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Abstract. Since its introduction, pseudorandom functions (PRFs) have
become one of the main building blocks of cryptographic protocols. In
this work, we revisit two recent extensions of standard PRFs, namely
multilinear and aggregate PRFs, and provide several new results for these
primitives. In the case of aggregate PRFs, one of our main results is a
proof of security for the Naor-Reingold PRF with respect to read-once
boolean aggregate queries under the standard Decision Diffie-Hellman
problem, which was an open problem. In the case of multilinear PRFs,
one of our main contributions is the construction of new multilinear
PRFs achieving indistinguishability from random symmetric and skew-
symmetric multilinear functions, which was also left as an open problem.
In order to achieve these results, our main technical tool is a simple
and natural generalization of the recent linear independent polynomial
framework for PRFs proposed by Abdalla, Benhamouda, and Passelègue
in Crypto 2015, that can handle larger classes of PRF constructions. In
addition to simplifying and unifying proofs for multilinear and aggregate
PRFs, our new framework also yields new constructions which are secure
under weaker assumptions, such as the decisional k-linear assumption.
Keywords. Pseudorandom functions, multilinear PRFs, aggregate PRFs.

1 Introduction

Pseudorandom functions (PRFs) are one of the most fundamental primitives in
cryptography. One of the features that makes PRFs so useful is the fact that
they behave as truly random functions with respect to computationally bounded
adversaries. Since being introduced by Goldreich, Goldwasser, and Micali [15],
PRFs have been used in many cryptographic applications, varying from symmetric
encryption and authentication schemes to key exchange. In particular, they are
very useful for modeling the security of concrete block ciphers, such as AES [4].

Given the large applicability of pseudorandom functions, several extensions
have been proposed in the literature over the years, with the goal of providing
additional functionalities to these functions. One concrete example of such an
extension are constrained PRFs [17,11,9], which provides the owner of the secret
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key with the capability of delegating the computation of the pseudorandom
function for different subsets of the input domain, without compromising the
pseudorandomness property for the other points of the input domain. In this
paper, we focus on two recent extensions of pseudorandom functions, namely
multilinear PRFs [13], and aggregate PRFs [12], and solve several open problems
related to the construction of these primitives.

Aggregate Pseudorandom Functions. Aggregate pseudorandom functions
were introduced by Cohen, Goldwasser, and Vaikuntanathan in [12]. The main
interest of an aggregate PRF is to provide the user with the possibility of
aggregating the values of the function over super-polynomially many PRF values
with only a polynomial-time computation, without enabling a polynomial-time
adversary to distinguish the function from a truly random function. For instance,
one such example of an aggregate query could be to compute the product of
all the output values of the PRF corresponding to a given exponentially-sized
interval of the input domain.

In addition to proposing the notion of aggregate PRFs, Cohen, Goldwasser,
and Vaikuntanathan [12] also proposed new constructions for several different
classes of aggregate queries, such as decision trees, hypercubes, and read-once
boolean formulas, achieving different levels of expressiveness. Unfortunately, for
most of the constructions proposed in [12], the proofs of security suffer from an
exponential (in the input length) overhead in their running time and have to
rely on the sub-exponential hardness of the Decisional Diffie-Hellman (DDH)
problem.

Indeed, to prove the security of their constructions, the authors use a generic
result which is simply saying the following: given an adversary A against the
AGG-PRF security of a PRF F , one can build an adversary B against the
standard PRF security of F . B simply queries all the values required to compute
the aggregate values (or the PRF values), and computes the aggregate values
itself before sending them to A .

Clearly, this reduction proves that any secure PRF is actually also a secure
aggregate PRF. However, this reduction is not efficient, since to answer to
just one aggregate query, the adversary B may have to query an exponential
number of values to its oracle. Hence, as soon as we can aggregate in one query
a superpolynomial number of PRF values, this generic reduction does not run in
polynomial time.

Multilinear Pseudorandom Functions. In order to overcome the shortcom-
ings of the work of Cohen, Goldwasser, and Vaikuntanathan [12], Cohen and
Holmgren introduced the concept of multilinear pseudorandom functions in [13].
Informally speaking, a multilinear pseudorandom function is a variant of the
standard notion of pseudorandom functions, which works with vector spaces and
which guarantees indistinguishability from random multilinear functions with the
same domain and range. As shown in [13], multilinear pseudorandom functions
can be used to prove the AGG-PRF security of the Naor-Reingold (NR) PRF [18]
with a polynomial time reduction for the case of hypercubes and decision trees
aggregations. Unfortunately, their technique does not extend to the more general
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case of read-once formulas aggregation, which is the most expressive form of
aggregation in [12].
Our Techniques. In this work, we provide an alternative way of overcoming the
limitations of the work of Cohen, Goldwasser, and Vaikuntanathan [12], based on
a natural extension of the recent algebraic framework for pseudorandom functions
proposed by Abdalla, Benhamouda, and Passelègue in [1], known as the linear
independent polynomial (LIP) framework.

In a nutshell, the LIP framework essentially says that for any linearly inde-
pendent polynomials P1, . . . , Pq ∈ Zp[T1, . . . , Tn], the group elements

[P1( #”a ) · b] , . . . , [Pq( #”a ) · b] ,

with #”a
$← Znp and b $← Zp, are computationally indistinguishable from indepen-

dent random group elements in G, under the DDH assumption (when polynomials
are multilinear) or the d-DDHI assumption (where d is the maximum degree
of P1, . . . , Pq in any indeterminate Ti). As a toy example, the LIP framework
directly proves the security of the NR PRF defined as:

NR((b, #”a ), x) =
[
b

n∏
i=1

axii

]
,

where (b, #”a = (a1, . . . , an)) ∈ K = Zp × Znp and x ∈ D = {0, 1}n. Indeed, all the
polynomials Px = b

∏n
i=1 a

xi
i are linearly independent.

