
Authenticated Encryption with Variable Stretch

Reza Reyhanitabar1, Serge Vaudenay2, and Damian Vizár2

1 NEC Laboratories Europe, Germany
2 EPFL, Switzerland

Abstract. In conventional authenticated-encryption (AE) schemes, the
ciphertext expansion, a.k.a. stretch or tag length, is a constant or a param-
eter of the scheme that must be fixed per key. However, using variable-
length tags per key can be desirable in practice or may occur as a result
of a misuse. The RAE definition by Hoang, Krovetz, and Rogaway (Eu-
rocrypt 2015), aiming at the best-possible AE security, supports variable
stretch among other strong features, but achieving the RAE goal incurs
a particular inefficiency: neither encryption nor decryption can be online.
The problem of enhancing the well-established nonce-based AE (nAE)
model and the standard schemes thereof to support variable tag lengths
per key, without sacrificing any desirable functional and efficiency prop-
erties such as online encryption, has recently regained interest as ev-
idenced by extensive discussion threads on the CFRG forum and the
CAESAR competition. Yet there is a lack of formal definition for this
goal. First, we show that several recently proposed heuristic measures
trying to augment the known schemes by inserting the tag length into
the nonce and/or associated data fail to deliver any meaningful security
in this setting. Second, we provide a formal definition for the notion of
nonce-based variable-stretch AE (nvAE) as a natural extension to the
traditional nAE model. Then, we proceed by showing a second modular
approach to formalizing the goal by combining the nAE notion and a new
property we call key-equivalent separation by stretch (kess). It is proved
that (after a mild adjustment to the syntax) any nAE scheme which ad-
ditionally fulfills the kess property will achieve the nvAE goal. Finally,
we show that the nvAE goal is efficiently and provably achievable; for
instance, by simple tweaks to off-the-shelf schemes such as OCB.

Keywords: Authenticated encryption, variable-length tags, robustness,
security definitions, CAESAR competition.

1 Introduction

Authenticated encryption (AE) algorithms have recently faced an immense in-
crease in popularity as appropriate cryptographic tools for providing data con-
fidentiality (privacy) and integrity (together with authenticity) services simul-
taneously. The notion of AE, as a cryptographic scheme in its own right, was
originally put forward in several (partially) independent papers [3,4,20] and fur-
ther evolved to notions of nonce-based AE (nAE) by Rogaway et al. [35], nonce-
based AE with associated data (AEAD) by Rogaway [32, 34], deterministic AE

(DAE) and misuse-resistant AE (MRAE) by Rogaway and Shrimpton [36], on-
line nonce-misuse resistant AE by Fleischmann et al. [14], AE under the release
of unverified plaintext (AE-RUP) by Andreeva et al. [1], robust AE (RAE) by
Hoang et al. [16], and online AE (OAE2) by Hoang et al. [17].

Providing authenticity requires any AE scheme to incur a non-zero ciphertext
expansion or stretch, 𝜏 = |𝐶| − |𝑀 |, where |𝑀 | and |𝐶| are the lengths of the
plaintext and ciphertext in bits, respectively. Most standard AE schemes adopt
a syntax in which the ciphertex is explicitly partitioned as 𝐶 = 𝐶core||Tag with
𝐶core as the ciphertext core (decryptable to a putative plaintext) and Tag as the
authentication tag (used for verifying the decrypted message). In this paper, we
will use the terms ciphertext expansion, stretch and tag length interchangeably
unless the syntax of an AE scheme (e.g. an RAE scheme) does not allow par-
titioning of the ciphertext to a core and a tag part, in which case we use the
general term stretch.

The problem. This paper investigates the problem of using an AE scheme
with variable-length tags (variable stretch) under the same key. All the known
security notions for AE schemes [1, 14, 17, 32, 34, 36] and constructions thereof,
with the exception of RAE [16], assume that the stretch 𝜏 is a constant or a
scheme parameter which must be fixed per key, and security is proved under this
assumption. A correct usage of such a scheme shall ensure that two instances of
the same scheme with different stretches 𝜏1 and 𝜏2 always use two independently
chosen keys 𝐾1 and 𝐾2. However, this rigid correct-use mandate may be violated
in practice for different reasons.

First, AE schemes may be used with variable-length tags per key due to
misuse and poorly engineered security systems. With the increasing scale of de-
ployment of cryptography, various types of misuse of cryptographic tools (i.e.
their improper use that leads to compromised security) occur routinely in prac-
tice [9,12,18,22,23,41]. Identifying potential ways of misuse and mitigating their
impact by sound design is therefore of great importance, while waving such a po-
tential misuse off because there have been no cases of occurrence is a dangerous
practice. Prior “Disasters” [6] have shown that it’s a question of when, not if, a
misuse will eventually happen in applications of (symmetric-key) cryptographic
schemes in practice.

The ongoing CAESAR competition [5] has explicitly listed a set of conven-
tional confidentiality and integrity goals for AE, but has left “any additional
security goals and robustness goals that the submitters wish to point out” as an
option. Among the potential additional goals, robustness features, in particular,
different flavours of misuse-resistance to nonce reuse [14,36] have attracted a lot
of attention. While the recent focus has been mainly on nonce misuse, proper
characterization and formalization of other potential misuse dimensions seems
yet a challenge to be further investigated. The current literature lacks a system-
atic approach to formalizing an appropriate notion of AE with misuse-resistance
to tag-length variation under the same key, without sacrificing interesting func-
tional and efficiency features such as online encryption.

Second, there are use cases such as resource-constrained communication de-
vices, where the support for variable-length tags is desired, but changing the key
per tag length and renegotiating the system parameters is a costly process due
to bandwidth and energy constraints. In those cases, supporting variable stretch
per key while still being able to provide a “sliding scale” authenticity is deemed
to be a useful functional and efficiency feature as pointed out by Struik [39]. For
instance, de Meulenaer et al. demonstrate that in case of wireless sensor net-
works, communication-related energy consumption is substantially higher than
the consumption caused by computation [10]. Sliding scale authenticity could
significantly extend the lifetime of such sensors, especially if processed plain-
texts are very short, while only a handful of them requires a very high level of
authenticity.

The problem has appeared to be highly interesting from both theoretical and
practical perspectives as evidenced by the relatively long CFRG forum thread
on issues arising from variable-length tags in OCB [24], followed by ongoing
discussions in the CAESAR competition mailing list [19], which in turn has
motivated several second-round CAESAR candidates to be tweaked [19, 25, 28]
with the aim of providing some heuristic measures for addressing the problem.

Issues arising from variable stretch per key. Lack of support for variable-
length tags per key in conventional AE models, in particular in the widely-used
nAE security model, is not just a theoretical and definitional complaint, rather all
known standard AE schemes such as the widely-deployed CCM, GCM, and OCB
schemes do misbehave in one way or another if misused in this way [24, 31, 38].
Depending on the application scenario, the consequences of such a misbehavior
may range from a degraded security level to a complete loss of security.

A CFRG forum discussion thread initiated by Manger [24], has raised the
following concerns with an “Attacker changing tag length in OCB”:

– OCB with different tag lengths are defined. Under the same key, shorter
tags are simply truncation of longer tags. The tag length is not mixed into
the ciphertext as it never affects any input to the underlying blockcipher.
Consequently, given a valid output from e.g. the OCB algorithm with 128-bit
tag it is trivial to produce a valid output for the OCB algorithm with 64-bit
tag under the same key, by just dropping the last 8 bytes.

– An attacker wanting to change the associated data while keeping the same
plaintext and the same tag length as applied by the originator (e.g. 128 bits)
only has to defeat the shortest accepted tag length (e.g. 64 bits) and the
differences between accepted tag lengths up to the targeted stretch. This is
not fulfilled by OCB.

– Would OCB be better if the algorithms with different tag lengths could not
affect each other? Perhaps restricting the nonce to <126 bits (instead of
<128 bits) and encoding the tag length in 2 bits.

The CFRG discussions concluded by adopting Manger’s suggested heuristic
measure by designers of OCB: “just drop the tag length into the nonce” [31].

One may call this method nonce stealing for tag length akin to “nonce stealing”
for associated data (AD), proposed by Rogaway [32] to convert an AE scheme
to an AEAD scheme. The problem of variable-length tags per key has regained
interest in recent CAESAR competition discussions. Nandi [27] has raised the
question whether including the tag length in the associated data can resolve the
problem. A natural extension would be combining both measures, i.e., including
the tag length as part of both the nonce and the associated data.

But in the absence of a definitional and provable-security treatment of the
problem of robustness to tag-length variation per key, the proposed heuristic
measures and claims for added security in the tweaked schemes are informal,
and only limited to showing lack of some specific type of misbehavior by the
schemes.

RAE solves the problem, do we need another definition? RAE aims
to capture the “best-possible” AE security [16]. Similar to the MRAE and Pseu-
dorandom Injection (PRI) notions [36] it targets robustness to nonce-misuse,
but it also improves upon the prior notions by supporting variable stretch and
hence sliding scale authenticity for any arbitrary stretch. However, the cost to
pay for achieving such a strong goal is that any RAE scheme incurs a particular
inefficiency: neither encryption nor decryption can be online. We also note that
designing an efficient RAE scheme, e.g. AEZ [16], essentially entails designing
an efficient tweakable block cipher with variable-length messages and tweaks at
the first place followed by employing it in the encode-then-encipher paradigm,
a task that has turned out to be non-trivial as evidenced by several non-ideal
properties determined by recent attacks against the core cipher of prior AEZ
versions by Fuhr et al. [15].

While RAE aims to facilitate the use of any stretch, even a small one, and
promises to provide the best-possible security for any stretch even under nonce-
reuse, our main aim in this paper is to provide an enhancement to the conven-
tional AE models, in particular the popular nAE model, that just adds robust-
ness to tag-length variation under the same key without sacrificing the highly
desired online-ness feature. Unlike the RAE notion our aim is neither to facil-
itate/encourage using arbitrarily short tags nor to add nonce-misuse resistance
to a scheme which does not already possess such a property. The core goal is to
minimize/cut the interferences between instances of an AE scheme (e.g. OCB)
using different tag lengths under the same key and to meaningfully achieve the
best-possible authenticity in this setting without affecting/damaging the privacy
property.

Intuitively, one aims to have an AE scheme that can guarantee 𝜏𝑐-bit au-
thenticity to the recipient whenever a received ciphertext has a 𝜏𝑐-bit tag (𝜏𝑐-bit
stretch) irrespective of adversarial access to other instances of the same algo-
rithm under the same key but different (shorter or longer) 𝜏 -bit tags.

Heuristic Measures Fail. We show in Section 3 that in general, several re-
cently proposed heuristic measures, such as inserting the tag length into the
nonce [31], into the associated data [27] or both methods combined, fail to cap-

ture the aforementioned intuition of a meaningful security in the variable-length
tag setting. This is done by showing generic forgery attacks against these mea-
sures in a large class of nAE schemes (including e.g. GCM and OCB) that follow
the “ciphertext translation” design paradigm of Rogaway [32]. The attacks have
a much lower verification query complexity for 𝜏 bits of stretch than 2𝜏 . For ex-
ample, an adversary having access to the instances of the same algorithm with
32-bit, 64-bit, 96-bit and 128-bit tags under the same key will only need a query
complexity 𝑂(232) to forge a message with a 128-bit tag. The attacks are rather
straightforward generalization of the tag-length misusing attack presented by
the Ascon team on OMD version 1 [13].

Our Results. We formalize a security notion for nonce-based variable-stretch
AE (nvAE). First we provide an all-in-one security definition to formulate the
notion. Then we take an alternative modular approach for defining the notion by
introducing a property, named key-equivalent separation by stretch (kess), that
together with the conventional nAE security implies the nvAE security notion.
While the former approach provides an easy-to-understand, stand-alone defini-
tion by directly capturing the whole aim of nvAE, the latter modular approach
is easier to work with, at least for proving schemes nvAE-secure, in particu-
lar, when one tweaks an existing nAE-secure scheme and wants to establish the
nvAE-security of the modified scheme by just proving its kess property rather
than having to prove everything from scratch. We show that the nvAE goal is
efficiently and provably achievable by application of simple tweaks to off-the-
shelf popular schemes such as OBC, Minematsu’s OTR [25] or OMD without
sacrificing their desirable functional and efficiency features such as online en-
cryption. Furthermore, we establish the relations (implications and separations)
between different security notions in the conventional fixed-stretch AE setting
and variable-stretch AE setting. A summary of the relations is depicted in Fig. 1.

naepriv ∧ auth

ind− cca

nvae(τc) priv(τc) ∧ auth(τc)

ind− cca(τc)

kess∧nae

Variable-stretch AE notions Conventional AE notions

rae

a

b

cd

e f

g
h i

Fig. 1: Relations among notions for nonce-based AE with and without variable
stretch. Previous works: a [36], b [3]. This paper: c (Remark 3, attacks in Section 3),
d (Remark 3, Corollary 1), e (Theorem 1, Remark 2), f (Proposition 1), g (Theorem 2),
h, i (Remark 4 together with [16]).

Organization of the paper. In Section 2 we overview some of the prior AE
definitions. Section 3 describes generic forgery attacks showing ineffectiveness of
the heuristic measures of including the tag length in the nonce and/or associated
data of a given nAE scheme to support variable-length tags per key. In Section 4

we provide formal definitions for the goal of AE with variable stretch per key,
and Section 7 provides some discussions and remarks on the interpretation of
the results of this work. In Section 6 we show how to efficiently achieve nvAE.

2 Preliminaries and Prior AE Definitions

Notations. For a set 𝒮 (either finite, or endowed with a natural definition of
uniform distribution) we denote by 𝑎←$ 𝒮 sampling an element of 𝒮 uniformly
at random and storing it in the variable 𝑎. All strings are binary strings. We let
|𝑋| denote the length of a string 𝑋, and 𝑋‖𝑌 the concatenation of two strings
𝑋 and 𝑌 . We let 𝜀 denote the empty string of length 0. We let {0, 1}* denote the
set of all strings of arbitrary finite lengths (s.t. 𝜀 ∈ {0, 1}*) and we let {0, 1}𝑛

denote the set of all strings of length 𝑛 for a positive integer 𝑛. We let N denote
the set of all (positive) natural numbers and N0 = N ∪ {0}.

