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Abstract. Extractability, or “knowledge,” assumptions have recently
gained popularity in the cryptographic community, leading to the study
of primitives such as extractable one-way functions, extractable hash
functions, succinct non-interactive arguments of knowledge (SNARKs),
and (public-coin) differing-inputs obfuscation ((PC-)diO), and spurring
the development of a wide spectrum of new applications relying on these
primitives. For most of these applications, it is required that the ex-
tractability assumption holds even in the presence of attackers receiving
some auxiliary information that is sampled from some fixed efficiently
computable distribution Z.
We show that, assuming the existence of public-coin collision-resistant
hash functions, there exists an efficient distributions Z such that either
– PC-diO for Turing machines does not exist, or
– extractable one-way functions w.r.t. auxiliary input Z do not exist.

A corollary of this result shows that additionally assuming existence of
fully homomorphic encryption with decryption in NC1, there exists an
efficient distribution Z such that either
– SNARKs for NP w.r.t. auxiliary input Z do not exist, or
– PC-diO for NC1 circuits does not exist.

To achieve our results, we develop a “succinct punctured program” tech-
nique, mirroring the powerful punctured program technique of Sahai and
Waters (STOC’14), and present several other applications of this new
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technique. In particular, we construct succinct perfect zero knowledge
SNARGs and give a universal instantiation of random oracles in full-
domain hash applications, based on PC-diO.

As a final contribution, we demonstrate that even in the absence of aux-
iliary input, care must be taken when making use of extractability as-
sumptions. We show that (standard) diO w.r.t. any distribution D over
programs and bounded-length auxiliary input is directly implied by any
obfuscator that satisfies the weaker indistinguishability obfuscation (iO)
security notion and diO for a slightly modified distribution D′ of pro-
grams (of slightly greater size) and no auxiliary input. As a consequence,
we directly obtain negative results for (standard) diO in the absence of
auxiliary input.

1 Introduction

Extractability Assumptions. Extractability, or “knowledge,” assumptions (such
as the “knowledge-of-exponent” assumption), have recently gained in popular-
ity, leading to the study of primitives such as extractable one-way functions, ex-
tractable hash-functions, SNARKs (succinct non-interactive arguments of knowl-
edge), and differing-inputs obfuscation:

– Extractable OWF: An extractable family of one-way (resp. collision-resistant)
functions [15, 27, 14], is a family of one-way (resp. collision-resistant) func-
tions {fi} such that any attacker who outputs an element y in the range of
a randomly chosen function fi given the index i must “know” a pre-image
x of y (i.e., fi(x) = y). This is formalized by requiring for every adversary
A, the existence of an “extractor” E that (with overwhelming probability)
given the view of A outputs a pre-image x whenever A outputs an element
y in the range of the function.

For example, the “knowledge-of-exponent” assumption of Damgard [15] stip-
ulates the existence of a particular such extractable one-way function.

– SNARKs: Succinct non-interactive arguments of knowledge (SNARKs) [32,
35, 5] are communication-efficient (i.e., “short” or “succinct”) arguments for
NP with the property that if a prover generates an accepting (short) proof,
it must “know” a corresponding (potentially long) witness for the statement
proved, and this witness can be efficiently “extracted” out from the prover.

– Differing-inputs obfuscation: [2, 10, 1] A differing-inputs obfuscator O
for program-pair distribution D is an efficient procedure which ensures if
any efficient attacker A can distinguish obfuscations O(C1) and O(C2) of
programs C1, C2 generated via D given the randomness r used in sampling,
then it must “know” an input x such that C1(x) 6= C2(x), and this input
can be efficiently “extracted” from A.

A recently proposed (weaker) variant known as public-coin differing-inputs
obfuscation [30] additionally provides the randomness used to sample the
programs (C0, C1)← D to the extraction algorithm (and to the attacker A).



The above primitives have proven extremely useful in constructing cryptographic
tools for which instantiations under complexity-theoretic hardness assumptions
are not known (e.g., [27, 5, 24, 16, 10, 1, 30]).

Extraction with (Distribution-Specific) Auxiliary Input. In all of these applica-
tions, we require a notion of an auxiliary-input extractable one-way function
[27, 14], where both the attacker and the extractor may receive an auxiliary
input. The strongest formulation requires extractability in the presence of an
arbitrary auxiliary input. Yet, as informally discussed already in the original
work by Hada and Tanaka [27], extractability w.r.t. an arbitrary auxiliary input
is an “overly strong” (or in the language of [27], “unreasonable”) assumption.
Indeed, a recent result of Bitansky, Canetti, Rosen and Paneth [7] (formalizing
earlier intuitions from [27, 5]) demonstrates that assuming the existence of indis-
tinguishability obfuscators for the class of polynomial-size circuits3 there cannot
exist auxiliary-input extractable one-way functions that remain secure for an
arbitrary auxiliary input.

However, for most of the above applications, we actually do not require ex-
tractability to hold w.r.t. an arbitrary auxiliary input. Rather, as proposed by
Bitansky et al [5, 6], it often suffices to consider extractability with respect to spe-
cific distributions Z of auxiliary input.4 More precisely, it would suffice to show
that for every desired output length `(·) and distribution Z there exists a function
family FZ (which, in particular, may be tailored for Z) such that FZ is a family
of extractable one-way (or collision-resistant) functions {0, 1}k → {0, 1}`(k) with
respect to Z. In fact, for some of these results (e.g., [5, 6]), it suffices to just
assume that extraction works for just for the uniform distribution.

In contrast, the result of [7] can be interpreted as saying that (assuming iO),
there do not exist extractable one-way functions with respect to every distribu-
tion of auxiliary input: That is, for every candidate extractable one-way function
family F , there exists some distribution ZF of auxiliary input that breaks it.

Our Results. In this paper, we show limitations of extractability primitives with
respect to distribution-specific auxiliary input (assuming the existence of public-
coin collision-resistant hash functions (CRHF) [29]). Our main result shows a
conflict between public-coin differing-inputs obfuscation for Turing machines [30]
and extractable one-way functions.

3 The notion of indistinguishability obfuscation [2] requires that obfuscations O(C1)
and O(C2) of any two equivalent circuits C1 and C2 (i.e., whose outputs agree on
all inputs) from some class C are computationally indistinguishable. A candidate
construction for general-purpose indistinguishability obfuscation was recently given
by Garg et al [18].

4 As far as we know, the only exceptions are in the context of zero-knowledge sim-
ulation, where the extractor is used in the simulation (as opposed to being used
as part of a reduction), and we require simulation w.r.t. arbitrary auxiliary inputs.
Nevertheless, as pointed out in the works on zero-knowledge [27, 26], to acheive
“plain” zero-knowledge [25, 3] (where the verifier does not receive any auxiliary in-
put), weaker “bounded” auxiliary input assumptions suffice.



Theorem 1 (Main Theorem – Informal). Assume the existence of public-
coin collision-resistant hash functions. Then for every polynomial `, there exists
an efficiently computable distribution Z such that one of the following two prim-
itives does not exist:

– extractable one-way functions {0, 1}k → {0, 1}`(k) w.r.t. auxiliary input from Z.
– public-coin differing-inputs obfuscation for Turing machines.

By combining our main theorem with results from [5] and [30], we obtain the
following corollary:

Theorem 2 (Informal). Assume the existence of public-coin CRHF and fully
homomorphic encryption with decryption in NC1.5 Then there exists an effi-
ciently computable distribution Z such that one of the following two primitives
does not exist:

– SNARKs w.r.t. auxiliary input from Z.
– public-coin differing-inputs obfuscation for NC1 circuits.