Unfortunately, the LIP framework is not enough to prove the security of
multilinear PRFs or aggregate PRFs, as the outputs of the function (and the
corresponding polynomials) may not be independent. To overcome these lim-
itations, we provide a natural extension of the LIP framework, which we call
polynomial linear pseudorandomness security (PLP), that can handle such de-
pendences. Despite being a simple extension, the new PLP framework yields
significant improvements over previous works on multilinear and aggregate PRFs.
In particular, the multilinear constructions in [13] can be seen as a special case
of our new PLP framework.
Main Results. Using our new PLP framework for pseudorandom functions, we
obtain the following results.

First, we prove the security of the aggregate PRF for read-once formulas pro-
posed in [12], under the DDH assumption and with a polynomial-time reduction.
This in turn implies the security of all the other aggregate PRFs in [12], as the
latter are particular cases of the aggregate PRFs for read-once formulas. The
proof is very simple and based on linear algebra. Up to now, the only known
reduction incurred an exponential blow-up in the length n of the input.

Second, we show that our PLP framework enables to very easily prove the
security of the multilinear pseudorandom function construction in [13]. More
importantly, it enables us to directly show the security of the symmetric variant
of this construction, under the d-DDHI assumption, which was left as an open
problem in [13].
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Third, we extend all the above constructions to weaker assumptions, as the
k-Lin assumption, which can hold in symmetric k-linear groups, contrary to DDH
or d-DDHI. Again, these extensions are straightforward to prove thanks to our
PLP framework.

Additionally, we solve two other open problems respectively in [12, end of
Section 1 and Section 2.2] and in [13]: We show that unless NP=BPP, there cannot
exist aggregate PRFs for DNF formulas, although satisfiability of DNF formulas
can be tested in polynomial time; and we propose the first skew-symmetric
multilinear PRF.
Additional Contributions. As a side contribution, we prove the hardness of
Ek,d-MDDH (defined in [1] and recalled in Section 2) in the generic (symmetric)
k-linear group model, which was left as an open problem in [1] for k > 2 and d > 1.
This result directly implies that all the results stated in [1] under the E2,d-MDDH
now holds also for Ek,d-MDDH, for any k ≥ 2, which is also an interesting side
contribution. To prove this result, we essentially need to prove there are no non-
trivial polynomial relations of degree k between the elements of the assumptions
(these elements being themselves polynomials), as in [8,10,14]. The proof is by
induction over k: for the base case k = 1, the proof is straightforward as all
the elements we consider are linearly independent; for the inductive case k = 2,
we basically set some indeterminates to some carefully chosen values (for the
polynomials defining the elements we consider) to come down to previous cases.
Paper Organization. The rest of the paper is composed of the following
sections. In Section 2 and the full version [3], we give necessary background and
notations. We introduce our general PLP security notion and explain our main
result, termed PLP theorem (Theorem 1), in Section 3. We then present our
new constructions and improved security bounds for aggregate and multilinear
pseudorandom functions in Section 4 as well as some side results. The proofs of
these results are detailed in the full version [3]. Finally, in the full version [3], we
prove the hardness of our main assumption (the Ek,d-MDDH assumption) in the
generic k-linear group model.

2 Definitions

Notations and Conventions. We denote by κ the security parameter. Let
F : K × D → R be a function that takes a key K ∈ K and an input x ∈ D
and returns an output F (K,x) ∈ R. The set of all functions F : K ×D → R is
denoted by Fun(K,D,R). Likewise, Fun(D,R) denotes the set of all functions
mapping D to R. Also, if D and R are vector spaces, we denote by L(D,R) the
vector space of linear functions from D to R. In addition, if D1, . . . ,Dn are n
vector spaces, then L(D1 ⊗ · · · ⊗ Dn,R) is the vector space of n-linear functions
from D1 × · · · × Dn to R.

If S is a set, then |S| denotes its size. We denote by s $← S the operation
of picking at random s in S. If #”x is a vector then we denote by | #”x | its length,
so #”x = (x1, . . . , x| #”x |). For a binary string x, we denote its length by |x| so
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x ∈ {0, 1}|x|, xi its i-th bit, so x = x1 ‖ . . . ‖x|x|. For a matrix A of size k×m, we
denote by ai,j the coefficient of A in the i-th row and the j-th column. We denote
by Zp[T1, . . . , Tn] the subspace of multivariate polynomials in indeterminates
T1, . . . , Tn, and by Zp[T1, . . . , Tn]≤d the subring of polynomials of degree at most
d in each indeterminate. For a polynomial P ∈ Zp[T1, . . . , Tn], we denote by
P ( #”

T ) the polynomial P (T1, . . . , Tn) and by P ( #”a ) its evaluation by setting #”

T to
#”a , meaning that we set T1 = a1, . . . , Tn = an.

We often implicitly consider a multiplicative group G = 〈g〉 with public
generator g of order p and we denote by [a] the element ga, for any a ∈ Zp.
Similarly, if A is a matrix in Zk×mp , [A] is a matrix U ∈ Gk×m, such that
ui,j = [ai,j] for i = 1, . . . , k and j = 1, . . . ,m. All vector spaces are implicitly
supposed to be Zp-vector spaces.