Resource-parameterized adversarial advantage. The insecurity of a
scheme 𝛱 in regard to a security property xxx is measured using the resource
parameterized function Advxxx

𝛱 (r) = maxA {Advxxx
𝛱 (A)}, where the maximum

is taken over all adversaries A which use resources bounded by r.

Blockciphers and Tweakable Blockciphers. Let Perm(𝑛) be the set of all
permutations over 𝑛-bit strings. Let Perm𝒯 (𝑛) ⊆ {̃︀𝜋 : 𝒯 × {0, 1}𝑛 → {0, 1}𝑛} be
the set of all functions, s.t. for every ̃︀𝜋 ∈ Perm𝒯 (𝑛), ̃︀𝜋(𝑡, ·) is a permutation for
every 𝑡 ∈ 𝒯 where 𝒯 is a set of tweaks. We use ̃︀𝜋𝑡(·) and ̃︀𝜋(𝑡, ·) interchangeably.
Let 𝐸 : 𝒦 × {0, 1}𝑛 → {0, 1}𝑛 be a blockcipher and let ̃︀𝐸 : 𝒦 × 𝒯 × {0, 1}𝑛 →
{0, 1}𝑛 be a tweakable blockcipher with a non-empty, finite 𝒦 ⊆ {0, 1}*. Let 𝐷

and ̃︀𝐷 denote the inverses of 𝐸 and ̃︀𝐸 respectively. Let 𝐸𝐾(·) = 𝐸(𝐾, ·) and̃︀𝐸𝑡
𝐾(·) = ̃︀𝐸(𝐾, 𝑡, ·). Let A be an adversary. Then:

Adv±prp
𝐸 (A) = Pr

[︀
𝐾 ←$ 𝒦 : A 𝐸𝐾 ,𝐷𝐾 ⇒ 1

]︀
− Pr

[︁
𝜋 ←$ Perm(𝑛) : A 𝜋,𝜋−1

⇒ 1
]︁

Adv±̃︁prp̃︀𝐸 (A) = Pr
[︁
𝐾 ←$ 𝒦 : A ̃︀𝐸𝐾 ,̃︀𝐷𝐾⇒ 1

]︁
− Pr

[︁̃︀𝜋 ←$ Perm𝒯 (𝑛) : A ̃︀𝜋,̃︀𝜋−1
⇒ 1

]︁
The resource parameterized advantage functions are defined accordingly, con-

sidering that the adversarial resources of interest here are the time complexity
(𝑡) of the adversary and the total number of queries (𝑞) asked by the adversary.

In the following we recall the security notions for nonce-based AE (nAE)
schemes with associated data (a.k.a. “AEAD” schemes) [32] and RAE schemes.
We will simply use nAE to refer to any (nonce-based) AEAD scheme as all nAE
schemes must now support associated data processing.

Syntax. We augment the syntax of original nAE schemes [32] to include a
stretch variable. A scheme for authenticated encryption is a triplet 𝛱 = (𝒦, ℰ ,𝒟)
where 𝒦 ⊆ {0, 1}* is the set of keys endowed with a (uniform) distribution and
ℰ : 𝒦 × 𝒩 × 𝒜 × ℐ𝑇 ×ℳ → 𝒞 and 𝒟 : 𝒦 × 𝒩 × 𝒜 × N × 𝒞 → ℳ ∪ {⊥} are

the encryption and decryption algorithm respectively, both deterministic and
stateless. We call 𝒩 nonce space, 𝒜 AD space, ℳ plaintext space, 𝒞 ciphertext
space, and ℐ𝑇 stretch space (i.e. the set of ciphertext expansion values that can
be applied upon encryption) of 𝛱, and we have that 𝒩 ⊆ {0, 1}*, ℳ⊆ {0, 1}*,
𝒜 ⊆ {0, 1}*, 𝒞 ⊆ {0, 1}* and ℐ𝑇 ⊆ N.

We insist that if 𝑀 ∈ ℳ then {0, 1}|𝑀 | ⊆ ℳ (any reasonable AE scheme
would certainly have this property). We additionally limit ourselves to correct
and tidy (defined by Namprempre et al. [26]) schemes with variable stretch.
Namely, the correctness means that for every (𝐾, 𝑁, 𝐴, 𝜏, 𝑀) ∈ 𝒦 × 𝒩 × 𝒜 ×
ℐ𝑇 ×ℳ, if ℰ(𝐾, 𝑁, 𝐴, 𝜏, 𝑀) = 𝐶 then 𝒟(𝐾, 𝑁, 𝐴, 𝜏, 𝐶) = 𝑀 , and tidiness means
that for every (𝐾, 𝑁, 𝐴, 𝜏, 𝐶) ∈ 𝒦×𝒩×𝒜×ℐ𝑇 ×𝒞, if 𝒟(𝐾, 𝑁, 𝐴, 𝜏, 𝐶) = 𝑀 ̸= ⊥
then ℰ(𝐾, 𝑁, 𝐴, 𝜏, 𝑀) = 𝐶. In both cases |𝐶| = |𝑀 | + 𝜏 where 𝜏 denotes the
stretch.

Variations in Syntax. In the case of conventional nAE schemes, the expansion
of ciphertexts is fixed to some constant value 𝜏 ; this is equivalent to setting ℐ𝑇 =
{𝜏}. For such schemes, we omit stretch from the list of input arguments of both
the encryption and the decryption algorithm. We sometimes create an ordinary
nonce-based AE scheme 𝛱 ′ from a nonce-based AE scheme with variable stretch
𝛱 by fixing the expansion value for all queries to some value 𝜏 ∈ ℐ𝑇 . We will
denote this as 𝛱 ′ = 𝛱[𝜏].

Two-requirement security definition. The nAE notion was originally for-
malized by a two-requirement (privacy and authenticity) definition [4, 32]. The
privacy of a scheme 𝛱 is captured by its indistinguishability from a random
strings-oracle in a chosen plaintext attack with non-repeating nonces, while its
authenticity is defined as adversary’s inability to forge a new ciphertext, i.e. issue
a decryption query returning 𝑀 ̸= ⊥. The priv advantage of an adversary A
against 𝛱 is defined as Advpriv

𝛱 (A) = Pr[A priv-R𝛱 ⇒ 1] − Pr[A priv-I𝛱 ⇒ 1]
and the auth advantage of A as Advauth

𝛱 (A) = Pr[A auth𝛱 forges] where the
corresponding security games are defined in Figure 2. In the following 𝑥←$ 𝒮 will
denote sampling an element 𝑥 from a set 𝒮 with uniform distribution. All-in-

one security definition. Rogaway and Shrimpton introduced an alternative,
all-in-one approach for defining the nAE security, and proved it to be equivalent
to the two-requirement definition [36]. The all-in-one nae notion captures AE
security as indistinguishability of the real encryption and decryption algorithms
from a random strings oracle and an always-reject oracle in a nonce-respecting,
chosen ciphertext attack. The nae advantage of an adversary A against a scheme
𝛱 is defined as Advnae

𝛱 (A) = Pr[A nae-R𝛱 ⇒ 1]− Pr[A nae-I𝛱 ⇒ 1] where the
corresponding security games are defined in Figure 3.

Robust AE. As mentioned in Section 1, the notion of robust AE (RAE) [16],
aims to capture a very strong security goal. The RAE security is captured as
indistinguishability of a scheme from a particular idealized primitive in an unre-
stricted chosen ciphertext attack. The rae advantage of an adversary A against

proc initialize priv-R𝛱

𝐾 ←$ 𝒦
𝒳 ← ∅

proc Enc(𝑁, 𝐴, 𝑀)
if 𝑁 ∈ 𝒳 then

return ⊥
𝒳 ← 𝒳 ∪ {𝑁}
𝐶 ← ℰ(𝐾, 𝑁, 𝐴, 𝑀)
return 𝐶

proc initialize priv-I𝛱

𝒳 ← ∅

proc Enc(𝑁, 𝐴, 𝑀)
if 𝑁 ∈ 𝒳 then

return ⊥
𝒳 ← 𝒳 ∪ {𝑁}
𝐶 ←$ {0, 1}|𝑀|+𝜏

return 𝐶

proc initialize auth𝛱

𝐾 ←$ 𝒦
𝒳 ← ∅, 𝒴 ← ∅

proc Enc(𝑁, 𝐴, 𝑀)
if 𝑁 ∈ 𝒳 then

return ⊥
𝒳 ← 𝒳 ∪ {𝑁}
𝐶 ← ℰ(𝐾, 𝑁, 𝐴, 𝑀)
𝒴 ← 𝒴 ∪ {(𝑁, 𝐴, 𝐶)}
return 𝐶

proc Dec(𝑁, 𝐴, 𝐶)
if (𝑁, 𝐴, 𝐶) ∈ 𝒴 then

return ⊥
return 𝒟(𝐾, 𝑁, 𝐴, 𝐶)

Fig. 2: Two-requirement definition of nAE security for a scheme 𝛱 = (𝒦, ℰ ,𝒟)
with ciphertext expansion 𝜏 .

a scheme 𝛱 is defined as Advrae
𝛱 (A) = Pr[A rae-R𝛱 ⇒ 1] − Pr[A rae-I𝛱 ⇒ 1]

where the corresponding security games are defined in Figure 4.
It is known that the strong RAE security of a scheme implies its nAE security.

This can be easily verified by showing that Advpriv
𝛱 (B) ≤ Advrae

𝛱 (A) and
Advauth

𝛱 (C) ≤ Advrae
𝛱 (A) + 𝑞𝑑

2𝜏 for some adversaries B and C with the same
resources as A , 𝑞𝑑 the number of decryption queries and 𝜏 the amount of stretch
in all queries. However, the robustness of RAE comes at the expense of efficiency;
an RAE-secure AE scheme must be inherently “offline”, i.e. it cannot encrypt a
plaintext with constant memory while outputting ciphertext bits with constant
latency, as every bit of the ciphertext must depend on every bit of plaintex.

Stretch (in)dependent advantage. For some of the security notions we
discuss, the adversarial advantage is trivially dependent on the value of stretch.
The advantage for notions that capture integrity of ciphertexts will necessarily
be high whenever stretch 𝜏 is low, as there is always a trivial attack that queries
a random ciphertext with probability 2−𝜏 of being successfully decrypted. This
concerns the notions auth and nae. The notions that do not directly capture
integrity of ciphertexts are not inherently impacted by the value of 𝜏 . In par-
ticular, no trivial attack with advantage 2−𝜏 exists for the notions priv or rae.
Note that rae captures the integrity property indirectly; the idealized reference
of RAE security itself will still yield to the trivial attack mentioned above.

proc initialize nae-R𝛱

𝐾 ←$ 𝒦
𝒳 ← ∅, 𝒴 ← ∅

oracle Enc(𝑁, 𝐴, 𝑀)
if 𝑁 ∈ 𝒳 then

return ⊥
𝐶 ← ℰ(𝐾, 𝑁, 𝐴, 𝑀)
𝒳 ← 𝒳 ∪ {𝑁}
𝒴 ← 𝒴 ∪ {(𝑁, 𝐴, 𝐶)}
return 𝐶

oracle Dec(𝑁, 𝐴, 𝐶)
if (𝑁, 𝐴, 𝐶) ∈ 𝒴 then

return ⊥
return 𝒟(𝐾, 𝑁, 𝐴, 𝐶)

proc initialize nae-I𝛱

𝒳 ← ∅

oracle Enc(𝑁, 𝐴, 𝑀)
if 𝑁 ∈ 𝒳 then

return ⊥
𝐶 ←$ {0, 1}|𝑀|+𝜏

𝒳 ← 𝒳 ∪ {𝑁}
return 𝐶

oracle Dec(𝑁, 𝐴, 𝐶)
return ⊥

Fig. 3: All-in-one definition of nAE security for a scheme 𝛱 = (𝒦, ℰ ,𝒟) with
ciphertext expansion 𝜏 .

3 Failure of Inserting Stretch into Nonce and/or AD

Using a generic forgery attack, we show that the recently proposed heuristic
measures, namely, inclusion of the tag length in the nonce [31], in the AD [27]
or in both nonce and AD fail when applied to a large class of nAE schemes
(including e.g. GCM and OCB) that follow the “ciphertext translation” design
paradigm of Rogaway [32] which is depicted in Figure 5. The attack is not
completely new, it is a rather straightforward generalization of the tag-length
misusing attack originally proposed by the Ascon team on a specific algorithm,
namely OMD version 1 [13] which also follows the ciphertext translation method.

EK
N

M

A HK

CM

0
|M|

C

τ

|M| + τ

Fig. 5: Ciphertext translation. The message-only nAE encryption ℰ produces an
intermediate ciphertext 𝐶𝑀 with 𝜏 bits of stretch. The leftmost 𝜏 bits of the output
of a keyed hash 𝐻𝐾(𝐴) are xored to the rightmost 𝜏 bits of 𝐶𝑀 , forming the final
ciphertext 𝐶.

The attack. We target a ciphertext translation-based AEAD scheme 𝛱 that
supports any amount of stretch from a set ℐ𝑇 = {𝜏1, . . . , 𝜏𝑟} with 𝜏1 < 𝜏2 < . . . <
𝜏𝑟. We assume oracle access to encryption and decryption algorithms, such that
the amount of stretch can be chosen for every query independently. The goal is
to forge a ciphertext for 𝐴, 𝑀 expanded by 𝜏𝑔 ∈ ℐ𝑇 bits, with 𝑔 > 1. The attack

proc initialize rae-R𝛱

𝐾 ←$ 𝒦

proc Enc(𝑁, 𝐴, 𝜏, 𝑀)
return ℰ(𝐾, 𝑁, 𝐴, 𝜏, 𝑀)

proc Dec(𝑁, 𝐴, 𝜏, 𝐶)
return 𝒟(𝐾, 𝑁, 𝐴, 𝜏, 𝐶)

proc initialize rae-I𝛱

for 𝑁, 𝐴, 𝜏 ∈ 𝒩 × {0, 1}* × N do
𝜋𝑁,𝐴,𝜏 ←$ Inj(𝜏)

proc Enc(𝑁, 𝐴, 𝜏, 𝑀)
return 𝜋𝑁,𝐴,𝜏 (𝑀)

proc Dec(𝑁, 𝐴, 𝜏, 𝐶)
if ∃𝑀 ∈ {0, 1}* s.t. 𝜋𝑁,𝐴,𝜏 (𝑀) = 𝐶 then

return 𝑀
return ⊥

Fig. 4: RAE security. Defining security for a robust AE scheme 𝛱 = (𝒦, ℰ ,𝒟)
with nonce space 𝒩 . Inj(𝜏) denotes the set of all injective, 𝜏 -expanding functions from
{0, 1}* to {0, 1}≥𝜏 .

proceeds as in Figure 6. We let left𝑖(𝑋) and right𝑗(𝑋) denote 𝑖 leftmost bits and
𝑗 rightmost bits of a string 𝑋 respectively.

