
Three-Party ORAM for Secure Computation

Sky Faber? Stanislaw Jarecki?? Sotirios Kentros? ? ? Boyang Wei†

Abstract. An Oblivious RAM (ORAM) protocol [13] allows a client
to retrieve N-th element of a data array D stored by the server s.t. the
server learns no information about N. A related notion is that of an
ORAM for Secure Computation (SC-ORAM) [17], which is a protocol
that securely implements a RAM functionality, i.e. given a secret-sharing
of both D and N, it computes a secret-sharing of D[N]. SC-ORAM can
be used as a subprotocol for implementing the RAM functionality for
secure computation of RAM programs [17, 7, 14]. It can also implement
a public database service which hides each client’s access pattern even if
a threshold of servers colludes with any number of clients.
Most previous works used two-party secure computation to implement
each step of an ORAM client algorithm, but since secure computation of
many functions becomes easier in the three-party honest-majority setting
than in the two-party setting, it is natural to ask if the cost of an SC-
ORAM scheme can be reduced if one was willing to use three servers
instead of two and assumed an honest majority. We show a 3-party SC-
ORAM scheme which is based on a variant of the Binary Tree Client-
Server ORAM of Shi et al. [20]. However, whereas previous SC-ORAM
implementations used general 2PC or MPC techniques like Yao’s garbled
circuits, e.g. [14, 22], homomorphic encryption [11], or the SPDZ protocol
for arithmetic circuits [15], our techniques are custom-made for the three-
party setting, giving rise to a protocol which is secure against honest-
but-curious faults using bandwidth and CPU costs which are comparable
to those of the underlying Client-Server ORAM.

Keywords: Oblivious RAM, Secure Computation, Private Information Retrieval

1 Introduction

Oblivious RAM for Secure Computation. An Oblivious RAM (ORAM)
is a protocol between client and server which allows the client who can locally
store only small amount of information to write and read from an outsourced
memory in such a way that the server cannot tell which memory locations the
client accesses, and the cost of each memory access is sublinear in the memory
size. Starting from the seminal work of Goldreich and Ostrovsky [13], there have

? U. California Irvine. Email: fabers@uci.edu
?? U. California Irvine. Email: stasio@ics.uci.edu

? ? ? Salem State U. Email: sotirios.kentros@salemstte.edu
† U. California Irvine. Email: boyanw1@uci.edu

been numerous improvements in ORAM techniques, achieving polylogarithmic
client storage, computation, bandwidth, and server storage overheads, with the
most recent proposal of Path ORAM by Stefanov et al. [21] practical enough to
be implemented on secure processors [10, 9, 18].

The above classic formulation of the ORAM problem, which we will call
a client-server ORAM, provides secure outsourced memory for a single client.
The client-server ORAM notion can be generalized (and relaxed) by considering
still a single client but n > 1 servers, and assuring client-access obliviousness
only if at most t < n of these servers collude. Such generalization was proposed
and realized for (t, n) = (1, 2) by Ostrovsky and Lu [17]. However, one can
imagine a stronger notion, namely of a protocol which allows n servers to emulate
an Oblivious RAM functionality so that a shared memory can be accessed by
multiple clients, but their access patterns remain hidden even if up to t of these
n servers collude, possibly with any coalition of the clients. Such multi-party
ORAM emulator is equivalent to (multi-party) secure computation of the RAM
functionality (called SC-ORAM for short), which given the secret-sharing of
memory array D and a secret-sharing of a location i (and value v) outputs a
secret-sharing of record D[i] (and writes v at index i in the secret-shared D).

One source of interest in such ORAM emulation is that it can provide oblivi-
ous RAM access as subprotocol for secure computation of any RAM program[19,
7, 14]. Recall that secure computation allows a set of parties S1, ..., Sn to compute
some (randomized) function f on their inputs, where each Si inputs a private
value xi into the computation, in such a way that the protocol reveals nothing
else but the final output value y = f(x1, ..., xn) to the participants. A standard
approach to secure computation is to represent function f as a Boolean circuit
[3], an arithmetic circuit [1], or a decision diagram [16]. However, even for very
simple functions, each of these representations can be impractically large. This
is indeed necessarily so if some of the inputs xi are very long, i.e. when some
of the data involved in the computation of f is large. Consider any information
retrieval task, where x1 is a large database, x2 is a search term, and f is a search
algorithm. The circuit or decision tree representation of f is at least as long as
x1, and therefore secure computation of f using any of the above techniques
must take time at least linear in the size of the database.

SC-ORAM Applications. On the other hand each information retrieval prob-
lem which has a practical solution does so because it has an efficient RAM pro-
gram, and as Ostrovsky and Shoup were the first to point out [19], an ORAM
emulator can be used to securely compute any RAM program, because each local
computation step can be implemented using Yao’s garbled circuit technique [24]
while each memory access can be handled by the SC-ORAM subprotocol. Exam-
ples of such SC-ORAM usage were recently provided by Keller and Scholl [15],
who used their SC-ORAM implementation to build MPC implementations of
other datastructures, e.g. a priority queue, and then utilized them in MPC com-
putation of various algorithms in the RAM computation model e.g. Dijkstra’s
shortest path algorithm. In general, SC-ORAM is well suited to secure compu-
tation of any information-retrieval algorithm because such algorithms rely very

2

strongly on the RAM model, e.g. by identifying database entries using hash
tables of keywords. One application using SC-ORAM in this way could be pro-
vision of a shared database resource to multiple clients in a way that hides any
client’s access pattern even if all other clients collude. One can look at such usage
of SC-ORAM as providing an alternative to Searchable Symmetric Encryption
which requires interaction but hides all patterns of access to the encrypted data.
In its most basic form of secure implementation of an array look-up, 3-server SC-
ORAM also provides an interactive alternative to 3-server (symmetric) Private
Information Retrieval [4, 12], with support for both read and write, and with the
added security property that the database itself is private to any (single) server.

Two-Party SC-ORAM Constructions. Apart of pointing out the usefulness
of an SC-ORAM protocol, Ostrovsky and Shoup sketched a method for convert-
ing any client-server ORAM into a two-party SC-ORAM: One of the two parties
can implement the server in the underlying client-server ORAM scheme, while
all the work of the client can be jointly computed by the two parties using Yao’s
garbled circuit technique applied to the circuit representation of each step of the
client’s algorithm in any client-server ORAM scheme. This idea was also consid-
ered by Damgard et al. [7], and it was further developed by Gordon et al. [14]
who showed an optimized two-party ORAM emulation protocol based on the
Binary Tree client-server ORAM of Shi et al. [20], utilizing a novel subprotocol
gadget for secure computation of a pseudorandom function (PRF) on secret-
shared inputs. Gentry et al. [11] showed several space and computation saving
modifications of the Binary Tree client-server ORAM of Shi et al., together with
a very different two-party ORAM emulation protocol for it, which used a cus-
tomized homomorphic encryption scheme instead of Yao’s garbled circuits for
the two-party computation of the ORAM client’s algorithm. Other modifications
of the Binary Tree ORAM were shown in [5], and in the Path ORAM proposal
of Shi et al. [21], but even though they improve the client-server ORAM, it is
not clear if these modifications translate into a faster ORAM emulator.

Indeed, Wang et al. [22] examined the circuit complexity of the client’s al-
gorithm in several proposed variants of the Binary Tree client-server ORAM,
including [20, 5], and they concluded that the client’s algorithm in the original
scheme of [20] has by far the smallest circuit. They also showed a set of modifi-
cations to the Binary Tree ORAM, building on the Path ORAM modifications,
which result in roughly a factor of 10 reduction in the circuit representation of
the client algorithm in a client-server ORAM, hence speeding up the two-party
ORAM emulation protocol of [14] by the same factor. The SC-ORAM protocol
for a database D containing 2m records of size d each requires secure computa-
tion of a circuit of asymptotic size O

(
m3 + dm

)
, resulting in O

(
κ(m3 + dm)

)
bound on protocol bandwidth where κ is a cryptographic security parameter.
For m between 20 and 29 and d = 4B this comes to between 4.6M and 13M
gates, and its secure evaluation requires (on-line) as many hash or block cipher
operations as the number of non-xor gates in the circuits. (In a work concurrent
to ours Wang et al. [23] showed further reductions in the ORAM client circuit
size, reporting 350K and gates for m = 20 and d = 4B.)

3

Multi-Party SC-ORAM and Our Contribution. Secure computation of
many functionalities can be implemented with easier tools in the multi-party
setting with honest majority than in the two-party setting. (In fact, assuming
secure channels any function can be securely computed without further crypto-
graphic assumptions [1, 2].) Thus even as the search for a minimal circuit ORAM
continues, one can ask if secure ORAM emulation can be made significantly eas-
ier by moving from the 2PC to the MPC setting. Keller and Scholl [15] showed
one way to design such multi-party SC-ORAM protocols, using arithmetic circuit
representation of an ORAM client and implementing it with the SPDZ MPC pro-
tocol of Damgard et al. [8, 6]. Their implementation achieved significantly faster
on-line times than the 2PC SC-ORAM implementation of [22]: [15] report 250
millisecond wall clock per access for m = 20 and d = 5B for 2 machines with
direct connection in the online stage, while Wang et al. [22] report 30 seconds
of just CPU time for m = 24 and d = 4B. Moreover, the implementation of
[15] is secure against malicious adversaries while that of [22] works only against
honest-but-curious faults. On the other hand, this on-line speed-up comes at the
cost of intensive precomputation required by the SPDZ MPC protocol, which
[15] estimated at between 100 and 800 minutes for m = 20.