To prove our results, we develop a new proof technique, which we refer to as the
“succinct punctured program” technique, extending the “punctured program”
paradigm of Sahai and Waters [34]; see Section 1.1 for more details. This tech-
nique has several other interesting applications, as we discuss in Section 1.3.

As a final contribution, we demonstrate that even in the absence of auxil-
iary input, care must be taken when making use of extractability assumptions.
Specifically, we show that differing-inputs obfuscation (diO) for any distribu-
tion D of programs and bounded-length auxiliary inputs, is directly implied by
any obfuscator that satisfies a weaker indistinguishability obfuscation (iO) se-
curity notion (which is not an extractability assumption) and diO security for
a related distribution D′ of programs (of slightly greater size) which does not
contain auxiliary input. Thus, negative results ruling out existence of diO with
bounded-length auxiliary input directly imply negative results for diO in a set-
ting without auxiliary input.

Theorem 3 (Informal). Let D be a distribution over pairs of programs and
`-bounded auxiliary input information P × P × {0, 1}`. There exists diO with
respect to D if there exists an obfuscator satisfying iO in addition to diO with
respect to a modified distribution D′ over P ′ × P ′ for slightly enriched program
class P ′, and no auxiliary input.

Our transformation applies to a recent result of Garg et al. [20], which shows
that based on a new assumption (pertaining to special-purpose obfuscation of
Turing machines) general-purpose diO w.r.t. auxiliary input cannot exist, by
constructing a distribution over circuits and bounded-length auxiliary inputs for
which no obfuscator can be diO-secure. Our resulting conclusion is that, assum-
ing such special-purpose obfuscation exists, then general-purpose diO cannot
exist, even in the absence of auxiliary input.

5 As is the case for nearly all existing FHE constructions (e.g., [21, 13]).



We view this as evidence that public-coin differing inputs may be the “right”
approach definitionally, as restrictions on auxiliary input without regard to the
programs themselves will not suffice.

Interpretation of Our Results. Our results suggest that one must take care when
making extractability assumptions, even in the presence of specific distributions
of auxiliary inputs, and in certain cases even in the absence of auxiliary in-
put. In particular, we must develop a way to distinguish “good” distributions of
instances and auxiliary inputs (for which extractability assumptions may make
sense) and “bad” ones (for which extractability assumptions are unlikely to hold).
As mentioned above, for some applications of extractability assumptions, it in
fact suffices to consider a particularly simple distribution of auxiliary inputs—
namely the uniform distribution.6 We emphasize that our results do not present
any limitations of extractable one-way functions in the presence of uniform aux-
iliary input, and as such, this still seems like a plausible assumption.

Comparison to [20]. An interesting subsequent7 work of Garg et al. [19, 20] con-
tains a related study of differing-inputs obfuscation. In [20], the authors propose
a new “special-purpose” circuit obfuscation assumption, and demonstrate based
on this assumption an auxiliary input distribution (whose size grows with the
desired circuit size of circuits to be obfuscated) for which general-purpose diO
cannot exist. Using similar techniques of hashing and obfuscating Turing ma-
chines as in the current work, they further conclude that if the new obfuscation
assumption holds also for Turing machines, then the “bad” auxiliary input dis-
tribution can have bounded length (irrespective of the circuit size).

Garg et al. [20] show the “special-purpose” obfuscation assumption is a fal-
sifiable assumption (in the sense of [33]) and is implied by virtual black-box
obfuscation for the relevant restricted class of programs, but plausibility of the
notion in relation to other primitives is otherwise unknown. In contrast, our
results provide a direct relation between existing, studied topics (namely, diO,
EOWFs, and SNARKs). Even in the case that the special-purpose obfuscation
assumption does hold, our primary results provide conclusions for public-coin
diO, whereas Garg et al. [20] consider (stronger) standard diO, with respect to
auxiliary input.

And, utilizing our final observation (which occurred subsequent to [20]), we
show that based on their same special-purpose obfuscation assumption for Turing
machines, we can in fact rule out general-purpose diO for circuits even in the
absence of auxiliary input.

1.1 Proof Techniques

To explain our techniques, let us first explain earlier arguments against the
plausibility of extractable one-way functions with auxiliary input. For simplicity

6 Note that this is not the case for all applications; e.g. [27, 23, 11, 26] require consid-
ering more complicated distributions.

7 A version of our paper with Theorem 1 and 2 for (standard) differing-inputs obfus-
cation in the place of public-coin diO has been on ePrint since October 2013 [12].



of notation, we focus on extractable one-way function over {0, 1}k → {0, 1}k (as
opposed to over {0, 1}k → {0, 1}`(k) for some polynomial `), but emphasize that
the approach described directly extends to the more general setting.

Early Intuitions. As mentioned above, already the original work of Hada and
Tanaka [27], which introduced auxiliary input extractable one-way functions
(EOWFs) (for the specific case of exponentiation), argued the “unreasonable-
ness” of such functions, reasoning informally that the auxiliary input could con-
tain a program that evaluates the function, and thus a corresponding extractor
must be able to “reverse-engineer” any such program. Bitansky et al [5] made
this idea more explicit: Given some candidate EOWF family F , consider the
distribution ZF over auxiliary input formed by “obfuscating” a program Πs(·)
for uniformly chosen s, where Πs(·) takes as input a function index e from the
alleged EOWF family F = {fi}, applies a pseudorandom function (PRF) with
hardcoded seed s to the index i, and then outputs the evaluation fi(PRFs(i)).
Now, consider an attacker A who, given an index i, simply runs the obfuscated
program to obtain a “random” point in the range of fi. If it were possible to
obfuscate Πs in a “virtual black-box (VBB)” way (as in [2]), then it easily fol-
lows that any extractor E for this particular attacker A can invert fi. Intuitively,
the VBB-obfuscated program hides the PRF seed s (revealing, in essence, only
black-box access to Πs), and so if E can successfully invert fi on A’s output
fi(PRFs(i)) on a pseudorandom input PRFs(i), he must also be able to invert
for a truly random input. Formally, given an index i and a random point y in
the image of fi, we can “program” the output of Πs(i) to simply be y, and thus
E will be forced to invert y.

The problem with this argument is that (as shown by Barak et al [2]), for
large classes of functions VBB program obfuscation simply does not exist.

The Work of [7] and the “Punctured Program” Paradigm of [34]. Intriguingly,
Bitansky, Canetti, Rosen and Paneth [7] show that by using a particular PRF
and instead relying on indistinguishability obfuscation, the above argument still
applies! To do so, they rely on the powerful “punctured-program” paradigm of
Sahai and Waters [34] (and the closely related work of Hohenberger, Sahai and
Waters [28] on “instantiating random oracles”). Roughly speaking, the punc-
tured program paradigm shows that if we use indistinguishability obfuscation to
obfuscate a (function of) a special kind of “puncturable” PRF8 [8, 11, 31], we can
still “program” the output of the program on one input (which was used in [34,
28] to show various applications of indistinguishability obfuscation). Bitansky et
al. [7] show that by using this approach, then from any alleged extractor E we
can construct a one-way function inverter Inv by “programming” the output of
the program Πs at the input i with the challenge value y. More explicitly, mirror-
ing [34, 28], they consider a hybrid experiment where E is executed with fake (but

8 That is, a PRF where we can surgically remove one point in the domain of the
PRF, keeping the rest of the PRF intact, and yet, even if we are given the seed of
the punctured PRF, the value of the original PRF on the surgically removed point
remains computationally indistinguishable from random.



indistinguishable) auxiliary input, formed by obfuscating a “punctured” variant
Πs
i,y of the program Πs that contains an i-punctured PRF seed s∗ (enabling

evaluation of PRFs(j) for any j 6= i) and directly outputs the hardcoded value
y := fi(PRFs(i)) on input i: indistinguishability of this auxiliary input follows by
the security of indistinguishability obfuscation since the programs Πs

i,y and Πs

are equivalent when y = fi(PRFs(i)) = Πs(i). In a second hybrid experiment,
the “correct” hardcoded value y is replaced by a random evaluation fi(u) for
uniform u; here, indistinguishability of the auxiliary inputs follows directly by
the security of the punctured PRF. Finally, by indistinguishability of the three
distributions of auxiliary input in the three experiments, it must be that E can
extract an inverse to y with non-negligible probability in each hybrid; but, in the
final experiment this implies the ability to invert a random evaluation, breaking
one-wayness of the EOWF.