1: 𝛥𝐴 ← 𝜀; 𝐴* ←$ 𝒜∖{𝐴}
2: for 𝑖← 1 to 𝑔 do
3: pick fresh nonce 𝑁𝑖

4: 𝐶*
𝑖 ← Enc(𝑁𝑖, 𝐴*, 𝜏𝑖, 𝑀)

5: do
6: pick fresh 𝛿 ∈ {0, 1}𝜏𝑖−𝜏𝑖−1

7: 𝐶𝑖 ← 𝐶*
𝑖 ⊕ 0|𝐶𝑖|−𝜏𝑖‖𝛥𝐴‖𝛿

8: 𝑀𝑖 ← Dec(𝑁𝑖, 𝐴, 𝜏𝑖, 𝐶𝑖)
9: while 𝑀𝑖 = ⊥
10: 𝛥𝐴 ← right𝜏𝑖

(𝐶𝑖 ⊕ 𝐶*
𝑖)

11: return 𝑁𝑔, 𝐴, 𝐶𝑔

Fig. 6: Ciphertext forgery for a ciphertext translation-based AEAD scheme with
associated data 𝐴 and message 𝑀 in presence of variable stretch. Here 𝜏0 = 0.

The hash function 𝐻𝐾(·) used to process AD must fulfil some mild conditions
for the attack to work against the described heuristic countermeasures [27, 31],
namely:

– In case that the tag length is only injected into the nonce, the attack works
with arbitrary 𝐻𝐾(·).

– For inclusion of the tag length in the AD or a combination of this method
and nonce stealing, the attack works if 𝐻𝐾(𝐴) = 𝐻1𝐾

(𝐴1) ⊕ 𝐻2𝐾
(𝐴2) ⊕

· · · ⊕ 𝐻𝑚𝐾
(𝐴𝑚), for arbitrary functions 𝐻𝑖𝐾

, 1 ≤ 𝑖 ≤ 𝑚, where 𝐴 =
𝐴1||𝐴2|| · · · ||𝐴𝑚 for 𝐴𝑗 ∈ {0, 1}𝑛 for some positive integer 𝑛 (this is the case
for both GCM and OCB). In this case, we must ensure that the block of AD
that contains the amount of stretch 𝜏 is unchanged between 𝐴 and 𝐴*.

Under these conditions, the attack will always succeed: whenever we encrypt a
message 𝑀 with two different associated data 𝐴, 𝐴*, first with 𝜏𝑖 and then with
𝜏𝑗 > 𝜏𝑖 bits of stretch, then 𝐶𝑖⊕𝐶*𝑖 will be a prefix of 𝐶𝑗⊕𝐶*𝑗 , as the xor cancels
out the core ciphertext as well as the block of AD that is impacted by 𝜏 (if any).

The complexity of the attack in terms of verification queries will be 𝑂(2𝜇)
with 𝜇 = max{𝜏1, 𝜏2 − 𝜏1, . . . , 𝜏𝑔 − 𝜏𝑔−1}. For example, an adversary having
access to the instances of the algorithm with 32-bit, 64-bit, 96-bit and 128-bit
tags under the same key will only need a query complexity 𝑂(232) to forge a
message with a 128-bit tag, which is in stark contrast with the expected 𝑂(2128)
query complexity.

4 Formalizing Nonce-based AE with Variable Stretch

Defining a meaningful security notion for AE schemes with variable stretch under
the same key has turned out to be a non-trivial task [24, 31, 38]. Allowing the
adversary to choose the amount of stretch freely from a set ℐ𝑇 = {𝜏min, . . . , 𝜏max}
will inevitably enable it to produce forgeries with a high probability 2−𝜏min by
targeting the shortest allowed stretch; a forgery is sure to be found with at most
2𝜏min verification queries. This is inherent to any AE scheme.

Despite this limit to its global security guarantees, there is a meaningful se-
curity property which can be expected from an nvAE scheme by a user: the
scheme must guarantee 𝜏 bits of security for ciphertexts with 𝜏 bits of stretch,
regardless of adversarial access to other instances with the same key but other
(shorter and/or longer) amount of stretch than 𝜏 . For example, forging a ci-
phertext with 𝜏 -bit stretch should require ≈ 2𝜏 verification queries with 𝜏 -bit
stretch, regardless of the number of queries made under other different amounts
of stretch.

This non-interference between different instances that use the same key but
different stretch (tag length) is the intuition behind a formal definition for the
notion of nonce-based, variable-stretch AE.

Security Definition. We define a security notion parameterized by the chal-
lenge stretch value 𝜏𝑐 ∈ ℐ𝑇 as a natural extension to the notion of nAE. This is
done in the compact all-in-one definition style of [36].

Let 𝛱 = (𝒦, ℰ ,𝒟) be a nvAE scheme whose syntax is defined in Section 2.
An nvae(𝜏𝑐) adversary A gets to interact with games nvae(𝜏𝑐)-R𝛱 (left) and
nvae(𝜏𝑐)-I𝛱 (right) in Figure 7, defining respectively the real and ideal behav-
ior of such a scheme. The adversary has access to two oracles Enc and Dec
determined by these games and its goal is to distinguish the two games.

The adversary must respect a relaxed nonce-requirement; it must use a unique
pair of nonce and stretch for encryption queries. Compared to the standard
nonce-respecting requirement in nAE schemes, here nonce may be reused pro-
vided that the stretch does not repeat simultaneously.

In the ideal game nvae(𝜏𝑐)-I𝛱 , the encryption and decryption queries with
𝜏𝑐-bit stretch are answered in the same idealized way as in the “ideal” game of
nae notion (Figure 3 right). However, the queries with stretch other than 𝜏𝑐 are
treated with the real encryption/decryption algorithm. This lets the adversary
to issue arbitrary queries (e.g. repeated forgeries) for any stretch 𝜏 ̸= 𝜏𝑐 and
leverage the information thus gathered to attack the challenge expansion. At the

same time, only queries with 𝜏𝑐 bits of stretch can help the adversary to actually
distinguish the two games, capturing the exact level of security for queries with
𝜏𝑐 bits of stretch in presence of variable stretch.

We measure the advantage of A in breaking the nvae(𝜏𝑐) security of 𝛱 as
Advnvae(𝜏𝑐)

𝛱 (A) = Pr[A nvae(𝜏𝑐)-R𝛱 ⇒ 1]− Pr[A nvae(𝜏𝑐)-I𝛱 ⇒ 1].

Adversarial resources. The adversarial resources of interest for the nvae(𝜏𝑐)
notion are (𝑡, qe, qd, 𝜎), where 𝑡 denotes the running time of the adversary,
qe = (𝑞𝜏

𝑒 |𝜏 ∈ ℐ𝑇) denotes the vector that holds the number of encryption queries
𝑞𝜏

𝑒 made with stretch 𝜏 for every stretch 𝜏 ∈ ℐ𝑇 , and qd = (𝑞𝜏
𝑑 |𝜏 ∈ ℐ𝑇) denotes

the same for the decryption queries and 𝜎 = (𝜎𝜏 |𝜏 ∈ ℐ𝑇) denotes the vector
that holds the total amount of data 𝜎𝜏 processed in all queries with stretch 𝜏
for every 𝜏 ∈ ℐ𝑇 .

Despite being focused on queries stretched by 𝜏𝑐 bits, we watch adversarial
resources for every stretch 𝜏 ∈ ℐ𝑇 in a detailed, vector-based fashion. This
approach appears to be most flexible w.r.t. the security analysis. However, in a
typical case we will be interested in the resources related to 𝜏𝑐 (i.e. 𝑞𝜏𝑐

𝑒 , 𝑞𝜏𝑐

𝑑 , 𝜎𝜏𝑐)
and cumulative resources of the adversary 𝑞𝑒, 𝑞𝑑, 𝜎 with 𝑞𝑒 =

∑︀
𝜏∈ℐ𝑇

𝑞𝜏
𝑒 , 𝑞𝑑 =∑︀

𝜏∈ℐ𝑇
𝑞𝜏

𝑑 and 𝜎 =
∑︀

𝜏∈ℐ𝑇
𝜎𝜏 .

Remark 1 (Relation to nAE). The notion of nvae(𝜏𝑐) is indeed an extension of
the classical all-in-one security notion for nonce-based AE schemes. If the scheme
𝛱 is secure with some stretch-space ℐ𝑇 , then it will be secure for any stretch-
space ℐ ′𝑇 ⊆ ℐ𝑇 , in particular for ℐ ′𝑇 = {𝜏𝑐}. If a scheme has a stretch-space
ℐ𝑇 = {𝜏𝑐}, then nvae(𝜏𝑐) becomes the classical nae notion. It easily follows,
that nvae(𝜏𝑐) security of a scheme 𝛱 tightly implies nae security of 𝛱[𝜏𝑐].

Similar to the nae notion, the nvae(𝜏𝑐) adversarial advantage will be trivially
high if 𝜏𝑐 is low (due to successful forgeries). Yet, if the nvae(𝜏𝑐) advantage of
a scheme behaves “reasonably”, we will call the scheme secure. We discuss the
interpretation of the nvae(𝜏𝑐) bounds in Appendix 7.

Parameterized CCA security. An nae-secure AE scheme is also ind-cca-
secure. This follows from the equivalence of the all-in-one and dual nAE no-
tions and a well-known implication priv ∧ auth⇒ ind-cca established by Bel-
lare and Namprempre [3]. It is natural to ask: Does the nvae(𝜏𝑐)-security also
provide a privacy guarantee against chosen ciphertext attacks? We define a 𝜏𝑐-
parameterized extension of the ind-cca security notion and answer this question
positively.

The parameterized ind-cca(𝜏𝑐) notion captures the exact privacy level guar-
anteed by an nvAE scheme for encryption queries stretched by 𝜏𝑐 bits, in presence
of arbitrary queries with expansions 𝜏 ̸= 𝜏𝑐 and reasonable decryption queries
stretched by 𝜏𝑐 bits. The notion is building on the intuition that privacy level of
𝜏𝑐-expanded queries should not be affected by the adversarial queries with other
amounts of stretch.

Security definition. Let 𝛱 = (𝒦, ℰ ,𝒟) be an nvAE with syntax defined in
Section 2. We let an adversary A interact with the games ind-cca(𝜏𝑐)-R𝛱 and

proc initialize nvae(𝜏𝑐)-R𝛱

𝐾 ←$ 𝒦
𝒳 ← ∅, 𝒴 ← ∅

oracle Enc(𝑁, 𝐴, 𝜏, 𝑀)
if (𝑁, 𝜏) ∈ 𝒳 then

return ⊥
𝒳 ← 𝒳 ∪ {(𝑁, 𝜏)}
𝐶 ← ℰ(𝐾, 𝑁, 𝐴, 𝜏, 𝑀)
if 𝜏 = 𝜏𝑐 then
𝒴 ← 𝒴 ∪ {(𝑁, 𝐴, 𝐶)}

return 𝐶

oracle Dec(𝑁, 𝐴, 𝜏, 𝐶)
if 𝜏 = 𝜏𝑐 and (𝑁, 𝐴, 𝐶) ∈ 𝒴 then

return ⊥
return 𝒟(𝐾, 𝑁, 𝐴, 𝜏, 𝐶)

proc initialize nvae(𝜏𝑐)-I𝛱

𝐾 ←$ 𝒦
𝒳 ← ∅

oracle Enc(𝑁, 𝐴, 𝜏, 𝑀)
if (𝑁, 𝜏) ∈ 𝒳 then

return ⊥
𝒳 ← 𝒳 ∪ {(𝑁, 𝜏)}
if 𝜏 = 𝜏𝑐 then

𝐶 ←$ {0, 1}|𝑀|+𝜏𝑐

return 𝐶
return ℰ(𝐾, 𝑁, 𝐴, 𝜏, 𝑀)

oracle Dec(𝑁, 𝐴, 𝜏, 𝐶)
if 𝜏 = 𝜏𝑐 then

return ⊥
return 𝒟(𝐾, 𝑁, 𝐴, 𝜏, 𝐶)

Fig. 7: AE security with variable stretch. Security games for defining AE security
of a nonce-based AE scheme 𝛱 = (𝒦, ℰ ,𝒟) with variable-stretch.

ind-cca(𝜏𝑐)-I𝛱 defined in Figure 8 and its goal is to distinguish them. In the
“ideal” game ind-cca(𝜏𝑐)-I𝛱 , the 𝜏𝑐-stretched encryption queries are answered
with random strings while the decryption queries are processed with the real
decryption algorithm. A must respect the relaxed nonce-requirement and is pre-
vented to win the game trivially (i.e. by re-encrypting output of decryption query
with 𝜏𝑐 bits of stretch and vice-versa). We measure A ’s advantage in breaking
ind-cca(𝜏𝑐) security of 𝛱 as Advind-cca(𝜏𝑐)

𝛱 (A) = Pr
[︀
A ind-cca(𝜏𝑐)-R ⇒ 1

]︀
−

Pr
[︀
A ind-cca(𝜏𝑐)-I ⇒ 1

]︀
.

The adversarial resources of interest for the ind-cca(𝜏𝑐) notion are the same as
for the nvae(𝜏𝑐) notion, i.e. (𝑡, qe, qd, 𝜎).