In this work we explore a different possibility for SC-ORAM design, spe-
cific to the setting of three parties with a single corrupted party, with security
against honest-but-curious faults. The 3-party SC-ORAM protocol we propose
uses a variant of the Binary-Tree ORAM as the underlying data-structure. The
access part of the proposed SC-ORAM is based on the following observation:
If P1 and P2 secret-share an array of (keyword,value) pairs (k, v) (this will be
a path in the Binary-Tree ORAM) and a searched-for keyword k∗ (this will be
the searched-for address prefix), then a variant of the Conditional Disclosure of
Secret protocol of [12] which we call Secret-Shared Conditional OT (SS-COT)
allows P3 to receive value v associated with keyword k∗ at the cost roughly equal
to the symmetric encryption and transmission of the array. Moreover, while SS-
COT reveals the location of pair (k∗, v) in the array to P3, this leakage can be
easily masked if P1, P2 first shift the secret-shared array shifted by a random off-
set. The eviction part of the SC-ORAM springs from an observation that instead
of performing the eviction computation on all the data in the path retrieved at
access, one can use garbled circuit to encode only the procedure determining
eviction movement logic, i.e. determining which entries in each bucket should be
shifted down the path. Then, if P1, P2 secret-share the retrieved path, and hence
the bits which enter this computation, we can let P3 evaluate this garbled circuit
and learn the positions of the entries to be moved if (1) the eviction moves a
constant number of entries in each bucket in a predictable way, e.g. one step
down the path, and (2) P1, P2 randomly permute the entries in each bucket, so
that P3 always computes a fixed number of randomly distributed distinct in-
dexes for each bucket. Computation of this movement logic uses only two input
bits (appropriate direction bit and a full/empty flag) and 17 non-xor gates per
bucket entry, so the garbled circuit is much smaller than if it coded the whole
eviction procedure. Finally, the secret-shared data held by P1, P2 can be moved

4

according to the movement matrix held by P3 in another OT/CDS variant we
call Secret-Shared Shuffle OT which uses only xor’s and whose bandwidth is
roughly four times the size of the secret-shared path.

Assuming constant record sizes the bandwidth of the resulting SC-ORAM
protocol is O

(
w(m3 + κm2)

)
where w is the bucket size in the underlying Binary-

Tree ORAM. Since the best exact bound on overflow probability we can give
requires w = Ω(λ + m) where λ is a statistical security parameter, and since
m < κ, this asymptotic bound is essentially the same as that of the 2-server
SC-ORAM of [22]. However, the exact numbers for bandwidth and computation
cost (measured in the number of block cipher or hash operations) are much
lower, and this is because of two factors: First, even though we still use garbled
circuits, the circuits involved have dramatically smaller complexity than in the
2PC implementations (see Table 1 below). Secondly, the cost of all operations
outside the garbled circuits is a small factor away from the cost of transmission
and decryption of server data in the underlying Binary-Tree ORAM algorithm.
Concretely, the non-GC bandwidth is under 9P where P is the (total) size of
tree paths retrieved by the Binary-Tree ORAM, and computation is bounded by
symmetric encryption of roughly 20P bits, whereas for the underlying Binary-
Tree ORAM both quantities are 2P . Finally, stochastic evidence suggests that
it suffices that w = Ω(

√
λ+m), which for concrete parameters of m = 36 and

λ = 40 reduces the required w, and hence all our protocol costs, by a further
factor between 3 and 4.

ORAM Circuit Size Circuit Size (gates) Number of Inputs
(Asymptotic Bounds) m = 20 m = 29 m = 20 m = 29

Path-SC ORAM Õ
(
m3 + dm

)
ω (1) 37.2 M 111.7 M 0.2 M 0.3 M

SCORAM N/A (heuristic) 4.6 M 13.0 M 0.3 M 0.9 M

3PORAM (w = 128) O
(
m3

)
ω (1) 96.9K 213.9K 11.5K 25.3K

3PORAM (w = 32) O
(
m3

)
ω (1) 28.5K 62.6K 3.4K 7.4K

Table 1. Comparison of Circuit Size between this proposal (without optimizations)
and the SC-ORAM scheme [22]. All numbers are reported as function of array size
|D| = 2m for statistical security paramenter λ = 80. The first 3PORAM estimation
uses bucket size w = 128 mandated by the strict bound implied by Lemma 2, while the
second one uses bucket size w = 32 derived from the Markov Chain approximation.
(We note Wang et al. [23] recently exhibited further reductions in ORAM circuit, e.g.
reporting 350K and gates for m = 20. See Section 5 for further discussion.)

We tested a preliminary Java implementation of our scheme, without mak-
ing use of several possible optimizations, on three lowest-tier Amazon servers
(t2.micro) connected through a LAN. Regarding the overall bandwidth, for a
concrete value m = 18 (the largest size for which [22] give bandwidth data),
λ = 80, and d = 4B, our scheme instantiated with w = 128, which satisfies ex-
act security bounds for these m,λ values, uses 1.18MB bandwidth, a factor of 40
less than 45MB reported by [22]. Using the stochastic bound w = Ω(

√
λ+m)

which for the above case of m,λ is satisfied by w = 32 (see Section 5) would
further decrease the bandwidth by a factor of about 2.5. Regarding computa-

5

tional costs, for m = 36 and d = 4B, using w = 32 justified by the stochastic
evidence, our implementation takes 320 milliseconds per access in the on-line
phase and 1.3 seconds in the pre-computation phase. The SC-ORAM scheme
of [22] reported only local execution times for m up to 26 while we tested our
scheme on Amazon EC2 servers communicating over LAN for m up to 36, but
for a conservative statistical security parameter λ = 80 the combined CPU cost
of our implementation using w = 128 is a factor of about 50 less than that of
[22], e.g. it is under 600 msec for m = 24 while that of [22] is 30 seconds.

In summary, we see our contributions as three-fold: First, we provide an
immediate improvement to any application of SC-ORAM which can be done in
the setting of three parties with an honest-majority. Secondly, the techniques
we explore can be utilized in a different context, e.g. for a different “secure-
computation friendly” eviction strategy for a Binary-Tree ORAM’s. Finally, the
proposed protocol leaves several avenues for further improvements in 3-party
SC-ORAM both on the level of system implementation and algorithm design.

Technical Overview. We base our implementation on the Shi et. al. [20] hierar-
chical two party ORAM, and use a combination of three-party OT’s and secure
computation (using Yao garbled circuits [24]) in order to ensure privacy in the
three party setting. Our protocol follows the same technical approach of two-
party SC-ORAM schemes, i.e. of providing a secure computation protocol for
access and eviction algorithms in a client-server ORAM. However, the existence
of a third party allows us to greatly reduce the cost of this secure computation.
Our main observation is that in Binary Tree access and eviction algorithms, like
that of Gordon et. al. [14], there is a separation in the role played by the input
bits of the access or eviction circuit. Part of the bits are used to implement the
logic of the circuit, but the majority are data that do not participate in the
output of the logic and are, at best, just being moved between some locations
based on the output of the logic. We exploit this separation in the three-party
setting, by isolating the bits necessary for the logic, using Yao’s garbled circuit
to securely compute the logic only on those bits, and then use several variants of
the (three-party) Oblivious Transfer (OT) protocol to move data to the locations
pointed out by the output of the circuits. Since all these variants of OT can be
implemented at a cost similar to just the secure transmission of the data the
OT operates on, this leads to dramatic reductions in the cost of the resulting
secure computation protocol. In addition, in the access protocol, as opposed to
the eviction, we avoid using garbled circuits entirely, as the entire logic comes
down to finding an index where two lists of n bitstrings contain a matching en-
try, which we implement using a three-party variant of Conditional OT which
takes a single interaction round and costs roughly as much as encryption and
transmission of these n bitstrings.

We make several modifications in the Binary-Tree ORAM of Shi et. al. [20]
to make it more efficient for the type of operations we are interested in. We
use ideas from Gentry et. al. [11] and Stefanov et. al. [21]. In particular, we make
the ORAM trees more shallow, as in Gentry et. al. [11] by increasing how many
entries in the ORAM will be mapped to each leaf in expectation and increasing

6

the total capacity (in terms of entries) of the leaf nodes. To be more precise,
for a tree that has a total capacity of 2m entries and a capacity in each node of
w, instead of having 2m leafs in the ORAM tree, we have 2m

w leafs instead. In
order to ensure that overflow does not occur in the leafs of the tree we increase
capacity of leaf nodes to 4w. With this change we achieve linear overhead in
terms of storage needed for the ORAM, meaning that now the total entries that
can be stored in the ORAM are O (2m), in contrast with the O (w · 2m) entries
that the Shi et. al. [20] ORAM had (note that for most settings w = O (m)).
In addition, we observe that for internal nodes it is not necessary to increase
their capacity, since the overflow of internal nodes is mandated by a difference
probabilistic process that the one of leaf nodes. In contrast with the approach
used in Gentry et. al. [11], by only increasing the capacity of leaf nodes, we avoid
doubling the bandwidth needed by the ORAM protocol (which is what happened
in Gentry et. al. [11], since they increase the capacity of all nodes, whether they
are leafs or internal nodes).

We adopt the idea of eviction through a single path introduced by Gentry et.
al. [11]. The main problem we identified in the single path eviction, is that both
Gentry et. al. [11] and Stefanov et. al. [21] evict all entries in all nodes of the
path, as far down in the path as they can go. Although this is easy to do in a
client-server ORAM where the client retrieves the whole path and performs all
operations in the clear text data, in the setting of secure computation on the
secret shared data, such eviction is very costly. For this reason, we modify the
eviction to only evict at most two items from each node to the next node in
the path, provided such items exist. This operation is limited enough to allow
for simple garbled circuits. Moreover, it is an oblivious operation in the sense
that always two entries are evicted to the next level (we evict empty entries if
appropriate entries do not exist), which allows for its simple 3-party implemen-
tation. We choose not to increase the fun-out of nodes as Gentry et al. [11] do,
since this would complicate both our circuits and the rest of the protocols. We
also choose to avoid using the overflow cache used in Path ORAM of Stefanov
et al. [21] in order to decrease the total space requirements for their ORAM,
deciding instead to experiment at first with a design which maximally simplifies
the eviction logic and the associated garbled circuits.