The Problem: Dependence on F . Note that in the above approach, the auxiliary
input distribution is selected as a function of the family F = {fj} of (alleged)
extractable one-way functions. Indeed, the obfuscated program Πs must be able
to evaluate fj given j. One may attempt to mitigate this situation by instead
obfuscating a universal circuit that takes as input both F and the index j,
and appropriately evaluates fj . But here still the size of the universal circuit
must be greater than the running time of fj , and thus such an auxiliary input
distribution would only rule out EOWFs with a-priori bounded running time.
This does not suffice for what we aim to achieve: in particular, it still leaves open
the possibility that for every distribution of auxiliary inputs, there may exist a
family of extractable one-way functions that remains secure for that particular
auxiliary input distribution (although the running time of the extractable one-
way function needs to be greater than the length of the auxiliary input).

A First Idea: Using Turing Machine Obfuscators. At first sight, it would appear
this problem could be solved if we could obfuscate Turing machines. Namely, by
obfuscating a universal Turing machine in the place of a universal circuit in the
construction above, the resulting program Πs would depend only on the size of
the PRF seed s, and not on the runtime of fj ∈ F .

But there is a catch. To rely on the punctured program paradigm, we must be
able to obfuscate the program Πs in such a way that the result is indistinguish-
able from an obfuscation of a related “punctured” program Πs

i,y; in particular,
the size of the obfuscation must be at least as large as |Πs

i,y|. Whereas the size of
Πs is now bounded by a polynomial in the size of the PRF seed s, the description
of this punctured program must specify a punctured input i (corresponding to
an index of the candidate EOWF F) and hardcoded output value y, and hence
must grow with the size of F . We thus run into a similar wall: even with ob-
fuscation of Turing machines, the resulting auxiliary input distribution Z would
only rule out EOWF with a-priori bounded index length.

Our “Succinct Punctured Program” Technique. To deal with this issue, we de-
velop a “succinct punctured program” technique. That is, we show how to make



the size of the obfuscation be independent of the length of the input, while still
retaining its usability as an obfuscator. The idea is two-fold: First, we modify the
program Πs to hash the input to the PRF, using a collision-resistant hash func-
tion h. That is, we now consider a program Πh,s(j) = fj(PRFs(h(j))). Second,
we make use of differing-inputs obfuscation, as opposed to just indistinguishabil-
ity obfuscation. Specifically, our constructed auxiliary input distribution Z will
sample a uniform s and a random hash function h (from some appropriate col-
lection of collision-resistant hash functions) and then output a differing-inputs
obfuscation of Πh,s.

To prove that this “universal” distribution Z over auxiliary input breaks all
alleged extractable one-way functions over {0, 1}k → {0, 1}k, we define a one-
way function inverter Inv just as before, except that we now feed the EOWF
extractor E the obfuscation of the “punctured” variant Πh,s

i,y which contains a

PRF seed punctured at point h(i). The program Πh,s
i,y proceeds just as Πh,s

except on all inputs j such that h(j) is equal to this special value h(i); for those
inputs it simply outputs the hardcoded value y. (Note that the index i is no

longer needed to specify the function Πh,s
i,y —rather, just its hash h(i)—but is

included for notational convenience). As before, consider a hybrid experiment
where y is selected as y := Πh,s(i).

Whereas before the punctured program was equivalent to the original, and
thus indistinguishability of auxiliary inputs in the different experiments followed
by the definition of indistinguishability obfuscation, here it is no longer the
case that if y = Πh,s(i), then Πh,s

i,y is equivalent to Πh,s—in fact, they may
differ on many points. More precisely, the programs may differ in all points
j such that h(j) = h(i), but j 6= i (since fj and fi may differ on the input
PRFs(h(i))). Thus, we can no longer rely on indistinguishability obfuscation to
provide indistinguishability of these two hybrids.

We resolve this issue by relying differing-inputs obfuscation instead of just
indistinguishability obfuscation. Intuitively, if obfuscations of Πh,s and Πh,s

i,y can

be distinguished when y is set to Πh,s(i), then we can efficiently recover some
input j where the two programs differ. But, by construction, this must be some
point j for which h(j) = h(i) (or else the two program are the same), and j 6= i
(since we chose the hardcoded value y = Πh,s(i) to be consistent with Πh,s on
input i. Thus, if the obfuscations can be distinguished, we can find a collision in
h, contradicting its collision resistance.

To formalize this argument using just public-coin diO, we require that h is
a public-coin collision-resistant hash function [29].

1.2 Removing Auxiliary Input in diO

The notion of public-coin diO is weaker than “general” (not necessarily public-
coin) diO in two aspects: 1) the programs M0, M1 are sampled using only public
randomness, and 2) we consider only a very specific auxiliary input that is given
to the attacker—namely the randomness of the sampling procedure.



In this section, we explore another natural restriction of diO where we simply
disallow auxiliary input, but allow for “private” sampling of M0, M1. We show
that “bad side information” cannot be circumvented simply by simply disallow-
ing auxiliary input, but rather such information can appear in the input-output
behavior of the programs to be obfuscated.

More precisely, we show that for any distribution D over P × P × {0, 1}` of
programs P and bounded-length auxiliary input, the existence of diO w.r.t. D is
directly implied by the existence of any indistinguishability obfuscator (iO) that
is diO-secure for a slightly enriched distribution of programs D′ over P ′ × P ′,
without auxiliary input.

Intuitively, this transformation works by embedding the “bad auxiliary in-
put” into the input-output behavior of the circuits to be obfuscated themselves.
That is, the new distribution D′ is formed by sampling first a triple (P0, P1, z) of
programs and auxiliary input from the original distribution D, and then instead
considering the tweaked programs P z0 , P

z
1 that have a special additional input

x∗ (denoted later as “mode = ∗”) for which P z0 (x∗) = P z1 (x∗) is defined to be
z. This introduces no new differing inputs to the original program pair P0, P1,
but now there is no hope of preventing the adversary from learning z without
sacrificing correctness of the obfuscation scheme.

A technical challenge arises in the security reduction, however, in which we
must modify the obfuscation of the z-embedded program P zb to “look like” an ob-
fuscation of the original program Pb. Interestingly, this issue is solved by making
use of a second layer of obfuscation, and is where the iO security of the obfus-
cator is required. We refer the reader to the full version of this work for details.

1.3 Other Applications of the “Succinct Punctured Program”
Technique

As mentioned above, the “punctured program” paradigm of [34] has been used
in multiple applications (e.g., [34, 28, 17, 9]). Many of them rely on punctured
programs in an essentially identical way to the approach described above, and
in particular follow the same hybrids within the security proof. Furthermore, for
some of these applications, there are significant gains in making the obfuscation
succinct (i.e., independent of the input size of the obfuscated program). Thus, for
these applications, if we instead rely on public-coin differing-inputs obfuscation
(and the existence of public-coin collision-resistant hash functions), by using our
succinct punctured program technique, we can obtain significant improvements.
For instance, relying on the same approach as above, we can show based on these
assumptions:

– “Succinct” Perfect Zero-Knowledge Non-Interactive Universal Argument Sys-
tem (with communication complexity kε for every ε), by relying on the non-
succinct Perfect NIZK construction of [34].

