] ≤ Pr[F ].

Lemma 10. Let X1 and X2 be random variables on S. Then, for every randomized function F ,
Dist(F (X1), F (X2)) ≤ Dist(X1, X2). The equality holds if each realization f of F is one-to-one.
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The following reduction statement is often used. Let X = {Xκ}κ∈N and Y = {Yκ}κ∈N be
ensemble of random variables on {Sκ}κ∈N. We define the advantage of PPT distinguisher D as

Advind(X,Y ),D(κ) := Pr[D(Xκ) = 1] − Pr[D(Yκ) = 1].

Consider an arbitrary interactive game between adversary A and challenger C over random
variable Z:

– C takes 1κ and random variable Z ∈ Sκ, and runs A on some input.
– C interact with A following the game.
– At some point, C picks up bit β∗ ∈ {0, 1} at random and changes his behavior depending on

chosen bit β∗.
– Finally, A outputs bit β.

We define the advantage of A against C over Z as Advind(C,Z),A(κ) = 2Pr[β = β∗]− 1 where the
probability is taken over the choice of Z and random coins of C and A.

Then, we have the following lemma.

Lemma 11. For any PPT A, there is some PPT distinguisher D such that

Advind(C,X),A(κ)− Advind(C,Y ),A(κ) ≤ 4Advind(X,Y ),D(κ).

Namely,
Pr
C,A

[β = β∗|Xκ]− Pr
C,A

[β = β∗|Yκ] ≤ 2Advind(X,Y ),D(κ).

Proof. Construct distinguisher D that takes Xκ or Yκ and simulates C. Let D outputs 1 if β = β∗

and a random bit otherwise. Then, we have Advind(X,Y ),D(κ) =

(
Pr[β = β∗|Xκ] + Pr[β 6= β∗|Xκ] ·

1

2

)
−
(
Pr[β = β∗|Yκ] + Pr[β 6= β∗|Yκ] ·

1

2

)

=
1

2

(
Pr[β = β∗|Xκ]− Pr[β = β∗|Yκ]

)
.

D satisfies the above lemma.

E The Continuous Leakage Resileint CPA PKE Scheme

We propose a IND-CPA secure PKE scheme resilient to continuous memory leakage, based on
Agrawal et al. scheme [2].

– The Key Generation Algorithm: Choose (G1,G2,GT , e, q, g, g̃) ← GroupG. Pick up a random
column vector α ← (Z/qZ)n. Pick up ℓ independent column vectors, v1, . . . ,vℓ, in (Z/qZ)n

uniformly from Ker(α) where 2 ≤ ℓ ≤ n − 2. Set n × ℓ matrix V = (v1, . . . ,vℓ). Set gα :=
(gα1 , . . . , gαn)T . Set g̃V := (g̃v1 , . . . , g̃vℓ). Pick up a random column vector s ← (Z/qZ)n.
Compute g̃s = (g̃s1 , . . . , g̃sn)T . Compute Y = e(gα, g̃s) = e(g, g̃)〈α,s〉. Set pk := (g, g̃, gα, g̃V, Y )
and sk := g̃s. Output (pk, sk).

– The Key Updating Algorithm: Take (pk, sk) as input. Choose a random column vector r′ ←
(Z/qZ)ℓ and compute g̃β = g̃Vr′ . Update sk := sk ·g̃β = g̃s+β. Note that β ∈ span(V) ⊂ ker(α).
Output sk.
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– The Encryption Algorithm: To encrypt m ∈ GT under pk, pick up random r ← Z/qZ. Compute
C = grα and K = Y r. Output CT = (C, e) where e = m ·K.

– The Decryption algorithm: To decrypt ciphertext CT = (gc, e) under sk, computeK = e(gc, sk)(=
e(g, g̃)<c,s>). Output m = e ·K−1.

We define IND-CPA security of PKE resilient to λ-continuous memory leakage [10] as (∅, ∅, λ)-
CTL-CCA security of PKE.

Theorem 4. The above PKE scheme is (∅, ∅, λ)-CTL-CCA secure, as long as λ(κ) < ℓ log(q) −
ω(log κ), and for any PPT adversary A,

Advctl-ccaΠ,A,(∅,∅,λ)(κ) ≤ 4ǫex + nQ ·
√

2λ

qℓ−1
+

√
2λ

qn−2

where Q denotes the total number of key-updates in the running time of A.

Proof. Here we prove the theorem by using the standard game-hopping strategy. We denote by Si

the event that adversary A wins in Game i.

