
Multi-Party Key Exchange for Unbounded
Parties from Indistinguishability Obfuscation

Dakshita Khurana1?, Vanishree Rao2??, and Amit Sahai1∗

1 Dept of Computer Science, UCLA and Center for Encrypted Functionalities, USA.
{dakshita,sahai}@cs.ucla.edu

2 PARC, a Xerox Company.
Vanishree.Rao@parc.com

Abstract. Existing protocols for non-interactive multi-party key ex-
change either (1) support a bounded number of users, (2) require a
trusted setup, or (3) rely on knowledge-type assumptions.

We construct the first non-interactive key exchange protocols which sup-
port an unbounded number of parties and have a security proof that does
not rely on knowledge assumptions. Our non-interactive key-exchange
protocol does not require a trusted setup and extends easily to the
identity-based setting. Our protocols suffer only a polynomial loss to
the underlying hardness assumptions.

1 Introduction

Non-interactive key exchange (NIKE) enables a group of parties to derive a
shared secret key without any interaction. In a NIKE protocol, all parties simul-
taneously broadcast a message to all other parties. After this broadcast phase,
each party should be able to locally compute a shared secret key for any group
of which he is a member. All members of a group should generate an identical
shared key, and the shared key for a group should look random to a non-member.

This notion was introduced by Diffie and Hellman [16], who also gave a pro-
tocol for non-interactive key exchange in the two-party setting. More than two
decades later, Joux [32] constructed the first non-interactive key exchange pro-
tocol for three parties. Given a set of N parties (where N is a polynomial in
the security parameter), Boneh and Silverberg [4] obtained a multiparty NIKE
protocol based on multilinear maps. The recent candidates for multilinear maps

? Research supported in part from a DARPA/ONR PROCEED award, NSF grants
1228984, 1136174, 1118096, and 1065276, a Xerox Faculty Research Award, a Google
Faculty Research Award, an equipment grant from Intel, and an Okawa Foundation
Research Grant. This material is based upon work supported by the Defense Ad-
vanced Research Projects Agency through the U.S. Office of Naval Research under
Contract N00014-11- 1-0389. The views expressed are those of the author and do
not reflect the official policy or position of the Department of Defense, the National
Science Foundation, or the U.S. Government.

?? Work done while studying at UCLA.

given by [22,14,27,15] can be used to instantiate the scheme of [4], assuming
a trusted setup. After the advent of candidate constructions for indistinguisha-
bility obfuscation (iO) starting with the result of Garg et. al. [23], Boneh and
Zhandry [6] demonstrated how to obtain static secure NIKE and ID-NIKE based
on indistinguishability obfuscation, without relying on a trusted setup.

However, all these constructions require an a-priori bound on the number
of parties. The only known protocols which can possibly handle an unbounded
number of parties are the ones by Ananth et. al. and Abusalah et. al. [2,1], but
their solutions rely on differing-inputs obfuscation (diO)[3,2,7]. Unfortunately,
diO is a knowledge-type assumption, and recent work [9,25,31] demonstrates
that it may suffer from implausibility results. In this paper, we address the
following question:

Can we obtain NIKE supporting an a-priori unbounded number of parties and
not requiring any setup, based on indistinguishability obfuscation?

We give a positive answer to this question, by demonstrating non-interactive
key exchange protocols that achieve static security and support an a-priori un-
bounded number of parties, based on indistinguishability obfuscation.

1.1 Our Contributions

We consider a setting where an a-priori unbounded number of parties may broad-
cast or publish messages, such that later any party can derive a shared secret
key for a group of which it is a member. In our setting, parameters do not grow
with the number of parties. Our results can be summarized as follows.

Theorem 1. Assuming indistinguishability obfuscation and fully homomorphic
encryption, it is possible to obtain static-secure non-interactive multi-party key
exchange for an a-priori unbounded number of parties, without any setup.

Theorem 2. Assuming indistinguishability obfuscation and fully homomorphic
encryption, it is possible to obtain static-secure identity-based non-interactive
multi-party key exchange for an a-priori unbounded number of parties.

Fully homomorphic encryption was first constructed by Gentry [26] and sub-
sequently Brakerski and Vaikuntanathan [10] constructed it under the learn-
ing with errors assumption. Alternatively, it can be constructed based on sub-
exponentially secure iO for circuits and sub-exponential one-way functions [12].

1.2 Technical Overview

Bottlenecks in known constructions. Our starting point the static-secure NIKE
protocol of Boneh and Zhandry [6] based on indistinguishability obfuscation, in
the simplest case where parties have access to a trusted setup. The adversary
fixes a set of parties to corrupt, independent of the system parameters. Then the
setup generates public parameters, and each party broadcasts its public values.

We require that the shared group key for all the honest parties should look
indistinguishable from random, from the point of view of the adversary.

The basic Boneh-Zhandry construction uses a trusted setup to generate an
obfuscated program with a secret PRF key. Parties pick a secret value uniformly
at random, and publish the output of a length-doubling PRG applied to this
value, as their public value. To derive the shared secret key for a group of users,
a member of the group inputs public values of all users in the group (including
himself) according to some fixed ordering, as well as his own secret value into
this obfuscated program. The program checks if the PRG applied to the secret
value corresponds to one of the public values in the group, and if the check
passes, outputs a shared secret key by applying a PRF to the public value of all
parties in the group.

To prove security, we note that the adversary never corrupts any party in the
challenge set, so we never need to reveal the secret value for any party in this
set. Thus, (by security of the PRG) we can set the public values of parties in the
challenge set, to uniformly random values in the co-domain of the PRG. Then
with overwhelming probability, there exists no pre-image for any of the public
values in the challenge set, and therefore there exists no secret value for which
the PRG check in the program would go through. This allows us to puncture
the program at the challenge set, and then replace the shared secret key for this
set with random. However, in this construction it is necessary to set an a-priori
bound on the number of participants, since the size of inputs to the setup circuit
must be bounded.

The construction of Ananth et. al. [2] works without this a-priori bound,
by making use of differing-inputs obfuscation and collision resistant hashing. To
obtain a shared group key, parties first hash down the group public values and
then generate a short proof of membership in the group. The program takes the
hashed value and proof, and outputs a shared secret key for the group if and
only if the proof verifies. However, because the hash is compressing, there exist
collisions and thus there exist false proofs of membership. The only guarantee
is that these proofs are ‘hard’ to find in a computational sense. Unfortunately,
proving security in such a situation requires the use of differing-inputs obfusca-
tion, since we must argue that any non-member which distinguishes from random
the shared key of a group, could actually have generated false proofs. Such an
argument inherently involves an extractable assumption.

First attempt. Now, it seems that we may benefit from using an iO-friendly
tool for hashing, such that the proof of membership is unconditionally sound for
a select piece of the input to the hash. Moreover, the description of the hash
should computationally hide which part of the input it is sound for. Then, like
in the previous proof, we can set the public values of parties in the challenge set
to uniformly random values in the co-domain of the PRG, and try to puncture
the program at each position one by one. This resembles the “selective enforce-
ment” techniques of Koppula et. al. [34] who construct accumulators (from iO)
as objects enabling bounded commitments to an unbounded storage, which are
unconditionally binding for a select piece of the storage.

At this point, it may seem that we can use the accumulator hash function
and we should be done. Parties can hash down an unbounded number of public
values to a bounded size input using the accumulator, and generate a short
proof of correctness. On input the hashed value and proof, the program can
be set to output a shared key if the proof verifies. To prove security, we could
begin by generating the public values for parties in the challenge set, uniformly
at random in the co-domain of the PRG. Then, it should be possible to make
the accumulator binding at the first index, and consequently puncture out the
first index from the program. Then we can continue across indices and finally
puncture out the hash value at the challenge set for all indices.

Even though this proof seems straightforward, the afore-mentioned approach
fails. This is because an accumulator can be made unconditionally sound at a
particular index, only conditioned on the previous indices being equal to an a-
priori fixed sequence. In the setting of obfuscating unbounded-storage Turing
Machines, for which such accumulators were first introduced [34], there was
indeed a well-defined “correct” path that was generated by the machine itself,
and consequently there was a way to enforce correct behaviour on all previous
indices. However, in our setting the adversary is allowed to hash completely
arbitrary values for all indices. Very roughly, we require a tool that enables
selective enforcing even when the adversary is allowed to behave arbitrarily on
all other indices.