Remark 2 (Relations to ind-cca and nvAE). Similarly as in the case of nvae(𝜏𝑐)
and nae, ind-cca(𝜏𝑐) security with some stretch space ℐ𝑇 implies ind-cca(𝜏𝑐) se-
curity with any stretch space ℐ ′𝑇 ⊆ ℐ𝑇 , e.g. ℐ𝑇 = {𝜏𝑐}. It follows that ind-cca(𝜏𝑐)
security of a scheme 𝛱 implies the classical ind-cca security of 𝛱[𝜏𝑐].

The notions of ind-cca(𝜏𝑐) and nvae(𝜏𝑐) differ mainly in the way the “ideal”
games treat the decryption queries expanded by 𝜏𝑐 bits. The impact of this dif-
ference is substantial; the ind-cca(𝜏𝑐) notion does not capture integrity of ci-
phertexts. E.g. a scheme that concatenates output of a length-preserving, nonce-
based, ind-cca-secure encryption scheme (using encoding of the nonce and stretch
as a “nonce”) and an image of the nonce and stretch under a PRF would be se-
cure in the sense of ind-cca(𝜏𝑐), but insecure in the sense of nvae(𝜏𝑐).

We examine the relation between the two notions in the other direction in The-
orem 1. We would like to stress that the result in Theorem 1 holds for any nvAE
scheme, and in particular for any stretch space ℐ𝑇 .

proc initialize ind-cca(𝜏𝑐)-R𝛱

𝐾 ←$ 𝒦
𝒱 ← ∅, 𝒳 ← ∅, 𝒴 ← ∅

oracle Enc(𝑁, 𝐴, 𝜏, 𝑀)
if (𝑁, 𝜏) ∈ 𝒳 then return ⊥
if 𝜏 = 𝜏𝑐 and (𝑁, 𝐴, 𝑀) ∈ 𝒱 then

return ⊥
𝒳 ← 𝒳 ∪ {(𝑁, 𝜏)}
𝐶 ← ℰ(𝐾, 𝑁, 𝐴, 𝜏, 𝑀)
if 𝜏 = 𝜏𝑐 then
𝒴 ← 𝒴 ∪ {(𝑁, 𝐴, 𝐶)}

return 𝐶

oracle Dec(𝑁, 𝐴, 𝜏, 𝐶)
if 𝜏 = 𝜏𝑐 and (𝑁, 𝐴, 𝐶) ∈ 𝒴 then

return ⊥
𝑀 ← 𝒟(𝐾, 𝑁, 𝐴, 𝜏, 𝐶)
if 𝜏 = 𝜏𝑐 and 𝑀 ̸= ⊥
𝒱 ← 𝒱 ∪ {(𝑁, 𝐴, 𝑀)}

return 𝑀

proc initialize ind-cca(𝜏𝑐)-I𝛱

𝐾 ←$ 𝒦
𝒱 ← ∅, 𝒳 ← ∅, 𝒴 ← ∅

oracle Enc(𝑁, 𝐴, 𝜏, 𝑀)
if (𝑁, 𝜏) ∈ 𝒳 then return ⊥
if 𝜏 = 𝜏𝑐 and (𝑁, 𝐴, 𝑀) ∈ 𝒱 then

return ⊥
𝒳 ← 𝒳 ∪ {(𝑁, 𝜏)}
if 𝜏 = 𝜏𝑐 then

𝐶 ←$ {0, 1}|𝑀|+𝜏𝑐

𝒴 ← 𝒴 ∪ {(𝑁, 𝐴, 𝐶)}
return 𝐶

return ℰ(𝐾, 𝑁, 𝐴, 𝜏, 𝑀)

oracle Dec(𝑁, 𝐴, 𝜏, 𝐶)
if 𝜏 = 𝜏𝑐 and (𝑁, 𝐴, 𝐶) ∈ 𝒴 then

return ⊥
𝑀 ← 𝒟(𝐾, 𝑁, 𝐴, 𝜏, 𝐶)
if 𝜏 = 𝜏𝑐 and 𝑀 ̸= ⊥

𝒱 ← 𝒱 ∪ {(𝑁, 𝐴, 𝑀)}
return 𝑀

Fig. 8: Parameterized ind-cca security. Games for defining ind-cca(𝜏𝑐) security
of a nonce-based AE scheme with variable-stretch 𝛱 = (𝒦, ℰ ,𝒟).

Theorem 1 (nvae(𝜏𝑐) ⇒ ind-cca(𝜏𝑐)). Let 𝛱 = (𝒦, ℰ ,𝒟) be an arbitrary
nonce-based AE scheme with variable stretch. We have that

Advind-cca(𝜏𝑐)
𝛱 (𝑡, qe, qd, 𝜎) ≤ 2 ·Advnvae(𝜏𝑐)

𝛱 (𝑡′, qe, qd, 𝜎),

with 𝑡′ = 𝑡 + 𝑂(𝑞) and 𝑞 =
∑︀

𝜏∈ℐ𝑇
(𝑞𝜏

𝑒 + 𝑞𝜏
𝑑).

Proof. Let A be an ind-cca adversary with indicated resources. We define the
game ind-cca(𝜏𝑐)-I⊥𝛱 as an intermediate step in the proof; it is exactly the same
as ind-cca(𝜏𝑐)-I𝛱 , except that the decryption queries with 𝜏𝑐 bits of stretch are
always answered with ⊥. We have that
Advind-cca(𝜏𝑐)

𝛱 (A) = Pr[A ind-cca(𝜏𝑐)-R𝛱 ⇒ 1]− Pr[A ind-cca(𝜏𝑐)-I⊥
𝛱 ⇒ 1]

+Pr[A ind-cca(𝜏𝑐)-I⊥
𝛱 ⇒ 1]− Pr[A ind-cca(𝜏𝑐)-I𝛱 ⇒ 1].

We start by showing that Pr[A ind-cca(𝜏𝑐)-R𝛱 ⇒ 1]− Pr[A ind-cca(𝜏𝑐)-I⊥
𝛱 ⇒ 1] ≤

Advnvae(𝜏𝑐)
𝛱 (B) for an nvae(𝜏𝑐) adversary B with the resources (𝑡′, qe, qd, 𝜎).

The reduction of A to B is straightforward: B simply answers A ’s queries
with its own oracles, making sure that the trivial win-preventing restrictions of
ind-cca(𝜏𝑐) games are met. At the end of experiment, B outputs whatever A
outputs. This ensures perfect simulation of both games for A .

It remains to show that Pr[A ind-cca(𝜏𝑐)-I⊥
𝛱 ⇒ 1]−Pr[A ind-cca(𝜏𝑐)-I𝛱 ⇒ 1] ≤

Advnvae(𝜏𝑐)
𝛱 (C) for an nvae(𝜏𝑐) adversary C with the resources (𝑡′, qe, qd, 𝜎).

proc initialize priv(𝜏𝑐)-R𝛱

𝐾 ←$ 𝒦
𝒳 ← ∅

oracle Enc(𝑁, 𝐴, 𝜏, 𝑀)
if (𝑁, 𝜏) ∈ 𝒳 then

return ⊥
𝒳 ← 𝒳 ∪ {(𝑁, 𝜏)}
return ℰ(𝐾, 𝑁, 𝐴, 𝜏, 𝑀)

proc initialize priv(𝜏𝑐)-I𝛱

𝐾 ←$ 𝒦
𝒳 ← ∅

oracle Enc(𝑁, 𝐴, 𝜏, 𝑀)
if (𝑁, 𝜏) ∈ 𝒳 then

return ⊥
𝒳 ← 𝒳 ∪ {(𝑁, 𝜏)}
if 𝜏 = 𝜏𝑐 then

𝐶 ←$ {0, 1}|𝑀|+𝜏𝑐

return 𝐶
return ℰ(𝐾, 𝑁, 𝐴, 𝜏, 𝑀)

proc initialize auth(𝜏𝑐)𝛱

𝐾 ←$ 𝒦
𝒳 ← ∅, 𝒴 ← ∅

oracle Enc(𝑁, 𝐴, 𝜏, 𝑀)
if (𝑁, 𝜏) ∈ 𝒳 then

return ⊥
𝒳 ← 𝒳 ∪ {(𝑁, 𝜏)}
𝐶 ← ℰ(𝐾, 𝑁, 𝐴, 𝜏, 𝑀)
if 𝜏 = 𝜏𝑐 then

𝒴 ← 𝒴 ∪ {(𝑁, 𝐴, 𝐶)}
return 𝐶

oracle Dec(𝑁, 𝐴, 𝜏, 𝐶)
if 𝜏 = 𝜏𝑐 and (𝑁, 𝐴, 𝐶) ∈ 𝒴 then

return ⊥
return 𝒟(𝐾, 𝑁, 𝐴, 𝜏, 𝐶)

Fig. 9: Dual nvAE security. Security games for defining AE security of a nonce-
based AE scheme 𝛱 = (𝒦, ℰ ,𝒟) with variable-stretch.

We reduce A to C as follows. C answers all A ’s queries directly with its own
oracles (again making sure to enforce all the restrictions of ind-cca(𝜏𝑐) games),
except for encryption queries expanded by 𝜏𝑐 bits. For those, C ignores its en-
cryption oracle and answers with |𝑀 |+ 𝜏𝑐 random bits if A ’s query has a fresh
nonce-stretch pair an is not a re-encryption. At the end of experiment, C outputs
the inverse of A ’s output. If C interacts with nvae(𝜏𝑐)-R𝛱 , then it perfectly
simulates ind-cca(𝜏𝑐)-I𝛱 for A while if C interacts with nvae(𝜏𝑐)-I𝛱 , then it
perfectly simulates ind-cca(𝜏𝑐)-I⊥𝛱 . ⊓⊔

No Two-Requirement Notion. The equivalence of the two-requirement (pri-
vacy and authenticity) approach and all-in-one approach for defining AE security
is among the best known results in AE [36]. One may wonder whether such an
equivalence also holds in the setting of variable-stretch AE schemes for natu-
ral 𝜏𝑐-parameterized extensions of these notions. Surprisingly, we answer this
question negatively. We consider the conventional privacy (ind-cpa$) and au-
thenticity (integrity of ciphertexts) notions for AE schemes [3,32] and define the
notions of 𝜏𝑐-privacy and 𝜏𝑐-authenticity as natural parameterized extensions of
their conventional counterparts.

Let 𝛱 = (𝒦, ℰ ,𝒟) be an nvAE scheme with syntax defined in Section 2.
An adversary A against 𝜏𝑐-privacy of 𝛱 interacts with games priv(𝜏𝑐)-R𝛱

(real scheme) and priv(𝜏𝑐)-I𝛱 (ideal behaviour) defined in Figure 9, and tries

to distinguish them. We measure A ’s advantage in breaking the 𝜏𝑐-privacy of
𝛱 in a chosen plaintext attack as Advpriv(𝜏𝑐)

𝛱 (A) = Pr[A priv(𝜏𝑐)-R𝛱 ⇒ 1] −
Pr[A priv(𝜏𝑐)-I𝛱 ⇒ 1].

An adversary A that attacks the 𝜏𝑐-authenticity of 𝛱 is left to interact with
the game auth(𝜏𝑐)𝛱 defined in Figure 9 and its goal is to find a valid forgery
(i.e. produce a decryption query returning 𝑀 ̸= ⊥) with the target stretch of
𝜏𝑐 bits. We measure the advantage of A in breaking 𝜏𝑐-authenticity of 𝛱 in a
chosen ciphertext attack by Advauth(𝜏𝑐)

𝛱 (A) = Pr
[︀
A auth(𝜏𝑐)𝛱 forges with 𝜏c

]︀
.

The adversarial resources of interest for the priv(𝜏𝑐) and auth(𝜏𝑐) notions are
(𝑡, qe, 𝜎) and (𝑡, qe, qd, 𝜎) respectively, defined as for the notion of nvae(𝜏𝑐) in
the current Section.

Remark 3 (Relations with the all-in-one nvAE, priv and auth notions). As be-
fore, if a scheme 𝛱 is priv(𝜏𝑐) (auth(𝜏𝑐)) secure with stretch-space ℐ𝑇 , then it
will be secure for any stretch-space ℐ ′𝑇 ⊆ ℐ𝑇 including ℐ ′𝑇 = {𝜏𝑐}, implying the
priv (auth) security of the scheme 𝛱[𝜏𝑐].

We can easily verify that the nvae(𝜏𝑐) security of a scheme 𝛱 implies both
the priv(𝜏𝑐) security and the auth(𝜏𝑐) of 𝛱, by adapting the reductions for
corresponding conventional notions [36] slightly. In Proposition 1, we show that
the converse of this implication does not hold.

BK1

N

FK2

n
M

τ

F ′

K3
A

〈·〉

〈·〉

Z

Tleft(·)

Fig. 10: The encryption algorithm of the scheme 𝛱¬cca. ⟨·⟩ is an efficiently computable,
injective encoding scheme.
Proposition 1. There exists a nonce-based AE scheme with variable stretch,
that is secure in the sense of both the priv(𝜏𝑐) notion and the auth(𝜏𝑐) notion
but insecure in the sense of ind-cca(𝜏𝑐) notion, i.e.

priv(𝜏𝑐) ∧ auth(𝜏𝑐) ;ind-cca(𝜏𝑐),

assuming the existence of secure tweakable blockciphers and PRFs.