– A universal instantiation of Random Oracles, for which the Full Domain
Hash (FDH) signature paradigm [4] is (selectively) secure for every trapdoor
(one-to-one) function (if hashing not only the message but also the index of



the trapdoor function), by relying on the results of [28] showing how to
provide a trapdoor-function specific instantiation of the random oracle in
the FDH.9

1.4 Overview of Paper

We focus in this extended abstract on the primary result: the conflict between
public-coin differing inputs obfuscation and extractable OWFs (and SNARKs).
Further preliminaries, applications of our succinct punctured programs tech-
nique, and our transformation removing auxiliary input in differing-inputs ob-
fuscation are deferred to the full version [12].

2 Preliminaries

2.1 Public-Coin Differing-Inputs Obfuscation

The notion of public-coin differing-inputs obfuscation (PC-diO) was introduced
by Ishai et al. [30] as a refinement of (standard) differing-inputs obfuscation [2]
to exclude certain cases whose feasibility has been called into question. (Note
that we also consider “standard” differing-inputs obfuscation as described in
Section 1.2. For a full treatment of the notion and our result, we refer the reader
to the full version of this work [12]).

We now present the PC-diO definition of [30], focusing only on Turing ma-
chine obfuscation; the definition easily extends also to circuits.

Definition 1 (Public-Coin Differing-Inputs Sampler for TMs). An effi-
cient non-uniform sampling algorithm Samp = {Sampk} is called a public-coin
differing inputs sampler for the parameterized collection of TMs M = {Mk} if
the output of Sampk is always a pair of Turing machines (M0,M1) ∈Mk ×Mk

such that |M0| = |M1| and for every efficient non-uniform algorithm A = {Ak}
there exists a negligible function ε such that for all k ∈ N,

Pr
[
r ← {0, 1}∗; (M0,M1)← Sampk(r); (x, , 1t)← Ak(r)

:
(
M0(x) 6= M(x)

)
∧
(
steps(M0, x) = steps(M1, x)

)]
≤ ε(k).

Definition 2 (Public-Coin Differing-Inputs Obfuscator for TMs). A
uniform PPT algorithm O is a public-coin differing-inputs obfuscator for the
collection M = {Mk} if the following requirements hold:

– Correctness: For every k ∈ N, every M ∈ Mk, and every x, we have that
Pr[M̃ ← O(1k,M) : M̃(x) = M(x)] = 1.

9 That is, [28] shows that for every trapdoor one-to-one function, there exists some way
to instantiate the random oracle so that the resulting scheme is secure. In contrast,
our results shows that there exists a single instantiation that works no matter what
the trapdoor function is.



– Security: For every public-coin differing-inputs sampler Samp = {Sampk}
for the ensemble M, every efficient non-uniform distinguishing algorithm
D = {Dk}, there exists a negligible function ε such that for all k,∣∣Pr[r ← {0, 1}∗; (M0,M1)← Sampk(r); M̃ ← O(1k,M0) :Dk(r, M̃) = 1]−
Pr[r ← {0, 1}∗; (M0,M1)← Sampk(r); M̃ ← O(1k,M1) :Dk(r, M̃) = 1]

∣∣ ≤ ε(k).

2.2 Extractable One-Way Functions

We present a non-uniform version of the definition, in which both one-wayness
and extractability are with respect to non-uniform polynomial-time adversaries.

Definition 3 (Z-Auxiliary-Input EOWF). Let `,m be polynomially bounded
length functions. An efficiently computable family of functions

F =
{
fi : {0, 1}k → {0, 1}`(k)

∣∣∣ i ∈ {0, 1}m(k), k ∈ N
}
,

associated with an efficient probabilistic key sampler KF , is a Z-auxiliary-input
extractable one-way function if it satisfies:

– One-wayness: For non-uniform poly-time A and sufficiently large k ∈ N,

Pr
[
z ← Zk; i← KF (1k); x← {0, 1}k; x′ ← A(i, fi(x); z)

: fi(x
′) = fi(x)

]
≤ negl(k).

– Extractability: For any non-uniform polynomial-time adversary A, there
exists a non-uniform polynomial-time extractor E such that, for sufficiently
large security parameter k ∈ N:

Pr
[
z ← Zk; i← KF (1k); y ← A(i; z); x′ ← E(i; z)

: ∃x s.t. fi(x) = y ∧ fi(x′) 6= y
]
≤ negl(k).

2.3 Succinct Non-Interactive Arguments of Knowledge (SNARKs)

We focus attention to publicly verifiable succinct arguments. We consider succinct
non-interactive arguments of knowledge (SNARKs) with adaptive soundness in
Section 3.2, and consider the case of specific distributional auxiliary input.

Definition 4 (Z-Auxiliary Input Adaptive SNARK). A triple of algo-
rithms (CRSGen,Prove,Verify) is a publicly verifiable, adaptively sound succinct
non-interactive argument of knowledge (SNARK) for the relation R if the fol-
lowing conditions are satisfied for security parameter k:

– Completeness: For any (x,w) ∈ R,

Pr[crs← CRSGen(1k);π ← Prove(x,w, crs) : Verify(x, π, crs) = 1] = 1.

In addition, Prove(x,w, crs) runs in time poly(k, |y|, t).



– Succinctness: The length of the proof π output by Prove(x,w, crs), as well
as the running time of Verify(x, π, crs), is bounded by p(k + |X|), where p is
a universal polynomial that does not depend on R. In addition, CRSGen(1k)
runs in time poly(k): in particular, crs is of length poly(k).

– Adaptive proof of knowledge: For any non-uniform polynomial-size prover
P ∗ there exists a non-uniform polynomial-size extractor EP∗ , such that for
all sufficiently large k ∈ N and auxiliary input z ← Z, it holds that

Pr[z ← Z; crs← CRSGen(1k); (x, π)← P ∗(z, crs);

(x,w)← EP∗(z, crs) : Verify(crs, x, π) = 1 ∧ w /∈R(x)] ≤ negl(k).

In the full version of this work, we obtain as an application of our succinct
programs technique zero-knowledge (ZK) succinct non-interactive arguments
(SNARGs), without the extraction property. We refer the reader to [12] for
a full treatment.

2.4 Puncturable PRFs

Our result makes use of puncturable PRFs, which are PRFs with an extra capa-
bility to generate keys that allow one to evaluate the function on all bit strings
of a certain length, except for any polynomial-size set of inputs. We focus on the
simple case of puncturing PRFs at a single point: that is, given a punctured key
k∗ with respect to input x, one can efficiently evaluate the PRF at all points
except x, whose evaluation remains pseudorandom. We refer the reader to [34]
for a formal definition.

As observed in [8, 11, 31], the GGM tree-based PRF construction [22] yields
puncturable PRFs, based on any one-way function.

Theorem 4 ([8, 11, 31]). If one-way functions exist, then for all efficiently
computable m′(k) and `(k), there exists a puncturable PRF family that maps
m′(k) bits to `(k) bits, such that the size of a punctured key is O(m′(k) · `(k)).

3 Public-Coin Differing-Inputs Obfuscation or
Extractable One-Way Functions

In this section, we present our main result: a conflict between extractable one-
way functions (EOWF) w.r.t. a particular distribution of auxiliary information
and public-coin differing-inputs obfuscation (“PC-diO”) (for Turing Machines).