Our solution. At this point, we require a hash function which can enforce sound-
ness at hidden indices, while allowing arbitrary behaviour on all other indices.
Such a hash function was introduced recently in the beautiful work of Hubacek
and Wichs [30], in the context of studying the communication complexity of
secure function evaluation with long outputs. They call it a somewhere statisti-
cally binding (SSB) hash and give a construction based on fully homomorphic
encryption. An SSB hash can be used like other other hash functions, to hash
an a-priori unbounded number of chunks of input, each of bounded size, onto a
bounded space. Moreover, this hash can operate in various modes, where each
mode is statistically binding on some fixed index i determined at setup; yet, the
description of the hash function computationally hides this index.

Equipped with this tool, it is possible to argue security via a selective enforc-
ing hybrid argument. As usual, we begin by generating the public values of all
parties in the challenge set, uniformly at random in the co-domain of the PRG.
With overwhelming probability, this ensures that there exist no secret values
that could generate the public values in the challenge set. Now, we zoom into
each index (of the hash) one by one, and make the hash function statistically
binding at that particular index. Specifically, we know that a specific output of
the hash h∗ can only be achieved via a single fixed public value at the enforcing
index (say i). Moreover, with overwhelming probability, this public value lies
outside the range of the PRG, and thus there exist no false proofs for hash value
h∗ at the enforcing index i.

This allows us to alter the obfuscated circuit to always ignore the value h∗

at index i. Once we have changed the program, we generate the hash function

to be statistically binding at index (i+ 1), and repeat the argument. Note that
once we are at this next index, there may exist false proofs for previous indices –
however, at this point, we have already programmed the obfuscation to eliminate
the value h∗ for all previous indices.

In the identity-based NIKE setting, we generate secret keys for identities as
PRF outputs on the identity (in a manner similar to [6]). In addition to using
the enforce-and-move technique detailed above, we need to avoid simultaneously
programming in an unbounded number of public values. We handle this using
Sahai-Waters [37] punctured programming techniques(using PRGs) to puncture
and then un-puncture the PRF keys before moving on to the next value.

1.3 Other Related Work

Cash, Kiltz, and Shoup [13] and Freire, Hofheinz, Kiltz, and Paterson [19]
formalized various security models in the two-party NIKE setting. Bones and
Zhandry [6] first resolved NIKE for bounded N > 3 parties without relying on
a trusted setup, assuming indistinguishability obfuscation. However, their se-
curity proofs worked only for the static and semi-static scenarios. Hofheinz et.
al. [29] realized adaptive secure bounded N -party NIKE in the random oracle
model without setup, and Rao [36] realized bounded N -party NIKE with adap-
tive security and without setup based on assumptions over multilinear maps. A
recent independent work of Yamakawa et. al. [39] gives multilinear maps where
the multilinearity levels need not be bounded during setup, and the size of the
representations of elements is independent of the level of multi-linearity. In the
same paper, these maps are used to construct multiparty NIKE with unbounded
parties, however, requiring a trusted setup. Furthermore, their scheme does not
seem to extend directly to the identity-based NIKE setting.

In the identity-based NIKE setting, there is a trusted master party that
generates secret values for identities using a master secret key. This (seem-
ingly weaker) setting has been extensively studied both in the standard and
the random oracle models, and under various static and adaptive notions of
security [38,18,35,20], but again for an a-priori bounded number of parties.

Zhandry [40] uses somewhere statistically binding hash along with obfusca-
tion to obtain adaptively secure broadcast encryption with small parameters.

2 Preliminaries

2.1 Indistinguishability Obfuscation and PRFs

Definition 1 (Indistinguishability Obfuscator (iO)). A uniform PPT ma-
chine iO is called an indistinguishability obfuscator for circuits if the following
conditions are satisfied:

– For all security parameters κ ∈ N, for all circuits C, for all inputs x, we
have that

Pr[C ′(x) = C(x) : C ′ ← iO(κ,C)] = 1

– For any (not necessarily uniform) PPT adversaries Samp, D, there exists a
negligible function α such that the following holds: if Pr[|C0| = |C1| and
∀x,C0(x) = C1(x) : (C0, C1, σ)← Samp(1κ)] > 1− α(κ), then we have:

∣∣∣Pr
[
D(σ, iO(κ,C0)) = 1 : (C0, C1, σ)← Samp(1κ)

]
−Pr

[
D(σ, iO(κ,C1)) = 1 : (C0, C1, σ)← Samp(1κ)

]∣∣∣ ≤ α(κ)

Such indistinguishability obfuscators for circuits were constructed under novel
algebraic hardness assumptions in [24].

Definition 2. A puncturable family of PRFs F is given by a triple of Turing
Machines KeyF , PunctureF , and EvalF , and a pair of computable functions n(·)
and m(·), satisfying the following conditions:

– [Functionality preserved under puncturing] For every PPT adversary
A such that A(1κ) outputs a set S ⊆ {0, 1}n(κ), then for all x ∈ {0, 1}n(κ)
where x /∈ S, we have that:

Pr
[
EvalF (K,x) = EvalF (KS , x) : K ← KeyF (1κ),KS = PunctureF (K,S)

]
= 1

– [Pseudorandom at punctured points] For every PPT adversary (A1, A2)
such that A1(1κ) outputs a set S ⊆ {0, 1}n(κ) and state σ, consider an ex-
periment where K ← KeyF (1κ) and KS = PunctureF (K,S). Then we have∣∣∣Pr

[
A2(σ,KS , S,EvalF (K,S)) = 1

]
−Pr

[
A2(σ,KS , S, Um(κ)·|S|) = 1

]∣∣∣ = negl(κ)

where EvalF (K,S) denotes the concatenation of EvalF (K,x1)), . . . ,EvalF (K,xk))
where S = {x1, . . . , xk} is the enumeration of the elements of S in lexico-
graphic order, negl(·) is a negligible function, and U` denotes the uniform
distribution over ` bits.

For ease of notation, we write PRF(K,x) to represent EvalF (K,x). We also
represent the punctured key PunctureF (K,S) by K{S}.

The GGM tree-based construction of PRFs [28] from one-way functions are
easily seen to yield puncturable PRFs, as recently observed by [5,8,33]. Thus,

Imported Theorem 1. [28,5,8,33] If one-way functions exist, then for all ef-
ficiently computable functions n(κ) and m(κ), there exists a puncturable PRF
family that maps n(κ) bits to m(κ) bits.

2.2 Somewhere Statistically Binding Hash

Definition 3. We use the primitive somewhere statistically binding hash (SSB
hash), constructed by Hubacek and Wichs [30]. Intuitively, these are a special type
of collision resistant hash function that is binding on a hidden index, and can be
used with indistinguishability obfuscation. An SSB hash is a tripe of algorithms
(Gen,Open,Ver) where:

– Gen(s, i) takes as input two integers s and i, where s ≤ 2κ denotes the
number of blocks that will be hashed, and i ∈ [s] indexes a particular block.
The output is a function H : Σs → Z. The size of the description of H is
independent of s and i (though it will depend on the security parameter).

– Open(H,x = {x`}`∈[s], j) for x` ∈ Σ and j ∈ [s] produces an “opening” π

that proves that the jth element in x is xj.
– Ver(H,h ∈ Z, j ∈ [s], u ∈ Σ, π) either accepts or rejects. The idea is that

Ver should only accept when h = H(x) where xj = u.
– Correctness: Ver(H,H(x), j, xj ,Open(H,x, j)) accepts.
– Index hiding: Gen(s, i0) is computationally indistinguishable from Gen(s, i1)

for any i0, i1.
– Somewhere Statistically Binding: If H ← Gen(s, i) then if Ver(H,h, i, u, π)

and Ver(H,h, i, u′, π′) accept, it must be that u = u′.

Remark. Note that using SSB hash functions, one can efficiently hash down an
a-priori unbounded (polynomial) number of values in the security parameter κ.

Imported Theorem 2. Assuming the existence of FHE, there exists a some-
where statistically binding hash function family mapping unbounded polynomial
size inputs to outputs of size κ bits (where κ denotes the security parameter),
according to Definition 3.

