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Abstract. Predicate encryption is an advanced form of public-key encryption
that yields high flexibility in terms of access control. In the literature, many pred-
icate encryption schemes have been proposed such as fuzzy-IBE, KP-ABE, CP-
ABE, (doubly) spatial encryption (DSE), and ABE for arithmetic span programs.
In this paper, we study relations among them and show that some of them are in
fact equivalent by giving conversions among them. More specifically, our main
contributions are as follows:
− We show that monotonic, small universe KP-ABE (CP-ABE) with bounds on

the size of attribute sets and span programs (or linear secret sharing matrix)
can be converted into DSE. Furthermore, we show that DSE implies non-
monotonic CP-ABE (and KP-ABE) with the same bounds on parameters. This
implies that monotonic/non-monotonic KP/CP-ABE (with the bounds) and
DSE are all equivalent in the sense that one implies another.

− We also show that if we start from KP-ABE without bounds on the size of
span programs (but bounds on the size of attribute sets), we can obtain ABE
for arithmetic span programs. The other direction is also shown: ABE for
arithmetic span programs can be converted into KP-ABE. These results imply,
somewhat surprisingly, KP-ABE without bounds on span program sizes is in
fact equivalent to ABE for arithmetic span programs, which was thought to be
more expressive or at least incomparable.

By applying these conversions to existing schemes, we obtain many non-trivial
consequences. We obtain the first non-monotonic, large universe CP-ABE (that
supports span programs) with constant-size ciphertexts, the first KP-ABE with
constant-size private keys, the first (adaptively-secure, multi-use) ABE for arith-
metic span programs with constant-size ciphertexts, and more. We also obtain the
first attribute-based signature scheme that supports non-monotone span programs
and achieves constant-size signatures via our techniques.
Keywords. Attribute-based encryption, doubly spatial encryption, generic con-
version, constant-size ciphertexts, constant-size keys, arithmetic span programs

1 Introduction

Predicate encryption (PE) is an advanced form of public-key encryption that allows
much flexibility. Instead of encrypting data to a target recipient, a sender will specify in
a more general way about who should be able to view the message. In predicate encryp-
tion for a predicate R, a sender can associate a ciphertext with a ciphertext attribute X
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while a private key is associated with a key attribute Y . Such a ciphertext can then be
decrypted by such a key if the predicate evaluation R(X,Y ) holds true.

There exist many classes of PE, each is defined by specifying a corresponding class
of predicates. One notable class is attribute-based encryption (ABE) [41,26] for span
programs (or equivalently, linear secret sharing schemes), of which predicate is defined
over key attributes being a span program and ciphertext attributes being a set of at-
tributes, and its evaluation holds true if the span program accepts the set. This is called
key-policy ABE (KP-ABE). There is also ciphertext-policy ABE (CP-ABE), where the
roles of key and ciphertext attributes are exchanged. Another important class is doubly
spatial encryption (DSE) [27], of which predicate is defined over both key and cipher-
text attributes being affine subspaces, and its evaluation holds true if both subspaces
intersect. Very recently, a new important class of PE, that is called attribute encryp-
tion for arithmetic span programs is defined in [30]. They showed such a PE scheme
is useful by demonstrating that the scheme can be efficiently converted into ABE for
arithmetic branching programs for both zero-type and non-zero type predicates. If the
scheme satisfies a certain requirement for efficiency (namely, encryption cost is at most
linear in ciphertext predicate size), it is also possible to obtain a publicly verifiable del-
egation scheme for arithmetic branching programs, by exploiting a conversion shown
in [39]. Furthermore, they gave a concrete construction of such scheme.

Compared to specific constructions of predicate encryption [32,33,35,45,23,21] (to
name just a few) that focus on achieving more expressive predicates and/or stronger
security guarantee, relations among predicate encryption schemes are much less inves-
tigated. The purpose of this paper is to improve our understanding of relations among
them.

1.1 Our Results

Relations among PE. Towards the goal above, we study relations among PE and show
that some of them are in fact equivalent by giving generic conversion among them. We
first investigate the relation among ABE with some bounds on parameters (the size of
attribute sets and the size of span programs) and DSE. We have the following results:
− First, we show a conversion from KP-ABE (or CP-ABE) with the bounds on pa-

rameters into DSE (without key delegation, in Section 3). Such an implication is
not straightforward in the first place. Intuitively, one reason stems from the different
nature between both predicates: while DSE can be considered as an algebraic object
that involves affine spaces, ABE can be seen as a somewhat more combinatorial ob-
ject that involves sets (of attributes). Our approach involves some new technique for
“programming” a set associated to a ciphertext and a span program associated to a
private key in the KP-ABE scheme so that they can emulate the relation for doubly
spatial encryption.