Lastly we briefly explain why it seems difficult to construct a (3-server) SC-
ORAM scheme with competitive efficiency based on the two-server Client-Server
ORAM of Lu and Ostrovsky [17]. Indeed, since in either 3-server or 2-server set-
ting of SC-ORAM we rely on non-collusion between any two parties, we could
use a two-server version of the underlying client-server ORAM. Because the two-
server ORAM of [17] achieves O(m) amortized overhead per query, the asymp-
totic running time of the SC-ORAM protocol based on this two-server ORAM
could also be only linear in m, which would beat (at least asymptotically) any-
thing based on the O(m3) single-server ORAM schemes of [20, 11, 21]. However,
the Lu-Ostrovsky two-server ORAM has some features which adversely affect
the practicality of the resulting SC-ORAM protocol. It is a hierarchical con-
struction in the spirit of [13] with O(m) levels where the i-th level contains

7

O(2i−1) encrypted memory entries. After every 2t RAM accesses, the construc-
tion re-shuffles the first 2t levels of the hierarchy, incurring O(2t) cost, which
makes the running time of each access highly uneven. The scheme has other
“MPC unfriendly” properties, e.g. the client’s retrieval algorithm, which has to
be emulated with secure computation, acts differently at a given level depending
on whether the item has been found in a higher level. Also, the scheme seems
to need oblivious computation of a PRF with secret-shared inputs (and possibly
also outputs), and the currently best protocol for such OPRF evaluation uses
O(t) exponentiations for a t-bit domain [14].

2 Baseline Client-Server ORAM Protocol

We describe the Client-Server ORAM which forms the basis of our three-party
SC-ORAM protocol presented in Section 4. The scheme explained below is a
variant of the Binary Tree client-server ORAM scheme of Shi et al. [20], with
some optimizations adopted from a variant given by Gentry et al. [11]. The
design principle behind our variant of the Binary Tree ORAM is two-fold: First,
we want the client’s algorithm to be “secure computation friendly”. Secondly,
we want to do so without increasing the parameters of the Binary Tree ORAM
scheme (e.g. tree depth, tree size, tuple size, bucket size, etc.), as this would
also negatively affect the efficiency of the resulting three-party ORAM emulator
protocol.

ORAM Forest. Let D be an array of |D| ≤ 2m records, where D[N] for every
m-bit address N is a bitstring of fixed length d. For a given security parameter λ
and cryptographic security parameter κ, the ORAM protocol needs only O (κ)
persistent storage and O (m · d) transient storage for client C, and O (2m · d) =
O (|D|) persistent storage of server S. Givenm, d, λ, κ, an ORAM implementation
is parametrized by two additional parameters w, 2τ where w = max(λ,m) and τ
is an integer divisor of m. Let h = log2τ 2m = m/τ . Server S stores an ORAM
Forest, OTF = (OT0,OT1, . . . ,OTh). Each ORAM Tree OTi for i > 0 is a binary
tree of height di = iτ − logw (if iτ ≤ logw then di = 0). Let N = [N(1)| . . . |N(h)]
be the parsing of N into τ -bit segments and let Ni = [N(1)| . . . |N(i)] be N’s
prefix of length τi. The last ORAM tree OTh implements a look-up table Fh s.t.
Fh(N) = D[N], but the efficient retrieval of Fh(N) from OTh is possible only given
a label Lh ∈ {0, 1}dh which defines the leaf (or path, see below) in OTh where
value Fh(N) is stored. The way this label Lh can be found is that each ORAM
tree OTi for i < h implements a look-up table Fi which maps Ni to label Li+1 ∈
{0, 1}di+1 , and it is an invariant of OTF that for each i, Li+1 = Fi(N

i) defines a
leaf (or path, see below) in OTi+1 which contains values of Fi+1 on arguments
Ni+1 = Ni|N(i+1) for all N(i+1) ∈ {0, 1}τ . Therefore the ORAM access algorithm
on input N proceeds recursively: The base tree OT0 is a single vertex which
contains values L1 = F0(N1) for all N1 ∈ {0, 1}τ , so the algorithm first retrieves
L1 = F0(N1) from OT0, then using Li it retrieves Li+1 = Fi(N

i+1) from OTi for
i = 1, . . . , h − 1, and finally using Lh it retrieves Fh(N) = D[N] from OTh. For
notational convenience we can think of an ORAM forest OTF as implementing

8

function FOTF : {0, 1}m → {0, 1}d1 × {0, 1}d2 × . . . × {0, 1}dh × {0, 1}d, where
FOTF(N) = (F0(N1),F1(N2), . . . ,Fh−1(Nh),Fh(Nh)).

We now explain how Fi values are stored in binary tree OTi. Let {0, 1}<m
denote the binary strings of length from 0 to m − 1. The nodes of OTi for
i > 0 are formed as follows: Each internal node, indexed by j ∈ {0, 1}<di ,
stores a bucket Bj , while each leaf node, indexed by j ∈ {0, 1}di , is a set of four
buckets (Bj00,Bj01,Bj10,Bj11). Tree OT0 is an exception because it consists of
a single root node Broot. (Constant 4 is chosen somewhat arbitrarily and can be
adjusted, see Section 5.) Each bucket Bj is stored at node j in OTi encrypted
under the master key held by C. Each bucket is an array of w tuples of the
form Ti = (fbi,N

i,Li,Ai) where fbi ∈ {0, 1}, Ni ∈ {0, 1}iτ , Li ∈ {0, 1}di , and
Ai for i < h is an array containing 2τ labels Li+1 ∈ {0, 1}di+1 , while Ah is a
record in D. The above invariant is maintained if for every N (or, if D is a sparse
array, only for those N’s for which D[N] is non-empty), there is a sequence of
labels (L1, . . . ,Lh) (assume L0 = 0 and N(0) = 0τ) s.t. each OTi contains a
unique tuple of the form T = (1,N(i),Li,Ai) for some Ai and (1) this tuple
is contained in some bucket along the path from the root to the leaf Li in
OTi; and (2) if i < h then Ai

[
N(i+1)

]
= Li+1, and Ah = D[N]. Observe that

(L1, . . . ,Lh,D[N]) = FOTF[N].

Access Procedure. To access location N in D, the client C performs the follow-
ing loop sequentially for each i = 0, ..., h, given the recursively obtained label Li:
C sends Li to the server S, who retrieves and sends to C the encrypted path PLi

in tree OTi from the root to the leaf Li. C decrypts PLi using its master key into
a corresponding plaintext path PLi which is a sequence of buckets (B1, . . . ,Bn)
for n = di+4 (recall that a leaf contains 4 buckets), finds the unique tuple Ti in
this bucket sequence of the form Ti = (1,N(i),Li,Ai) and computes either label
Li+1 = Ai

[
N(i+1)

]
if i < h, or, if i = h, outputs Ai as the record D[N].

Note that protocol reveals the vector of labels (L1, . . . ,Lh) to S. Therefore
after each access C picks new random labels ((L1)′, . . . , (Lh)′), where (Li)′ is a
random bitstring of length di, and OTF needs to be updated so that FOTF(N) =
((L1)′, . . . , (Lh)′,D[N]). To do this, C erases the tuple Ti = (1,N(i),Li,Ai) in
the bucket in which it was found (by flipping the fb field to 0), replaces Li with
(Li)′, sets Ai

[
N(i+1)

]
to (Li+1)′, and inserts this modified tuple (Ti)′ into the

root bucket B1. C then re-encrypts the buckets and sends the new encrypted
path (PLi)

′ to S to insert in place of PLi in OTi.

Constrained Eviction Strategy. The above procedure works except for the
fact that the root bucket fills up after w accesses. To ensure that this does not
happen (with overwhelming probability), an eviction step is interjected into the
access protocol before C re-encrypts PLi and sends it back to S. The aim of an
eviction process is to move each tuple T = (N(i),L,A) in an internal node of
tree OTi down towards its “destination leaf” L. Since in access C reads only
the tuples in path PLi , this will only be done to the tuples found in the internal
buckets of this path. Moreover, because we want our eviction strategy to be
secure-computation friendly, i.e. to be as easy to compute securely in our three-
party setting as possible, we restrict this eviction principle in two ways: we will

9

attempt to move at most two tuples down in every path, and we will move them
only one bucket down. Both of these two restrictions make no sense in the case
of a client-server ORAM, where C sees all the buckets in PLi in the cleartext
and can move all the tuples in this path as far down as they can go. However, in
the context of the multi-party SC-ORAM protocol these constraints make the
data movement pattern in the eviction process more predictable, and hence more
easily implemented via a secure computation protocol which does not implement
the whole eviction as a single (securely-computed) circuit.

Technically, this “constrained” eviction strategy works as follows: Consider
a bucket Bj corresponding to an internal node in PLi , i.e. for j ≤ di. We say
that tuple T = (fb,N(i),L,A) in Bj is moveable down the path towards leaf Li

if fb = 1 and the j-th bit in its label field L matches the j-th bit of leaf Li. In
every bucket Bj for j ≤ di we choose two random tuples which are moveable
down towards leaf Li. If there are no such tuples then we choose two random
empty tuples instead (if they exist), and if there is only one then the second
one is chosen as a random empty tuple (if it exists). In addition, we choose two
random empty tuples (if they exist) among the 4w tuples contained in the four
buckets Bj contained in the leaf node in PLi , i.e. for j = di+1, . . . ,di+4. Then,
for each i ≤ di, we take the two chosen tuples in bucket Bj and move them to
the two spaces vacated in bucket Bj+1 (except for j = di where the two chosen
spaces in the level below can be in any of the buckets Bdi+1, . . . ,Bdi+4).

Eviction fails in case of a bucket overflow i.e. if (1) some internal bucket in
PLi does not contain two tuples which are either empty or moveable; or (2) the
four buckets corresponding to the leaf node do not contain two empty tuples. As
we argue in Section 5, both probabilities are negligible for w = O (m), assuming
the number accesses to D is polynomial in |D|.
Notation. In the 3-party SC-ORAM secure protocol for this Client-Server
ORAM we will use notation |PiL| to denote the length of any path in tree
OTi, and |Ti| to denote the length of any tuple in such tree. Note that |PiL| =
(di+4)·w·|Ti| and |Ti| = 1+i·τ+di+2τ ·di+1 if i < h while |Th| = 1+h·τ+dh+d
because Ti = (fb,Ni,Li,Ai), |Ni| = i · τ , |Li| = di, and Ai for i < h is an array
holding 2τ next-level leaf labels of length di+1, while Ah = D[N] and |D[N]| = d.