3 Definitions

Definition 4 (Multiparty Non-interactive Key Exchange). An adaptive
multiparty NIKE protocol has the following three algorithms:

– Setup(1κ) : The setup algorithm takes a security parameter κ, and outputs
public parameters params.

– Publish(1κ, i) : Each party executes the publishing algorithm, which takes as
input the index of the party, and outputs two values: a secret key svi and a
public value pvi. Party Pi keeps svi as his secret value, and publishes pvi to
the other parties.

– KeyGen(params,S, (pvi)i∈S , j, svj) : To derive the common key kS for a sub-
set S, each party in S runs KeyGen with params, its secret value svj and the
public values (pvi)i ∈ S of the parties in S.

Then, these algorithms should satisfy the following properties:

– Correctness: For all S, i, i′ ∈ S,

KeyGen(params,S, (pvj)j∈S , i, svi) = KeyGen(params,S, (pvj)j∈S , i′, svi′).

– Security: The adversary is allowed to (statically) corrupt any subset of users
of his choice. More formally, for b ∈ {0, 1}, we denote by expmt(b) the follow-
ing experiment, parameterized only by the security parameter κ and an adver-

sary A, and params
$←Setup(1κ) and b′ ← AReg(·),RegCor(·,·),Ext(·),Rev(···),Test(···)

(1κ, params) where:

• Reg(i ∈ [2κ]) registers an honest party Pi. It takes an index i, and runs
(svi, pvi) ← Publish(params, i). The challenger then records the tuple
(i, ski, pvi, honest) and sends pvi to A.

• RegCor(i ∈ [2κ], pki) registers a corrupt party P ∗i . It takes an index i
and a public value pvi. The challenger records (i,⊥, pvi, corrupt). The
adversary may make multiple queries for a particular identity, in which
case the challenger only uses the most recent record.

• Ext(i) extracts the secret key for an honest registered party. The chal-
lenger looks up the tuple (i, svi, pvi, honest) and returns svi to A.

• Rev(S, i) reveals the shared secret for a group S of parties, as calculated
by the ith party, where i ∈ S. We require that party Pi was registered
as honest. The challenger uses the secret key for party Pi to derive the
shared secret key kS , which it returns to the adversary.

• Test(S) : Takes a set S of users, all of which were registered as honest.
Next, if b = 0 the challenger runs KeyGen to determine the shared secret key
(arbitrarily choosing which user to calculate the key), which it returns to the
adversary. Else if b = 1, the challenger generates a random key k to return
to the adversary.

A static adversary A must have the following restrictions:

– A commits to a set S∗ before seeing the public parameters, and,
– A makes a single query to Test, and this query is on the set S∗.

We require that all register queries and register-corrupt queries are for dis-
tinct i, and that pvi 6= pvj for any i 6= j. For b = 0, let Wb be the event that
b′ = 1 in expmt(b) and we define AdvNIKE(κ) = |Pr[W0]− Pr[W1]|.

Then, a multi-party key exchange protocol (Setup,Publish,KeyGen) is stati-
cally secure if AdvNIKE(κ) is negl(κ) for any static PPT adversary A.

4 Static Secure NIKE for Unbounded Parties

4.1 Construction

Let PRF denote a puncturable PRF mapping κ bits to κ bits, and PRG de-
note a length-doubling pseudorandom generator with inputs of size κ bits. Let
(Gen,Open,Ver) denote the algorithms of a somewhere statistically binding hash
scheme as per Definition 3. Then the static secure NIKE algorithms are con-
structed as follows.

Setup(1κ): Pick puncturable PRF key K
$←{0, 1}κ. Run Gen(1κ, 2κ, 0) to obtain

H. Obfuscate using iO the program PKE in Figure 1, padded to the appropriate
length. Output PiO = iO(PKE) as public parameters.

Publish: Party i chooses a random seed si ∈ {0, 1}λ as a secret value, and pub-
lishes xi = PRG(si).

NIKE- Public Parameters

Constants: H,PRF key K.
Input: h, i, pv, sv, π, t.

1. If i > t, output ⊥ and abort.
2. Set Kt = PRF(K, t).
3. If Ver(H,h, i, pv, π) = 1 and PRG(sv) = pv, output PRF(Kt, h).
4. Else output ⊥.

Fig. 1: Static Secure NIKE Parameters PKE

KeyGen(PKE , i, si, S, {pvj}j∈S): Compute h = H({pvj}j∈S). Compute
π = Open(H, {pvj}j∈S , i). Run program PKE on input (h, i, pv, sv, π, |S|) to
obtain shared key KS .

4.2 Security Game and Hybrids

Hybrid0: This is the real world attack game, where A commits to a set Ŝ. In
response A gets the public parameters from the setup, and then makes the
following queries.

– Register honest user queries: A submits an index i. The challenger chooses
a random si, and sends xi = PRG(si) to A.

– Register corrupt user queries: A submits an index i such that i 6∈ Ŝ, along
with a string xi as the public value for party i. We require that i was not,
and will not be registered as honest.

– Extract queries: A submits an i ∈ [N] \ Ŝ that was previously registered as
honest. The challenger responds with si.

– Reveal shared key queries: The adversary submits a subset S 6= Ŝ of users,
of which at least one is honest. The challenger uses PRF to compute and
send the group key.

– Finally, for set Ŝ, the adversary receives either the correct group key (if
b = 0) or a random key (if b = 1). The adversary outputs a bit b′ and wins
if Pr[b′ = b] > 1

2 + 1/poly(κ) for some polynomial poly(·).

We now demonstrate a sequence of hybrids, via which we argue that the advan-
tage of the adversary in guessing the bit b is negl(κ), where negl(·) is a function
that is asymptotically smaller than 1/poly(κ) for all polynomials poly(·). We give
short overviews of indistinguishability between the hybrids, with full proofs in
Appendix A. We use underline changes between subsequent hybrids.

Hybrid1: For each i ∈ Ŝ, choose xi
$←{0, 1}2λ. When answering register honest

user queries for i ∈ Ŝ, use these xi values instead of generating them from PRG.

Follow the rest of the game same as Hybrid0. This hybrid is indistinguishable
from Hybrid0, by security of the PRG.

Let t∗ = |S|. We start with Hybrid2,1,a, and go across hybrids in the following se-
quence: Hybrid2,1,a,Hybrid2,1,b,Hybrid2,2,a,Hybrid2,2,b . . .Hybrid2,t∗,a,Hybrid2,t∗,b.
The hybrids Hybrid2,i∗,a and Hybrid2,i∗,b are described below, for i∗ ∈ [t∗].

Hybrid2,1,a : Generate hash function H
$← Gen(1κ, 2κ, 1). Follow the rest of the

game same as Hybrid1. This is indistinguishable from Hybrid1 because of indis-
tinguishability of statistical binding index.

Hybrid2,i∗,a : Generate hash function H
$← Gen(1κ, 2κ, i∗). Follow the rest of the

game same as Hybrid2,i∗−1,b. This is indistinguishable from Hybrid2,i∗−1,b because
of indistinguishability of statistical binding index.

Hybrid2,i∗,b : Generate hash function H
$←Gen(1κ, 2κ, i∗). Let h∗ = H({pvj}j∈S).

Set PKE to Ci∗ , an obfuscation of the circuit in Figure 2. This is indistinguishable
from Hybrid2,i∗,a because of iO between functionally equivalent circuits PKE,i∗

and PKE,i∗−1 when the hash is statistically binding at index i∗.

NIKE- Public Parameters

Constants: H,PRF key K, i∗, h∗.
Input: h, i, pv, sv, π, t.

1. If i > t, output ⊥ and abort.
2. Compute Kt = PRF(K, t).
3. If i ≤ i∗, h = h∗, output ⊥ and abort.
4. If Ver(H,h, i, pv, π) = 1 and PRG(sv) = pv, output PRF(Kt, h).
5. Else output ⊥.

Fig. 2: Static Secure NIKE Parameters PKE,i∗

Hybrid2,t∗,b : Generate hash function H
$← Gen(1κ, 2κ, t∗). Let h∗ = H({pvj}j∈S).