− We then extend the result of [27], which showed that DSE implies CP/KP-ABE
with large universes. We provide a new conversion from DSE (without delegation)
to non-monotonic CP/KP-ABE with large universes (in Section 4). We note that the
resulting schemes obtained by the above conversions have some bounds on parame-
ters. In the conversion, we extensively use a special form of polynomial introduced
in [31] and carefully design a matrix so that DSE can capture a relation for ABE.
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Fig. 1. Relations among predicate encryption primitives. In this figure, arrows indicate conver-
sions that transform the primitive of the starting point to that of the end point. The red arrows
indicate our results in this paper. For ABE, ‘mono’ and ‘non-mono’ indicate whether it is mono-
tonic or non-monotonic, while ‘small’ and ‘large’ indicate whether the attribute universes are
large (i.e., exponentially large) or small (i.e., polynomially bounded). (k̄, ¯̀, m̄, ϕ) specify bounds
on size of sets of attributes and span programs. See Section 2.1 for details. As a result, primitives
inside each dashed box are all equivalent in the sense there is a conversion between each pair.

Somewhat surprisingly, by combining the above results, we obtain generic conversions
that can boost the functionality of (bounded) ABE: from monotonic to non-monotonic,
and from small-universe to large-universe; moreover, we also obtain conversions which
transform ABE to its dual (key-policy to ciphertext-policy, and vice versa). This implies
that they are essentially equivalent in some sense. See Figure 1 for the details.

So far, we have considered ABE schemes with bounds on parameters, especially on
the size of span programs. We then proceed to investigate relation among ABE schemes
without bounds on the size of span programs (but with a bound on the size of attribute
sets) and ABE for arithmetic span programs recently introduced and studied by Ishai
and Wee [30]. We call the latter key-policy ABE for arithmetic span programs (KASP),
since in the latter, a ciphertext is associated with a vector while a private key is associ-
ated with an arithmetic span program which specifies a policy. By exchanging key and
ciphertext attribute, we can also define ciphertext-policy version of ABE for arithmetic
span program (CASP). We have the following results:

− We show that monotonic KP-ABE with small universe (without bound on the size
of span programs) can be converted into KASP (in Section 5). The idea for the
conversion is similar to that in Section 3.

− In the full version of the paper [4], we also investigate the converse direction. In
fact, we show somewhat stronger result. That is, KASP can be converted into non-
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monotonic KP-ABE with large universe, which trivially implies monotonic KP-ABE
with small universe. The idea for the conversion is similar to that in Section 4.

Given the above results, we have all of the following are equivalent: monotonic KP-
ABE with small universe, non-monotonic KP-ABE with large universe, and KASP.
Similar implications hold for the case of CP-ABE and CASP. However, we do not have
a conversion from KP-ABE to CP-ABE in this case. Again, see Figure 1 for the details.

Direct Applications: New Instantiations. By applying our conversions to existing
schemes, we obtain many new instantiations. Most of them have new properties that
were not achieved before. These include

− the first DSE with constant-size public key,
− the first DSE with constant-size ciphertexts,
− the first DSE with constant-size private keys,
− the first non-monotonic, large-universe CP-ABE with constant-size ciphertexts,
− the first non-monotonic, large-universe KP-ABE with constant-size keys,
− the first KASP, CASP with constant-size public key,
− the first KASP, CASP with adaptive security and unbounded multi-use,
− the first KASP with constant-size ciphertexts,
− the first CASP with constant-size keys,

which together offer various compactness tradeoffs. Previously, all DSE schemes re-
quire linear (or more) sizes in all parameters [27,18,15]. Previous CP-ABE with constant-
size ciphertexts [20,14,22,13] can only deal with threshold or even more limited expres-
siveness. As for KP-ABE, to the best of our knowledge, there were no constructions
with constant-size keys.1 Previous KASP and CASP [30,17] require linear sizes in all
parameters. Moreover, the adaptively secure schemes [17] support only attribute one-
use. See Section 6 and tables therein for our instantiations and comparisons.