We denote by TestLin a procedure which takes as inputs a list L of polynomi-
als (R1, . . . , RL) (such that R1, . . . , RL are linearly independent as polynomials)
and a polynomial R and which outputs:{

⊥ if R is linearly independent of the set {R1, . . . , RL}
#”

λ = (λ1, . . . , λL) otherwise, so that R = λ1R1 + . . .+ λLRL

#”

λ is uniquely defined since we assume that polynomials from the input list are
linearly independent. No such procedure is known for multivariate polynomials, if
we require the procedure to be deterministic and polynomial-time. However, it is
easy to construct such a randomized procedure which is correct with overwhelming
probability. Such a statistical procedure is sufficient for our purpose and was
given in [2]. We recall this procedure in Fig. 1. This procedure is correct with
probability at least p−1

p as soon as nd ≤ √p, where d is the maximum degree in
one indeterminate and n is the number of indeterminates.
Games [5]. Most of our definitions and proofs use the code-based game-playing
framework, in which a game has an Initialize procedure, procedures to respond
to adversary oracle queries, and a Finalize procedure. In the case where the
Finalize procedure is not explicitly defined, it is implicitly defined as the proce-
dure that simply outputs its input. To execute a game G with an adversary A , we
proceed as follows. First, Initialize is executed and its outputs become the input
of A . When A executes, its oracle queries are answered by the corresponding
procedures of G. When A terminates, its outputs become the input of Finalize.
The output of the latter, denoted GA is called the output of the game, and we let
“GA ⇒ 1” denote the event that this game output takes the value 1. The running
time of an adversary by convention is the worst case time for the execution of
the adversary with any of the games defining its security, so that the time of the
called game procedures is included.
Pseudorandom Functions. A PRF is an efficiently computable ensemble of
functions F : K ×D → R, implicitly indexed by the security parameter κ, such
that, when K $← K, the function x ∈ D 7→ F (K,x) ∈ R is indistinguishable from
a random function. Formally, we say that F is a pseudorandom function if the
advantage of any adversary A in attacking the standard PRF security of F is
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procTestLin(L, R)
// L[`] = R` for ` = 1, . . . , L and L = |L|
RL+1 ← R
N ← 2L+ 4
For k = 1, . . . , N

# ”γk
$← Zn

p

M matrix over Zp of L+ 1 rows and N columns
For ` = 1, . . . , L+ 1

For k = 1, . . . , N
m`,k ← R`( # ”γk)

Apply Gaussian elimination on M
If M is full-rank then

Return ⊥
Else

Let
#”

λ′ be the row vector such that
#”

λ′ ·M = #”0
#”

λ ← (λ′1/λ′L+1, . . . , λ
′
L/λ

′
L+1)

Return #”

λ

Fig. 1. TestLin procedure

negligible, where this advantage is defined via

Advprf
F (A ) = Pr

[
PRFRealAF ⇒ 1

]
− Pr

[
PRFRandA

F ⇒ 1
]
,

where games PRFRealF and PRFRandF are depicted in Fig. 2.

Aggregation Function. Let f : K × D → R be a function. We define an
aggregation function by describing two objects:

– a collection S of subsets S of the domain D;
– an aggregation function Γ: R∗ → V that takes as input a tuple of values

from the range R of F and aggregates them to produce a value in an output
set V.

In addition, we require the set ensemble S to be efficiently recognizable, meaning
that for any S ∈ S , there exists a polynomial time procedure to check if x ∈ S,
for any x ∈ D. Also, we require the aggregation function Γ to be polynomial
time and the output of the function not to depend on the order of the elements
provided as inputs. Finally, we require all sets S to have a representation of size
polynomial in the security parameter κ.

Given an aggregation function (S ,Γ), we define the aggregate function
AGG = AGGf,S ,Γ as the function that takes as input a set S ∈ S and outputs
the aggregation of all values f(x) for all x ∈ S. That is, AGG(S) outputs
Γ(f(x1), . . . , f(x|S|)), where S = {x1, . . . , x|S|}. We will require the computation
of AGG to be polynomial time (even if the input set S is exponentially large) if
the function f provided is the pseudorandom function F (K, ·) we consider, where
K is some key.
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Aggregate Pseudorandom Functions. Let F : K ×D → R be a pseudoran-
dom function and let (S ,Γ) be an associated aggregation function. We say
that F is an (S ,Γ)-aggregate pseudorandom function ((S ,Γ)-AGG-PRF) if the
advantage of any adversary in attacking the AGG-PRF security of F is negligible,
where this advantage is defined via

Advagg-prf
F,S ,Γ(A ) = Pr

[
AGGPRFRealAF ⇒ 1

]
− Pr

[
AGGPRFRandA

F ⇒ 1
]
,

where games AGGPRFRealF and AGGPRFRandF are depicted in Fig. 2. Game
AGGPRFRandF may not be polynomial-time, as AGGf,S ,Γ may not require
to compute an exponential number of values f(x). However, for all the aggre-
gate PRFs that we consider, this game is statistically indistinguishable from a
polynomial-time game, using the TestLin procedure, similarly to what is done
in our new PLP security notion (see Section 3 and Fig. 3).
Multilinear Pseudorandom Functions. Multilinear pseudorandom functions
are a variant of the standard notion of pseudorandom functions, which works with
vector spaces. More precisely, a multilinear pseudorandom function F : K×D →
R, is an efficiently computable function with key space K, domain D = D1 ×
· · · × Dn (a cartesian product of n vector spaces D1, . . . ,Dn, for some integer n),
range R which is a vector space, and which is indistinguishable from a random
n-linear function with same domain and range. We say that F is a multilinear
pseudorandom function (MPRF) if the advantage of any adversary in attacking
the MPRF security of F is negligible, where this advantage is defined via