Set PKE to Ci which is an obfuscation of the circuit in Figure 3.

Hybrid3 : Generate hash function H
$← Gen(1κ, 2κ, t∗). Let h∗ = H({pvj}j∈S).

Set k∗ = PRF(K, t∗). Set PKE to Ci which is an obfuscation of the circuit in
Figure 4, using punctured key K{t∗}. Follow the rest of the game the same as in
Hybrid2,t∗,b. This program is functionally equivalent to the program in Hybrid3,
and thus the hybrid is indistinguishable by iO.

Hybrid4 : Generate hash function H
$← Gen(1κ, 2κ, t∗). Let h∗ = H({pvj}j∈S).

Set k∗
$←{0, 1}κ. Follow the rest of the game honestly according to Hybrid3,

NIKE- Public Parameters

Constants: H,PRF key K, t∗, h∗.
Input: h, i, pv, sv, π, t.

1. If i > t, output ⊥ and abort.
2. Compute Kt = PRF(K, t).
3. If i ≤ t∗, h = h∗, output ⊥ and abort.
4. If Ver(H,h, i, pv, π) = 1 and PRG(sv) = pv, output PRF(Kt, h).
5. Else output ⊥.

Fig. 3: Static Secure NIKE Parameters PKE,t∗

NIKE- Public Parameters

Constants: H,PRF key K{t∗}, t∗, h∗, k∗.
Input: h, i, pv, sv, π, t.

1. If i > t, output ⊥ and abort.
2. If t = t∗, set Kt = k∗. Else compute Kt = PRF(K{t∗}, t).
3. If i ≤ t∗, h = h∗, output ⊥ and abort.
4. If t = t∗, h = h∗, output ⊥ and abort.
5. If Ver(H,h, i, pv, π) = 1 and PRG(sv) = pv, output PRF(Kt, h).
6. Else output ⊥.

Fig. 4: Static Secure NIKE Parameters PKE′

with this value of k∗. This hybrid is indistinguishable from Hybrid3 because of
security of the punctured PRF.

Hybrid5 : Generate hash function H
$← Gen(1κ, 2κ, t∗). Set h∗ = H({pvj}j∈S).

Set k∗
$← {0, 1}κ. Set PKE to Ci which is an obfuscation of the circuit in Fig-

ure 5, using punctured key k∗{h∗}. This program is functionally equivalent to
the program in Hybrid4, thus the hybrids are indistinguishable by iO.

NIKE- Public Parameters

Constants: H,PRF key K{t∗}, t∗, h∗, k∗{h∗}.
Input: h, i, pv, sv, π, t.

1. If i > t, output ⊥ and abort.
2. If t = t∗, set Kt = k∗{h∗}. Else compute Kt = PRF(K, t).
3. If i ≤ t∗, h = h∗, output ⊥ and abort.
4. If t = t∗, h = h∗, output ⊥ and abort.
5. If Ver(H,h, i, pv, π) = 1 and PRG(sv) = pv, output PRF(Kt, h).
6. Else output ⊥.

Fig. 5: Static Secure NIKE Parameters PKE

Finally, by security of punctured PRF, A’s advantage in Hybrid5 is negl(κ).

4.3 Removing the Setup

We note that in our protocol, the Publish algorithm is independent of the Setup
algorithm. In such a scenario, [6] gave the following theorem, which can be used
to remove setup from our scheme in the case of static corruptions.

Imported Theorem 3. [6] Let (Setup,Publish,KeyGen) be a statically secure
NIKE protocol where Publish does not depend on params output by Setup, but
instead just takes as input (λ, i). Then there is a statically secure NIKE protocol
(Setup′,Publish′,KeyGen′) with no setup.

5 ID-NIKE for Unbounded Parties

In the identity-based NIKE setting, there is a trusted setup that outputs public
parameters, and generates secret keys for parties based on their identity. These
parties then run another key-generating algorithm on their secret keys and setup,
to compute shared group keys.

Our NIKE scheme can be extended to obtain identity-based NIKE for unbounded
parties with a polynomial reduction to the security of indistinguishability ob-
fuscation and fully homomorphic encryption. In this section, we describe our
protocol for ID-NIKE for a-priori unbounded parties, and give an overview of
the hybrid arguments.

5.1 Construction

Let κ denote the security parameter, PRF denote a puncturable pseudo-random
function family mapping κ bits to κ bits and PRG denote a length-doubling
pseudo-random generator with inputs of size κ bits. ID-NIKE consists of the
following algorithms.

– Setup(1κ): Sample random PRF keys K1 and K2. Compute the program
PIBKE in Figure 6 padded to the appropriate length, and compute PiO =
iO(PIBKE). Sample SSB hash H ← Gen(1κ). Publish the public parameters
params = PiO, H.

– Extract(K2, id): Output skid = PRF(K2, id).
– KeyGen(params, S, id, sid): To compute shared key kS for lexicographically

ordered set S, compute h = H(S) and π = Open(h, S, i); where i denotes
the index of id in sorted S. Then obtain output kS = PiO(h, i, id, π, sid, |S|).

NIKE- Public Parameters

Constants: H,PRF keys K1,K2.
Input: h, i, id, π, sid, t.

1. If i > t, output ⊥ and abort.
2. Compute Kt = PRF(K1, t).
3. If Ver(H,h, i, id, π) = 0 or PRG(sid) 6= PRG(PRF(K2, id)), output
⊥ and abort.

4. Else output PRF(Kt, h).

Fig. 6: Static Secure ID-NIKE Parameters PIBKE

5.2 Security Game and Hybrids

Hybrid0: This is the real world attack game, where A commits to a set Ŝ. In
response A gets the public parameters as hash function H and the obfuscation
of PIBKE and then makes the following queries.

– Obtain secret keys: A submits an identity id such that id ≤ poly(κ) and
id 6∈ Ŝ. The challenger outputs Extract(K2, id) to A.

– Reveal shared keys: The adversary submits a subset S 6= Ŝ of users, of which
at least one is honest. The challenger uses the public parameters to compute
and send the group key.

– Finally, for set Ŝ, the adversary receives either the correct group key (if
b = 0) or a random key (if b = 1). The adversary outputs a bit b′ and wins
if Pr[b′ = b] > 1

2 + 1/poly(κ) for some polynomial poly(·).

We now demonstrate a sequence of hybrids, via which we argue that the advan-
tage of the adversary in guessing the bit b is negl(κ), where negl(·) is a function
that is asymptotically smaller than 1/poly(κ) for all polynomials poly(·). We
give short arguments for indistinguishability between the hybrids, with complete
proofs in the full version.

Let Ŝ = {id∗1, id
∗
2, id

∗
3, . . . id

∗
|Ŝ|}. Then, for p ∈ [1, |Ŝ|], we have the sequence of hy-

brids: Hybridp−1,j ,Hybridp,a,Hybridp,b, . . .Hybridp,j ,Hybridp+1,a,Hybridp+1,b,
Here, Hybrid0 ≡ Hybrid0,j . We now write out the experiments and demonstrate

the sequence of changes between Hybridp−1,j and Hybridp,j for any p ∈ [1, |Ŝ|].

Hybridp−1,j : This is the same as Hybrid0 except that the hash is generated

as H ← Gen(1κ, 2κ, p− 1). The challenger computes h∗ = H(Ŝ) and outputs
the program PIBKE in Figure 7 padded to the appropriate length. He publishes
PiO = iO(PIBKE).

Hybridp,a : This is the same as Hybridp−1,j except that the challenger computes
r∗p = PRF(K2, id

∗
p), z

∗
p = PRG(r∗p). He computes punctured PRF key K2{id∗p} and

NIKE- Public Parameters

Constants: H,PRF keys K1,K2, h
∗.

Input: h, i, id, π, sid, t.

1. If i > t, output ⊥ and abort.
2. Compute Kt = PRF(K1, t).
3. If Ver(H,h, i, id, π) = 0, output ⊥ and abort.
4. If i ≤ (p− 1), h = h∗, then output ⊥ and abort.
5. Else if PRG(sid) 6= PRG(PRF(K2, id)), output ⊥ and abort.
6. Else output PRF(Kt, h).