Application to Attribute-Based Signatures. Our technique is also useful in the set-
tings of attribute-based signatures (ABS) [36,37]. We first define a notion that we call
predicate signature (PS) which is a signature analogue of PE. Then, we construct a spe-
cific PS scheme with constant-size signatures such that a signature is associated with
a set of attributes while a private key is associated with a policy (or monotone span
programs). This is in some sense a dual notion of ordinary ABS in which a signature
is associated with a policy and a private key with a set. By using the technique devel-
oped in the above, we can convert the PS scheme into an ABS scheme. As a result, we
obtain the first ABS scheme with constant-size signatures. Previous ABS schemes with
constant-size signatures [28,13] only support threshold or more limited policies.

Finally, we remark that although our conversions are feasible, they often introduce
polynomial-size overheads to some parameters. Thus, in most cases, above schemes
obtained by the conversions should be seen as feasibility results in the sense that they
might not be totally efficient. As a future direction, it would be interesting to construct
more efficient schemes directly.

1 KP-ABE with (asymptotically) short keys was also proposed in [10]. Compared to ours, their
key size is not constant but they focus on more expressive ABE, namely ABE for circuits.
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1.2 Related Works

There are several previous works investigating relations among PE primitives. In [25], a
black box separation between threshold predicate encryption (fuzzy IBE) and IBE was
shown. They also rule out certain natural constructions of PE for NC1 from PE for
AC0. In [16], it was shown that hierarchical inner product encryption is equivalent to
spatial encryption, which is a special case of doubly spatial encryption.

[24] showed a generic conversion from KP-ABE supporting threshold formulae to
CP-ABE supporting threshold formulae. Their result and ours are incomparable. Our
KP-ABE to CP-ABE conversion requires the original KP-ABE to support monotone
span programs, which is a stronger requirement than [24]. On the other hand, the result-
ing scheme obtained by our conversion supports non-monotone span programs, which
is a wider class than threshold formulae 2. Thus, by applying our conversion, we can
obtain new schemes (such as CP-ABE supporting non-monotone span programs with
constant-size ciphertext) that is not possible to obtain by the conversion by [24].

In recent works [2,6], it is shown that PE satisfying certain specific template can
be converted into PE for its dual predicate. In particular, it yields KP-ABE-to-CP-ABE
conversion. Again, their result and ours are incomparable. On the one hand, schemes
obtained from their conversion are typically more efficient than ours. On the other hand,
their conversion only works for schemes with the template while our conversion is
completely generic. Furthermore, since they essentially exchange key and ciphertext
components in the conversion, the size of keys and ciphertexts are also exchanged. For
example, if we start from KP-ABE with constant-size ciphertexts, they obtain CP-ABE
with constant-size private keys while we obtain CP-ABE with constant-size ciphertexts.

We also remark that in the settings where PE for general circuit is available, we
can easily convert any KP-ABE into CP-ABE by using universal circuits as discussed
in [23,21]. However, in the settings where only PE for span programs is available, this
technique is not known to be applicable. We note that all existing PE schemes for gen-
eral circuits [21,23,10] are quite inefficient and based on strong assumptions (e.g., ex-
istence of secure multi-linear map or hardness of certain lattice problems for an expo-
nential approximation factor). In [8], in the context of quantum computation, Belovs
studies a span program that decides whether two spaces intersect or not. The problem
and its solution considered there is very similar to that in Section 3 of our paper. How-
ever, he does not consider application to cryptography and the result is not applicable
to our setting immediately since the syntax of span programs is slightly different.

Concurrent and Independent Work. Concurrently and independently to our work,
Aggrawal and Chase [1] show specific construction of CP-ABE scheme with constant-
size ciphertexts. Compared to our CP-ABE scheme with constant-size ciphertexts, which
is obtained by our conversion, their scheme only supports monotone access structure
over large universe, whereas our scheme supports non-monotonic access structure over
large universe. Furthermore, we can obtain adaptively secure scheme whereas their
scheme is only selectively secure. On the other hand, their scheme has shorter keys.