– Game 0: This game is the original game. We write CT∗ = (gc
∗

, e∗) where e∗ = mb∗ ·K∗ to denote
the challenge ciphertext. Let us assume that Q is the maximum number of the key-updates.
By definition, Pr[S0] = Pr[b = b∗] and Advctl-ccaΠ,A,(∅,∅,λ)(κ) = |2Pr[S0]− 1|.

– Game 1: In this game, we instead produce CT∗ as follows: Compute K∗ = e(gc
∗

, sk) =
e(g, g̃)r〈α,s〉 and set e∗ = mb∗ ·K∗. This change is just conceptual. Then, Pr[S0] = Pr[S1].

– Game 2: This game is identical to Game 1, except that we choose ℓ independent vectors
v1, . . . ,vℓ ← ker(α, c∗) and set V = (v1, . . . ,vℓ). Since c∗ = r∗α, ker(α, c∗) = ker(α). Hence,
Pr[S1] = Pr[S2].

– Game 3: This game is identical to Game 2, except that when producing CT∗, we instead pick
up random vector c∗ ← F

n
q . We note that since dim(ker(α, c∗)) = n− 2 ≥ ℓ, we can still choose

ℓ independent vectors v1, . . . ,vℓ. The difference between these two games is bounded by the
extended matrix d-linear assumption.

Lemma 12. Under the extended matrix d-linear assumption in Appendix B, we have Pr[S2]−
Pr[S3] ≤ 2ǫex.

Proof. Let x ∈ (Z/qZ)n×2 whose columns are α and c, i.e., x = (α, c). Let v1, . . . ,vℓ be ℓ inde-
pendent random column vectors chosen via vi ← ker(x) = ker(α, c) and set V = (v1, . . . ,vℓ).
Now given gx and V = (v1, . . . ,vℓ), we can simulate public and secret keys that the adversary
sees during the game, as well as the challenge ciphertext. In the case that rank(X) = 1, we per-
fectly simulate Game 2. In the case that rank(X) = 2, we perfectly simulate Game 3. Therefore,
by using Lemma 11, we have Pr[S2]− Pr[S3] ≤ 2ǫex.

– Game 4 is defined as a sequence of Q + 1 sub-games denoted by Games, 4.0, . . . , 4.Q. For
i = 0, . . . , Q, we have
• Game 4.i: This game is identical to Game 4.0, except that at the last i key-updates, we
instead choose β ← ker(α) and update sk := sk · g̃β. We insist that the first Q − i key-
updates, β is chosen from span(V), whereas in the last i key-updates, it is chosen from
ker(α).
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Game 4.0 is identical to Game 3. The difference between Games, 4.i and 4.i+ 1, is bounded by
Lemma 5. Indeed, we have

Dist
(
(V, L(s+Vr′)) : (V, L(s+ β))

)
≤ n

2

√
2λ

qℓ−1
,

where V←
(
ker(α)

)ℓ
, r′ ← (Z/qZ)ℓ, and β ← ker(α).

Therefore, we have Pr[S4.i]− Pr[S4.i+1] ≤ n
2

√
2λ

qℓ−1 , and hence, Pr[S3]− Pr[S4.Q] ≤ nQ
2

√
2λ

qℓ−1 .

– Game 5: This game is identical to Game4.Q, except that we pick up random k∗ ← Z/qZ and
compute K∗ = e(g, g̃)k

∗
. This k∗ is statistically close to < c∗, s+ β >. Indeed, by Lemma 3,

Dist((c∗, < c∗, s+ β >,L(s+ β), view) : (c∗, k∗, L(s+ β), view)) ≤
√
q

2
2−

1
2
H̃∞(s+β|L(s+β),view),

where view is fixed values containing α,V, and < α, s > as well as β̃’s in ker(α) that are
random vectors used in the past key-updates. Since β is only random variable in the above H̃∞
, we have

H̃∞(s+ β|L(s+ β), view) = H̃∞(β|L(s+ β)) ≥ H∞(β)− λ = (n− 1) log(q)− λ.

Therefore, we have Pr[S4.Q]− Pr[S5] ≤ 1
2

√
2λ

qn−2 . By construction, Pr[S5] =
1
2 .

To summarize the above, we have Pr[S0]− 1
2 =

2ǫex +
1

2
nQ ·

√
2λ

qℓ−1
+

1

2

√
2λ

qn−2
.