Fig. 7: Static Secure ID-NIKE Parameters PIBKE

using the program PIBKE in Figure 8 padded to the appropriate length, com-
putes PiO = iO(PIBKE). This is indistinguishable from Hybridp−1,j because of iO
between functionally equivalent circuits.

NIKE- Public Parameters

Constants: H,PRF keys K1,K2{id∗p}, id∗p, z∗p , h∗.
Input: h, i, id, π, sid, t.

1. If i > t, output ⊥ and abort.
2. Compute Kt = PRF(K1, t).
3. If Ver(H,h, i, id, π) = 0, output ⊥ and abort.
4. If i ≤ (p− 1), h = h∗, then output ⊥ and abort.
5. If id = id∗p, then if PRG(sid) 6= z∗p , output ⊥ and abort.

6. If id 6= id∗p, then if PRG(sid) 6= PRG(PRF(K2{id∗p}, id)), output ⊥
and abort.

7. Else output PRF(Kt, h).

Fig. 8: Static Secure ID-NIKE Parameters PIBKE

Hybridp,b : This is the same as Hybridp,a except that the challenger picks r∗p
$←{0, 1}κ

and sets z∗p = PRG(r∗p). This is indistinguishable from Hybridp,a by security of
the puncturable PRF.

Hybridp,c : This is the same as Hybridp,b except that the challenger sets z∗p
$←{0, 1}2κ.

This is indistinguishable from Hybridp,b by security of the PRG.

Hybridp,d : This is the same as Hybridp,c except that the challenger computes
the program PIBKE in Figure 9 padded to the appropriate length, and publishes
PiO = iO(PIBKE).

NIKE- Public Parameters

Constants: H,PRF keys K1,K2{id∗p}, id∗p, h∗.
Input: h, i, id, π, sid, t.

1. If i > t, output ⊥ and abort.
2. Compute Kt = PRF(K1, t).
3. If Ver(H,h, i, id, π) = 0, output ⊥ and abort.
4. If i ≤ (p− 1), h = h∗, then output ⊥ and abort.
5. If id = id∗p, then output ⊥ and abort.

6. If id 6= id∗p, then if PRG(sid) 6= PRG(PRF(K2{id∗p}, id)), output ⊥
and abort.

7. Else output PRF(Kt, h).

Fig. 9: Static Secure ID-NIKE Parameters PIBKE

With probability 1/2κ over random choice of z∗1 , the value z∗1 does not lie in
the co-domain of the length-doubling PRG. Then this hybrid is indistinguishable
from Hybrid1,c because of iO between functionally equivalent circuits.

Hybridp,e : In this hybrid, the challenger generates H
$←Gen(1κ, 2κ, p) (such that

it is statistically binding at index p). The rest of the game is same as Hybridp,d.
This hybrid is indistinguishable from Hybridp,d because of indistinguishability of
statistical binding index.

Hybridp,f : This is the same as Hybridp,e except that the challenger outputs the
program PIBKE in Figure 10 padded to the appropriate length. He publishes
PiO = iO(PIBKE).

NIKE- Public Parameters

Constants: H,PRF keys K1,K2{id∗p}, h∗.
Input: h, i, id, π, sid, t.

1. If i > t, output ⊥ and abort.
2. Compute Kt = PRF(K1, t).
3. If Ver(H,h, i, id, π) = 0, output ⊥ and abort.
4. If i ≤ p, h = h∗, then output ⊥ and abort.
5. Else if PRG(sid) 6= PRG(PRF(K2{id∗p}, id)), output ⊥ and abort.
6. Else output PRF(Kt, h).

Fig. 10: Static Secure ID-NIKE Parameters PIBKE

This is indistinguishable from Hybridp,e because of iO between functionally equiv-
alent circuits. The circuits are functionally equivalent because the hash is sta-
tistically binding at index p.

Hybridp,g: This is the same as Hybridp,f , except that the challenger picks z∗p
$←{0, 1}2κ,

and then outputs the program PIBKE in Figure 11 padded to the appropriate
length. He publishes PiO = iO(PIBKE).

NIKE- Public Parameters

Constants: H,PRF keys K1,K2{id∗p}, h∗, z∗p .
Input: h, i, id, π, sid, t.

1. If i > t, output ⊥ and abort.
2. Compute Kt = PRF(K1, t).
3. If Ver(H,h, i, id, π) = 0, output ⊥ and abort.
4. If i ≤ p, h = h∗, then output ⊥ and abort.
5. If id = id∗p then if PRG(sid) 6= z∗p output ⊥ and abort.

6. Else if PRG(sid) 6= PRG(PRF(K2{id∗p}, id)), output ⊥ and abort.
7. Else output PRF(Kt, h).

Fig. 11: Static Secure ID-NIKE Parameters PIBKE

With probability 1/2κ over the randomness of choice of z∗p , the value z∗p lies
outside the co-domain of the PRG. Thus, with over whelming probability, the
extra statement is never activated and the circuit is functionally equivalent to
the one in Hybridp,f . Then this is indistinguishable from Hybridp,f because of iO
between functionally equivalent circuits.

Hybridp,h : This is the same as Hybrid1,g except that the challenger picks r∗p
$←{0, 1}κ

and sets z∗p = PRG(r∗p). It follows the rest of the game same as Hybridp,g with this

value of z∗p . This hybrid is indistinguishable from Hybridp,g because of security
of length-doubling PRGs.

Hybridp,i : This is the same as Hybridp,h except that the challenger sets
r∗p = PRF(K2, id

∗
p) and z∗p = PRG(r∗p). It follows the rest of the game same as

Hybridp,h with this value of z∗p . This hybrid is indistinguishable from Hybridp,h
because of security of the puncturable PRF.

Hybridp,j : This is the same as Hybridp,i except that the challenger outputs the
program PIBKE in Figure 12 padded to the appropriate length. He publishes
PiO = iO(PIBKE).

This is indistinguishable from Hybridp,i by iO between functionally equivalent
circuits. Note that at this stage, we have un-punctured the PRF at value id∗p.
This is crucial for our hybrid arguments to go through, because we will eventually
have to program in an a-priori un-bounded number of identities.

NIKE- Public Parameters

Constants: H,PRF keys K1,K2, h
∗.

Input: h, i, id, π, sid, t.

1. If i > t, output ⊥ and abort.
2. Compute Kt = PRF(K1, t).
3. If Ver(H,h, i, id, π) = 0, output ⊥ and abort.
4. If i ≤ p, h = h∗, then output ⊥ and abort.
5. Else if PRG(s) 6= PRG(PRF(K2, id)), output ⊥ and abort.
6. Else output PRF(Kt, h).

Fig. 12: Static Secure ID-NIKE Parameters PIBKE

Hybrid|Ŝ|,j : This is the final hybrid in the sequence, where the hash is generated

as H ← Gen(1κ, 2κ, |Ŝ|). The challenger computes h∗ = H(Ŝ) and outputs the
program PIBKE in Figure 7 padded to the appropriate length. He publishes PiO =
iO(PIBKE).

NIKE- Public Parameters

Constants: H,PRF keys K1,K2, h
∗.

Input: h, i, id, π, sid, t.

1. If i > t, output ⊥ and abort.
2. Compute Kt = PRF(K1, t).
3. If Ver(H,h, i, id, π) = 0, output ⊥ and abort.
4. If i ≤ Ŝ, h = h∗, then output ⊥ and abort.
5. Else if PRG(s) 6= PRG(PRF(K2, id)), output ⊥ and abort.
6. Else output PRF(Kt, h).

Fig. 13: Static Secure ID-NIKE Parameters PIBKE

Finally, we have the following two hybrids

Hybridante−penultimate : In this hybrid, the challenger generates the hash function

as H ← Gen(1κ, 2κ, |Ŝ|). The challenger computes h∗ = H(Ŝ) and sets
k∗ = PRF(K1, t

∗). He punctures the PRF key K1 on input t∗ to obtain K{t∗}.
He outputs the program PIBKE in Figure 14 padded to the appropriate length.
He publishes PiO = iO(PIBKE).

This is indistinguishable from Hybrid|Ŝ|,j because of indistinguishability between
functionally equivalent circuits.

NIKE- Public Parameters

Constants: H,PRF keys K1{t∗},K2, h
∗, k∗.

Input: h, i, id, π, sid, t.