Advmprf
F (A ) = Pr

[
MPRFRealAF ⇒ 1

]
− Pr

[
MPRFRandA

F ⇒ 1
]
,

where games MPRFRealF and MPRFRandF are depicted in Fig. 2. As explained
in [13], Game MPRFRandF can be implemented in polynomial time using a
deterministic algorithm checking linearity of simple tensors [6]. Also, similarly to
Game AGGPRFRandF , it is also possible to implement a polynomial-time game
that is statistically indistinguishable from MPRFRandF using TestLin.
Assumptions. Our main theorem is proven under the same MDDH assump-
tion [14] introduced in [1] and termed Ek,d-MDDH assumption. This MDDH
assumption is defined by the matrix distribution Ek,d which samples matrices Γ
as follows

Γ =


A0 ·B
A1 ·B

...
Ad ·B

 ∈ Zk(d+1)×k
p with A,B $← Zk×kp . (1)

The advantage of an adversary D against the Ek,d-MDDH assumption is

AdvEk,d-mddh
G (D) = Pr [ D(g, [Γ ] , [Γ ·W ]) ]− Pr [ D(g, [Γ ] , [U ]) ],

where Γ $← Ek,d, W
$← Zk×1

p , U $← Zk(d+1)×1
p . This assumption is random

self-reducible, as any other MDDH assumption (we will make use of this property
in the proof of our main theorem, and recall this property in the full version [3]).
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PRFRealF PRFRandF

proc Initialize

K
$← K

proc Fn(x)
Return F (K,x)

proc Initialize

f
$← Fun(D,R)

proc Fn(x)
Return f(x)

AGGPRFRealF AGGPRFRandF

proc Initialize

K
$← K

proc Fn(x)
Return F (K,x)
proc AGG(S)
Return AGGF (K,·),S ,Γ(S)

proc Initialize

f
$← Fun(D,R)

proc Fn(x)
Return f(x)
proc AGG(S)
Return AGGf,S ,Γ(S)

MPRFRealF MPRFRandF

proc Initialize

K
$← K

proc Fn( #”x )
Return F (K, #”x )

proc Initialize

f
$← L(D1 ⊗ · · · ⊗ Dn,R)

proc Fn( #”x )
Return f( #”x )

Fig. 2. Security games for (classical, aggregate, multilinear — from top to bottom)
pseudorandom functions
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Table 1. Security of Ek,d-MDDH

k = 1 k = 2 k ≥ 3

d = 1 = Advddh
G . 2 ·AdvU2-mddh

G . k ·AdvUk-mddh
G

d ≥ 2 . d ·Advd-ddhi
G

¶ generic bilinear group† generic k-linear group‡

Advddh
G , Advd-ddhi

G and AdvUk -mddh
G are advantages for DDH, DDHI, and Uk-MDDH. This

later assumption is weaker than k-Lin;
¶ proven in [1];
† proven in the generic (symmetric) bilinear group model [7] in [1];
‡ proven in the generic (symmetric) k-linear group model [19,16] in the full version [3].

In Table 1, we summarize security results for Ek,d-MDDH. For k = 1 or d = 1,
the Ek,d-MDDH assumption is implied by standard assumptions (DDH, DDHI,
or k-Lin, as recalled in the full version [3]). E1,1-MDDH is actually exactly DDH.
In [1], the question of the hardness of the Ek,d-MDDH problem in the generic
k-linear group model was left as an open problem when d > 1 and k > 2. One of
our contributions is to give a proof of hardness of these assumptions, which is
detailed in the full version [3].

3 Polynomial Linear Pseudorandomness Security

As we already mentioned in the introduction, while the LIP theorem from [1] is
quite powerful to prove the security of numerous constructions of pseudorandom
functions (and related-key secure pseudorandom functions), it falls short when
we need to prove the security of multilinear pseudorandom functions or aggregate
pseudorandom functions. Indeed, the LIP theorem requires that there is no linear
dependence between the outputs of the function. Thus, for the latter primitives,
it is clear that one cannot use the LIP theorem, since the main point of these
primitives is precisely that outputs can be related.

In order to deal with these primitives, we introduce a new security notion,
termed polynomial linear pseudorandomness security (PLP), which encompasses
the LIP security notion, but allows to handle multilinear pseudorandom functions
and aggregate pseudorandom functions.

3.1 Intuition

Intuitively, the polynomial linear pseudorandomness security notion says that for
any polynomials P1, . . . , Pq ∈ Zp[T1, . . . , Tn], the group elements

[P1( #”a ) · b] , . . . , [Pq( #”a ) · b] ,

with #”a
$← Znp and b $← Zp, are computationally indistinguishable from the group

elements:
[U(P1)] , . . . , [U(Pq)] ,
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with U $← L(Zp[T1, . . . , Tn]≤d,Zp) being a random linear function from the poly-
nomial vector space Zp[T1, . . . , Tn]≤d (with d the maximum degree of P1, . . . , Pq
in any indeterminate Ti) to the base field Zp. Our main theorem (Theorem 1)
shows that this security notion holds under the E1,d-MDDH assumption (and
thus also under DDH for d = 1 and d-DDHI for d ≥ 2).