To support the claim in Proposition 1, we define the nvAE scheme 𝛱¬cca =
(𝒦¬cca, ℰ¬cca,𝒟¬cca) constructed from an ind-cpa secure tweakable blockcipher
B : 𝒦1 × 𝒩 × {0, 1}𝑛 → {0, 1}𝑛 and two PRFs 𝐹 : 𝒦2 × {0, 1}* → {0, 1}𝑛 and
𝐹 ′ : 𝒦3×{0, 1}* → {0, 1}𝑚. We define 𝒦¬cca = 𝒦1×𝒦2×𝒦3,ℳ¬cca = {0, 1}𝑛,
𝒜¬cca = {0, 1}*, 𝒩¬cca = 𝒩 and the encryption and decryption algorithms as
in Figure 11. We require that |ℐ𝑇 ¬cca| ≥ 2 and that 𝑚 ≥ max(ℐ𝑇 ¬cca). The
encryption algorithm ℰ¬cca is depicted in Figure 10.

proc ℰ¬cca(𝐾, 𝑁, 𝐴, 𝜏, 𝑀)
Parse 𝐾 as 𝐾1, 𝐾2, 𝐾3
𝑊 ←𝑀 ⊕ 𝐹 (𝐾2, ⟨𝜏⟩)
𝑍 ← B(𝐾1, 𝑁, 𝑊)
𝑇 ← left𝜏 (𝐹 ′(𝐾3, ⟨𝑁, 𝐴, 𝜏, 𝑍⟩))
return 𝑍‖𝑇

proc 𝒟¬cca(𝐾, 𝑁, 𝐴, 𝜏, 𝐶)
Parse 𝐾 as 𝐾1, 𝐾2, 𝐾3
Parse 𝐶 as 𝑍‖𝑇 with |𝑇 | = 𝜏
if left𝜏 (𝐹 ′(𝐾3, ⟨𝑁, 𝐴, 𝜏, 𝑍⟩)) ̸= 𝑇 then

return ⊥
𝑊 ← B−1(𝐾1, 𝑁, 𝑍)
return 𝑊 ⊕ 𝐹 (𝐾2, ⟨𝜏⟩)

Fig. 11: Encryption and decryption algorithms of the nonce-based, variable-stretch
AE scheme 𝛱¬cca = (𝒦¬cca, ℰ¬cca, ℰ¬cca). ⟨·⟩ is an efficiently computable, injective
encoding scheme.

The scheme 𝛱¬cca is by far no real-life AE construction (mainly due to its lim-
ited message space), its purpose is merely to act as a counter example. It can be
verified, that Advauth(𝜏𝑐)

𝛱¬cca
(𝑡, qe, qd, 𝜎) ≤ Adv𝑃 𝑅𝐹

𝐹 ′ (𝑡, 𝑞𝑒 + 𝑞𝑑, 𝜎) + 𝑞𝜏𝑐

𝑑 /2𝜏𝑐 ; every
forgery attempt equals to guessing 𝜏𝑐 bits of an output of 𝐹 ′, evaluated on a fresh
input.3 For privacy, we have that Advpriv(𝜏𝑐)

𝛱¬cca
(𝑡, qe, qd, 𝜎) ≤ Adv𝑃 𝑅𝐹

𝐹 (𝑡, 𝑞𝑒, 𝜎)+

Adv𝑃 𝑅𝐹
𝐹 ′ (𝑡, 𝑞𝑒, 𝜎)+Adṽ︁𝑝𝑟𝑝

B (𝑡, 𝑞𝑒)+2𝑞2
𝑒/2𝑛. Here 𝑞𝑒 =

∑︀
𝜏∈ℐ𝑇

𝑞𝜏
𝑒 , 𝑞𝑑 =

∑︀
𝜏∈ℐ𝑇

𝑞𝜏
𝑑

and 𝜎 =
∑︀

𝜏∈ℐ𝑇
𝜎𝜏 .

The term 2𝑞2
𝑒/2𝑛 is composed of 𝑞2

𝑒/2𝑛 that comes from a RP-RF switch
for the tweakable blockcipher and another 𝑞2

𝑒/2𝑛 that comes from extending
the tweakspace to include stretch, using 𝐹 (similar to Rogaway’s XE construc-
tion [33]). However, we can construct an adversary A¬cca, that achieves ind-cca(𝜏𝑐)
advantage close to 1. The strategy of A¬cca is as follows:

1. ask query 𝑍1‖𝑇1 ← Enc(𝑁1, 𝐴1, 𝜏𝑐, 𝑀1) with arbitrary 𝑁1, 𝐴1, 𝑀1,
2. iterate through 𝑇 *1 ∈ {0, 1}𝜏min until 𝑀*

1 ← Dec(𝑁1, 𝐴1, 𝜏min, 𝑍1‖𝑇 *1) returns
𝑀*

1 ̸= ⊥,
3. ask query 𝑍2‖𝑇2 ← Enc(𝑁2, 𝐴2, 𝜏𝑐, 𝑀2) with arbitrary 𝑁2, 𝐴2, 𝑀2,
4. iterate through 𝑇 *2 ∈ {0, 1}𝜏min until 𝑀*

2 ← Dec(𝑁2, 𝐴2, 𝜏min, 𝑍2‖𝑇 *2) returns
𝑀*

2 ̸= ⊥,
5. return 1 iff 𝑀1 ⊕𝑀*

1 = 𝑀2 ⊕𝑀*
2 (otherwise return 0),

where 𝜏min = min(ℐ𝑇 ∖{𝜏𝑐}). We have that Advind-cca(𝜏𝑐)
𝛱¬cca

(A¬cca) = 1− 2−𝑛. As
amount of stretch 𝜏 has no effect on the encryption by B, we can verify that

𝑀1 ⊕ 𝐹 (𝐾2, ⟨𝜏𝑐⟩) =𝑀*
1 ⊕ 𝐹 (𝐾2, ⟨𝜏min⟩)

𝑀2 ⊕ 𝐹 (𝐾2, ⟨𝜏𝑐⟩) =𝑀*
2 ⊕ 𝐹 (𝐾2, ⟨𝜏min⟩)

The final conditional statement verified by the adversary is always true for the
real scheme. The probability of the same event in the “ideal” game is 2−𝑛. As a
consequence of Theorem 1 and Proposition 1, we can state Corollary 1.4

3 Note that 𝜏𝑐 is an index rather than a power in 𝑞𝜏𝑐
𝑑 .

4 The same attack strategy yields also Advnvae(𝜏𝑐)
𝛱¬cca

(A¬cca) = 1− 2−𝑛.

proc initialize kess-R𝛱

𝐾 ←$ 𝒦
𝒳 ← ∅

oracle Enc(𝑁, 𝐴, 𝜏, 𝑀)
if (𝑁, 𝜏) ∈ 𝒳 then

return ⊥
𝒳 ← 𝒳 ∪ {(𝑁, 𝜏)}
return ℰ(𝐾, 𝑁, 𝐴, 𝜏, 𝑀)

oracle Dec(𝑁, 𝐴, 𝜏, 𝐶)
return 𝒟(𝐾, 𝑁, 𝐴, 𝜏, 𝐶)

proc initialize kess-I𝛱

for 𝜏 ∈ ℐ𝑇 do
𝐾𝜏 ←$ 𝒦

oracle Enc(𝑁, 𝐴, 𝜏, 𝑀)
if (𝑁, 𝜏) ∈ 𝒳 then

return ⊥
𝒳 ← 𝒳 ∪ {(𝑁, 𝜏)}
return ℰ(𝐾𝜏 , 𝑁, 𝐴, 𝜏, 𝑀)

oracle Dec(𝑁, 𝐴, 𝜏, 𝐶)
return 𝒟(𝐾𝜏 , 𝑁, 𝐴, 𝜏, 𝐶)

Fig. 12: Key-equivalent separation by stretch. Games defining kess property of a
nonce-based AE scheme 𝛱 = (𝒦, ℰ ,𝒟) with variable stretch. Note that the independent
keying for each 𝜏 ∈ ℐ𝑇 in game kess-I𝛱 can be done by lazy sampling if needed.

Corollary 1. There exists a nonce-based AE scheme with variable stretch, that
is secure in the sense of both the priv(𝜏𝑐) notion and the auth(𝜏𝑐) notion but
insecure in the sense of nvae(𝜏𝑐) notion, i.e.

priv(𝜏𝑐) ∧ auth(𝜏𝑐) ;nvae(𝜏𝑐)

Key-equivalent separation by stretch. The notion of nvae(𝜏𝑐) captures
the immediate intuition about the security goal one expects to achieve using
a nonce-based AE scheme with variable stretch. We now introduce a modular
approach to achieving the notion. Assume that an AE scheme is already known
to be secure in the sense of the nAE model. What additional security property
should such a scheme possess (i.e. on top of nAE-security) so that it can achieve
the full aim of being a nvae(𝜏𝑐)-secure scheme? We formalize such a desirable
property, naming it key-equivalent separation by stretch (kess), which captures
the intuition that for each value of stretch the scheme should behave as if keyed
with a fresh, independent secret key.

Let 𝛱 = (𝒦, ℰ ,𝒟) be an nvAE scheme with the syntax defined in Section 2.
We let an adversary A that tries to break kess of 𝛱 interact with games defined
in Figure 12. The goal of the adversary is to distinguish these two games. The
advantage of A in breaking the kess property of the scheme 𝛱 is measured by
Advkess

𝛱 (A) = Pr
[︀
A kess-R𝛱 ⇒ 1

]︀
− Pr

[︀
A kess-I𝛱) ⇒ 1

]︀
.

The adversarial resources of interest for the kess notion are (𝑡, qe, qd, 𝜎), as
defined for the nvae(𝜏𝑐) notion in the current Section.

We note that kess on its own says nothing about AE security of a scheme (e.g.
identity “encryption” concatenated with 𝜏 zeroes achieves kess, but is far from
nae-secure). However, we show in Theorem 2 that when combined with nae
security, kess implies nvae(𝜏𝑐) security. Informally, the kess notion takes care
of interaction between queries with different values of stretch. Once this is done,

proc initialize 𝐺
for 𝜏 ∈ ℐ𝑇 do

𝐾𝜏 ←$ 𝒦
𝒳 ← ∅, 𝒴 ← ∅

oracle Dec(𝑁, 𝐴, 𝜏, 𝐶)
if 𝜏 = 𝜏𝑐 and (𝑁, 𝐴, 𝐶) ∈ 𝒴 then

return ⊥
return 𝒟(𝐾𝜏 , 𝑁, 𝐴, 𝜏, 𝐶)

oracle Enc(𝑁, 𝐴, 𝜏, 𝑀)
if (𝑁, 𝜏) ∈ 𝒳 then

return ⊥
𝒳 ← 𝒳 ∪ {(𝑁, 𝜏)}
𝐶 ← ℰ(𝐾𝜏 , 𝑁, 𝐴, 𝜏, 𝑀)
if 𝜏 = 𝜏𝑐 then

𝒴 ← 𝒴 ∪ {(𝑁, 𝐴, 𝐶)}
return 𝐶

Fig. 13: Security game nvae(𝜏𝑐)-𝐺𝛱 .

we are free to argue that the queries with 𝜏𝑐 bits of stretch are “independent” of
those with other values of stretch and will “inherit” the security level of 𝛱[𝜏𝑐].

Theorem 2 (kess∧nae⇒ nvae(𝜏𝑐)). Let 𝛱 = (𝒦, ℰ ,𝒟) be a nonce-based AE
scheme with variable stretch. We have that

Advnvae(𝜏𝑐)
𝛱 (𝑡, qe, qd, 𝜎) ≤ Advkess

𝛱 (𝑡′, qe, qd, 𝜎) + Advnae
𝛱[𝜏𝑐](𝑡′′, 𝑞𝜏𝑐

𝑒 , 𝑞𝜏𝑐

𝑑 , 𝜎𝜏𝑐),

with 𝑡′ = 𝑡 + 𝑂(𝑞) and 𝑡′′ = 𝑡 + 𝑂(𝜎) where 𝑞 =
∑︀

𝜏∈ℐ𝑇
(𝑞𝜏

𝑒 + 𝑞𝜏
𝑑) and 𝜎 =∑︀

𝜏∈ℐ𝑇
(𝜎𝜏

𝑒 + 𝜎𝜏
𝑑).

Proof. Let A be an nvae(𝜏𝑐) adversary with the indicated resources. Consider
the security game nvae(𝜏𝑐)-𝐺 defined in Figure 13. We have that
Advnvae(𝜏𝑐)

𝛱 (A) = Pr[A nvae(𝜏𝑐)-R𝛱 ⇒ 1]− Pr[A nvae(𝜏𝑐)-𝐺𝛱 ⇒ 1]
+ Pr[A nvae(𝜏𝑐)-𝐺𝛱 ⇒ 1]− Pr[A nvae-I𝛱 (𝜏𝑐) ⇒ 1].

We first show that Pr[A nvae(𝜏𝑐)-R𝛱 ⇒ 1]−Pr[A nvae(𝜏𝑐)-𝐺𝛱 ⇒ 1] ≤ Advkess
𝛱 (B)

for a kess adversary B with the resources (𝑡′, qe, qd, 𝜎). The nvae(𝜏𝑐) adversary
A can be straightforwardly reduced to B. Any query of A is directly answered
with B’s own oracles, except for decryption queries with expansion of 𝜏𝑐 bits
whose output is trivially known from previous encryption queries; here B re-
turns ⊥ to A . At the end, B outputs whatever A outputs. If B interacts with
kess-R𝛱 then it perfectly simulates nvae(𝜏𝑐)-R𝛱 for A . If B interacts with
kess-I𝛱 then it perfectly simulates nvae(𝜏𝑐)-𝐺𝛱 .
We next show that Pr[A nvae(𝜏𝑐)-𝐺𝛱 ⇒ 1]−Pr[A nvae-I𝛱 (𝜏𝑐) ⇒ 1] ≤ Advnae

𝛱[𝜏𝑐](C)
for an nae adversary C with resources (𝑡′′, 𝑞𝜏𝑐

𝑒 , 𝑞𝜏𝑐

𝑑 , 𝜎𝜏𝑐). A can be reduced to C
in the following way. When A issues a query with expansion 𝜏𝑐, C answers it
with its own oracles. For other amounts of stretch 𝜏 ̸= 𝜏𝑐, C first checks if there
were previous queries with 𝜏 bits of stretch. If not, it samples a fresh key 𝐾𝜏 . C
then processes the query with the real (encryption or decryption) algorithm of
𝛱 and the key 𝐾𝜏 , making sure that encryption queries comply with the nonce
requirement and are not re-encryptions. If C interacts with nae-R𝛱[𝜏𝑐] then it
perfectly simulates nvae(𝜏𝑐)-𝐺𝛱 for A . If C interacts with nae-I𝛱[𝜏𝑐] then it
perfectly simulates nvae(𝜏𝑐)-I𝛱 . This yields the desired result. ⊓⊔

Remark 4. An RAE secure scheme 𝛱 will always have the kess property. To
see why, note that replacing 𝛱 by a collection of random injections in both the

kess-R𝛱 and kess-I𝛱 games will not increase the advantage significantly, as
that would contradict 𝛱’s RAE security. After the replacement, the two games
will be indistinguishable. On the other hand, kess property does not guarantee
RAE security; the scheme OCBv described in Section 6 can serve as a counter-
example, because it does not tolerate nonce reuse.