1. If i > t, output ⊥ and abort.
2. If t = t∗, set Kt = k∗, else compute Kt = PRF(K1, t).
3. If Ver(H,h, i, id, π) = 0, output ⊥ and abort.
4. If i ≤ |Ŝ|, h = h∗, then output ⊥ and abort.
5. Else if PRG(s) 6= PRG(PRF(K2, id)), output ⊥ and abort.
6. Else output PRF(Kt, h).

Fig. 14: Static Secure ID-NIKE Parameters PIBKE

Hybridpenultimate: This is the same as Hybridante-penultimate, except that the chal-

lenger sets k∗
$←{0, 1}κ. This is indistinguishable from Hybridante-penultimate be-

cause of security of the puncturable PRF.

Hybridultimate: This is the same as Hybridpenultimate, except that the challenger
punctures PRF key k∗ on value h∗. Then, he sets the program PIBKE in Figure 15
using punctured key k∗{h∗} padded to the appropriate length. He publishes
PiO = iO(PIBKE).

NIKE- Public Parameters

Constants: H,PRF keys K1{t∗},K2, h
∗, k∗{h∗}.

Input: h, i, id, π, sid, t.

1. If i > t, output ⊥ and abort.
2. If t = t∗, set Kt = k∗{h∗}, else compute Kt = PRF(K1, t).
3. If Ver(H,h, i, id, π) = 0, output ⊥ and abort.
4. If i ≤ |Ŝ|, h = h∗, output ⊥ and abort.
5. If t = t∗, h = h∗, output ⊥ and abort.
6. Else if PRG(s) 6= PRG(PRF(K2, id)), output ⊥ and abort.
7. Else output PRF(Kt, h).

Fig. 15: Static Secure ID-NIKE Parameters PIBKE

This hybrid is indistinguishable from Hybridpenultimate because of iO between func-
tionally equivalent programs. Finally, the distinguishing advantage of the adver-
sary in this hybrid is at most negl(κ), by security of the puncturable PRF.

6 Conclusion

We construct static-secure protocols that allow NIKE and ID-NIKE between
an unbounded number of parties, relying on more feasible assumptions such as
indistinguishability obfuscation and fully homomorphic encryption; as opposed
to ‘knowledge-type’ assumptions such as differing-inputs obfuscation. It would be
interesting to design protocols that tolerate more active attacks by adversaries,
for an unbounded number of parties.

A NIKE: Proofs of Indistinguishability of the Hybrids

Lemma 1. For all (non-uniform) PPT adversaries D, D(Hybrid0) ≈c D(Hybrid1).

Proof. We define a sub-sequence of polynomially many (concretely, |Ŝ|) sub-
hybrids Hybrid0,j for j ∈ |Ŝ|, where Hybrid0,j is the same as Hybrid0 except

that the challenger samples the first j public values for parties in the set Ŝ at
random in {0, 1}2κ instead of generating them as the output of the PRG. Note
that Hybrid0,0 ≡ Hybrid0 and Hybrid0,|Ŝ| ≡ Hybrid1.

We show that hybrids Hybrid0,j and Hybrid0,j+1 are computationally indistin-
guishable. We will prove this by contradiction.

Suppose there exists a distinguisher D which distinguishes between Hybrid0,j and
Hybrid0,j+1 with advantage 1/poly(κ) for some polynomial poly(·). We construct
a reduction that uses this distinguisher to break security of the underlying PRG.
The reduction obtains a challenge value x, which may either be the output of
the PRG on a uniform input, or may be chosen uniformly at random in {0, 1}2κ.

It picks the first j public values for parties in the set Ŝ at random in {0, 1}2κ

instead of generating them as the output of the PRG. It sets the (j + 1)
th

public
value to the challenge value x. It samples the remaining public values for parties
in the set Ŝ by picking a uniform si ∈ {0, 1}κ and computing xi = PRG(si).

If x is the output of a PRG this is the experiment in Hybrid0,j else it is Hybrid0,j+1.
Therefore, the reduction can mimic the output of the distinguisher between
Hybrid0,j and Hybrid0,j+1, thereby breaking the security of the PRG with advan-
tage 1/poly(κ).

Lemma 2. For all (non-uniform) PPT adversaries D, D(Hybrid1) ≈c D(Hybrid2,1,a).

Proof. Suppose there exists a distinguisher which distinguishes between Hybrid1
and Hybrid2,1,a with advantage 1/poly(κ) for some polynomial poly(·). We con-
struct a reduction that uses this distinguisher to break index-hiding security of
the somewhere statistically hiding hash.

The reduction gives indices {0, 1} to the hash challenger. The challenger then

generates hash H = Gen(s, b) for b
$← {0, 1} and sends them to the reduction.

The reduction uses this function H as the hash (instead of generating the hash
itself), and continues the game with the distinguisher. If b = 0, this corresponds
to Hybrid1, and if b = 1 the game corresponds to Hybrid2,1,a. Therefore, the
reduction can mimic the output of the distinguisher between Hybrid2,i∗−1,b and
Hybrid2,i∗,a, thereby breaking index-hiding security of the hash function with
advantage 1/poly(κ).

Lemma 3. For all (non-uniform) PPT adversaries D, D(Hybrid2,i∗−1,b) ≈c
D(Hybrid2,i∗,a).

Proof. Suppose there exists a distinguisher which distinguishes between
Hybrid2,i∗−1,b and Hybrid2,i∗,a with advantage 1/poly(κ) for some polynomial
poly(·). We construct a reduction that uses this distinguisher to break index-
hiding security of the somewhere statistically hiding hash.

The reduction gives indices {i∗ − 1, i∗} to the hash challenger. The challenger

then generates hash H = Gen(s, b) for b
$← {i∗ − 1, i∗} and sends them to the

reduction. The reduction uses this function H as the hash (instead of generating
the hash itself), and continues the game with the distinguisher. If b = i∗ −
1, this corresponds to Hybrid2,i∗−1,b, and if b = i∗ the game corresponds to
Hybrid2,i∗,a. Therefore, the reduction can mimic the output of the distinguisher
between Hybrid1 and Hybrid2,1,a, thereby breaking index-hiding security of the
hash function with advantage 1/poly(κ).

Lemma 4. For all (non-uniform) PPT adversaries D, D(Hybrid2,i∗,a) ≈c
D(Hybrid2,i∗,b).

Proof. Note that in the experiment of Hybrid2,1,a/b, H ← Gen(1κ, 2κ, i∗). Thus,
by the statistical binding property of the hash function, if Ver(H,h, i∗, u, π) and
Ver(H,h, i∗, u′, π′) accept, then it must be that u = u′.

Consider the programs PKE,i∗−1 and PKE,i∗ . Note that the only place where the
two programs may differ is on inputs of the form (h∗, i∗, pv, sv, π, t), where h∗ =
H(Ŝ). Denote the public values {pvj}j∈S by pvx1

, pvx2
, . . . pvx|S| . In this case,

PKE,i∗−1 (in Hybrid2,i∗,a) checks if Ver(H,h∗, i∗, pv, π) = 1 and if PRG(sv) =
pv, then outputs PRF(K,h) else outputs ⊥. On the other hand, PKE,i∗ (in
Hybrid2,i∗,b) always outputs ⊥. Because of the statistical binding property of
the hash at index i, if Ver(H,h∗, i∗, pv, π) accepts for any value of (pv, π), then
pv = pvxi∗ . Moreover, since pvxi∗ is uniformly chosen in the range of the PRG,
then with overwhelming probability, there does not exist any value sv such that
PRG(sv) = pvxi∗ . Thus, the ‘if’ condition in PKE,i∗−1 in Hybrid2,i∗,a will never
be activated, and the two programs are functionally equivalent.

Therefore, the obfuscated circuits iO(PKE,i∗−1) and iO(PKE,i∗) must be in-
distinguishable by security of the iO. Suppose they are not, then consider a
distinguisher D which distinguishes between these hybrids with non-negligible
advantage. D can be used to break selective security of the indistinguishability
obfuscation (according to Definition 1) via the following reduction to iO. The
reduction acts as challenger in the experiment of Hybrid2,i∗,a.