3 Three-Party Protocol Building Blocks

Our SC-ORAM protocols Access, PostProcess, and Eviction of Section 4 rely on
several variants of Oblivious Transfer (OT) or Conditional Disclosure of Secrets
(CDS) protocols which we detail here. The efficiency of our SC-ORAM protocol
relies on the fact that all these OT variants, including the OT variant employed
in Yao’s Garbled Circuit (GC) protocol, have significantly cheaper realizations
in the 3-party setting. All presented protocols assume secure channels, although
in many instances encryption overhead can be eliminated with simple protocol
changes, e.g. using pairwise-shared keys in PRG’s and PRF’s.

Notation. Let κ denote the cryptographic security parameter, which will assume
is both the key length and the block length of a symmetric cipher. Let G` be a

10

PRG which outputs `-bit strings given a seed of length κ. Let F`k be a PRF which
maps domain {0, 1}κ onto {0, 1}`, for k randomly chosen in {0, 1}κ. We will write
G and Fk when ` = κ. In our implementation both F and G are implemented
using counter-mode AES. If party A holds value a and party B holds value b
s.t. a⊕ b = v then we call pair (a, b) an “A/B secret-sharing” of v and denote it
as (sA[v], sB[v]). Whenever we describe an intended output of some protocol as
A/B secret-sharing of value v, we mean this to be a random xor-sharing of v i.e.
pair (r, r ⊕ v) for r random in {0, 1}|v|. Let s[j] denote the j-th bit of bitstring
s, and let [n] denote integer range {1, ..., n}.
3-Party Variants of Oblivious Transfer. We use several variants of the
Oblivious Transfer problem in our three-party setting, namely Secret-Shared
Conditional OT, SS-COT[N], Secret-Shared Index OT, SS-IOT[2τ], Shuffle OT,
XOT

[
N
k

]
, Secret-Shared Shuffle OT, SS-XOT

[
N
k

]
, and Shift OT, Shift. We ex-

plain the functionality and our implementations of these OT variants below.
The common feature of all our implementations is that they require one or two
messages both in the pre-computation phase and in the online phase (except of
Secret-Shared Shuffle OT which sends four messages), and the computational
cost of each protocol for each party, both in pre-computation and on-line, is
within a factor of 2 of the cost of secure transmission of the sender’s inputs.
We stress that all protocol we present form secure computation protocols of the
corresponding functionalities assuming an honest-but-curious adversary, secure
channels, and a single corrupted player. In each case the security proof is a
straightforward simulation argument.

Algorithm 1 Secret-Shared Conditional OT Protocol SS-COT[N](S,R,H)

Input: S’s input (m1, ...,mN) and (a1, ..., aN), H’s input (b1, ..., bN).
Output: R outputs pairs (t,mt) s.t. at = bt.
Parameters: ` and `′ s.t. |mt| = ` and |at| = |bt| = `′ ≤ κ for all t.
Pre-computation phase: S,H share PRF F keys k, k′ and κ-bit random nonces r1, ..., rN .

1: S sends {(et, vt) = (G`(Fκk (xt))⊕mt,F
κ
k′(xt))}Nt=1 to R where xt=rt⊕[at|0κ−`

′
].

2: H sends {(pt, wt) = (Fκk (yt),F
κ
k′(yt))}Nt=1 to R where yt = rt ⊕ [bt|0κ−`

′
].

3: R outputs (t,mt) where m′t = et ⊕ G`(pt) for each t s.t. vt = wt.

Secret-Shared Conditional OT, SS-COT[N](S,R,H), is a protocol where S inputs
two lists, (m1, . . . ,mN) and (a1, . . . , aN), H inputs a single list (b1, . . . , bN), and
the protocol’s goal is for R to output all pairs (t,mt) s.t. at = bt. This is a very
close variant of the Conditional Disclosure of Secrets protocol of [12], and it
can be implemented e.g. using modular arithmetic in a prime field. In Alg 1 we
provide an alternative design which uses fewer (pseudo)random bits, and hence
requires fewer PRG ops in pre-computation, but uses block ciphers in the on-line
phase. (The algorithm proposed here was faster in our implementation even in
the on-line stage.) S and H share two PRF keys k, k′, and for each t helper H
sends to R a pair (pt, wt) = (Fk(bt),Fk′(bt)), while S sends (et, vt) where et is an

11

Algorithm 2 Shuffle OT Protocol XOT
[
N
k

]
(S,R, I)

Input: S’s input (m1, ...,mN) and I’s input (i1, ..., ik) and (δ1, ..., δk).
Output: R’s output (z1, ..., zk) s.t. zσ = miσ ⊕ δσ for all σ.
Parameters: Let |mt| = ` for all t.
Pre-computation phase: I and S pick a random permutation π on (1, ..., N) and a
sequence of `-bit random pads r1, ..., rN .

1: S sends (a1, ..., aN) = (mπ(1) ⊕ r1, ...,mπ(N) ⊕ rN) to R.
2: I sends (j1,..., jk)=(π-1(i1),..., π-1(ik)) and (p1,..., pk)=(rj1⊕ δ1,..., rjk⊕ δk) to R.
3: R outputs (z1, ..., zk) = (aj1 ⊕ p1,..., ajk ⊕ pk).

(Note that zσ = (mπ(jσ) ⊕ rjσ)⊕ (rjσ ⊕ δσ) = miσ ⊕ δσ because π(jσ) = iσ.)

xor of message mt and G(Fk(at)) while vt = Fk′(at). For each t receiver R checks
if vt = wt, and if so then it concludes that at = bt and outputs mt = et ⊕G(pt).
To protect against collisions in (short) at, bt values both within each protocol
instance and across protocol instances each at and bt is xor-ed by respectively S
and H by a pre-shared one-time κ-bit random nonce rt, with all nonces derived
via a PRG on a seed shared by S and H.

Secret-Shared Index OT, SS-IOT[2τ](S,R,H), is a close variant of the Secret-
Shared Conditional OT, where S holds a list of messages (m0, . . . ,mN-1) for
N = 2τ and an index share jS ∈ {0, 1}τ while H holds the other share jH ∈
{0, 1}τ , and the aim of the protocol is for R to output (j,mj) s.t. j = jS ⊕ jH.

Our protocol for SS-IOT[2τ] executes similarly to SS-COT[N] except H sends
only two values, (p, v) = (Fk(jH),Fk′(jH)) and S’s messages are computed as
et = G(Fk(jS ⊕ t)) and vt = Fk′(jS ⊕ t). Finally, to avoid correlations across
protocol instances players H and S xor their PRF inputs with a single pre-shared
random κ-bit nonce r.

Shuffle OT, XOT
[
N
k

]
(S,R, I), is a protocol between sender S, receiver R, and

indicator I, where S inputs a sequence of messagesm1, ...,mN , I inputs a sequence
of indexes i1, ..., ik and a sequence of masks δ1, ..., δk, and the protocol lets R
output a sequence of messages mi1 ⊕ δ1, ...,mik ⊕ δk, without leaking anything
else about S’s and I’s inputs. See Alg. 2 for an implementation of this protocol.

Secret-Shared Shuffle OT, SS-XOT
[
N
k

]
(A,B, I), involves indicator I and two par-

ties A and B. It is a close variant of the Shuffle OT above, where I holds in-
dexes i = (i1, ..., ik), the pads δ1, ..., δk are all set to zero, and both inputs
m1, ...,mk and outputs mi1 , ...,mik are secret-shared by A and B. We imple-
ment this protocol with two instances of XOT

[
N
k

]
. The indicator I first chooses

a sequence of random masks δ = (δ1, ..., δk), and inputs i, δ into both instances,
where the first instance runs on A’s input (sA[m1], ..., sA[mn]), and lets B out-
put (sA[mi1]⊕ δ1, ..., sA[mik]⊕ δk), while the second instance runs on B’s inputs
(sB[m1], and lets A output (sB[mi1] ⊕ δ1, ..., sB[mik] ⊕ δk). It’s easy to see that
these outputs form a randomized A/B secret-sharing of (mi1 , ...,mik).

Shifting a Secret-Shared Sequence, Shift(A,B,H). As the access protocol traverses
the forest of ORAM trees OTF = (OT0,OT1, ...,OTh), D and E recover the

12

secret-sharing of path PLi , for i = 1, ..., h, and make several modifications to it.
In particular, the buckets in the path are rotated by a random shift σi known to
D and E. In the eviction protocol on this retrieved path we need a sub-protocol
Shift to reverse this shift by transforming the secret-sharing of this path, which is
a sequence of buckets, to a (fresh) secret-sharing of the same buckets but rotated
back by σi positions. An inexpensive implementation of this task relies on the
fact that in our three-party setting player D can act as a “helper” party and
create, in pre-computation, correlated random inputs for E and C, which allows
for an on-line protocol which consists of a few xor operations and a transmission
of a single |PLi |-bit message from C to E. Since this protocol is a very close

variant of protocol SS-IOT[N] given above we omit its description.