5 A short guide to nvAE

Interpretation of the nvAE security advantage. The notion of nvae(𝜏𝑐)
is parameterized by a constant, but arbitrary amount of stretch 𝜏𝑐 from the
stretch space ℐ𝑇 of the AE scheme 𝛱 in question. In the nvae(𝜏𝑐)-I𝛱 security
game, only queries expanded by 𝜏𝑐 bits will be subjected to “idealization”. For
all other expansions, we give the adversary complete freedom to ask any queries
it wants (except for the nonce-requirement), but their behaviour is the same in
both security games. An nvae(𝜏𝑐) security bound that assumes no particular
value or constraint for 𝜏𝑐 will therefore tell us, what security guarantees can we
expect from queries stretched by 𝜏𝑐 bits specifically, for any 𝜏𝑐 ∈ ℐ𝑇 .

Looking at the security bound itself, we are able to tell if there are any
undesirable interactions between queries with different amounts of stretch. This
is best illustrated by revisiting the problems and forgery attack from Sections 1
and 3 in the nvae(𝜏𝑐) security model.

Attacks in nvAE model. With the formal framework defined, we revisit the
heuristic attacks from Section 3 and analyse the advantage they achieve, as well
as the resources they require. Consider the original, unmodified scheme OCB [21],
that produces the tag by truncating an 𝑛-bit (with 𝑛 > 𝜏) to 𝜏 bits. In case of
simultaneous use of two (or more) amounts of stretch 𝜏1 < 𝜏2 with the same
key, we can forge a ciphertext stretched by 𝜏1 bits by 𝜏2-bit-stretched ciphertext
truncation. This would correspond to an attack with an nvae(𝜏1) advantage of
1 and constant resources.

If the same scheme is treated with the heuristic measures, i.e.nonce-stealing,
and encoding 𝜏 in AD, from Section 3 (let’s call it hOCB), we consider the
forgery attack from the same Section. Assume that there are four instances of
hOCB, with 32, 64, 96 and 128 bit tags. To make a forgery with 128-bit tag,
we have to find a forgery with 32 bits and then exhaustively search for three
32-bit extensions of this forgery. This gives us an nvae(128) advantage equal to
1, requiring 4 encryption queries, 3 · 232 verification queries with stretch other
than 128 bits and 232 verification stretched by 128 bits. The effort necessary for
such a forgery is clearly smaller than we could hope for, especially in the amount
of verification queries stretched by the challenge amount of bits (i.e. 128).

“Good” bounds. After seeing examples of attacks, one may wonder: what kind
of nvae(𝜏𝑐) security bound should we expect from a secure nvAE scheme? For
every scheme, it must be always possible to guess a ciphertext with probability
2−𝜏𝑐 . Thus the bound must always contain a term of the form 𝑐 · (𝑞𝜏𝑐

𝑑)𝛼/2𝜏𝑐 for
some positive constants 𝑐 and 𝛼, or something similar.

Even though the security level for 𝜏𝑐-stretched queries should be independent
of any other queries, it is usually unavoidable to have a gradual increase of
advantage with every query made by the adversary. This increase can generally
depend on all of the adversarial resources, but should not depend on 𝜏𝑐 itself.

An example of a secure scheme’s nvae(𝜏𝑐) bound can be found in Theorem 4.
It consist of the fraction (𝑞𝜏𝑐

𝑑 · 2𝑛−𝜏𝑐)/(2𝑛 − 1) ≈ 𝑞𝜏𝑐

𝑑 /2𝜏𝑐 , advantage bounds
for the used blockcipher and a birthday-type term that grows with the total
amount of data processed. We see, that queries stretched by 𝜏 ̸= 𝜏𝑐 bits will not
unexpectedly increase adversary’s chances to break OCBv, and that the best
attack strategy is indeed issuing decryption queries with 𝜏𝑐 bits of stretch.

6 Achieving AE with Variable Stretch

We demonstrate that the security of AE schemes in the sense of nvae(𝜏𝑐) notion
is easily achievable by introducing a practical and secure scheme. Rather than
constructing a scheme from the scratch, we modify an existing, well-established
scheme and follow a modular approach to analyse its security in presence of
variable stretch. The modification we propose is general enough to be applica-
ble to most of the AE schemes based on a tweakable primitive (e.g. tweakable
blockcipher).

OCB mode for tweakable blockcipher. The Offset Codebook mode of
operation for a tweakable blockcipher (ΘCB) is a nonce-based AE scheme pro-
posed by Krovetz and Rogaway [21] (there are subtle differences from the prior
versions of OCB [33, 35]). It is parameterized by a tweakable blockcipher ̃︀𝐸 :
𝒦× 𝒯 × {0, 1}𝑛 → {0, 1}𝑛 and a tag length 0 ≤ 𝜏 ≤ 𝑛. The tweak space of ̃︀𝐸 is
of the form 𝒯 = 𝒩 × N0 × {0, 1, 2, 3} ∪ N0 × {0, 1, 2, 3} for a finite set 𝒩 . The
encryption and the decryption algorithms of ΘCB[̃︀𝐸, 𝜏] are described in Figure
14. The security of ΘCB is captured in Lemma 1.

Lemma 1. (Lemma 2 [21]) Let ̃︀𝐸 : 𝒦 × 𝒯 × {0, 1}𝑛 → {0, 1}𝑛 be a tweakable
blockcipher with 𝒯 = 𝒩 ×N0 × {0, 1, 2, 3} ∪N0 × {0, 1, 2, 3}. Let 𝜏 ∈ {0, . . . , 𝑛}.
Then we have that

Advpriv
ΘCB[̃︀𝐸,𝜏]

(𝑡, 𝑞𝑒, 𝜎) ≤Adv±̃︁prp̃︀𝐸 (𝑡′, 𝑞𝑝),

Advauth
ΘCB[̃︀𝐸,𝜏]

(𝑡, 𝑞𝑒, 𝑞𝑑, 𝜎) ≤Adv±̃︁prp̃︀𝐸 (𝑡′, 𝑞𝑎) + 𝑞𝑑 ·
2𝑛−𝜏

2𝑛 − 1 ,

where 𝑞𝑝 ≤ ⌈𝜎/𝑛⌉+ 2 · 𝑞𝑒, and 𝑞𝑎 ≤ ⌈𝜎/𝑛⌉+ 2 · (𝑞𝑒 + 𝑞𝑑), and 𝑡′ = 𝑡 + 𝑂(𝜎).

Thanks to the results of [36, 37], we can state as a corollary of Lemma 1 that
Advnae

ΘCB[̃︀𝐸,𝜏]
(𝑡, 𝑞𝑒, 𝑞𝑑, 𝜎) ≤ Adv±̃︁prp̃︀𝐸 (𝑡′, (⌈𝜎/𝑛⌉+ 2 · (𝑞𝑒 + 𝑞𝑑))) + 𝑞𝑑

2𝑛−𝜏

2𝑛−1 .

OCB mode with variable-stretch security. We introduce ΘCBv (variable-
stretch-ΘCB), a nonce-based AE scheme with variable stretch, obtained by
slightly modifying ΘCB.

101: Algorithm ℰ𝐾 (𝑁, 𝐴, 𝑀)
102: if 𝑁 /∈ 𝒩 then
103: return ⊥
104: 𝑀1‖𝑀2 · · ·𝑀𝑚‖𝑀*←𝑀 where
105: each |𝑀𝑖| = 𝑛 and |𝑀*| < 𝑛
106: Sum← 0𝑛, 𝐶* ← 𝜀
107: for 𝑖← 1 to 𝑚 do
108: 𝐶𝑖 ← ̃︀𝐸𝑁,𝑖,0

𝐾
(𝑀𝑖)

109: Sum← Sum⊕𝑀𝑖

110: if 𝑀* = 𝜀 then
111: Final← ̃︀𝐸𝑁,𝑚,2

𝐾
(Sum)

112: else
113: Pad← ̃︀𝐸𝑁,𝑚,1

𝐾
(0𝑛)

114: 𝐶* ←𝑀* ⊕ left|𝑀*|(Pad)
115: Sum← Sum⊕𝑀*‖10*

116: Final← ̃︀EN,m,3
K (Sum)

117: Auth← Hash𝐾 (𝐴)
118: 𝑇 ← left𝜏 (Final⊕ Auth)
119: return 𝐶1‖𝐶2‖ · · · ‖𝐶𝑚‖𝐶*‖𝑇

301: Algorithm HASH𝐾(𝐴)
302: Sum← 0𝑛

303: 𝐴1‖𝐴2 · · ·𝐴𝑚‖𝐴*←𝐴 where
304: each |𝐴𝑖| = 𝑛 and |𝐴*| < 𝑛
305: for 𝑖← 1 to 𝑚 do
306: Sum← Sum⊕ ̃︀𝐸𝑖,0

𝐾
(𝐴𝑖)

307: if 𝐴* ̸= 𝜀 then

308: Sum← Sum⊕ ̃︀𝐸𝑚,1
𝐾

(𝐴*‖10*)
309: return Sum

201: Algorithm 𝒟𝐾(𝑁, 𝐴, C)
202: if 𝑁 /∈ 𝒩 or |C| < 𝜏 then
203: return ⊥
204: 𝐶1‖𝐶2 · · ·𝐶𝑚‖𝐶*‖𝑇←C where
205: each where each |𝐶𝑖| = 𝑛,
206: |𝐶*| < 𝑛 and |𝑇 | = 𝜏
207: Sum← 0𝑛, 𝑀* ← 𝜀
208: for 𝑖← 1 to 𝑚 do
209: 𝑀𝑖 ← ̃︀𝐷𝑁,𝜏,𝑖,0

𝐾
(𝐶𝑖)

210: Sum← Sum⊕𝑀𝑖

211: if 𝐶* = 𝜀 then
212: Final← ̃︀𝐸𝑁,𝑚,2

𝐾
(Sum)

213: else
214: Pad← ̃︀𝐸𝑁,𝑚,1

𝐾
(0𝑛)

215: 𝑀* ← 𝐶* ⊕ left|𝐶*|(Pad)
216: Sum← Sum⊕𝑀*‖10*

217: Final← ̃︀EN,m,3
K (Sum)

218: Auth← Hash𝐾 (𝐴)
219: 𝑇 ′ ← left𝜏 (Final⊕ Auth)
220: if 𝑇 = 𝑇 ′ then
221: return 𝐶1‖ · · · ‖𝐶𝑚‖𝐶*‖𝑇
222: else
223: return ⊥

Fig. 14: Definition of ΘCB[̃︀𝐸, 𝜏].

The tweakable blockcipher mode of operation ΘCBv is parameterized only
by a tweakable blockcipher ̃︀𝐸 : 𝒦 × 𝒯 × {0, 1}𝑛 → {0, 1}𝑛. The tweak 𝒯 is
different than the one needed for ΘCB; it is of the form 𝒯 = 𝒩 × ℐ𝑇 × N0 ×
{0, 1, 2, 3}∪ℐ𝑇 ×N0×{0, 1, 2, 3} where ℐ𝑇 ⊆ {0, 1, . . . , 𝑛} is the desired stretch-
space of ΘCBv. The encryption and decryption algorithms of ΘCBv are exactly
the same as those of ΘCB, that they now allow incorporate variable stretch
and that every call to ̃︀𝐸 is now tweaked by 𝜏 , in addition to the other tweak
components. Both algorithms are described in Figure 15. An illustration of the
encryption algorithm is depicted in Figure 16.

Thanks to Theorem 2, establishing the nvae(𝜏𝑐) security of ΘCBv requires
little effort. The corresponding result is stated in Theorem 3.

Theorem 3. Let ̃︀𝐸 : 𝒦×𝒯 ×{0, 1}𝑛 → {0, 1}𝑛 be a tweakable blockcipher with
𝒯 = 𝒩 × ℐ𝑇 × N0 × {0, 1, 2, 3} ∪ ℐ𝑇 × N0 × {0, 1, 2, 3}. Then we have that

Advnvae(𝜏𝑐)
ΘCBv[̃︀𝐸]

(𝑡, qe, qd, 𝜎) ≤Adv±̃︁prp̃︀𝐸 (𝑡′, 𝑞) +
∑︁

𝜏∈ℐ𝑇

Adv±̃︁prp̃︀𝐸 (𝑡′, 𝑞𝜏)

+ Adv±̃︁prp̃︀𝐸 (𝑡′, 𝑞𝜏𝑐) + 𝑞𝜏𝑐

𝑑 ·
2𝑛−𝜏𝑐

2𝑛 − 1 .

where 𝑞𝜏 = ⌈𝜎𝜏 /𝑛⌉+2·(𝑞𝜏
𝑒 +𝑞𝜏

𝑑) for 𝜏 ∈ ℐ𝑇 , and 𝑞 =
∑︀

𝜏∈ℐ𝑇
𝑞𝜏 , and 𝑡′ = 𝑡+𝑂(𝜎)

with 𝜎 =
∑︀

𝜏∈ℐ𝑇
𝜎𝜏 .