3.1 From PC-diO to Impossibility of Z-Auxiliary-Input EOWF

We demonstrate a bounded polynomial-time uniformly samplable distribution Z
(with bounded poly-size output length) and a public-coin differing-inputs sam-
pler for Turing Machines D (over TM×TM) such that if there exists public-coin
differing-inputs obfuscation for Turing machines (and, in particular, for the pro-
gram sampler D), and there exist public-coin collision-resistant hash functions



(CRHF), then there do not exist extractable one-way functions (EOWF) w.r.t.
auxiliary information sampled from distribution Z. In our construction, Z con-
sists of an obfuscated Turing machine.

We emphasize that we provide a single distribution Z of auxiliary inputs for
which all candidate EOWF families F with given output length will fail. This
is in contrast to the result of [7], which show for each candidate family F that
there exists a tailored distribution ZF (whose size grows with |F|) for which F
will fail.

Theorem 5. For every polynomial `, there exists an efficient, uniformly sam-
plable distribution Z such that, assuming the existence of public-coin collision-
resistant hash functions and public-coin differing-inputs obfuscation for Turing
machines, then there cannot exist Z-auxiliary-input extractable one-way func-
tions {fi : {0, 1}k → {0, 1}`(k)}.

Proof. We construct an adversary A and desired distribution Z on auxiliary
inputs, such that for any alleged EOWF family F , there cannot exist an efficient
extractor corresponding to A given auxiliary input from Z (assuming public-coin
CRHFs and PC-diO).

The Universal Adversary A. We consider a universal PPT adversary A
that, given (i, z) ∈ {0, 1}poly(k) × {0, 1}n(k), parses z as a Turing machine and
returns z(i). Note that in our setting, i corresponds to the index of the selected
function fi ∈ F , and (looking ahead) the auxiliary input z will contain an
obfuscated program.

The Auxiliary Input Distribution Z. Let PRF = {PRFs : {0, 1}m(k) →
{0, 1}k}s∈{0,1}k be a puncturable pseudorandom function family, and H = {Hk}
a public-coin collision-resistant hash function family with h : {0, 1}∗ → {0, 1}m(k)

for each h ∈ Hk. (Note that by Theorem 4, punctured PRFs for these parame-
ters exist based on OWFs, which are implied by CRHF). We begin by defining
two classes of Turing machines:

M =
{
Πh,s

∣∣∣ s ∈ {0, 1}k, h ∈ Hk, k ∈ N
}
,

M∗ =
{
Πh,s
i,y

∣∣∣ s ∈ {0, 1}k, y ∈ {0, 1}`(k), h ∈ Hk, k ∈ N
}
,

which we now describe. We assume without loss of generality for each k that the
corresponding collection of Turing machines Πh,s ∈Mk, Π

h,s
i,y ∈M∗k are of the

same size; this can be achieved by padding. (We address the size bound of each
class of machines below). In a similar fashion, we may further assume that for

each k the runtime of each Πh,s and Πh,s
i,y on any given input fi is equal.

At a high level, each machine Πh,s accepts as input a poly-size circuit de-
scription of a function fi (with canonical description, including a function index
i), computes the hash of the corresponding index i w.r.t. the hardcoded hash
function h, applies a PRF with hardcoded seed s to the hash, and then evalu-
ates the circuit fi on the resulting PRF output value x: that is, Πh,s

i,y (fi) outputs
Uk(fi,PRFs(h(i))), where Uk is the universal Turing machine. See Figure 1. Note



that each Πh,s can be described by a Turing machine of size O(|s|+ |h|+ |Uk|),
which is bounded by p(k) for some fixed polynomial p.

Turing Machine Πh,s:

Hardwired: Hash function h : {0, 1}∗ → {0, 1}m(k), PRF seed s ∈ {0, 1}k.
Inputs: Circuit description fi

1. Hash the index: v = h(i).
2. Compute the PRF on this hash: x = PRFs(v).
3. Output the evaluation of the universal Turing machine on inputs fi, x: i.e.,

y = Uk(fi, x).

Fig. 1: Turing machines Πh,s ∈M.

Auxiliary Input Distribution Zk:

1. Sample a hash function h← Hk and PRF seed s← KPRF (1k).
2. Output an obfuscation Π̃ ← PC-diO(Πh,s).

Fig. 2: The auxiliary input distribution Zk.

The machines Πh,s
i,y perform a similar task, except that instead of having the

entire PRF seed s hardcoded, they instead only have a punctured seed s∗ derived
from s by puncturing it at the point h(i) (i.e., enabling evaluation of the PRF
on all points except h(i)). In addition, it has hardwired an output y to replace
the punctured result. More specifically, on input a circuit description fj (with

explicitly specified index j), the program Πh,s
i,y first computes the hash h = h(j),

continues computation as usual for any h 6= h(i) using the punctured PRF key,
and for h = h(i), it skips the PRF and Uk evaluation steps and directly outputs
y. Note that because h is not injective, this puncturing may change the value
of the program on multiple inputs fj (corresponding to functions fj ∈ F with
h(j) = h(i)). When the hardcoded value y is set to y = fi(PRFs(h(i))), then

Πh,s
i,y agrees with Πh,s additionally on the input fi, but not necessarily on the

other inputs fj for which h(j) = h(i). (Indeed, whereas the hash of their indices
collide, and thus their corresponding PRF outputs, PRF(h(j)), will agree, the
final step will apply different functions fj to this value).

We first remark that indistinguishability obfuscation arguments will thus not
apply to this scenario, since we are modifying the computed functionality. In
contrast, differing-inputs obfuscation would guarantee that the two obfuscated
programs are indistinguishable, since otherwise we could efficiently find one of
the disagreeing inputs, which would correspond to a collision in the CRHF. But,
most importantly, this argument holds even if the randomness used to sample the



program pair (Πh,s, Πh,s
i,y ) is revealed. Namely, we consider a program sampler

that generates pairs (Πh,s, Πh,s
i,y ) of the corresponding distribution; this amounts

to sampling a hash function h, an EOWF challenge index i, and a PRF seed
s, and a h(i)-puncturing of the seed, s∗. All remaining values specifying the
programs, such as y = fi(PRFs(h(i))), are deterministically computed given
(h, i, s, s∗). Now, sinceH is a public-coin CRHF family, revealing the randomness
used to sample h ← H is not detrimental to its collision resistance. And, the
values i, s, and s∗ are completely independent of the CRHF security (i.e., a CRHF
adversary reduction could simply generate them on its own in order to break h).
Therefore, we ultimately need only rely on public-coin diO.

We finally consider the size of the program(s) to be obfuscated. Note that each

Πh,s
i,y can be described by a Turing machine of size O(|s∗|+|h|+|y|+|Uk|). Recall

by Theorem 4 the size of the punctured PRF key |s∗| ∈ O(m′(k)`(k)), where the
PRF has input and output lengths m′(k) and `(k). In our application, note that
the input to the PRF is not the function index i itself (in which case the machine

Πh,s
i,y would need to grow with the size of the alleged EOWF family), but rather

the hashed index h(i), which is of fixed polynomial length. Thus, collectively, we

have |Πh,s
i,y | is bounded by a fixed polynomial p′(k), and finally that there exists a

single fixed polynomial bound on the size of all programs Πh,s ∈M, Πh,s
i,y ∈M∗.

This completely determines the auxiliary input distribution Z = {Zk}, described
in full in Figure 2. (Note that the size of the auxiliary output generated by Z,
which corresponds to an obfuscation of an appropriately padded program Πh,s

is thus also bounded by a fixed polynomial in k).