Yao’s Garbled Circuit on Secret-Shared Inputs. The last component used
in our ORAM construction is protocol GC[F](A,B,R), a Yao’s garbled circuit
solution for secure computation of an arbitrary function [24], executing on public
inputs a circuit of function F, where the inputs X to this circuit are secret-shared
between A and B, i.e. A inputs sA[X] and B inputs sB[X], and the protocol lets
R compute F(X). We stress that even though we do use Yao’s garbled circuit
evaluation as a subprotocol in our SC-ORAM scheme, we use it sparingly, and
the computation involved is comparable, for realistic m values, to the necessary
cost of decryption of paths PLi retrieved by the underlying Binary-Tree Client-
Server ORAM scheme. The protocol is a simple modification of the delivery of
the input-wire keys in Yao’s protocol, adopted to the setting where the input X
is secret-shared by parties A and B, while the third party R will compute the
garbled circuit and get the F(X). Let n = |X| and let κ be the bitlength of the
keys used in Yao’s garbled circuit. In the off-line stage either A or B, say party
A, prepares the garbled circuit for function F and sends it to R, and then for
each input wire key pair (K0

i ,K
1
i) created by Yao’s circuit garbling procedure,

A picks random ∆i in {0, 1}κ, computes (A0
i , A

1
i) = (∆i,K

0
i ⊕K1

i ⊕ ∆i) and
(B0

i , B
1
i) = (K0

i ⊕ ∆i,K
1
i ⊕ ∆i), and sends (B0

i , B
1
i) to B. (To optimize pre-

computation A can send to B a random seed from which {K0
i ,K

1
i , ∆i}ni=1 can

be derived via a PRG.) In the on-line phase, for each i = 1, ..., n, party A on
input bit a = sA[Xi] sends Aai to R, while party B on input bit b = sB[Xi] sends
Bbi . For each i = 1, ..., n, party R computes Ki = Ai⊕Bi for Ai, Bi received
respectively from A and B, and then runs Yao’s evaluation procedure inputting
keys K1, ...,Kn into the garbled circuit received for F. Observe that Ai⊕Bi = Kv

i

for v = a⊕b, and hence if a, b is the XOR secret-sharing of the i-th input bit,
i.e. if a⊕b = Xi, then Ki = K0

i if Xi = 0 and Ki = K1
i if Xi = 1. The protocol

is secure thanks to the random pad ∆i, because for every Xi and every possible
sharing (a, b) of Xi, values (Ai, Bi) sent to R are distributed as two random
bitstrings s.t. Ai⊕Bi = Kv

i for v = Xi.

4 Three-Party SC-ORAM Protocol

We describe our three-party SC-ORAM protocol, which is a three-party secure
computation of the Client-Server ORAM of Section 2. We refer to the three

13

parties involved as C, D, and E. The basic idea for the protocol is to secret-share
the datastructure OTF between two servers D and E, and have these two parties
implement the Server’s algorithm of the Client-Server ORAM scheme of Section
2, while the corresponding Client’s algorithm will be implemented with a three-
party secure computation involving parties C,D,E. In the description below
we combine these two conceptually separate parts into a single protocol, but
almost all of the protocol implements the three-party computation of the ORAM
Client’s algorithm, as the Server’s side of this Client-Server ORAM consists only
of retrieving (the shares of) path PLi from (the shares of) the i-th tree OTi at
the beginning of i-th iteration of the access procedure, and then writing (the
shares of) a new path P�Li in place of (the shares of) PLi at the end.

Given this secret-sharing scenario, the task of the three-party SC-ORAM
protocol is to securely compute the following two functionalities:

1. The access functionality computes the next-tree label Li+1 = Fi(N
i+1) given

the D/E secret-sharing of path PLi , for Li = Fi−1(Ni) and the D/E secret-
sharing of address prefix Ni+1;

2. The eviction functionality computes the D/E secret-sharing of path P�Li out-
put by the eviction algorithm applied to the D/E secret-shared path PLi ,
after the tuple containing the label identified by the access functionality is
moved to the root node.

Both tasks can be computed using standard secure computation techniques but
the protocol we show beats a generic one by a few orders of magnitude, and
comes close to the computation cost of the underlying Client-Server ORAM
itself. Note that the i-th iteration of the Client-Server ORAM needs a Server-
to-Client transmission and decryption of path PLLi and then encryption and
Client-to-Server transmission of path P�Li . Therefore the base-line cost we want
the SC-ORAM to come close to are h+1 rounds of Client-Server interaction with
2 · |PiL| bandwidth and (2/κ) · |PiL| block cipher operations for i = 0, ..., h. The
main idea which allows us to come close to these parameters is that if the inputs
to either access or eviction functionalities, secret-shared by two parties, e.g. D
and E, are shifted/permuted/rotated/masked in an appropriate way, then the
correspondingly shifted/masked outputs of these functionalities can be revealed
to the third party, e.g. C.

In the 3-party setting we separate the Client-Server access/eviction protocols
into Access, PostProcess, and Eviction. Protocol Access contains all parts of the
client-server access which have to be executed sequentially, i.e. the retrieval of
sequence FOTF(N) = (L1,L2, ...,Lh,D[N]) done by sequential identification (and
removal from the OTi trees) of the tuple sequence (T1,T2, ...,Th) where Ti is
defined as path PLLi of tree OTi whose address field is equal to N’s prefix Ni

and whose A field contains label Li+1 at position N(i+1). Protocol PostProcess
performs cleaning-up operations on each tuple Ti in this tuple sequence, by
modifying its label field from Li to (Li)′ and modifying the label held at N(i+1)-
th position in the Ai array of this tuple from Li+1 to (Li+1)′. Importantly, the
PostProcess and Eviction protocols can be done in parallel for all trees OTi, which
allows for a better CPU utilization in the protocol execution.

14

Algorithm 3 Protocol Access[i] - Oblivious Retrieval of Next Label

Input: D,E’s inputs: label Li and secret-sharing of OTi and Ni+1 = [Ni|N(i+1)];
Output: (1) C outputs Li+1 = Ai[N(i+1)] where Ai is the A field of tuple Ti in
PLi whose N field matches Ni; (2) C and E output a secret-sharing of Ti and P∗Li =

Rot[σ,δ,ρ](P′Li), where P∗Li is PLi without tuple Ti; (3) D & E output σ, ρ;

Pre-computation phase: D & E’s input: (σ, δ, ρ, p)← [di+4]× [w]×{0, 1}τ ×{0, 1}|PLi
|;

Parameters: n = w(di+4).

1: D retrieves share sD[PLi] from sD[OTi] and sets sD[Rot[σ,δ,ρ](PLi)] as the result of
the three data-rotations using shifts (σ, δ, ρ) applied to (sD[PLi]⊕ p). E computes
sE[Rot[σ,δ,ρ](PLi)] in the corresponding way.

2: D sends sD[Rot[σ,δ,ρ](PLi)] and sD[Ni+1] = (sD[Ni]|sD[N(i+1)]) to C.
3: D and E isolate in their shares of Rot[σ,δ,ρ](PLi) a vector of shares of pairs (fbj ,Nj)

for j = 1, ..., n of fb and N fields of all tuples in this (rotated) path. E also isolates
in sE[Rot[σ,δ,ρ](PLi)] shares (sE[Rot[ρ](A1)], ..., sE[Rot[ρ](An)]) of the A field of all
tuples. The parties then run SS-COT[n](E,C,D) on E’s input (m1, ...,mn) and
(a1, ..., an) and D’s input (b1, ..., bn) where mt = sE[Rot[ρ](At)⊕y], at = sE[fbt|Nt]⊕
[0|sE[Ni]], and bt = sD[fbt|Nt] ⊕ [1|sD[Ni]]. This subprotocol outputs (j1, ē) for C
s.t. [fbj1 |Nj1] = [1|Ni] and ē = y ⊕ sE[Rot[ρ](Aj1)]. The client computes z = ē ⊕ d̄
where d̄ is the A field in the j1-th tuple in sD[Rot[σ,δ,ρ](PLi)]. (Note that j1-th tuple
in Rot[σ,δ,ρ](PLi) is equal to Ti, hence Aj1 = Ai and z ⊕ y = Rot[ρ](Ai).)

4: Parties run SS-IOT[2τ](E,C,D) on E’s input (y0, . . . , y2τ -1) and sE[N(i+1)] and D’s
input sD[N(i+1)]⊕ ρi, which outputs pair (j2, yj2) for C.

5: Each party computes its output as follows:
– C outputs Li+1 = yj2 ⊕ zj2 where zj2 is j2-th di+1-bit segment in z;
– C and E form (sC[Ti], sE[Ti]) as ((1, sD[Ni], 0di , z), (0, sE[Ni],Li, y));
– C and E form secret-sharing of P∗Li by C setting its share to sD[Rot[σ,δ,ρ](PLi)]

but with the j1-th tuple modified by flipping bit fb and setting its other bits at
random, and E setting its share to sE[Rot[σ,δ,ρ](PLi)];

– D and E output (σ, ρ).

Access Protocol. Protocol Access runs on D/E secret-sharing of searched-
for address N and the ORAM forest OTF, and it’s goal is to compute a D/E
secret-sharing of record D[N]. Protocol Access creates two additional outputs,
for each i = 0, . . . , h (with some parts skipped in the edge cases of i = 0 and
i = h): (1) C/E secret-sharing of the path PLi in OTi, modified in the way we
explain below, and with the tuple Ti defined above removed; and (2) whatever
information needed for the PostProcess protocol to modify Ti into (Ti)′ which
will be inserted into the root of OTi in protocol Eviction.

Protocol Access proceeds by executing loop Access[i] sequentially, see Alg. 3,
for i = 0, . . . , h. The inputs to Access[i] are: (1) D/E secret-sharing of OTi; (2)
D/E secret-sharing of address prefix Ni+1 = [Ni|N(i+1)]; (3) Leaf label Li as
the input of D and E (with N0, N(h+1), and L0 all empty strings). Its outputs
are: (1) C’s output the next leaf label Li+1 = Fi(N

i+1), for i 6= h, or the C/E
secret-sharing of record r = D[N], for i = h; (2) C/E secret-sharing of tuple Ti

defined above; and (3) C/E secret-sharing of path Rot[σi,δi,ρi](P′Li) which results

15

from rotating the data in PLi by three random shifts (σi, δi, ρi) known to E and
D (and of removing Ti from PLi).