2 While it is known that monotone span programs contain threshold formulae [26], the converse
is not known to be true.
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2 Preliminaries

Notation. Throughout the paper, p denotes a prime number. We will treat a vector as a
column vector, unless stated otherwise. For a vector a ∈ Znp , a[i] ∈ Zp represents i-th
element of the vector. Namely, a = (a[1], . . . ,a[n])>. For a,b ∈ Znp , we denote their
inner product as 〈a,b〉 = a>b =

∑n
i=1 a[i] ·b[i]. We denote by ei the i-th unit vector:

its i-th component is one, all others are zero. In and 0n×m represent an identity matrix
in Zn×np and zero matrix in Zn×mp respectively. We also define 1n = (1, 1, . . . , 1)> ∈
Znp and 0n = 0n×1. We often omit the subscript if it is clear from the context. We
denote by [a, b] a set {a, a+1, . . . , b} for a, b ∈ Z such that a ≤ b and [b] denotes [1, b].
For a matrix X ∈ Zn×dp , span(X) denotes a linear space {X · u|u ∈ Zdp} spanned

by columns of X. For matrices A ∈ Zn1×m
p and B ∈ Zn2×m

p , [A;B] ∈ Z(n1+n2)×m
p

denotes [A>,B>]> i.e., the vertical concatenation of them.

2.1 Definition of Predicate Encryption

Here, we define the syntax of predicate encryption. We emphasize that we do not con-
sider attribute hiding in this paper3.

Syntax. Let R = {RN : AN × BN → {0, 1} | N ∈ Nc} be a relation family where
AN andBN denote “ciphertext attribute” and “key attribute” spaces and c is some fixed
constant. The index N = (n1, n2, . . . , nc) of RN denotes the numbers of bounds for
corresponding parameters. A predicate encryption (PE) scheme for R is defined by the
following algorithms:
Setup(λ,N)→ (mpk,msk): The setup algorithm takes as input a security parameter

λ and an index N of the relation RN and outputs a master public key mpk and a
master secret key msk.

Encrypt(mpk,M, X)→ C: The encryption algorithm takes as input a master public
key mpk, the message M, and a ciphertext attribute X ∈ AN . It will output a
ciphertext C.

KeyGen(msk,mpk, Y )→ skY : The key generation algorithm takes as input the master
secret key msk, the master public key mpk, and a key attribute Y ∈ BN . It outputs
a private key skY .

Decrypt(mpk, C,X, skY , Y )→ M or ⊥: We assume that the decryption algorithm is
deterministic. The decryption algorithm takes as input the master public key mpk,
a ciphertext C, ciphertext attribute X ∈ AN , a private key skY , and private key
attribute Y . It outputs the message M or ⊥ which represents that the ciphertext is
not in a valid form.

We refer (standard) definitions of correctness and security of PE to [2,4].

2.2 (Arithmetic) Span Program, ABE, and Doubly Spatial Encryption

Definition of Span Program. Let U = {u1, . . . , ut} be a set of variables. For each
ui, denote ¬ui as a new variable. Intuitively, ui and ¬ui correspond to positive and

3 This is called “public-index” predicate encryption, categorized in [12].
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negative attributes, respectively. Also let U ′ = {¬u1, . . . ,¬ut}. A span program over
Zp is specified by a pair (L, ρ) of a matrix and a labelling function where

L ∈ Z`×mp ρ : [`]→ U ∪ U ′

for some integer `,m. Intuitively, the map ρ labels row i with attribute ρ(i).
A span program accepts or rejects an input by the following criterion. For an input

δ ∈ {0, 1}t, we define the sub-matrix Lδ of L to consist of the rows whose labels are
set to 1 by the input δ. That is, it consists of either rows labelled by some ui such that
δi = 1 or rows labelled by some ¬ui such that δi = 0. We say that

(L, ρ) accepts δ iff (1, 0, . . . , 0) is in the row span of Lδ .

We can write this also as e1 ∈ span(L>δ ). A span program is called monotone if the
labels of the rows consist of only the positive literals, in U .
Key-Policy and Ciphertext-Policy Attribute-Based Encryption. Let U be the uni-
verse of attributes. We define a relation RKP on any span programs (L, ρ) over Zp and
any sets of attributes S ⊆ U as follows. For S ⊆ U , we define δ ∈ {0, 1}t as an indi-
cator vector corresponding to S. Namely, δi = 1 if ui ∈ S and δi = 0 if ui 6∈ S. We
define

RKP(S, (L, ρ)) = 1 iff (L, ρ) accepts δ.