Turing Machine Πh,s
i,y :

Hardwired: Hash function h : {0, 1}∗ → {0, 1}m(k), punctured PRF seed s∗ ∈ {0, 1}k,
punctured point h(i), bit string y ∈ {0, 1}`(k).

Input: Circuit description fj (containing index j)
1. Hash the index: v = h(j).
2. If v 6= h(i), compute x = PRFs∗(v), and output Uk(fj , x).
3. If v = h(i), output y.

Fig. 3: “Punctured” Turing machines Πh,s
i,y ∈M∗.

A Has No Extractor. We show that, based on the assumed security of the
underlying tools, the constructed adversary A given auxiliary input from the
constructed distribution Z = {Zk}, cannot have an extractor E satisfying Defi-
nition 3:



Auxiliary Input Distribution Zk(i, y):

1. Sample a hash function h← Hk and PRF seed s← KPRF (1k).
2. Sample a punctured PRF seed s∗ ← Punct(s, h(i)), punctured at point h(i).
3. Compute the “correct” punctured evaluation: y = fi(PRFs(h(i))).
4. Output an obfuscation M̃ ← PC-diO(Πh,s

i,y ), where Πh,s
i,y is defined from (h, s∗, y),

as in Figure 3.

Fig. 4: The “punctured” distribution Zk(i, y).

Proposition 1. For any non-uniform polynomial-time candidate extractor E
for A, it holds that E fails with overwhelming probability: i.e.,

Pr
[
z ← Zk; i← KF (1k); y ← A(i; z); x′ ← E(i; z)

: ∃x s.t. fi(x) = y ∧ fi(x′) 6= y
]
≥ 1− negl(k).

Proof. First note that given auxiliary input z ← Zk, A produces an element in
the image of the selected fi with high probability. That is,

Pr
[
z ← Zk; i← KF (1k); y ← A(i; z) : ∃x s.t. fi(x) = y

]
≥ 1− negl(k).

Indeed, by the definition of A and Zk, and the correctness of the obfuscator
PC-diO, then we have with overwhelming probability

A(i; z) = M̃(fi) = Πh,s(fi) = fi(PRFs(h(i))),

where z = M̃ is an obfuscation of Πh,s ∈M; i.e., z = M̃ ← PC-diO(Πh,s).
Now, suppose for contradiction that there exists a non-negligible function

ε(k) such that for all k ∈ N the extractor E successfully outputs a preimage
corresponding to the output A(i; z) ∈ Range(fi) with probability ε(k): i.e.,

Pr
[
z ← Zk; i← KF (1k); x′ ← E(i; z)

: fi(x
′) = A(i; z) = fi(PRFs(h(i)))

]
≥ ε(k).

where as before, s, h are such that z = PC-diO(Πh,s). We show that this cannot
be the case, via three steps.

Step 1: Replace Z with “punctured” distribution Z(i, y). For every index i of the
EOWF family F and k ∈ N, consider an alternative distribution Zk(i, y) that,
instead of sampling and obfuscating a Turing machine Πh,s from the class M,
as is done for Z, it does so with a Turing machine Πh,s

i,y ∈M∗ as follows. First,
it samples a hash function h← Hk and PRF seed s as usual. It then generates
a punctured PRF key s∗ ← Punct(s, h(i)) that enables evaluation of the PRF on
all points except the value h(i). For the specific index i, it computes the correct



full evaluation y := fi(PRFs(h(i))). Finally, Zk(i, y) outputs an obfuscation of

the constructed program Πh,s
i,y as specified in Figure 3 from the values (h, s∗, y):

i.e., M̃ ← PC-diO(Πh,s
i,y ). See Figure 4 for a full description of Z(i, y).

We now argue that the extractor E must also succeed in extracting a preimage
when given a value z∗ ← Zk(i, y) from this modified distribution instead of Zk.

Consider the Turing Machine program sampler algorithm Samp as in Fig-
ure 5.

Program Pair Sampler Samp(1k, r):

1. Sample a hash function h = Hk(rh).
2. Sample an EOWF index i = KF (1k; ri).
3. Sample a PRF seed s = KPRF(1k; rs).
4. Sample a punctured PRF seed s∗ = Punct(s, h(i); r∗).
5. Let y = fi(PRFs(h(i))).
6. Denote r := (rh, ri, rs, r∗).
7. Output program pair (Πh,s, Πh,s

i,y ), defined by h, i, s, s∗, y as above (and padded to
equal length).

Fig. 5: Program pair sampler algorithm, to be used in public-coin differing inputs
security step.

We first argue that, by the (public-coin) collision resistance of the hash family
H, the sampler algorithm Samp is a public-coin differing-inputs sampler, as per
Definition 1.

Claim. Samp is a public-coin differing-inputs sampler. That is, for all efficient
non-uniform APC, there exists a negligible function ε such that for all k ∈ N,

Pr
[
r ← {0, 1}∗; (M0,M1)← Samp(1k, r); (x, 1t)← APC(1k, r) :

M0(x) 6= M1(x) ∧ steps(M0, x) = steps(M1, x) = t
]
≤ ε(k). (1)

Proof. Suppose, to the contrary, there exists an efficient (non-uniform) adversary
APC and non-negligible function α(k) for which the probability in Equation 1 is
greater than α(k). We show such an adversary contradicts the security of the
(public-coin) CRHF. Consider an adversaryACR in the CRHF security challenge.
Namely, for a challenge hash function h ← Hk(rh), the adversary ACR receives
h, rh, and performs the following steps:

CRHF adversary ACR(1k, h, rh):

1. Imitate the remaining steps of Samp. That is, sample an EOWF index
i = KF (1k; ri); a PRF seed s = KPRF(1k; rs); and a punctured PRF seed
s∗ = Punct(s, h(i); r∗). Define y = fi(PRFs(h(i))) and r = (rh, ri, rs, r∗),

and let M0 = Πh,s and M1 = Πh,s
i,y .



2. Run APC(1k, r) on the collection of randomness r used above. In re-
sponse, APC returns a pair (x, 1t).

3. ACR outputs the pair (i, x) as an alleged collision in the challenge hash
function h.

Now, by assumption, the value x generated by APC satisfies (in particular) that

M0(x) 6= M1(x). From the definition of M0,M1 (i.e., Πh,s, Πh,s
i,y ), this must mean

that h(i) = h(x) (since all values with h(x) 6= h(i) were not changed from Πh,s

to Πh,s
i,y ), and that i 6= x (since Πh,s

i,y (i) was specifically “patched” to the correct

output value Πh,s(i)). That is, ACR successfully identifies a collision with the
same probability α(k), which must thus be negligible.

We now show that this implies, by the security of the public-coin diO, that
our original EOWF extractor E must succeed with nearly equivalent probability
in the EOWF challenge when instead of receiving (real) auxiliary input from
Zk, both E and A are given auxiliary input from the fake distribution Zk(i, y).
(Recall that ε is assumed to be E ’s success in the same experiment as below but
with z ← Zk instead of z∗ ← Zk(i, y)).

Lemma 1. It holds that

Pr
[
i← KF (1k); z∗ ← Zk(i, y); x′ ← E(i; z∗) :

fi(x
′) = A(i; z∗) = fi(PRFs(h(i)))

]
≥ ε(k)− negl(k). (2)

Proof. Note that given z∗ ← Zk(i, y) (which corresponds to an obfuscated

program of the form Πh,s
i,y ) our EOWF adversary A indeed will still output

Πh,s
i,y (i) = y := fi(PRFs(h(i))) (see Figures 3,4).