Data-Rotations and Conditional OT’s. We first explain how E and D perform
the three data-rotations on the secret-shared path PLi retrieved from the (shares
of) the i-th level ORAM tree OTi (and randomized by D and E xor-ing the shares
of PLi retrieved from OTi by a pre-agreed random pad). E and D pick three
values during pre-processing, σi, δi, ρi, at random in ranges resp. {1, ...,di + 4},
{1, ..., w}, and {0, 1}τ . The data-rotation defined by σi is performed on the
bucket level, i.e. the di + 4 buckets in path PLi (recall that there are di internal
nodes containing a bucket each and that the leaf node contains 4 buckets) are
rotated clock-wise by σi positions. The data-rotation defined by δi is performed
on the level of tuples within each bucket, i.e. in each of the di+ 4 buckets in PLi

the sequence of w tuples held in that bucket is rotated clock-wise by δi positions.
Finally, the bit-vector ρi defines τ flips which will be applied to the array A in
each of the (di+4) ·w tuples in the path. Namely, the A field in each tuple in the
path is treated as a τ -dimensional cube whose content is flipped along the j-th
dimension if the j-th bit in ρi is 1. Such τ flips define a permutation on elements
of A where an element at position t moves to position t⊕ρi, for each t ∈ {0, 1}τ .
Note that E and D can perform all these data-rotations locally on their shares
of the path PLi . We use Rot[σi,δi,ρi](PLi) to denote the resulting tree, and we

use Rot[ρi](A) to denote the result of the permutation defined by ρi ∈ {0, 1}τ
on field A as explained above. After applying these data-rotations to PLi the
parties run protocols SS-COT[n] and SS-IOT[2τ] described in Section 3, with E
as the sender, D as the helper, and C as the receiver in both protocols. The goal
of protocol SS-COT[n], for n = (di + 4) ·w, is two-fold: (1) to let C compute the

index j1 ∈ {1, ..., n} where path Rot[σi,δi,ρi](PLi) contains the unique tuple Ti

defined above (i.e. the tuple that contains the searched-for address prefix Ni);

and (2) to create a C/E secret-sharing of this tuple. The goal of SS-IOT[2τ] is to
let C compute the N(i+1)-th entry in the A field of this secret-shared tuple Ti,
because that field contains the next-tree label Li+1 = Fi(N

i+1).

Note that D and E hold the secret-sharing of Ni and for each t = 1, ..., n they
also hold the shares of the address Nt in the t-th tuple in Rot[σi,δi,ρi](PLi). If D
and E form values at and bt as an xor of these two sharings, i.e. at = sE[Ni ⊕
sE[Nt]] and bt = sD[Ni⊕sD[Nt]] then at = bt if and only if Nt = Ni, i.e. if and only

if t points to a unique tuple Ti in (rotated) path Rot[σi,δi,ρi](PLi) whose address
field N equals the searched-for address Ni. Therefore if D and E run the Secret-
Shared Conditional OT SS-COT[n] on (a1, ..., an) and (b1, ..., bn) defined above as
their condition-share vectors, then C will compute the index j1 to the searched-
for tuple Ti contained in this path. Moreover, SS-COT[n] will also compute the
secret-sharing of Ti if E picks a random pad y of length 2τ ·di+1, and defines the

message vector it inputs to SS-COT[n] as (m1, ...,mn) where mt is an xor of y

with E’s share of the A field in the t-th tuple in Rot[σi,δi,ρi](PLi). Note that the

A field in any entry in the rotated path corresponds to array Rot[ρi](A) where
A was the field of the corresponding entry in the original path. Therefore C’s
output in this SS-COT[n] instance will be j2 together with ē = y⊕sE[Rot[ρi](Ai)]

16

where the searched-for tuple Ti is defined as (1,Li,Ni,Ai). Finally, D can send

to C its share of the whole path Rot[σi,δi,ρi](PLi), so if C computes z as an xor

of ē with the A field in the j1-th tuple in sD[Rot[σi,δi,ρi](PLi)] then (z, y) form a

C/E secret-sharing of Rot[ρi](Ai).

It remains for us to explain how SS-IOT[2τ] computes an entry in this secret-
shared field that corresponds to the next-level address chunk N(i+1), because
that’s the entry which contains Li+1 = Fi(N

i+1). Note that E and D hold the
secret-sharing of N(i+1) and that they also hold the bit-vector ρi s.t. the entry at
t-th position in Ai is located at position t⊕ ρi in Rot[ρi](Ai). Since Li+1 sits at
the t-th position in Ai for t = N(i+1), we will find if we retrieve the j2-th entry
of Rot[ρi](Ai) for j2 = N(i+1) ⊕ ρi. Note, however, that e.g. sD[N(i+1)] ⊕ ρi and
sE[N(i+1)] form a secret-sharing of j2, and therefore the Secret-Shared Index OT

protocol SS-IOT[2τ] executed on sharing (sD[N(i+1)]⊕ρi, sE[N(i+1)]) and E’s data
vector y = (y0, ..., y2τ -1), will let C output j2 together with the j2-th fragment

yj2 of y. Since (z, y) form the secret-sharing of Rot[ρi](Ai), C can compute the

j2-th entry of Rot[ρi](Ai), i.e. the next-level tree label Li+1, by xor-ing yj2 with
j2-th fragment of z = (z0, ..., z2τ -1).

Security Argument. This protocol is a secure computation of Access[i] function-
ality. Note that D and E do not receive any messages in this protocol, while
C learns D’s fresh random share sD[Rot[σi,δi,ρi](PLi)] of the rotated path, the

index j1 to the location of Ti = (1,Ni+1,Li,Rot[ρi](Ai)) in this rotated path,

string ē = y ⊕ sE[Rot[ρi](Ai)], the index j2 = N(i+1) ⊕ ρi where Li+1 is held in

Rot[ρi](Ai), and label Li+1 = Fi(N
i+1). This view can be efficiently simulated

given only Li+1 because (1) D’s share of any path retrieved from OTi is always
a fresh random string because D and E randomize the sharing of PLi after re-
trieving it from OTi; (2)j1 is a random integer in {1, ..., w · (di + 4)} because
the buckets are rotated by random σi ∈ {1, ...,di + 4} and the tuples within
each bucket are rotated by random δi ∈ {1, ..., w}; (3) ē and j2 are random bit-

strings, because so are y and ρi; (4) C’s view of SS-COT[n] and SS-IOT[2τ] can
be simulated from their outputs.

Boundary Cases. Alg. 3 shows protocol Access[i] for 0 < i < h. For i = 0 tree

OTi contains a single node, shifts σ0, δ0 are not used, sub-protocol SS-COT[n] is
skipped, index j1 is not used, and the outputs include only j2 for C, ρ0 for D
and E, and the C/E secret-sharing of T0 (with L0 and N0 set to empty strings).

For i = h the SS-IOT[2τ] sub-protocol is skipped, shift ρh and index j2 are not
used, and (z, y) held by C and E form a secret-sharing of record D[N].

Post-Process. The post-process protocol PostProcess transforms the C/E secret-
shared tuples T0, ...,Th output by Access to prepare the inputs for protocol
Eviction. It does so by executing a loop PostProcessT[i] in Alg. 4 in parallel for
i = 0, ..., h − 1 (tuple Th is not part of this step). The goal of post-processing
is to replace the Li+1 value which sits at the j2-th position in the A field of
the secret-shared tuple Ti (where j2 is an index C learns in Access[i]), with the
secret-shared value (Li+1)′. In other words, we need to inject a secret-shared

17

Algorithm 4 Protocol PostProcessT[i] - Inserting New Labels into Ti

Input: C’s input sC[Ti],Li,Li+1, j2; E’s input sE[Ti];
Input known in pre-computation: C/D secret-sharing of labels (Li)′ and (Li+1)′,
where E forwards its shares to D;
Output: E/C secret-sharing of tuple (Ti)′ = (1,Ni, (Li)′,A′) where A′[j2] = (Li+1)′

and A′[t] = A[t] for all t 6= j2 where Ti = (1,Ni,Li,A);
Pre-computation phase: D picks r1, ..., r2τ in {0, 1}di+1 and α in {0, 1}τ , and sends
α, r1, ..., r2τ to C and s1, ..., s2τ to E s.t. sα = rα ⊕ sE[(Li+1)′] and st = rt for t 6= α.

1: C sends δ = α− j2 (mod 2τ) to E.
2: C outputs sC[(Ti)′] = sC[Ti] ⊕ (0, 0iτ ,Li ⊕ sC[(Li)′], (c1|...|c2τ)) where ct =
rt+δ (mod 2τ) for all t 6= j2 and ct = rt+δ (mod 2τ) ⊕ Li+1 ⊕ sC[(Li+1)′] for t = j2.

3: E outputs sE[(Ti)′] = sE[Ti]⊕(0, 0iτ , sE[(Li)′], (e1|...|e2τ)) where et = st+δ (mod 2τ).

value into a secret-shared array at a secret position known only to one party.
However, we can utilize the fact that this secret-shared value to be injected
can be chosen in pre-processing and that E’s share of it can be revealed to D.
Let (c, e) = (sC[(Li+1)′], sE[(Li+1)′]) and let E sends its share e to D in pre-
processing. If D pre-computes two |A|-long correlated random pads, one for C
and one for E, with the known difference e between them at random location α
known to C, then e⊕c can be injected at position j2 into the C/E secret-sharing
of Ti if (1) C sends δ = α−j2 mod 2τ to E, (2) both parties rotate the pads they
receives from D counter-clockwise by δ positions, in this way placing the unique
pad cells that differ by e at position j2, (3) both parties xor their shares of Ti

with these pads, with C injecting an xor with c at position j2 into her share. (In
addition C will also erase the previous leaf value at position j2 in A field of Ti

by adding Li+1 to that xor.)