When P1, . . . , Pq are linearly independent, [U(P1)] , . . . , [U(Pq)] are inde-
pendent random group elements in G. In that sense, the polynomial linear
pseudorandomness security notion is a generalization of the LIP security notion.

We remark that, in the generic group model, the polynomial linear pseudoran-
domness security notion holds trivially, by definition. The difficulty of the work
is to prove it under classical assumptions such as the E1,d-MDDH assumption.

Polynomial-Time Games. When we want to formally define the polynomial
linear pseudorandomness security notion, we quickly face a problem: how to
compute [U(Pi)] for a random linear map U $← L(Zp[T1, . . . , Tn]≤d,Zp)? Such a
map can be represented by a (random) vector with (d+ 1)n entries. But doing
so would make the game in the security notion exponential time. The idea is to
define or draw U lazily: each time we need to evaluate it on a polynomial Pi
linearly independent of all the previous polynomials Pj (with j < i), we define
U(Pi)

$← Zp; otherwise, we compute U(Pi) as a linear combination of U(Pj).
More precisely, if Pi =

∑i−1
j=1 λj · Pj , U(Pi) =

∑i−1
j=1 λj · U(Pj). As explained

in Section 2, no deterministic polynomial-time algorithm for checking linear
dependency between polynomials in Zp[T1, . . . , Tn] is known. But we can use one
which is correct which overwhelming probability. We recall that we denote by
TestLin such an algorithm.

On the Representation of the Polynomials. A second challenge is to define
how the polynomials are represented. We cannot say they have to be given in their
expanded form, because it would restrict us to polynomials with a polynomial
number of monomials and forbid polynomials such as

∏n
i=1(ai + 1).

Instead, we only suppose that polynomials can be (partially) evaluated, in
polynomial time (in n and d, the maximum degree in each indeterminate). This
encompasses polynomials defined by an expression (with + and · operations,
indeterminates, and scalars) of polynomial size (in n and d). Details are given in
the full version [3].

Extension to Weaker Assumptions. Before, showing the formal definition
and theorem, let us show an extension of our polynomial linear pseudorandomness
security notion to handle weaker assumptions, namely Ek,d-MDDH, with k ≥ 2.
In that case, we need to evaluate polynomials on matrices: [Pi(A) ·B], with A $←
Zk×kp and B $← Zk×mp (with m ≥ 1 being a positive integer). As multiplication of
matrices is not commutative, we need to be very careful. We therefore consider
that Tn appears before Tn−1 (in products), Tn−1 before Tn−2, . . . (or any other
fixed ordering).

More formally, we suppose that polynomials are represented by an expression
(similar to the case k = 1), such that in any subexpression Q ·R, if Q contains Ti
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proc Initialize
#”
A

$← (Zk×k
p )n

B
$← Zk×m

p

L1 ← empty list
L2 ← empty list
L← 0
b

$← {0, 1}

proc Pl(P )
If b = 0 then

Y ← P ( #”
A) ·B

Else
#”

λ ← TestLin(L1, P )
If #”

λ = ⊥ then
Y

$← Zk×m
p

L← L+ 1
L1[L]← P
L2[L]← Y

Else
Y ←

∑L

i=1 λi · L2[i]
Return [Y ]

proc Finalize(b′)
Return b′ = b

Fig. 3. Game defining the (n, d, k,m)-PLP security for a group G

(formally as an expression and not just when the expression is expanded), then
R contains no monomial Tj with j > i. Details are given in the full version [3].

3.2 Formal Security Notion and Theorem

Let G = 〈g〉 be a group of prime order p. We define the advantage of an adversary
A against the (n, d, k,m)-PLP security of G, denoted Adv(n,d,k,m)-plp

G (A ) as the
probability of success in the game defined in Fig. 3, with A being restricted to
make queries P ∈ Zp[T1, . . . , Tn]≤d. When not specified,m = 1. When k = m = 1,
we get exactly the intuitive security notion defined previously, as in that case
#”

A = #”a ∈ Znp and B = b ∈ Zp.

Theorem 1 (PLP). Let G = 〈g〉 be a group of prime order p. Let A be an
adversary against the (n, d, k,m)-PLP security of G that makes q oracle queries
P1, . . . , Pq. Then we can design an adversary B against the Ek,d-MDDH problem
in G, such that Adv(n,d,k,m)-plp

G (A ) ≤ n ·d ·AdvEk,d-mddh
G (B)+O(ndqN/p), where

N is an integer polynomial in the size of the representations of the polynomials
and N = 1 when k = 1 (see the full version [3] for details). The running time of
B is that of A plus the time to perform a polynomial number (in q, n, and d)
of operations in Zp and G.

The proof of Theorem 1 is detailed in the full version [3]. It is similar to
the proof of the LIP theorem (in the matrix case) in [1]. More precisely, we
show a series of indistinguishable games where the first game corresponds to
the (n, d, k,m)-PLP security game when b = 0, and the last game corresponds
to this security game when b = 1. Basically, all the games except for the last
two games are the same as in the proof of the LIP theorem. The two last games
differ, as follows: for the LIP theorem, all polynomials are supposed to be linearly
independent, and so in the last two games, all the returned values are drawn
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uniformly and independently, while for the PLP theorem, the returned values
still have linear dependencies.