Now, suppose there exists a non-negligible function α(k) for which the prob-
ability in Equation (2) is less than ε(k)−α(k). We directly use such E to design
another adversary AdiO to contradict the security of the public-coin diO with
respect to the program pair sampler Samp (which we showed in Claim 3.1 to be
a void public-coin differing inputs sampler). Recall the diO challenge samples a

program pair (Πh,s, Πh,s
i,y ) ← Samp(1k, r), selects a random M ← {Πh,s, Πh,s

i,y }
to obfuscate as M̃ ← PC-diO(1k,M), and gives as a challenge the pair (r, M̃)
of the randomness used by Samp and obfuscated program. Define AdiO (who
wishes to distinguish which program was selected) as follows.

PC-diO adversary AdiO(1k, r, M̃):

1. Parse the given randomness r used in Samp as r = (rh, ri, rs, r∗) (see
Figure 5).

2. Recompute the “challenge index” i = KF (1k; ri). Let z∗ = M̃ .
3. Run the extractor algorithm E(i; z∗), and receive an alleged preimage x′.
4. Recompute h = Hk(rh), s = KPRF(1;rs), again using the randomness

from r.



5. If fi(x
′) = fi(PRFs(h(i))) — i.e., if E succeeded in extracting a preimage

— then AdiO outputs 1. Otherwise, AdiO outputs 0.

Now, if M̃ is an obfuscation of Πh,s, then this experiment corresponds directly
to the EOWF challenge where E (and A) is given auxiliary input z ← Zk.

On the other hand, if M̃ is an obfuscation of Πh,s
i,y , then the experiment corre-

sponds directly to the same challenge where E (and A) is given auxiliary input
z∗ ← Zk(i, y). Thus, AdiO will succeed in distinguishing these two cases with
probability at least [ε(k)] − [ε(k) − α(k)] = α(k). By the security of PC-diO, it
hence follows that α(k) must be negligible.

Step 2: Replace “correct” hardcoded y in Z(i, y) with random fi evaluation. Next,
we consider another experiment where Zk(i, y) is altered to a nearly identical dis-
tribution Zk(i, u) where, instead of hardcoding the “correct” i-evaluation value

y = fi(PRFs(h(i))) in the generated “punctured” program Πh,s
i,y , the distribution

Zk(i, u) now simply samples a random fi output y = fi(u) for an independent
random u← {0, 1}k. We claim that the original EOWF extractor E still succeeds
in finding a preimage when given this new auxiliary input distribution:

Lemma 2. It holds that

Pr
[
i← KF (1k); z∗∗ ← Zk(i, u); x′ ← E(i; z∗∗) :

fi(x
′) = A(i; z∗∗) = fi(u)

]
≥ ε(k)− negl(k). (3)

Proof. This follows from the fact that PRFs(h(i)) is pseudorandom, even given
the h(i)-punctured key s∗.

Formally, consider an algorithm A0
PRF which, on input the security parameter

1k, a pair of values i, h, and a pair s∗, x (that will eventually correspond to a
challenge punctured PRF key, and either PRFs(h(i)) or random u), performs the
following steps.

Algorithm A0
PRF(1k, i, h, s∗, x):

1. Take y = fi(x), and obfuscate the associated program Πh,s
i,y : i.e., z∗∗ ←

PC-diO(1k, Πh,s
i,y ).

2. Run the EOWF extractor given index i and auxiliary input z∗∗: x′ ←
E(i; z∗∗).

3. Output 0 if E succeeds in extracting a valid preimage: i.e., if fi(x
′) =

y∗ = fi(x). Otherwise, output a random bit b← {0, 1}.

Now, suppose Lemma 2 does not hold: i.e., the probability in Equation (3)
differs by some non-negligible amount from ε(k). Then, expanding out the sam-
pling procedure of Zk(i, y) and Zk(i, u), we have for some non-negligible function
α(k) that

Pr
[
i← KF (1k); h← Hk; s← KPRF (1k); s∗ ← Punct(s, h(i));

u← {0, 1}k; b← {0, 1} : A0
PRF(1k, i, h, xb) = b

]
≥ 1

2
+ α(k), (4)



where x0 := PRFs(h(i)) and x1 := u. Indeed, in the case b = 0, the auxiliary
input z∗∗ generated by APRF and given to E has distribution exactly Z(i, y),
whereas in the case b = 1, the generated z∗∗ has distribution exactly Z(i, u).

In particular, there exists a polynomial p(k) such that for infinitely many k,
there exists an index ik and hash function hk ∈ Hk with

Pr
[
s← KPRF (1k); s∗ ← Punct(s, h(ik)); u← {0, 1}k;

b← {0, 1} : A0
PRF(1k, ik, h, xb) = b

]
≥ 1

2
+

1

p(k)
, (5)

where x0, x1 are as before.

Consider a non-uniform punctured-PRF adversary AIPRF (with the ensemble
I = {ik, hk} hardcoded) that first selects the challenge point hk(ik); receives
the PRF challenge information (s∗, x) for this point; executes A0

PRF on input
(1k, ik, hk, s

∗, x), and outputs the corresponding bit b output by A0
PRF. Then by

(5), it follows that AIPRF breaks the security of the punctured PRF.

Step 3: Such an extractor breaks one-wayness of EOWF. Finally, we observe that
this means that E can be used to break the one-wayness of the original function
family F . Indeed, given a random key i and a challenge output y = fi(u), an
inverter can simply sample a hash function h and h(i)-punctured PRF seed s∗

on its own, construct the program Πh,s
i,y with its challenge y hardcoded in, and

sample an obfuscation z∗∗ ← PC-diO(Πh,s
i,y ). Finally, it runs E(i, z∗∗) to invert

y∗, with the same probability ε(k)− negl(k).

This concludes the proof of Theorem 5.

3.2 PC-diO or SNARKs

We link the existence of public-coin differing-inputs obfuscation for NC1 and
the existence of succinct non-interactive arguments of knowledge (SNARKs),
via an intermediate step of proximity extractable one-way functions (PEOWFs),
a notion related to EOWFs, introduced in [5]. Namely, assume the existence of
fully homomorphic encryption (FHE) with decryption in NC1 and public-coin
collision-resistant hash functions. Then, building upon the results of the previous
subsection, and the results of [30, 5], we show:

1. Assuming SNARKs for NP, there exists an efficient distribution Z such that
public-coin differing-inputs obfuscation for NC1 implies that there cannot
exist PEOWFs {f : {0, 1}k → {0, 1}k} w.r.t. Z.

2. PEOWFs {f : {0, 1}k → {0, 1}k} w.r.t. this auxiliary input distribution Z
are implied by the existence of SNARKs for NP secure w.r.t. a second efficient
auxiliary input distribution Z ′, as shown in [5].



3. Thus, one of these conflicting hypotheses must be false. That is, there exists
an efficient distribution Z ′ such that assuming existence of FHE with decryp-
tion in NC1 and collision-resistant hash functions, then either: (1) public-
coin differing-inputs obfuscation for NC1 does not exist, or (2) SNARKS for
NP w.r.t. Z ′ do not exist.

Note that we focus on the specific case of PEOWFs with k-bit inputs and
k-bit outputs, as this suffices to derive the desired contradiction; however, the
theorems following extend also to the more general case of PEOWF output length
(demonstrating an efficient distribution Z to rule out each potential output
length `(k)).

Proximity EOWFs We begin by defining Proximity EOWFs.