Eviction Protocol. Protocol Eviction executes subprotocol Eviction[i] in Alg. 5
in parallel for each i = 0, ..., h. (For i = 0 protocol Eviction[i] skips all the steps in
Alg 5 except the last one.) Subprotocol Eviction[i] performs an ORAM eviction
procedure on path P∗Li , whose C/E secret-sharing is output by protocol Access.
The protocol has two parts: First, using Yao’s garbled circuit protocol GC (see
Section 3) it allows D to identify two tuples in each internal bucket of P∗Li which
are either moveable one notch down this path or they are empty (see the eviction
algorithm in Section 2). Another instance of GC will similarly find two empty
tuples in the four buckets corresponding to the leaf in P∗Li . The reason these
pairs of indices j0, j1 can be leaked to D is that (1) C and E randomly permute
the tuples in each bucket in P∗Li before using them in this protocol, and (2)
index jb computed for b = 0, 1 for each bucket in P∗Li is defined as the first
moveable tuple in that bucket after a random offset λb (counting the tuples
cyclically), where shifts λ0, λ1 are chosen by E independently for each bucket at
random in {1, ..., w}. The circuit computed for every internal bucket takes only
2w bits of input (one for bit fb and one for an agreement in the i-th bit of a leaf
label in the tuple and the i-th bit of label Li defining path P∗Li), and has only
about 16w non-xor gates. Once D gets two indexes per each bucket in the path,

18

Algorithm 5 Protocol Eviction[i] - Eviction in Path PLi of OTi

Input: C/E secret-sharing of path P∗Li and tuple (Ti)′; σ, ρ held by E,D;
Output: D/E secret-sharing of path P�Li to be inserted into tree OTi in place of PLi .
Notation: Let W = {1, ..., w}, IB = {0, ..., di− 1}, and EB = {di, di + 1, di + 2, di + 3}.
Pre-computation phase: C and E share random permutations π1, ..., πdi on set [w], a
random permutation πdi+1 on set [4 · w], and a random pad ξ of length |PLi |;
1: Parties run protocol Shift(C,E,D) on inputs C/E-secret-sharing of P∗Li and on

D,E input a shift σ. The protocol outputs a C/E-secret-sharing of path identical
to P∗Li but with buckets shifted back by σ positions. In addition, for each j ∈ IB,
C and E use πj to permute (their shares of) the tuples in the j-th bucket in the
resulting path, and they use πdi+1 to permute (their shares of) the tuples in the
four buckets corresponding to the leaf node. The resulting path, shared by C and
E, is denoted P∗∗Li .

2: Let fbj` and Lj` be the fb and L fields of the `-th tuple in the j-th bucket in
P∗∗Li . For each j ∈ IB, parties run protocol GC[F2FT](E,C,D), see Sec 3, on C’s
inputs {sC[fbj` ,L

j
` [j + 1]]}`∈W and on E’s inputs {sE[fbj`], Bj}`∈W where Bj =

sE[Lj` [j + 1]]⊕ 1⊕ Li[j + 1]. (Note that sC[Lj` [j + 1]]⊕Bj = 1 iff the secret-shared
value Lj` and the public value Li agree on (j + 1)-st bit.) For each j ∈ IB, D
defines α1

j , α
2
j ∈ [1, ..., w] as the indices of the two output wires of F2FT on which

D received output bit 1 in the j-th instance of GC[F2FT].
3: The parties run protocol GC[F2ET](E,C,D) on E’s inputs {sE[fbj`]}`∈W,j∈EB and

C’s inputs {sC[fbj`]}`∈W,j∈EB. D defines α1
di
, α2

di
∈ [1, ..., 4 ·w] as the indices of the

two output wires of F2ET on which D received output bit 1 in this instance of
GC[F2ET].

4: D prepares a sequence of k = w · (di + 4) indices I = (β1, ..., βk) s.t.

βw·j+` =

k + 1, if j = 0 and ` = α1
0

k + 2, if j = 0 and ` = α2
0

w · (j − 1) + α1
j−1, if 1 ≤ j ≤ di − 1 and ` = α1

j

w · (j − 1) + α2
j−1, if 1 ≤ j ≤ di − 1 and ` = α2

j

w · (di − 1) + α1
di−1, if j ≥ di and w · (j − di) + ` = α1

di

w · (di − 1) + α2
di−1, if j ≥ di and w · (j − di) + ` = α2

di

w · j + ` otherwise

and then divides I into di + 4 chunks, each of which has w indices, and permutes
each chunk with the corresponding %r.

5: C prepares a sequence of k+ 2 shares (sC[a1], ..., sC[ak+2]) by setting sC[aw·j+`] =
sC[Tj`] where Tj` is `-th tuple in j-th bucket Bj in P∗∗Li , for ` ∈W and j ∈ IB∪EB,
sC[ak+1] as sC[(Ti)′], and sC[ak+2] as 0 concatenated with a random string of
i · τ + di + 2τ · di+1 bits. E prepares a sequence of k+ 2 shares (sE[a1], ..., sE[ak+2])
in the corresponding way, using its shares of P∗∗Li and (Ti)′.

6: The parties run protocol SS-XOT
[
k+2
k

]
on C’s input (sC[a1], ..., sC[ak+2]), E’s input

(sE[a1], ..., sE[ak+2]), and D’s input I. C and E set their shares of path P�Li to their
output in this SS-XOT

[
k+2
k

]
protocol xor’ed with string ξ.

7: C sends sC[P�Li] to D; D and E insert their shares of P�Li into their shares of OTi.

19

it uses the Secret-Shared Shuffle OT protocol SS-XOT
[
k+2
k

]
(see Section 3) to

randomizes the secret-sharing of all tuples in PLi while (1) moving the secret-
shared tuple (Ti)′ prepared by PostProcess into the root bucket, and (2) moving
the two chosen tuples in each bucket to the space vacated by the two tuples
chosen in the bucket below. Finally, C and E randomize their secret-sharing of
the resulting path P∗∗Li by xor-ing their shares with a pre-agreed random pad, C
sends its share of P∗∗Li to D, and D and E insert their respective shares of P∗∗Li
into their shares of OTi, in place of the shares of the original path PLi retrieved
in the first step of Access[i].

5 Protocol Analysis

Assuming constant record size the bandwidth of our protocol is O
(
w(m3 + κm2)

)
,

where w the bucket size of the nodes in our protocol, |D| = 2m, and κ is the
cryptographic security parameter. The O

(
wm3

)
term comes from the fact that

all our protocols except for the GC evaluation have bandwidth O(|PLi |) where
PLi is a path accessed in OTi. (The online part of our protocol requires 7 such
transmissions per each OTi). Each path PLi in OTi has length O

(
w(di)

2
)

where
di is linear in i, and the summation is then done for i from 1 to h = O (m). The
O
(
wκm2

)
term is the bandwidth for garbled circuits, since the inputs to the

circuits for a path have O (wm) bits and there are O (m) paths retrieved during
the traversal of the ORAM forest.

Each party’s local cryptographic computation is O
(
w
(
m3/κ+m2

))
block

cipher or hash operations. Note that the O
(
wm3/κ

)
factor comes already from

secure transmission of data in the Client-Server ORAM, hence this cost seems
cryptographically minimal. The GC computation contributes O

(
wm2

)
hash

function operations, all performed by one party. Since m < κ, the O
(
wm2

)
term could dominate, and indeed we observe that the GC computation occupies
a significant fraction of the overall CPU cost.

The performance of the scheme is linear in the bucket size parameter w, and
the size of this parameter should be set so that the probability of overflow of any
bucket throughout the execution of the scheme is bounded by 2−λ for the desired
statistical security parameter λ. The probability that an internal node overflows
and the probability that a leaf node overflows are independent stochastic pro-
cesses and for this reason we examine them separately. The analytical bounds
we give for both cases are not optimal. For the leaf node overflow probability the
bound we give in Lemma 1 could be made tight if the number of ORAM accesses
N is equal to the number of memory locations 2m, but for the general case of
N > 2m we use a simple union bound which adds a N factor. If a tighter analysis
could be made, it could potentially reduce the required w by up to log(N) bits.
The bound we give for the internal node overflow probability in Lemma 2 is
simplistic and clearly far the optimal. We amend this bound by a discussion of
a stochastic model which we used to approximate the eviction process. If this
approximation is close to the real stochastic process then the scheme can be
instantiated with much smaller bucket sizes than those implied by Lemma 2.

20

Lemma 1. (Leaf Nodes) If we have N accesses in an ORAM forest with the
total capacity for 2m records and with leaf nodes which hold 4w entries, then the
probability that some leaf node overflows at some access is bounded by:

Pr[some leaf node in OTF overflows] ≤ N · h2 · 2m

w
· 2−2w

The proof of this lemma follows from a standard bins-and-balls argument.
To keep this probability below 2−λ we need that 2w ≥ λ+logN+m+2 logm.

It is easy to see that if you increase the number of buckets in a leaf node, the
constant of this linear relationship (which is roughly 1

2 for 4 buckets per leaf)
decreases rapidly. For example if one uses 6 buckets per leaf, the constant of the
linear relationship between w and m+ logN + λ becomes 1

6 , allowing for much
smaller buckets. This means that by modifying the number of buckets per leaf,
we can ensure that it is the internal nodes that define the size of buckets. We
note that increasing the number of buckets per leaf increases the total space for
the ORAM forest OTF.

Lemma 2. (Internal Nodes) If we have N accesses and subsequent evictions
in an ORAM forest with internal buckets of size w, then the probability that
some internal bucket overflows at some access is bounded by:

Pr[some internal bucket in OTF overflows] ≤ N · h · dh · w · 2−(w−1)

We can prove Lemma 2 by assuming that there exists an internal node that
during all accesses and subsequent evictions is on the verge of overflowing (has
w or w − 1 entries in it). We also assume the worst case of each node always
receiving exactly two new entries, and we compute the probability that a node
is not able to evict two entries, thus causing an overflow.

To keep this probability below 2−λ, the lemma implies that w − logw ≥
λ + logN + 2 logm + 1. For w < 512 this can be simplified as w ≥ λ + logN +
2 logm+ 10. For N ≤ c · 2m this implies w ≥ λ+m+ 2 logm+ 10 + log c.

Stochastic Approximation. The above analysis is pessimistic, since it assumes
that there exists a critical bucket that is always full, having w or w − 1 entries
and bounds the probability of such a bucket having a “bad event”. It does not
explore how difficult it is for a bucket to reach such a state, or how a congested
bucket is emptying over time. In order to better understand such behaviors we
observe that each internal node can be modeled as a Markov Chain, where the
state of the chain counts how many entries are currently in the node. The node
is initially empty. Whenever a node is selected in an eviction path it may receive
up to two entries depending on whether the parent node was able to evict one
or two entries. Moreover the node could evict up to two entries to its child that
participates in the eviction path. The root always receives 1 entry and may evict
up to two entries. Intuitively since the eviction path is picked at random and
each entry is assigned to a random leaf node, each entry in a node in the eviction
path can be evicted to the selected child node with probability 1

2 . So for this
model we make the following relaxation: Instead of mapping an entry to a leaf

21

node, when it is inserted for the first time in the root, we just let the leaf node
be “defined” as the entry is pushed down the tree during eviction. In that sense
we abstract entries and the only think we need to care for, is how many entries
there exist in a given internal node at a given moment, which is expressed by
the state of the Markov Chain.