4 Applications

In this section, we describe how PLP theorem (Theorem 1) can be used to
prove the security of aggregate pseudorandom functions as well as multilinear
pseudorandom functions. In particular, we obtain polynomial-time reduction
for all previous constructions of aggregate-pseudorandom, even for aggregate
where only exponential-time reduction were known (read-once formulas). We also
obtain a very simple proof of the multilinear pseudorandom function designed
in [13]. Finally, we briefly explain how these results can be extended to build
constructions based on weaker assumptions in an almost straightforward manner,
by simply changing the key space. The proofs of security remain almost the same
and consist in reducing the security to the adequate PLP security game.

4.1 Aggregate Pseudorandom Functions

In this subsection, we show that for all constructions proposed in [12], one can
prove the AGG-PRF security with a polynomial time reduction, while proofs
proposed in this seminal paper suffered from an exponential (in the input size)
overhead in the running time of the reduction. Moreover, our reductions are
almost straightforward via the PLP theorem.

A first attempt to solve the issue of the exponential time of the original
reductions was done in [13]. By introducing multilinear pseudorandom functions
and giving a particular instantiation, Cohen and Holmgren showed that one
can prove the AGG-PRF security of NR with a polynomial time reduction for
hypercubes and decision trees aggregation. However, their technique does not
extend to the more general case of read-once formulas aggregation. Also, as we
will show it the next subsection, their construction can be seen as a particular
case of our main theorem, and then can be proven secure very easily using our
result.

Here, we provide a polynomial time reduction for the general case of read-
once formulas. This implies in particular the previous results on hypercubes and
decision trees which are particular cases of read-once formulas.

Intuitively, if we consider the PLP security for k = 1 and aggregation with the
Naor-Reingold PRF, our PLP theorem (Theorem 1) implicitly says that as long as
the aggregate values can be computed as a group element whose discrete logarithm
is the evaluation of a multivariate polynomial on the key, then, if the corresponding
polynomials have a small representation, the PLP theorem guarantees the security
(with a polynomial time reduction), even if the number of points aggregated
is superpolynomial. Please notice that if these polynomials do not have any
small representation (e.g. the smallest representation is exponential in the input
size), then there is no point of considering such aggregation, since the whole
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point of aggregate pseudorandom function lies in the possibility of aggregating
superpolynomially many PRF values with a very efficient computation.

Read-Once Formulas. A read-once formula is a circuit on x = (x1, . . . , xn) ∈
{0, 1}n composed of only AND, OR and NOT gates with fan-out 1, so that each
input literal is fed into at most one gate and each gate output is fed into at most
one other gate. We denote by ROFn the family of all read-once boolean formulas
over x1, . . . , xn variables. In order to ease the reading, we restrict these circuits
to be in a standard form, so that they are composed of fan-in 2 and fan-out 1
AND and OR gates, and NOT gates occurring only at the inputs. This common
restriction can be done without loss of generality. Hence, one can see such a
circuit as a binary tree where each leaf is labeled by a variable xi or its negation
x̄i and where each internal node has a label C and has two children with labels
CL and CR and represents either an AND or an OR gate (with fan-in 2). We
identify a formula (and the set it represents) with the label of its root Cφ.

Aggregation for Read-Once Formulas. We recall the definition of read-once
formula aggregation used in [12]. For the sake of simplicity, we only consider
the case of the Naor-Reingold PRF, defined as NR( #”a , x) = [a0

∏n
i=1 a

xi
i ], where

a0, . . . , an
$← Zp and x ∈ {0, 1}n. We define the aggregation function for read-once

formulas of length n as follows.
The collection Srof ⊆ {0, 1}n corresponds to all the subsets of S ⊆ {0, 1}n

such that there exists a read-once formula Cφ ∈ ROFn such that S = {x ∈
{0, 1}n | Cφ(x) = 1}.

The aggregation function Γrof is defined as the product (assuming the group
is a multiplicative group) of the values on such a subset. Hence, we have:

AGGNR,Srof ,Γrof (Cφ) =
∏

x|Cφ(x)=1

[
a0

n∏
i=1

axii

]
=

a0
∑

x|Cφ(x)=1

n∏
i=1

axii


=
[
a0 ·ACφ,1( #”a )

]
,

where AC,b is the polynomial
∑
x∈{0,1}n|C(x)=b

∏n
i=1 T

xi
i for any C ∈ ROFn and

b ∈ {0, 1}.

Efficient Evaluation of AC,b. One can efficiently compute AC,b recursively as
follows:

– If C is a literal for variable xi, then AC,1 = Ti and AC,0 = 1 if C = xi; and
AC,1 = 1 and AC,0 = Ti if C = x̄i;

– If C is an AND gate with CL and CR its two children, then we have:
AC,1 = ACL,1 ·ACR,1
AC,0 = ACL,0 ·ACR,0 +ACL,1 ·ACR,0 +ACL,0 ·ACR,1;

– If C is an OR gate with CL and CR its two children, then we have:
AC,1 = ACL,1 ·ACR,1 +ACL,1 ·ACR,0 +ACL,0 ·ACR,1
AC,0 = ACL,0 ·ACR,0.
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Now we have introduced everything, we can prove that NR (or more general
constructions) is an (Srof ,Γrof)-AGG-PRF under the standard DDH assumption,
as stated in the lemma below.