The iO challenger Samp(1κ) first activates the reduction, which samples the
two circuits PKE,i∗−1, PKE,i∗ and gives them to Samp(1κ). The challenger then

samples challenge circuit C
$←{PKE,i∗−1, PKE,i∗}, and sends C ′ = iO(C) to the

reduction. The reduction continues the game of Hybrid2,i∗,a with C ′ in place of
the obfuscation of program PKE,i∗−1.

If C = PKE,i∗−1, this corresponds to Hybrid2,i∗−1,b, and if C = PKE,i∗ the game
corresponds to Hybrid2,i∗,a. Therefore, the reduction can mimic the output of
the distinguisher between Hybrid2,i∗,a and Hybrid2,i∗,b, thereby breaking security
of the iO with advantage 1/poly(κ).

Lemma 5. For all (non-uniform) PPT adversaries D, D(Hybrid2,t∗,b) ≈c
D(Hybrid3).

Proof. Consider the programs PKE,t∗ (Hybrid2,t∗,b) and PKE′ (Hybrid3). Note
that the only place where the two programs may differ is on inputs where t = t∗.

In this case, if i ≤ t∗, then for all h = h∗, both programs output ⊥ and abort.
If i > t∗ and t = t∗, then i > t and both programs output ⊥ and abort in Step
1. Moreover, for t = t∗, k∗ = PRF(K, t∗) and thus the programs are functionally
equivalent.

Therefore, the obfuscated circuits iO(PKE,t∗) and iO(PKE′) must be indistin-
guishable by security of the iO. Suppose they are not, then consider a distin-
guisher D which distinguishes between these hybrids with non-negligible advan-
tage. D can be used to break security of the indistinguishability obfuscation
(according to Definition 1) via the following reduction to iO. The reduction acts
as challenger in the experiment of Hybrid3.

The iO challenger Samp(1κ) first activates the reduction, which samples the two
circuits PKE,t∗ , PKE′ and gives them to Samp(1κ). The challenger then samples

challenge circuit C
$← {PKE,t∗ , PKE′}, and sends C ′ = iO(C) to the reduction.

The reduction continues the game of Hybrid3 with C ′ in place of the obfuscation
of program PKE′ .

If C = PKE,t∗ , this corresponds to Hybrid2,t∗,b, and if C = PKE′ the game
corresponds to Hybrid3. Therefore, the reduction can mimic the output of the
distinguisher between Hybrid2,t∗,b and Hybrid3, thereby breaking security of the
iO with advantage 1/poly(κ).

Lemma 6. For all (non-uniform) PPT adversaries D, D(Hybrid3) ≈c D(Hybrid4).

Proof. Suppose there exists a distinguisher D which distinguishes between these
hybrids with non-negligible advantage. D can be used to break selective secu-
rity of the puncturable PRF via the following reduction. The reduction acts as
challenger in the experiment of Hybrid3.

It obtains challenge set Ŝ from the distinguisher, and computes t∗ = |Ŝ|. Then,
it gives t∗ to the PRF challenger, and obtains punctured PRF key K{t∗} and a
challenge a, which is either chosen uniformly at random or is the output of the
PRF at t∗. Then, the reduction continues the experiment of Hybrid3 as challenger,
except that he sets r∗ = a.

If a = PRF(K, t∗) then this is the experiment of Hybrid3, and if a is chosen
uniformly at random, then this is the experiment of Hybrid4. Therefore, the
reduction can mimic the output of the distinguisher between Hybrid3 and Hybrid4,
thereby breaking security of the puncturable PRF with advantage 1/poly(κ).

Lemma 7. For all (non-uniform) PPT adversaries D, D(Hybrid4) ≈c D(Hybrid5).

Proof. Consider the programs PKE′ (Hybrid4) and PKE′′ (Hybrid5). Note that the
only place where the two programs may differ is on inputs where t = t∗. Then,
for t = t∗, h = h∗, both programs output ⊥. Moreover, because of functional
equivalence of the punctured key k∗{h∗} and k∗ on all points where h 6= h∗, the
programs are equivalent.

Suppose there exists a distinguisher D which distinguishes between these hybrids
with non-negligible advantage. D can be used to break security of indistinguisha-
bility obfuscation via the following reduction. The reduction acts as challenger in
the experiment of Hybrid4. It obtains challenge set Ŝ from the distinguisher, and
computes h∗ = H(Ŝ|). Then, it constructs gives circuits PKE′ , PKE′′ as input

to the Samp algorithm. Samp picks C
$← {PKE′ , PKE′′} and sends C ′ = iO(C)

to the reduction. The reduction uses C ′ in place of PKE′ in the experiment of
Hybrid4.

If C = PKE′ then this is the experiment of Hybrid4, and if C = PKE′′ , then this
is the experiment of Hybrid5. Therefore, the reduction can mimic the output of
the distinguisher between Hybrid4 and Hybrid5, thereby breaking security of the
indistinguishability obfuscation with advantage 1/poly(κ).

Lemma 8. For all (non-uniform) PPT adversaries D, AdvD(Hybrid5) = negl(κ).

Proof. Suppose there exists a distinguisherD which has non-negligible advantage
in Hybrid5. D can be used to break selective security of the puncturable PRF via

the following reduction. The reduction acts as challenger in the experiment of
Hybrid5.

It obtains challenge set Ŝ from the distinguisher, and computes h∗ = H(Ŝ).
Then, it gives h∗ to the PRF challenger, and obtains punctured PRF key k∗{t∗}
and a challenge a, which is either chosen uniformly at random or is the output
of the PRF at h∗. Then, the reduction continues the experiment of Hybrid3 as
challenger, except that he sets the shared key to a.

If a = PRF(k∗, h∗) then this corresponds to the correct shared key for group
Ŝ, whereas if a is chosen uniformly at random, this corresponds to a random
key. Therefore, the reduction can mimic the output of the distinguisher, thereby
breaking security of the puncturable PRF with advantage 1/poly(κ).

References

1. Abusalah, H., Fuchsbauer, G., Pietrzak, K.: Constrained prfs for unbounded in-
puts. IACR Cryptology ePrint Archive 2014, 840 (2014), http://eprint.iacr.

org/2014/840

2. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs ob-
fuscation and applications. IACR Cryptology ePrint Archive 2013, 689 (2013),
http://eprint.iacr.org/2013/689

3. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 19-23, 2001, Proceed-
ings. Lecture Notes in Computer Science, vol. 2139, pp. 1–18. Springer (2001),
http://dx.doi.org/10.1007/3-540-44647-8_1

4. Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. IACR
Cryptology ePrint Archive 2002, 80 (2002), http://eprint.iacr.org/2002/080

5. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. IACR Cryptology ePrint Archive 2013, 352 (2013)

6. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay and Gennaro [21], pp. 480–
499, http://dx.doi.org/10.1007/978-3-662-44371-2_27

7. Boyle, E., Chung, K., Pass, R.: On extractability obfuscation. In: Lindell, Y. (ed.)
Theory of Cryptography - 11th Theory of Cryptography Conference, TCC 2014,
San Diego, CA, USA, February 24-26, 2014. Proceedings. Lecture Notes in Com-
puter Science, vol. 8349, pp. 52–73. Springer (2014), http://dx.doi.org/10.1007/
978-3-642-54242-8_3

8. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. IACR Cryptology ePrint Archive 2013, 401 (2013)

9. Boyle, E., Pass, R.: Limits of extractability assumptions with distributional aux-
iliary input. IACR Cryptology ePrint Archive 2013, 703 (2013), http://eprint.
iacr.org/2013/703

10. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. SIAM J. Comput. 43(2), 831–871 (2014), http://
dx.doi.org/10.1137/120868669

http://eprint.iacr.org/2014/840
http://eprint.iacr.org/2014/840
http://eprint.iacr.org/2013/689
http://dx.doi.org/10.1007/3-540-44647-8_1
http://eprint.iacr.org/2002/080
http://dx.doi.org/10.1007/978-3-662-44371-2_27
http://dx.doi.org/10.1007/978-3-642-54242-8_3
http://dx.doi.org/10.1007/978-3-642-54242-8_3
http://eprint.iacr.org/2013/703
http://eprint.iacr.org/2013/703
http://dx.doi.org/10.1137/120868669
http://dx.doi.org/10.1137/120868669