This model needs one Markov Chain for each internal node. We make the
following relaxation: We use one Markov Chain for each level of the tree. A
Markov Chain starts empty. At each eviction step, a Markov Chain at level i
may receive up to two entries depending on how many entries the Markov Chain
in the previous level i−1 was able to evict. Moreover the Markov Chain at level
i may evict up to two entries to level i + 1. The Markov Chain for the root
(level 0) always receives 1 entry. The state of a Markov Chain keeps tracks of
how many entries are in it. At each eviction step an entry can be evicted with
probability 1

2 (the same as the probability we had for the previous model).

The final relaxation we do, is that we remove the direct relationship between
a Markov Chain at level i evicting an entry and the Markov Chain at level i+ 1
receiving an entry. We first observe that on expectation at every level the Markov
Chain receives at most 1 entry at each eviction step. Intuitively in order to prove
this we observe that initially all nodes are empty. The root receives one entry in
each eviction step, from there we can use a recursive argument that at any level i
a node cannot be evicting more than 1 entry on expectation in each eviction step,
which is what the node at level i+ 1 is receiving. Since the eviction probabilities
only depend on the current state of a Markov Chain, the worst case for the
Markov Chain, is when the variance of the input is maximized. This happens
when with probability 1

2 the node receives 0 entries and with probability 1
2 the

node receives 2 entries (also maximizes the expectation to 1).

Fig. 1. w for different logN

We use this last model in order to bound the probability of overflow for inter-
nal nodes in our implementation and in order to set bucket sizes. In particular

22

we generate a Markov Chain the has w + 2 states, w for the bucket size, one
empty state and one overflow state. The overflow state is a sink. We compute
the probability of being in the overflow state after N accesses assuming the node
was initially empty and perform a union bound on the number of nodes in all
paths of the ORAM forest OTF. In figure 1 for different statistical security pa-
rameters λ equal with 20, 40 and 80, we show the minimum bucket sizes w for
logN in the range 12, . . . 36 and m = O (logN). Generally, we observe that using
the Markov Chain based approximation can lead to tighter bounds on the inter-
nal node sizes, from which we conjecture that the size of internal nodes can be
reduced to O

(√
λ+ logN

)
(w > 2

√
λ+ logN + 2 logm).

6 Implementation and Testing

We built and benchmarked a prototype JAVA implementation of the proposed
3-party SC-ORAM protocol. We tested this implementation on the entry-level
Amazon EC2 t2.micro virtual servers, which have one hyperthread on a 2.5GHz
CPU and 1GB RAM. Each of the three protocol participants C, D, E where
co-located in the same availability zone and connected via a local area network.
Here we will briefly show the most important findings, and we defer to the full
version of the paper for more detailed performance data.

We measured the performance of the online and offline stages of our protocol
separately, but our development effort was focused on optimizing the online stage
so the offline timings provide merely a loose upper-bound on the precomputation
overhead. We measured both wall clock and CPU times for each execution, where
the wall clock time is defined as the maximum of the individual wall clocks, and
the CPU time as the sum of the CPU times of the three parties. We tested our
prototype for bit-length m of the RAM addresses ranging from 12 to 36, and
for record size d ranging from 4 to 128 Bytes. Since the SC-ORAM protocol has
two additional parameters, the bucket size w and the bitlength of RAM address
segments τ , we tested the sensitivity of the performance to w using w equal to
16, 32, 64, or 128, and for each (m,w, d) tuple we searched for τ that minimize
the wall clock (an optimal τ was always between 3 and 6 for the tested cases).

Figure 2 shows the wall clock time of the online stage as a function of the
bitlength m of the RAM address space, for the two cases (w, d) = (16, 4) and
(w, d) = (32, 4). We found that the CPU utilization in the online phase of our
protocol is pretty stable, growing from about 25% for smaller m’s to 35% for
m ≥ 30, hence the graph of the CPU costs as function of m has a very similar
shape. Our testing showed that the influence of the record size d on the overall
performance is very small for d less than 100B, but higher payload sizes start
influencing the running time. Our testing confirms that the running time has
clear linear relationship to the bucket size w: The wall clock for w = 64 grows
by a factor close to 1.8 compared to w = 32, and for w = 128 by a factor
close to 3.5 (for large m and small d). The offline wall clock time grows from
400 msec for m = 12 to 1300 msec for m = 36 for w = 32, but these numbers
should be taken only as loose upper bounds on the precomputation overhead
of our SC-ORAM. Finally, we profiled the code to measure the percentage of

23

Fig. 2. Online Wall Clock vs RAM address size m

CPU time spent on different protocol components. We found that the fraction
of the fraction of the total CPU costs of the online phase spent on Garbled
Circuit evaluation decreases from 45% − 50% for m = 12 to 25% for m = 36.
We also found that only about half of that cost is spent in SHA evaluation, i.e.
that the Garbled Circuit evaluation protocol spends only about half its CPU
time on decryption of the garbled gates. The fraction of the CPU cost spent on
symmetric ciphers, which form the only cryptographic costs of all the non-GC
part of our protocol, decreases from the already low figure of 10% for small m’s
to below 5% for m = 36. By contrast, the fraction of the CPU cost spent on
handling message passing to and from TCP communication sockets grows from
12% for small m’s to 30% for m = 36.

References

1. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proceedings of the Twen-
tieth Annual ACM Symposium on Theory of Computing, STOC ’88, pages 1–10,
New York, NY, USA, 1988. ACM.

2. D. Chaum, C. Crépeau, and I. Damgard. Multiparty unconditionally secure pro-
tocols. In Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing, STOC ’88, pages 11–19, New York, NY, USA, 1988. ACM.

3. S. Choi, K. Hwang, J. Katz, T. Malkin, and D. Rubenstein. Secure multi-party
computation of boolean circuits with applications to privacy in on-line market-
places. Topics in Cryptology–CT-RSA 2012, pages 416 – 432, 2012/// 2012.

4. B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval.
In Proceedings of 36th FOCS, pages 41–50, 1995.

5. K.-M. Chung, Z. Liu, and R. Pass. Statistically-secure oram with Õ(log2 n) over-
head. In P. Sarkar and T. Iwata, editors, Advances in Cryptology ASIACRYPT
2014, volume 8874 of Lecture Notes in Computer Science, pages 62–81. Springer
Berlin Heidelberg, 2014.

24

6. I. Damgard, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart. Practical
covertly secure mpc for dishonest majority - or: Breaking the spdz limits. In
ESORICS, pages 144–163, 2013.

7. I. Damgard, S. Meldgaard, and J. B. Nielsen. Perfectly secure oblivious ram with-
out random oracles. In Theory of Cryptography, pages 144–163, 2011.

8. I. Damgard, V. Pastro, N. Smart, and S. Zakarias. Multiparty computation from
somewhat homomorphic encryption. In CRYPTO, pages 643–662, 20123.

9. C. Fletcher. Ascend: An architecture for performing secure computation on en-
crypted data. In MIT CSAIL CSG Technical Memo 508, 2013.

10. C. W. Fletcher, M. v. Dijk, and S. Devadas. A secure processor architecture
for encrypted computation on untrusted programs. In Proceedings of the Seventh
ACM Workshop on Scalable Trusted Computing, STC ’12, pages 3–8, New York,
NY, USA, 2012. ACM.

11. C. Gentry, K. A. Goldman, S. Halevi, C. S. Jutla, M. Raykova, and D. Wichs. Opti-
mizing oram and using it efficiently for secure computation. In Privacy Enhancing
Technologies, PETS’13, pages 1–18, 2013.

12. Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting data privacy in
private information retrieval schemes. In STOC, 1998.

13. O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious
rams. J. ACM, 43(3):431–473, May 1996.

14. S. D. Gordon, J. Katz, V. Kolesnikov, F. Krell, T. Malkin, M. Raykova, and
Y. Vahlis. Secure two-party computation in sublinear (amortized) time. In Com-
puter and Communications Security (CCS), CCS ’12, pages 513–524, 2012.

15. M. Keller and P. Scholl. Efficient, oblivious data structures for mpc. In P. Sarkar
and T. Iwata, editors, ASIACRYPT, volume 8874 of Lecture Notes in Computer
Science, pages 506–525. Springer Berlin Heidelberg, 2014.

16. L. Kruger, S. Jha, E.-J. Goh, and D. Boneh. Secure function evaluation with or-
dered binary decision diagrams. In Conference on Computer and Communications
Security, CCS ’06, pages 410–420, New York, NY, USA, 2006. ACM.

17. S. Lu and R. Ostrovsky. Distributed oblivious RAM for secure two-party compu-
tation. In TCC, pages 377–396, 2013.

18. M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi, K. Asanovic, J. Kubiatowicz,
and D. Song. Phantom: Practical oblivious computation in a secure processor. In
Conference on Computer and Communications Security, CCS ’13, pages 311–324,
New York, NY, USA, 2013. ACM.

19. R. Ostrovsky and V. Shoup. Private information storage (extended abstract).
In Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of
Computing, El Paso, Texas, USA, May 4-6, 1997, pages 294–303, 1997.

20. E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li. Oblivious ram with O((logn)3)
worst-case cost. In ASIACRYPT, pages 197–214, 2011.

21. E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas. Path
oram: An extremely simple oblivious ram protocol. In Conference on Computer
and Communications Security (CCS), CCS’13, pages 299–310, 2013.

22. X. S. Wang, Y. Huang, T.-H. H. Chan, A. Shelat, and E. Shi. Scoram: Oblivious
ram for secure computation. In Conference on Computer and Communications
Security, CCS ’14, pages 191–202, New York, NY, USA, 2014. ACM.

23. X. S. Wang, T.-H. Hubert, and E. Shi. Circuit oram: On tightness of the goldreich-
ostrovsky lower bound. In Eprint IACR Archive, page 2015/672, 2014.

24. A. C.-C. Yao. Protocols for secure computations (extended abstract). In Pro-
ceedings of the 23rd Annual Symposium on Foundations of Computer Science,
FOCS’82, pages 160–164, 1982.

25