Proximity Extractable One-Way Functions (PEOWFs). In a Proximity EOWF
(PEOWF), the extractable function family {fi} is associated with a “proximity”
equivalence relation ∼ on the range of fi, and the one-wayness and extractabil-
ity properties are modified with respect to this relation. The one-wayness is
strengthened: not only must it be hard to find an exact preimage of v, but it is
also hard to find a preimage of any equivalent v ∼ v′. The extractability require-
ment is weakened accordingly: the extractor does not have to output an exact
preimage of v, but only a preimage of of some equivalent value v′ ∼ v.

As an example, consider functions of the form f : x 7→ (f1(x), f2(x)) and
equivalence relation on range elements (a, b) ∼ (a, b′) whose first components
agree. Then the proximity extraction property requires for any adversary A who
outputs an image element (a, b) ∈ Range(f) that there exists an extractor E
finding an input x s.t. f(x) = (a, b′) for some b′ not necessarily equal to b.

In this work, we allow the relation ∼ to depend on the function index i,
but require that the relation ∼ is publicly (and efficiently) testable. We further
consider non-uniform adversaries and extraction algorithms, and (in line with
this work) auxiliary inputs coming from a specified distribution Z.

Definition 5 (Z-Auxiliary-Input Proximity EOWFs). Let `,m be polyno-
mially bounded length functions. An efficiently computable family of functions

F =
{
fi : {0, 1}k → {0, 1}`(k)

∣∣∣ i ∈ {0, 1}m(k), k ∈ N
}
,

associated with an efficient probabilistic key sampler KF , is a Z-auxiliary-input
proximity extractable one-way function if it satisfies the following (strong) one-
wayness, (weak) extraction, and public testability properties:

– (Strengthened) One-wayness: For non-uniform polynomial-time A and
sufficiently large security parameter k ∈ N,

Pr
[
z ← Zk; i← KF (1k); x← {0, 1}k; x′ ← A(i, fi(x); z)

: fi(x
′) ∼ fi(x)

]
≤ negl(k).



– (Weakened) Extractability: For any non-uniform polynomial-time adver-
sary A, there exists a non-uniform polynomial-time extractor E such that,
for sufficiently large security parameter k ∈ N,

Pr
[
z ← Zk; i← KF (1k); y ← A(i; z); x′ ← E(i; z)

: ∃x s.t. fi(x) = y ∧ fi(x′) 6∼ y
]
≤ negl(k).

– Publicly Testable Relation: There exists a deterministic polytime ma-
chine T such that, given the function index i, T accepts y, y′ ∈ {0, 1}`(k) if
and only if y ∼k y′.

( PC-diO for NC1 + PC-CRHF + FHE + SNARK ) ⇒ No Z-PEOWF
We now show that, assuming the existence of public-coin collision-resistant hash
functions (CRHF) and fully homomorphic encryption (FHE) with decryption
in NC1,10 then for some efficiently computable distributions ZSNARK,ZPEOWF, if
there exist public-coin differing-inputs obfuscators forNC1 circuits, and SNARKs
w.r.t. auxiliary input ZSNARK, then there cannot exist PEOWFs w.r.t. auxiliary
input ZPEOWF. This takes place in two steps.

First, we remark that an identical proof to that of Theorem 5 rules out the ex-
istence of Z-auxiliary-input proximity EOWFs in addition to standard EOWFs,
based on the same assumptions: namely, assuming public-coin differing-inputs
obfuscation for Turing machines, and public-coin collision-resistant hash func-
tions. Indeed, assuming the existence of a PEOWF extractor E for the adversary
A and auxiliary input distribution Z (who extracts a “related” preimage to the
target value), the same procedure yields a PEOWF inverter who similarly ex-
tracts a “related” preimage to any challenge output. In the reduction, it is merely
required that the success of E is efficiently and publicly testable (this is used to
construct a distinguishing adversary for the differing-inputs obfuscation scheme,
in Step 1). However, this is directly implied by the public testability of the
PEOWF relation ∼, as specified in Definition 5.

Theorem 6. There exist an efficient, uniformly samplable distribution Z such
that, assuming the existence of public-coin collision-resistant hash functions and
public-coin differing-inputs obfuscation for polynomial-size Turing machines, there
cannot exist (publicly testable) Z-auxiliary-input PEOWFs {fi : {0, 1}k → {0, 1}k}.

Now, in [30], it was shown that public-coin differing-inputs obfuscation for the
class of all polynomial-time Turing machines can be achieved by bootstrapping
up from public-coin differing-inputs obfuscation for circuits in the class NC1,
assuming the existence of FHE with decryption in NC1, public-coin CRHF, and
public-coin SNARKs for NP.

Putting this together with Theorem 6, we thus have the following corollary.

10 As is the case for nearly all existing FHE constructions (e.g., [21, 13]).



Corollary 1. There exists an efficient, uniformly samplable distribution Z s.t.,
assuming existence of public-coin SNARKs and FHE with decryption in NC1,
then assuming the existence of public-coin differing-inputs obfuscation for NC1,
there cannot exist PEOWFs {fi : {0, 1}k → {0, 1}k} w.r.t. auxiliary input Z.

( SNARK + CRHF ) =⇒ Z-PEOWF As shown in [5], Proximity EOWFs
(PEOWFs) with respect to an auxiliary input distribution Z are implied by
collision-resistant hash functions (CRHF) and SNARKs secure with respect to
a related auxiliary input distribution Z ′.11

Loosely, the transformation converts any CRHF family F into a PEOWF by
appending to the output of each f ∈ F a succinct SNARK argument πx that
there exists a preimage x yielding output f(x). (If the Prover algorithm of the
SNARK system is randomized, then the function is also modified to take an
additional input, which is used as the random coins for the SNARK generation).
The equivalence relation on outputs is defined by (y, π) ∼ (y′, π′) if y = y′ (note
that this relation is publicly testable). More explicitly, consider the new function
family F ′ composed of functions

f ′crs(x, r) =
(
f(x),Prove(1k, crs, f(x), x; r)

)
,

where a function f ′crs ∈ F ′ is sampled by first sampling a function f ← F from
the original CRHF family, and then sampling a CRS for the SNARK scheme,
crs← CRSGen(1k).

Now (as proved in [5]), the resulting function family will be a PEOWF with
respect to auxiliary input Z if the underlying SNARK system is secure with
respect to an augmented auxiliary input distribution ZSNARK := (Z, h), formed
by concatenating a sample from Z with a function index h sampled from the
collision-resistant hash function family F . (Note that we will be considering
public-coin CRHF, in which case h is uniform).

Theorem 7 ([5]). There exist efficient, uniformly samplable distributions Z,ZSNARK

such that, assuming the existence of collision-resistant hash functions and SNARKs
for NP secure w.r.t. auxiliary input distribution ZSNARK, then there exist PE-
OWFs {fi : {0, 1}k → {0, 1}k} w.r.t. Z.

Reaching a Standoff Observe that the conclusions of Corollary 1 and Theo-
rem 7 are in direct contradiction. Thus, it must be that one of the two sets of
assumptions is false. Namely,

Corollary 2. Assuming the existence of public-coin collision-resistant hash func-
tions and fully homomorphic encryption with decryption in NC1, there exists an
efficiently samplable distribution ZSNARK such that one of the following two ob-
jects cannot exist:

11 [5] consider the setting of arbitrary auxiliary input; however, their construction di-
rectly implies similar results for specific auxiliary input distributions.



– SNARKs w.r.t. auxiliary input distribution ZSNARK.
– Public-coin differing-inputs obfuscation for NC1.

More explicitly, we have that ZSNARK = (Z, U), where Z is composed of an
obfuscated program, and U is a uniform string (corresponding to a randomly
sampled index from a public-coin CRHF family).
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