11. Canetti, R., Garay, J.A. (eds.): Advances in Cryptology - CRYPTO 2013 - 33rd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part I, Lecture Notes in Computer Science, vol. 8042. Springer (2013),
http://dx.doi.org/10.1007/978-3-642-40041-4

12. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic
circuits and applications. In: Dodis and Nielsen [17], pp. 468–497, http://dx.doi.
org/10.1007/978-3-662-46497-7_19

13. Cash, D., Kiltz, E., Shoup, V.: The twin diffie-hellman problem and ap-
plications. J. Cryptology 22(4), 470–504 (2009), http://dx.doi.org/10.1007/

s00145-009-9041-6
14. Coron, J., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the in-

tegers. In: Canetti and Garay [11], pp. 476–493, http://dx.doi.org/10.1007/

978-3-642-40041-4_26
15. Coron, J., Lepoint, T., Tibouchi, M.: New multilinear maps over the integers. IACR

Cryptology ePrint Archive 2015, 162 (2015), http://eprint.iacr.org/2015/162
16. Diffie, W., Hellman, M.E.: New directions in cryptography (1976)
17. Dodis, Y., Nielsen, J.B. (eds.): Theory of Cryptography - 12th Theory of Cryp-

tography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceed-
ings, Part II, Lecture Notes in Computer Science, vol. 9015. Springer (2015),
http://dx.doi.org/10.1007/978-3-662-46497-7

18. Dupont, R., Enge, A.: Provably secure non-interactive key distribution based
on pairings. Discrete Applied Mathematics 154(2), 270 – 276 (2006), http://

www.sciencedirect.com/science/article/pii/S0166218X05002337, coding and
Cryptography

19. Freire, E.S.V., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive key ex-
change. IACR Cryptology ePrint Archive 2012, 732 (2012), http://eprint.iacr.
org/2012/732

20. Freire, E.S.V., Hofheinz, D., Paterson, K.G., Striecks, C.: Programmable hash
functions in the multilinear setting. In: Canetti and Garay [11], pp. 513–530,
http://dx.doi.org/10.1007/978-3-642-40041-4_28

21. Garay, J.A., Gennaro, R. (eds.): Advances in Cryptology - CRYPTO 2014 - 34th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014,
Proceedings, Part I, Lecture Notes in Computer Science, vol. 8616. Springer (2014),
http://dx.doi.org/10.1007/978-3-662-44371-2

22. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: EUROCRYPT (2013)

23. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-
29 October, 2013, Berkeley, CA, USA. pp. 40–49. IEEE Computer Society (2013),
http://dx.doi.org/10.1109/FOCS.2013.13

24. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013)

25. Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-inputs
obfuscation and extractable witness encryption with auxiliary input. In: Garay and
Gennaro [21], pp. 518–535, http://dx.doi.org/10.1007/978-3-662-44371-2_29

26. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) Proceedings of the 41st Annual ACM Symposium on Theory of Comput-
ing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009. pp. 169–178. ACM
(2009), http://doi.acm.org/10.1145/1536414.1536440

http://dx.doi.org/10.1007/978-3-642-40041-4
http://dx.doi.org/10.1007/978-3-662-46497-7_19
http://dx.doi.org/10.1007/978-3-662-46497-7_19
http://dx.doi.org/10.1007/s00145-009-9041-6
http://dx.doi.org/10.1007/s00145-009-9041-6
http://dx.doi.org/10.1007/978-3-642-40041-4_26
http://dx.doi.org/10.1007/978-3-642-40041-4_26
http://eprint.iacr.org/2015/162
http://dx.doi.org/10.1007/978-3-662-46497-7
http://www.sciencedirect.com/science/article/pii/S0166218X05002337
http://www.sciencedirect.com/science/article/pii/S0166218X05002337
http://eprint.iacr.org/2012/732
http://eprint.iacr.org/2012/732
http://dx.doi.org/10.1007/978-3-642-40041-4_28
http://dx.doi.org/10.1007/978-3-662-44371-2
http://dx.doi.org/10.1109/FOCS.2013.13
http://dx.doi.org/10.1007/978-3-662-44371-2_29
http://doi.acm.org/10.1145/1536414.1536440

27. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lat-
tices. In: Dodis and Nielsen [17], pp. 498–527, http://dx.doi.org/10.1007/

978-3-662-46497-7_20

28. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions (ex-
tended abstract). In: FOCS. pp. 464–479 (1984)

29. Hofheinz, D., Jager, T., Khurana, D., Sahai, A., Waters, B., Zhandry, M.: How to
generate and use universal parameters. IACR Cryptology ePrint Archive 2014, 507
(2014), http://eprint.iacr.org/2014/507

30. Hubacek, P., Wichs, D.: On the communication complexity of secure function eval-
uation with long output. In: Roughgarden, T. (ed.) Proceedings of the 2015 Confer-
ence on Innovations in Theoretical Computer Science, ITCS 2015, Rehovot, Israel,
January 11-13, 2015. pp. 163–172. ACM (2015), http://doi.acm.org/10.1145/
2688073.2688105

31. Ishai, Y., Pandey, O., Sahai, A.: Public-coin differing-inputs obfuscation and its ap-
plications. In: Dodis and Nielsen [17], pp. 668–697, http://dx.doi.org/10.1007/
978-3-662-46497-7_26

32. Joux, A.: A one round protocol for tripartite diffie-hellman. In: Bosma, W. (ed.)
Algorithmic Number Theory, 4th International Symposium, ANTS-IV, Leiden, The
Netherlands, July 2-7, 2000, Proceedings. Lecture Notes in Computer Science, vol.
1838, pp. 385–394. Springer (2000), http://dx.doi.org/10.1007/10722028_23

33. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseu-
dorandom functions and applications. IACR Cryptology ePrint Archive 2013, 379
(2013)

34. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing
machines with unbounded memory. IACR Cryptology ePrint Archive 2014, 925
(2014), http://eprint.iacr.org/2014/925

35. Paterson, K.G., Srinivasan, S.: On the relations between non-interactive
key distribution, identity-based encryption and trapdoor discrete log groups.
Des. Codes Cryptography 52(2), 219–241 (2009), http://dx.doi.org/10.1007/

s10623-009-9278-y

36. Rao, V.: Adaptive multiparty non-interactive key exchange without setup in
the standard model. IACR Cryptology ePrint Archive 2014, 910 (2014), http:

//eprint.iacr.org/2014/910

37. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable en-
cryption, and more. In: Shmoys, D.B. (ed.) Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, May 31 - June 03, 2014. pp. 475–484. ACM
(2014), http://doi.acm.org/10.1145/2591796.2591825

38. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. Symposium
on Cryptography and Information Security SCIS (2000)

39. Yamakawa, T., Yamada, S., Hanaoka, G., Kunihiro, N.: Self-bilinear map on un-
known order groups from indistinguishability obfuscation and its applications.
Cryptology ePrint Archive, Report 2015/128 (2015), http://eprint.iacr.org/

40. Zhandry, M.: Adaptively secure broadcast encryption with small system param-
eters. IACR Cryptology ePrint Archive 2014, 757 (2014), http://eprint.iacr.
org/2014/757

http://dx.doi.org/10.1007/978-3-662-46497-7_20
http://dx.doi.org/10.1007/978-3-662-46497-7_20
http://eprint.iacr.org/2014/507
http://doi.acm.org/10.1145/2688073.2688105
http://doi.acm.org/10.1145/2688073.2688105
http://dx.doi.org/10.1007/978-3-662-46497-7_26
http://dx.doi.org/10.1007/978-3-662-46497-7_26
http://dx.doi.org/10.1007/10722028_23
http://eprint.iacr.org/2014/925
http://dx.doi.org/10.1007/s10623-009-9278-y
http://dx.doi.org/10.1007/s10623-009-9278-y
http://eprint.iacr.org/2014/910
http://eprint.iacr.org/2014/910
http://doi.acm.org/10.1145/2591796.2591825
http://eprint.iacr.org/
http://eprint.iacr.org/2014/757
http://eprint.iacr.org/2014/757

	Multi-Party Key Exchange for Unbounded Parties from Indistinguishability Obfuscation