101: Algorithm ℰ𝐾 (𝑁, 𝐴, 𝜏, 𝑀)
102: if 𝑁 /∈ 𝒩 then
103: return ⊥
104: 𝑀1‖𝑀2 · · ·𝑀𝑚‖𝑀*←𝑀 where
105: each |𝑀𝑖| = 𝑛 and |𝑀*| < 𝑛
106: Sum← 0𝑛, 𝐶* ← 𝜀
107: for 𝑖← 1 to 𝑚 do
108: 𝐶𝑖 ← ̃︀𝐸𝑁,𝜏,𝑖,0

𝐾
(𝑀𝑖)

109: Sum← Sum⊕𝑀𝑖

110: if 𝑀* = 𝜀 then
111: Final← ̃︀𝐸𝑁,𝜏,𝑚,2

𝐾
(Sum)

112: else
113: Pad← ̃︀𝐸𝑁,𝜏,𝑚,1

𝐾
(0𝑛)

114: 𝐶* ←𝑀* ⊕ left|𝑀*|(Pad)
115: Sum← Sum⊕𝑀*‖10*

116: Final← ̃︀EN,𝜏,m,3
K (Sum)

117: Auth← Hash𝐾 (𝐴)
118: 𝑇 ← left𝜏 (Final⊕ Auth)
119: return 𝐶1‖𝐶2‖ · · · ‖𝐶𝑚‖𝐶*‖𝑇

301: Algorithm HASH𝐾(𝐴, 𝜏)
302: Sum← 0𝑛

303: 𝐴1‖𝐴2 · · ·𝐴𝑚‖𝐴*←𝐴 where
304: each s|𝐴𝑖| = 𝑛 and |𝐴*| < 𝑛
305: for 𝑖← 1 to 𝑚 do
306: Sum← Sum⊕ ̃︀𝐸𝜏,𝑖,0

𝐾
(𝐴𝑖)

307: if 𝐴* ̸= 𝜀 then

308: Sum← Sum⊕ ̃︀𝐸𝜏,𝑚,1
𝐾

(𝐴*‖10*)
309: return Sum

201: Algorithm 𝒟𝐾(𝑁, 𝐴, 𝜏, C)
202: if 𝑁 /∈ 𝒩 or |C| < 𝜏 then
203: return ⊥
204: 𝐶1‖𝐶2 · · ·𝐶𝑚‖𝐶*‖𝑇←C where
205: each |𝐶𝑖| = 𝑛,
206: |𝐶*| < 𝑛 and |𝑇 | = 𝜏
207: Sum← 0𝑛, 𝑀* ← 𝜀
208: for 𝑖← 1 to 𝑚 do
209: 𝑀𝑖 ← ̃︀𝐷𝑁,𝜏,𝑖,0

𝐾
(𝐶𝑖)

210: Sum← Sum⊕𝑀𝑖

211: if 𝐶* = 𝜀 then
212: Final← ̃︀𝐸𝑁,𝜏,𝑚,2

𝐾
(Sum)

213: else
214: Pad← ̃︀𝐸𝑁,𝜏,𝑚,1

𝐾
(0𝑛)

215: 𝑀* ← 𝐶* ⊕ left|𝐶*|(Pad)
216: Sum← Sum⊕𝑀*‖10*

217: Final← ̃︀EN,𝜏,m,3
K (Sum)

218: Auth← Hash𝐾 (𝐴)
219: 𝑇 ′ ← left𝜏 (Final⊕ Auth)
220: if 𝑇 = 𝑇 ′ then
221: return 𝐶1‖ · · · ‖𝐶𝑚‖𝐶*‖𝑇
222: else
223: return ⊥

Fig. 15: Definition of ΘCBv[̃︀𝐸]. Changes from ΘCB highlighted in red.

Proof. We observe that if we fix the expansion value to 𝜏𝑐 in all queries, the
nonce-based AE scheme (ΘCBv[̃︀𝐸])[𝜏𝑐] that we get will be identical with the
scheme ΘCB[̃︀𝐸, 𝜏𝑐]. The result follows from this observation and the results of
Lemmas 1 and 2 and Theorem 2. ⊓⊔

Lemma 2. Let ̃︀𝐸 : 𝒦 × 𝒯 × {0, 1}𝑛 → {0, 1}𝑛 be a tweakable blockcipher with
𝒯 = 𝒩 × ℐ𝑇 × N0 × {0, 1, 2, 3} ∪ ℐ𝑇 × N0 × {0, 1, 2, 3}. Then we have that

Advkess
ΘCBv[̃︀𝐸]

(𝑡, qe, qd, 𝜎) ≤Adv±̃︁prp̃︀𝐸 (𝑡′, 𝑞) +
∑︁

𝜏∈ℐ𝑇

Adv±̃︁prp̃︀𝐸 (𝑡′, 𝑞𝜏)

where 𝑞𝜏 = ⌈𝜎𝜏 /𝑛⌉+2·(𝑞𝜏
𝑒 +𝑞𝜏

𝑑) for 𝜏 ∈ ℐ𝑇 , and 𝑞 =
∑︀

𝜏∈ℐ𝑇
𝑞𝜏 , and 𝑡′ = 𝑡+𝑂(𝜎)

with 𝜎 =
∑︀

𝜏∈ℐ𝑇
𝜎𝜏 .

Proof. Let A be a kess adversary with indicated resources. We proceed by
replacing the tweakable blockcipher ̃︀𝐸 by an ideal one, i.e. we sample an inde-
pendent random tweakable permutation ̃︀𝜋𝐾 ←$ Perm𝒯 (𝑛) for every 𝐾 ∈ 𝒦 in
both the kess-R and the kess-I game. The increase of A ’s advantage due to
this replacement in the game kess-R is bounded by Adv±̃︁prp̃︀𝐸 (𝑡, 𝑞) by a standard
reduction. To bound the increase of A ’s advantage due to the replacement in
the game kess-I, we observe that the replacement can be done gradually, for
one value of stretch at a time. Thus, by a standard hybrid argument, the cumu-

Ẽ
N,τ,1,0

K Ẽ
N,τ,2,0

K Ẽ
N,τ,4,0

K Ẽ
N,τ,4,2

K

M1 M2 M4
Checksum

C1 C2 C4
T

Auth

τ

Tag

Final

Ẽ
N,τ,3,0

K

M3

C3

Ẽ
N,τ,1,0

K Ẽ
N,τ,2,0

K Ẽ
N,τ,3,1

K Ẽ
N,τ,3,3

K

M1 M2 M∗
Checksum

C1 C2 C∗
T

Auth

τ

Tag

Final

Ẽ
N,τ,3,0

K

M3

C3

0
n

Pad

0
∗

Ẽ
τ,1,0

K Ẽ
τ,2,0

K

A1 A2

Ẽ
τ,3,0

K

A3

Auth

Ẽ
τ,1,0

K Ẽ
τ,2,0

K

A1 A2

Ẽ
τ,2,1

K

A∗

Auth

10
∗

Fig. 16: Illustration of the encryption process of ΘCBv (inspired by [21]) instantiated
with a tweakable blokcipher ̃︀𝐸 : 𝒦 × 𝒯 × {0, 1}𝑛 → {0, 1}𝑛. The top half depicts the
encryption of a message with four complete blocks (top) with Sum=

⨁︀4
𝑖=1 𝑀𝑖 and the

encryption of a message with three complete blocks and an incomplete block (bottom)
with Sum=

⨁︀3
𝑖=1⊕𝑀*‖10*. The bottom half of the picture shows processing of asso-

ciated data of three complete blocks (left) or two complete blocks and an incomplete
block (right).

lative increase of advantage will be bounded by
∑︀

𝜏∈ℐ𝑇
Adv±̃︁prp̃︀𝐸 (𝑡, 𝑞𝜏). Once ̃︀𝐸

is replaced by a collection of random tweakable permutations in both games, we
observe that in both games, the games will produce identical distributions. This
is because both in kess-R and in kess-I, any two queries with any two unequal
amounts of stretch 𝜏1 and 𝜏2 will be processed by two independent collections of
random permutations (thanks to the separation of queries with different amounts
of stretch by tweaks). ⊓⊔

Instantiating ̃︀𝐸. In order to obtain a real-world scheme, we need to instantiate
the tweakable blockcipher ̃︀𝐸. The scheme OCB uses the XEX construction [33]
that turns an ordinary blockcipher 𝐸 : 𝒦 × {0, 1}𝑛 → {0, 1}𝑛 into a tweakable
blockcipher ̃︀𝐸 = XEX[𝐸] with ̃︀𝐸 : 𝒦 × 𝒯 × {0, 1}𝑛 → {0, 1}𝑛. A call to ̃︀𝐸 =
XEX[𝐸] is evaluated in two ways, depending on the tweak:̃︀𝐸𝑁,𝑖,𝑗

𝐾 (𝑋) = 𝐸𝐾(𝑋 ⊕𝛥𝑁,𝑖,𝑗)⊕𝛥𝑁,𝑖,𝑗 , or ̃︀𝐸𝑖,𝑗
𝐾 (𝑋) = 𝐸𝐾(𝑋 ⊕𝛥𝑖,𝑗).

In each call, the input (and in some cases also the output) of the blockcipher
𝐸 is masked with special 𝛥-values, derived from the tweak and the secret key.
An almost XOR universal hash 𝐻 : 𝒦 × {0, 1}<𝑛 → {0, 1}𝑛 with 𝐻(𝐾, 𝑁) =
𝐸𝐾(𝑁‖10*) is used in the computation of the masking values.5 In what follows,
we silently represent binary strings and integers by element of GF(2𝑛) whenever
needed and do the multiplications in this field with some fixed representation.
E.g. 22 ·(0𝑛−2‖10) would return an 𝑛-bit string that represents the result of 𝑥2 ·𝑥
in 𝐺𝐹 (2𝑛). The masking 𝛥-values are computed as follows:

𝛥𝑁,0,0 = 𝐻(𝐾, 𝑁),
𝛥𝑁,𝑖+1,0 = 𝛥𝑁,𝑖,0 ⊕ 𝐿(ntz(𝑖 + 1)) for 𝑖 ≥ 0,
𝛥𝑁,𝑖,𝑗 = 𝛥𝑁,𝑖,0 ⊕ 𝑗 · 𝐿* for 𝑗 ∈ {0, 1, 2, 3},
𝛥0,0 = 0𝑛,
𝛥𝑖+1,0 = 𝛥𝑖,0 ⊕ 𝐿(ntz(𝑖 + 1)) for 𝑖 ≥ 0,
𝛥𝑖,𝑗 = 𝛥𝑖,0 ⊕ 𝑗 · 𝐿* for 𝑗 ∈ {0, 1, 2, 3},

where 𝐿* = 𝐸𝐾(0𝑛), 𝐿(0) = 22 · 𝐿*, 𝐿(ℓ) = 2 · 𝐿(ℓ − 1) for ℓ > 0 and ntz(𝑖)
denotes the number of trailing zeros in the binary representation of the integer
𝑖, e.g. ntz(2) = 1.

Lemma 3. ([33]) Let 𝐸 : 𝒦 × {0, 1}𝑛 → {0, 1}𝑛 be a blockcipher and 𝒯 =
𝒩 ×N0×{0, 1, 2, 3} ∪N0×{0, 1, 2, 3}. Let A be an adversary that runs in time
at most 𝑡, asks at most 𝑞 queries, never asks queries with 𝑖-component exceeding
2𝑛−5 and never asks decryption queries with tweaks from N0 × {0, 1, 2, 3}. Then

Adv±̃︁prp
𝒯

XEX[𝐸](A) ≤ Adv±prp
𝐸 (B) + 9.5𝑞2

2𝑛

for an adversary B that makes at most 2𝑞 queries and runs in time bounded by
𝑡 + 𝑂(𝑞).
5 A different AXU is used in the latest version of OCB [21], we opted for 𝐸𝐾(·) for

the sake of simplicity.

Extending the tweaks with 𝜏 . In order to instantiate ΘCBv, we need to
extend the tweaks of ̃︀𝐸 with a fourth component: 𝜏 . To this end, we propose
XEX′, which is obtained by a slight modification of the XEX construction. In-
formally, we expand the domain of the “𝑗-part” of tweaks and represent it as
ℐ𝑇 × {0, 1, 2, 3}, compensating for this by decreasing the maximal value of 𝑖.

The tweakable blockcipher ̃︀𝐸′ = XEX′[𝐸] is defined as follows. We again use
the AXU 𝐻(𝐾, 𝑁). We uniquely label each element of ℐ𝑇 by an integer with a
bijection 𝜆 : ℐ𝑇 → {0, 1, . . . , |ℐ𝑇 |− 1}. We define 𝑚 = ⌈log2 |ℐ𝑇 |⌉, 𝐿* = 𝐸𝐾(0𝑛),
𝐿𝜏 = 𝜆(𝜏) ·22 ·𝐿* for 𝜏 ∈ ℐ𝑇 , 𝐿(0) = 22+𝑚 ·𝐿*, and 𝐿(ℓ) = 2 ·𝐿(ℓ−1) for ℓ > 0.
The masking 𝛥-values are computed as follows:

𝛥𝑁,0,0,0 = 𝐻(𝐾, 𝑁),
𝛥𝑁,𝜏,0,0 = 𝛥𝑁,0,0,0 ⊕ 𝐿𝜏 ,
𝛥𝑁,𝜏,𝑖+1,0 = 𝛥𝑁,𝜏,𝑖,0 ⊕ 𝐿(ntz(𝑖 + 1)) for 𝑖 ≥ 0,
𝛥𝑁,𝜏,𝑖,𝑗 = 𝛥𝑁,𝜏,𝑖,0 ⊕ 𝑗 · 𝐿* for 𝑗 ∈ {0, 1, 2, 3},
𝛥𝜏,0,0 = 𝐿𝜏 ,
𝛥𝜏,𝑖+1,0 = 𝛥𝜏,𝑖,0 ⊕ 𝐿(ntz(𝑖 + 1)) for 𝑖 ≥ 0,
𝛥𝜏,𝑖,𝑗 = 𝛥𝜏,𝑖,0 ⊕ 𝑗 · 𝐿* for 𝑗 ∈ {0, 1, 2, 3}.

A call to ̃︀𝐸′ is evaluated as follows:̃︀𝐸′𝑁,𝜏,𝑖,𝑗
𝐾 (𝑋) =𝐸𝐾(𝑋 ⊕𝛥𝑁,𝜏,𝑖,𝑗)⊕𝛥𝑁,𝜏,𝑖,𝑗 , or ̃︀𝐸′𝜏,𝑖,𝑗

𝐾 (𝑋) = 𝐸𝐾(𝑋 ⊕𝛥𝜏,𝑖,𝑗).

The security result for XEX′ construction is stated in Lemma 4.