Lemma 2. Let G = 〈g〉 be a group of prime order p and NR be the Naor-Reingold
PRF defined as NR( #”a , x) = [a0

∏n
i=1 a

xi
i ], where the key is (a0, . . . , an) $← Zn+1

p

and the input is x ∈ {0, 1}n. Then one can reduce the (Srof ,Γrof)-AGG-PRF
security of NR to the hardness of the DDH problem in G, with a loss of a factor
n. Moreover, the time overhead is polynomial in n and in the number of queries
made by the adversary.

The proof is straightforward using the PLP theorem: all queries in the security
game for the aggregate PRF can be seen as a queries of the form Pl(P ) for some
polynomial P with a small representation: Fn(x) returns Pl(T0

∏n
i=1 T

xi
i ) and

AGG(Cφ) returns Pl(T0 ·ACφ,1( #”

T )). Details can be found in the full version [3].
Extensions. One can easily extend this result for k-Lin-based PRFs similar
to NR using our main theorem. Also, one can easily use our PLP theorem
(Theorem 1) to prove the security for any aggregate (for instance with NR) as
soon as the aggregate values can be represented as group elements whose discrete
logarithms are the evaluation of a (multivariate) polynomial on the key (and that
this polynomial is efficiently computable).
Impossibility Result for CNF (Conjunctive Normal Form) and DNF
(Disjunctive Normal Form) Formulas. In [12], the authors show that, unless
NP=BPP, there does not exist an (S ,Γ)-aggregate pseudorandom function1,
with D = {0, 1}n, S containing the following sets:

Sφ = {x ∈ {0, 1}n | φ(x) = 1}

with φ a CNF formula with n-bit input, and Γ a “reasonable” aggregate function,
e.g., Γrof (assuming R is a cyclic group G of prime order p). The proof consists
in showing that if such aggregate pseudorandom function exists, then we can
solve SAT in polynomial time. More precisely, given a SAT instance, i.e., a CNF
formula φ, we can compute AGG(φ). If φ is not satisfiable, AGG(φ) = 1 ∈ G,
while otherwise AGG(φ) =

∏
x∈{0,1}n, φ(x)=1 F (K,x). This latter value is not 1

with high probability, otherwise we would get a non-uniform distinguisher against
aggregate pseudorandomness.

The case of DNF formulas (or more generally of any class for which satisfiability
is tractable) was left as an important open problem in [12]. Here, we show that
unless NP=BPP, there also does not exist an (S ,Γ)-aggregate pseudorandom
function as above, when S contains Sφ for any DNF (instead of CNF) formula
φ with n-bit input. For that, we first remark that the formula >, always true,
is a DNF formula (it is the disjunction of all the possible literals), and that
1 We suppose that the aggregate pseudorandomness security property holds non-
uniformly. When S is expressive enough, we can also do the proof when this security
property holds uniformly, see [12, Section 2.2] for details.
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the negation φ̄ of a CNF formula φ is a DNF formula. Then, given a SAT
instance, a CNF formula φ, we compute AGG(φ̄) and AGG(>). If φ is not
satisfiable, φ̄ is always true and AGG(φ̄) = AGG(>), while otherwise, AGG(φ̄) =
AGG(>)/

∏
x∈{0,1}n, φ(x)=1 F (K,x). This latter value is not AGG(>) with high

probability, otherwise we would get a non-uniform distinguisher against aggregate
pseudorandomness.

4.2 Multilinear Pseudorandom Functions

Here, we explain how our main theorem can be used to prove directly the security
of the multilinear pseudorandom function built in [13]. We first recall their
construction before explaining how to prove its security.

Cohen-Holmgren multilinear pseudorandom function (CH). Let G = 〈g〉
be a group of prime order p. The key space of the multilinear pseudorandom
function is Zl1p × · · · × Zlnp . The input space is the same as the key space. Given
a key ( #”a1, . . . ,

# ”an) taken uniformly at random in the key space, the evaluation of
the multilinear pseudorandom function on the input ( # ”x1, . . . ,

# ”xn)) outputs:

CH(( #”a1, . . . ,
# ”an), ( # ”x1, . . . ,

# ”xn)) =
[
n∏
i=1
〈 #”ai,

#”xi〉

]

where 〈 #”a , #”x 〉 denotes the canonical inner product 〈 #”a , #”x 〉 =
∑l
i=1 ai · xi, with l

being the length of vectors #”a and #”x .
In [13], Cohen and Holmgren prove that this construction is a secure multilin-

ear pseudorandom function under the standard DDH assumption. One of their
main contributions is to achieve a polynomial time reduction. Their technique
can be seen as a special case of ours. In particular, using our main theorem, one
can easily obtain the following lemma.

Lemma 3. Let G = 〈g〉 be a group of prime order p and CH: (Zl1p ×· · ·×Zlnp )×
(Zl1p × · · · ×Zlnp )→ G denote the above multilinear pseudorandom function. Then
we can reduce the multilinear PRF security of CH to the hardness of the DDH
problem in G, with a loss of a factor l =

∑n
i=1 li. Moreover, the time overhead is

polynomial in l and in the number of queries made by the adversary.

A detailed proof can be found in the full version [3], but we give an intuition
of the proof in what follows.