F Continuos Tampering Secure Signature

A digital signature scheme Σ = (Setup,KGen, Sign,Vrfy) consists four algorithms. Setup, the set-up
algoritm, takes as input security parameter 1k and outputs public parameter ρ. KGen, the key-
generation algorithm, takes as input ρ and outputs a pair comprising the verification and signing
keys, (vk, sk). Sign, the signing algorithm, takes as input (ρ, sk) and message m and produces
signature σ. Vrfy, the verification algorithm, takes as input verification key vk, message m and
signature σ, as well as ρ, and outputs a bit. For completeness, it is required that for all ρ ∈ Setup(1κ),
all (vk, sk) ∈ KGen(ρ) and for all m ∈ {0, 1}∗, it holds Vrfyρ(vk,m, Signρ(sk,m)) = 1.

We say that digital signature scheme Σ is self-destructive, if the signing algorithm can erase
all inner states including sk and does not work any more, when it can detect tampering. We say
that digital signature scheme Σ has a key-updating mechanism if there is a PPT algorithm
Update that takes ρ and sk and returns an “updated” secret key sk′ = Updateρ(sk). We assume
that the key-updating mechanism Update can be activated only when the signing algorithm detects
tampering.
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CTBL-CMA Security. For digital signature scheme Σ and an adversary A, we define the ex-
periment Exptctbl-cma

Π,A,(Φ,λ)(κ) as in Fig. 5. We define the advantage of A against Π with respects Φ
as

Advctbl-cma
Σ,A,(Φ,λ)(κ) , Pr[Exptctbl-cma

Σ,A,(Φ,λ)(κ) = 1].

A may adaptively submit (unbounded) polynomially many queries (φ,CT) to oracle RKSign, but
it should be φ ∈ Φ. A may also adaptively submit (unbounded) polynomially many queries L to
oracle Leak. Finally, A outputs (m′, σ′). We say that A wins if Vrfy(vk,m′, σ′) = 1 and m′ is not
asked to RKSign. We note that if Sig has “self-destructive” property, RKSign does not receive any
further query from the adversary or simply returns ⊥. We say that Σ is (Φ, λ)-CTBL-CMA secure
if Advtbl-cma

Σ,A,(Φ,λ)(κ) = negl(κ) for every PPT A.

Exptctbl-cma
Σ,A,(Φ,λ)(κ):

ρ← Setup(1κ);
(vk, sk)← KGen(ρ);

(m′, σ′)← ARKSignΦ(·,·),Leakλ(·)(ρ, vk)
If m′ ∈ List or Vrfyρ(vk,m

′, σ′) 6= 1,
then return 0;

Otherwise 1.

RKSignΦ(φ,m):
σ ← Signρ(φ(sk),m);
If σ = ⊥,

then erase sk.
Else return σ.

————————————
Leakλ(Li): (Li: i-th query of A.)

If
∑i

j=1 |Lj(sk)| > λ,

then return ⊥;
Else return Li(sk).

Fig. 5. The experiment of the CTBL-CMA game.

CTL-CMA Security. For digital signature scheme Σ = (Setup,KGen,Update, Sign,Vrfy) with
a key-updating mechanism and an adversary A, we define the experiment Exptctl-cma

Σ,A,(Φ,λ)(κ) as in
Fig. 6. We define the advantage of A against Σ with respects Φ as

Advctl-cma
Σ,A,(Φ,λ)(κ) , Pr[Exptctl-cma

Σ,A,(Φ,λ)(κ) = 1].

A may adaptively submit (unbounded) polynomially many queries (φ,CT) to oracle RKSign, but
it should be φ ∈ Φ. A may also adaptively submit (unbounded) polynomially many queries L to
oracle Leak. Finally, A outputs (m′, σ′). We say that A wins if Vrfy(vk,m′, σ′) = 1 and m′ is not
asked to RKSign. We say that Σ is (Φ, λ)-CTL-CMA secure if Advctl-cma

Σ,A,(Φ,λ)(κ) = negl(κ) for every
PPT A.

28

Submission number 132 to Asiacrypt 2016: DO NOT DISTRIBUTE!



Exptctbl-cma
Σ,A,(Φ,λ)(κ):

ρ← Setup(1κ);
(vk, sk)← KGen(ρ);

(m′, σ′)← ARKSignΦ(·,·),Leakλ(·)(ρ, vk)
If m′ ∈ List or Vrfyρ(vk,m

′, σ′) 6= 1,
then return 0;

Otherwise 1.

RKSignΦ(φ,m):
σ ← Signρ(φ(sk),m);
If σ = ⊥,

then return ⊥;
Set sk← Updateρ(sk);
Set leaksum := 0;

Else return σ.
————————————
Leakλ(L):

If leaksum
:= leaksum+ |L(sk)| > λ,
then return ⊥;

Else return L(sk).

Fig. 6. The experiment of the CTL-CMA game.
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