Lemma 4. Let 𝐸 : 𝒦 × {0, 1}𝑛 → {0, 1}𝑛 be a blockcipher and 𝒯 = 𝒩 × ℐ𝑇 ×
N0×{0, 1, 2, 3}∪ℐ𝑇×N0×{0, 1, 2, 3} for some finite, non-empty ℐ𝑇 ⊆ N0. Let A
be an adversary that runs in time at most 𝑡, asks at most 𝑞 queries, never asks
queries with 𝑖-component exceeding 2𝑛−(5+⌈log2 |ℐ𝑇 |⌉) and never asks decryption
queries with tweaks from ℐ𝑇 ×𝑁0 × {0, 1, 2, 3}. Then

Adv±̃︁prp
𝒯

XEX′[𝐸](A) ≤ Adv±prp
𝐸 (B) + 9.5𝑞2

2𝑛

for an adversary B that makes at most 2𝑞 queries and runs in time bounded by
𝑡 + 𝑂(𝑞).

The treatment of 𝜏 -tweak component in XEX′ construction is equivalent to a one
where we would injectively encode 𝜏, 𝑗 into a single integer 𝑗′ = 22𝜏 + 𝑗. Similar
approach has been taken by Reyhanitabar et al. [29,30], where it is shown that
the essential properties of the masking values necessary for the security proof
of [33] are preserved. The same arguments apply here, so we omit the proof of
Lemma 4.

OCBv: practical AE with variable stretch. We define the blockcipher
mode OCBv, a nonce based AE scheme with variable stretch. OCBv is only
parameterized by a blockcipher 𝐸. It is obtained by instantiating the tweakable
blockcipher in ΘCBv by the XEX′ costruction, i.e. OCBv[𝐸] = ΘCBv[XEX′[𝐸]]
and its security is analysed in Theorem 4.

Theorem 4. Let ̃︀𝐸 : 𝒦 × {0, 1}𝑛 → {0, 1}𝑛 be a blockcipher. We have that

Advnvae(𝜏𝑐)
OCBv[𝐸](𝑡, qe, qd, 𝜎) ≤Adv±prp

𝐸 (𝑡′, 2𝑞) +
∑︁

𝜏∈ℐ𝑇

Adv±prp
𝐸 (𝑡′, 2𝑞𝜏)

+ Adv±prp
𝐸 (𝑡′, 2𝑞𝜏𝑐) + 28.5𝑞2

2𝑛
+ 𝑞𝜏𝑐

𝑑

2𝑛−𝜏𝑐

2𝑛 − 1 ,

where 𝑞𝜏 = ⌈𝜎𝜏 /𝑛⌉+ 2 · (𝑞𝜏
𝑒 + 𝑞𝜏

𝑑) for 𝜏 ∈ ℐ𝑇 , and 𝑞 =
∑︀

𝜏∈ℐ𝑇
𝑞𝜏 and

𝑡′ = 𝑡 + 𝑂(𝜎) with 𝜎 =
∑︀

𝜏∈ℐ𝑇
𝜎𝜏 .

If we further assume that the Adv±prp
𝐸 is non-decreasing w.r.t. both 𝑞 and 𝑡,

then we can further simplify the bound to the form

Advnvae(𝜏𝑐)
OCBv[𝐸](𝑡, qe, qd, 𝜎) ≤ (|ℐ𝑇 |+ 2) ·Adv±prp

𝐸 (𝑡′, 2𝑞) + 28.5𝑞2

2𝑛
+ 𝑞𝜏𝑐

𝑑 ·
2𝑛−𝜏𝑐

2𝑛 − 1 .

Proof. The result in Theorem 4 follows from Theorem 3 and Lemma 4 by ap-
plying triangle inequality on the terms that arise from applying Lemma 4. ⊓⊔

Performance of OCBv. The performance of OCBv can be expected to be
very similar to that of OCB, as the two schemes only differ in the way the mask-
ing 𝛥-values are computed. In addition to the operations necessary to compute
𝛥-offsets in OCB, the computation of the 𝐿𝜏 -values has to be done for OCBv.
However, these can be precomputed at the initialization phase and stored, so the
cost of their computation will be amortized over all queries. The only additional
processing that remains after dealing with 𝐿𝜏 -s is a single xor of a precom-
puted 𝐿𝜏 to a 𝛥-value, necessary in every query. This is unlikely to impact the
performance significantly.

7 Discussion

Relation between nvAE and kess+nAE. We define the kess property as
useful, albeit strong property that facilitates modular security proofs of nvAE
security for AE schemes whose nAE security has already been established. This
is depicted as implication g in Figure 1 and formally proven in Theorem 2.
However, determining the exact nature of the relation in the reverse direction
to implication g appears not to be straightforward, and we leave it as an open
problem.

Achieving nvAE security. In Section 6, we describe OCBv, a modified ver-
sion of the OCB scheme for AEAD, that is provably secure in the sense of nvAE,
and retains the desirable properties of OCB. Moreover, our transformation and
analysis are generic enough to be applied to other schemes based on tweakable
blockciphers, or other tweakable primitives (e.g. compression functions), which
represents a large subset of current nAE schemes.

A natural problem to investigate would be to see if there exists a black-box
transformation 𝛤 (·), that would turn any nAE secure scheme 𝛱 into an nvAE

secure scheme 𝛤 (𝛱). A straightforward measure to take would be to derive a
key 𝐾 ′ used internally with 𝛱 from the key 𝐾 of 𝛤 (𝛱) as 𝐾 ′ = 𝐻(𝜏, 𝐾) with a
hash function 𝐻, as suggested by Struik [40]. This transformation can be easily
proven secure, but only in random oracle model, and it makes the whole design
unnecessarily complex. We leave the formal treatment of this question (in the
standard model) as an open problem.

It is nevertheless possible to describe transformations that are applicable to
large subsets of nAE secure schemes. One example is given in Section 6. Another
such transformation is encoding 𝜏 in the nonce input of sponge-like modes. These
either process all inputs in a single chain of permutation calls (e.g. Ketje [7], and
Ascon [11]), or they use several such chains in parallel, but initialize all of them
with nonce-dependent values (e.g. Keyak [8], and NORX [2]).

Acknowledgments.

This work was partly supported by the EU H2020 TREDISEC project, funded
by the European Commission under grant agreement no. 644412. Damian Vizár
is supported in part by Microsoft Research under MRL Contract No. 2014-
006 (DP1061305). We would like to thank the ASIACRYPT reviewers for their
constructive comments. We would also like to thank Phillip Rogaway for an
insightful discussion during CRYPTO 2015.

References

1. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How
to Securely Release Unverified Plaintext in Authenticated Encryption. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 105–125. Springer
(2014)

2. Aumasson, J.P., Jovanovic, P., Neves, S.: Norx. https://competitions.cr.yp.
to/round2/norxv20.pdf

3. Bellare, M., Namprempre, C.: Authenticated Encryption: Relations among No-
tions and Analysis of the Generic Composition Paradigm. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer (2000)

4. Bellare, M., Rogaway, P.: Encode-Then-Encipher Encryption: How to Exploit
Nonces or Redundancy in Plaintexts for Efficient Cryptography. In: Okamoto, T.
(ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 317–330. Springer (2000)

5. Bernstein, D.J.: Cryptographic competitions: CAESAR. http://competitions.
cr.yp.to

6. Bernstein, D.J.: Cryptographic competitions: Disasters. https://competitions.
cr.yp.to/disasters.html

7. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V., Keer, R.V.: Ketje. https:
//competitions.cr.yp.to/round1/ketjev11.pdf

8. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V., Keer, R.V.: Keyak. https:
//competitions.cr.yp.to/round2/keyakv2.pdf

9. Borisov, N., Goldberg, I., Wagner, D.: Intercepting mobile communications: the
insecurity of 802.11. In: MOBICOM. pp. 180–189 (2001)

https://competitions.cr.yp.to/round2/norxv20.pdf
https://competitions.cr.yp.to/round2/norxv20.pdf
http://competitions.cr.yp.to
http://competitions.cr.yp.to
https://competitions.cr.yp.to/disasters.html
https://competitions.cr.yp.to/disasters.html
https://competitions.cr.yp.to/round1/ketjev11.pdf
https://competitions.cr.yp.to/round1/ketjev11.pdf
https://competitions.cr.yp.to/round2/keyakv2.pdf
https://competitions.cr.yp.to/round2/keyakv2.pdf

10. De Meulenaer, G., Gosset, F., Standaert, F.X., Pereira, O.: On the energy cost of
communication and cryptography in wireless sensor networks. In: 2008 IEEE In-
ternational Conference on Wireless and Mobile Computing, Networking and Com-
munications. pp. 580–585. IEEE (2008)

11. Dobraunig, C., Eichlseder, M., Mendel, F., Schl affer, M.: Ascon. https://
competitions.cr.yp.to/round2/asconv11.pdf

12. Egele, M., Brumley, D., Fratantonio, Y., Kruegel, C.: An empirical study of cryp-
tographic misuse in android applications. In: 2013 ACM SIGSAC Conference on
Computer and Communications Security, CCS’13, Berlin, Germany, November 4-8,
2013. pp. 73–84. ACM (2013)

13. Eichlseder, M.: Remark on variable tag lengths and OMD. crypto-competitions
mailing list. April 25, 2014.

14. Fleischmann, E., Forler, C., Lucks, S.: McOE: A Family of Almost Foolproof On-
Line Authenticated Encryption Schemes. In: Canteaut, A. (ed.) FSE 2012. LNCS,
vol. 7549, pp. 196–215. Springer (2012)

15. Fuhr, T., Leurent, G., Suder, V.: Collision Attacks Against CAESAR Candidates
- Forgery and Key-Recovery Against AEZ and Marble. In: Iwata, T., Cheon, J.H.
(eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 510–532. Springer (2015)

16. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust Authenticated-Encryption AEZ
and the Problem That It Solves. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9056, pp. 15–44. Springer (2015)

17. Hoang, V.T., Reyhanitabar, R., Rogaway, P., Vizár, D.: Online Authenticated-
Encryption and its Nonce-Reuse Misuse-Resistance. In: Gennaro, R., Robshaw,
M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 493–517. Springer (2015)

18. Hotz, G.: Console hacking 2010-ps3 epic fail. In: 27th Chaos Communications
Congress (2010)

19. Iwata, T.: CLOC and SILC will be tweaked. crypto-competitions mailing list.
August 4, 2015.

20. Katz, J., Yung, M.: Unforgeable Encryption and Chosen Ciphertext Secure Modes
of Operation. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 284–299.
Springer (2001)

21. Krovetz, T., Rogaway, P.: The Software Performance of Authenticated-Encryption
Modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer (2011)

22. Langley, A.: Apple’s ssl/tls bug. Imperial Violet (2014)
23. Li, Y., Zhang, Y., Li, J., Gu, D.: icryptotracer: Dynamic analysis on misuse of

cryptography functions in ios applications. In: Network and System Security - 8th
International Conference, NSS 2014, Xi’an, China, October 15-17, 2014, Proceed-
ings. Lecture Notes in Computer Science, vol. 8792, pp. 349–362. Springer (2014)

24. Manger, J.H.: [Cfrg] Attacker changing tag length in OCB. IRTF CFRG mailing list.
May 29, 2013.

25. Minematsu, K.: AES-OTR v2. crypto-competitions mailing list. August 31, 2015.
26. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering Generic Composi-

tion. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. Lecture Notes in
Computer Science, vol. 8441, pp. 257–274. Springer (2014)

27. Nandi, M.: RE:CLOC and SILC will be tweaked. crypto-competitions mailing
list. August 5, 2015.

28. Reyhanitabar, R.: OMD version 2: a tweak for the 2nd round.
crypto-competitions mailing list. August 27, 2015.

29. Reyhanitabar, R., Vaudenay, S., Vizár, D.: Misuse-Resistant Variants of the OMD
Authenticated Encryption Mode. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K., Yiu,

https://competitions.cr.yp.to/round2/asconv11.pdf
https://competitions.cr.yp.to/round2/asconv11.pdf

S. (eds.) ProvSec 2014. Lecture Notes in Computer Science, vol. 8782, pp. 55–70.
Springer (2014)

30. Reyhanitabar, R., Vaudenay, S., Vizár, D.: Boosting OMD for Almost Free Au-
thentication of Associated Data. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054,
pp. 411–427. Springer (2015)

31. Rogaway, P.: Re: [Cfrg] Attacker changing tag length in OCB. IRTF CFRG mailing
list. Jun 3, 2013.

32. Rogaway, P.: Authenticated-Encryption with Associated-Data. In: ACM CCS 2002.
pp. 98–107 (2002)

33. Rogaway, P.: Efficient Instantiations of Tweakable Blockciphers and Refinements
to Modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol.
3329, pp. 16–31. Springer (2004)

34. Rogaway, P.: Nonce-Based Symmetric Encryption. In: Roy, B.K., Meier, W. (eds.)
FSE 2004. LNCS, vol. 3017, pp. 348–359. Springer (2004)

35. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: A Block-Cipher Mode of
Operation for Efficient Authenticated Encryption. In: ACM CCS 2001. pp. 196–205
(2001)

36. Rogaway, P., Shrimpton, T.: A Provable-Security Treatment of the Key-Wrap
Problem. In: EUROCRYPT 2006. pp. 373–390 (2006)

37. Rogaway, P., Shrimpton, T.: Deterministic authenticated-encryption: A provable-
security treatment of the key-wrap problem. IACR Cryptology ePrint Archive 2006,
221 (2006)

38. Rogaway, P., Wagner, D.: A Critique of CCM. IACR Cryptology ePrint Archive
2003, 70 (2003)

39. Struik, R.: AEAD ciphers for highly constrained networks. DIAC 2013 presenta-
tion, August 13, 2013

40. Struik, R.: Re: [Cfrg] Attacker changing tag length in OCB. IRTF CFRG mailing
list. May 30, 2013.

41. Wu, H.: The misuse of rc4 in microsoft word and excel. Cryptology ePrint Archive,
Report 2005/007 (2005), http://eprint.iacr.org/2005/007

http://eprint.iacr.org/2005/007

	Authenticated Encryption with Variable Stretch
	1 Introduction
	2 Preliminaries and Prior AE Definitions
	3 Failure of Inserting Stretch into Nonce and/or AD
	4 Formalizing Nonce-based AE with Variable Stretch
	5 A short guide to nvAE
	6 Achieving AE with Variable Stretch
	7 Discussion