Proof. Let #”

T = (T1,1, . . . , T1,l1 , . . . , Tn,1, . . . , Tn,ln) be a vector of indeterminates,
and let #”

Ti = (Ti,1, . . . , Ti,li). The PLP theorem shows that CH( #”a1, . . . ,
# ”an,

# ”x1, . . . ,
# ”xn) (using a random key #”a ) is computationally indistinguishable from[

U

(
n∏
i=1
〈 #”

Ti,
#”xi〉

)]
= [f( # ”x1, . . . ,

# ”xn)]
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with U $← L(Zp[
#”

T ]≤1,Zp) and

f :
(
Zl1p × · · · × Zlnp → Zp

( # ”x1, . . . ,
# ”xn) 7→ U(

∏n
i=1〈

#”

Ti,
#”xi〉)

)
.

To conclude, we just need to prove that f is a random n-linear function in
L(Zl1p ⊗ · · · ⊗ Zlnp ,Zp).

For that purpose, let us introduce the following n-linear application:

ψ :
(
Zl1p × · · · × Zlnp → Zp[

#”

T ]≤1
( # ”x1, . . . ,

# ”xn) 7→
∏n
i=1〈

#”

Ti,
#”xi〉

)
.

We remark that f is the composition of U and ψ: f = U ◦ ψ.
Furthermore, if we write #  ”ei,l = (0, . . . , 0, 1, 0, . . . , 0) the i-th vector of the

canonical base of Zlp, then:

ψ( #       ”ei1,l1 , . . . ,
#        ”ein,ln) = T1,i1 · · ·Tn,in ;

and as the monomials T1,i1 · · ·Tn,in are linearly independent, ψ is injective. Since
f = U ◦ ψ and U $← L(Zp[

#”

T ]≤1,Zp), the function f is a uniform random linear
function from L(Zl1p ⊗ · · ·⊗Zlnp ,Zp). This is exactly what we wanted to show. ut

Symmetric Multilinear Pseudorandom Function. In [12], constructing
symmetric multilinear pseudorandom functions was left as an open problem. The
definition of this notion is the same as the notion of multilinear pseudorandom
function, except that we only require the function to be indistinguishable from a
random symmetric multilinear function. In that case, we suppose that l1 = · · · =
ln = l, i.e., all the vectors # ”x1, . . . ,

# ”xn have the same size l. The authors wrote in
[12] that the natural modification of the CH construction to obtain a symmetric
construction consisting in setting #”a1 = #”a2 = · · · = # ”an (simply denoted #”a in what
follows) leads to a symmetric multilinear pseudorandom function whose security
is less clear, but claimed that it holds under the E1,n-MDDH assumption (which
is exactly the n-Strong DDH assumption), when l = | #”a | = 2. We show that this
construction is actually secure under the same assumption for any l = | #”a | ≥ 2 as
stated in the following lemma, whose proof is detailed in the full version [3] and
is almost the same as the proof of Lemma 3.

Lemma 4. Let G = 〈g〉 be a group of prime order p and CHsym: Zlp×(Zlp)
n → G

that takes as input a key #”a ∈ Zlp and an input #”x = ( # ”x1, . . . ,
# ”xn) ∈ (Zlp)

n

and outputs [
∏n
i=1〈

#”a , #”xi〉]. Then we can reduce the symmetric multilinear PRF
security of CHsym to the hardness of the n-DDHI problem in G, with a loss of a
factor l. Moreover, the time overhead is polynomial in l and in the number of
queries made by the adversary.

Skew-Symmetric Multilinear Pseudorandom Function. In [12], the au-
thor left as an open problem the construction of a skew-symmetric multilinear
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pseudorandom function. The definition of this notion is the same as the notion
of multilinear pseudorandom function, except that we only require the function
to be indistinguishable from a random skew-symmetric multilinear function. We
assume that l1 = · · · = ln = l = n, i.e., all the vectors # ”x1, . . . ,

# ”xn have the same
size l = n. We need l = n because there is no skew-symmetric n-multilinear map
from

(
Zlp
)n to Zp, when l < n.

We know that any skew-symmetric n-multilinear map f is of the form:

f( # ”x1, . . . ,
# ”xn) = c · det( # ”x1, . . . ,

# ”xn),

with c being a scalar in Zp and det being the determinant function. Therefore,
the function

F (a, ( # ”x1, . . . ,
# ”xn)) = [a · det( # ”x1, . . . ,

# ”xn)]

is a skew-symmetric multilinear PRF with key a ∈ Zp. The proof is trivial
since, ( # ”x1, . . . ,

# ”xn) 7→ F (a, ( # ”x1, . . . ,
# ”xn)) is actually a random skew-symmetric

n-multilinear map when a is a random scalar in Zp. No assumption is required.
Our analysis shows that skew-symmetric multilinear PRFs are of limited interest,
but our construction still solves an interesting open problem in [12].

Extensions. As for aggregate pseudorandom functions, it is very easy to build
multilinear pseudorandom functions under k-Lin and to prove their security
applying our PLP theorem (Theorem 1), for instance using the same construction
but changing the key components from elements in Zp to elements in Zk×kp

while keeping the same inputs space, and by defining 〈 #”

A, #”x 〉 =
∑l
i=1 xi · Ai,

with #”

A = (A1, . . . ,Al) ∈ (Zk×kp )l and x = (x1, . . . , xl) ∈ Zlp. This leads to the
following construction:

F :
(
Zl1p × · · · × Zlnp → Gk×m

( # ”x1, . . . ,
# ”xn) 7→

[
(
∏n
i=1〈

#  ”

Ai,
#”xi〉) ·B

])

with ( #  ”

A1, . . . ,
#   ”

An) ∈ (Zk×kp )l1 × · · · × (Zk×kp )ln and B ∈ Zk×mp .
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