Similarly, RCP is defined as RCP((L, ρ), S) = 1 iff (L, ρ) accepts δ.
A KP-ABE scheme may require some bounds on parameters: we denote

k̄ = the maximum size of k (the size of attribute set S),
¯̀= the maximum size of ` (the number of rows of L),
m̄ = the maximum size of m (the number of columns of L),
ϕ = the maximum size of allowed repetition in {ρ(1), . . . , ρ(`)}.

These bounds define the index N = (k̄, ¯̀, m̄, ϕ) for the predicate family. When there is
no restriction on corresponding parameter, we represent it by “−” such as (k̄,−,−,−).
We define AN and BN as the set of all attribute sets and the set of all span programs
whose sizes are restricted by N , respectively. KP-ABE is a predicate encryption for
RKP
N : AN ×BN → {0, 1}, whereRKP

N is restricted onN in a natural manner. CP-ABE
is defined dually with AN and BN swapped.

Let t := |U|. We say the scheme supports small universe if t is polynomially
bounded and large universe if t is exponentially large. The scheme is monotonic if
span programs are restricted to be monotone, and non-monotonic otherwise.
Attribute-Based Encryption for Arithmetic Span Programs [30]. In this predicate,
the index N for the family is specified by an integer n. We call it the dimension of the
scheme. We define AN = Znp . An arithmetic span program of dimension n is specified
by a tuple (Y,Z, ρ) of two matrices Y,Z ∈ Zm×`p and a map ρ : [`] → [n], for some
integers `,m. There is no restriction on ` and m. If ρ is restricted to injective, we say
that the scheme supports only attribute one-use. Otherwise, if there is no restriction on
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ρ, we say that it is unbounded multi-use. We let BN be the set of all arithmetic span
programs of dimension n. We then define

RKASP
N (x, (Y,Z, ρ)) = 1 iff e1 ∈ span{x[ρ(j)] · yj + zj}j∈[`] ,

where here e1 = (1, 0, . . . , 0)> ∈ Zmp and x[ρ(j)] is the ρ(j)-th term of x, while
yj and zj are the j-th column of Y and Z respectively. We call predicate encryption
for RKASP key-policy attribute-based encryption for arithmetic span program (KASP).
Ciphertext-policy ASP (CASP) can be defined dually with AN and BN swapped.
Doubly Spatial Encryption. In this predicate, the index N for the family is specified
by an integer n (the dimension of the scheme). We define the domains as AN = BN =
Znp × (∪0≤d≤nZn×dp ). We define

RDSE
N

(
(x0,X), (y0,Y)

)
= 1 iff

(
x0 + span(X)

)
∩
(
y0 + span(Y)

)
6= ∅.

Doubly spatial encryption is PE for relation RDSE
N equipped with additional key delega-

tion algorithm. The key delegation algorithm takes a private key for some affine space
as an input and outputs a private key for another affine space, which is a subset of the
first one. We require that the distribution of a key obtained by the delegation is the same
as that of a key directly obtained by the key generation algorithm. We refer to [18,4] for
the formal definition.

2.3 Embedding Lemma for PE

The following useful lemma from [11] describes a sufficient criterion for implication
from PE for a given predicate to PE for another predicate. The lemma is applicable to
any relation family.

We consider two relation families:

RF
N : AN ×BN → {0, 1}, RF′

N ′ : A′N ′ ×B′N ′ → {0, 1},

which is parametrized by N ∈ Nc and N ′ ∈ Nc′ respectively. Suppose that there exists
three efficient mappings

fp : Zc
′
→ Zc fe : A′N ′ → Afp(N ′) fk : B′N ′ → Bfp(N ′)

which maps parameters, ciphertext attributes, and key attributes, respectively, such that
for all X ′ ∈ A′N ′ , Y ′ ∈ B′N ′ ,

RF′

N ′(X ′, Y ′) = 1⇔ RF
fp(N ′)(fe(X

′), fk(Y
′)) = 1. (1)

We can then construct a PE scheme Π ′ = {Setup′,Encrypt′,KeyGen′,Decrypt′} for
predicate RF′

N ′ from a PE scheme Π = {Setup,Encrypt,KeyGen,Decrypt} for predi-
cate RF

N as follows. Let Setup′(λ,N ′) = Setup(λ, fp(N
′)) and

Encrypt′(mpk,M, X ′) = Encrypt(mpk,M, fe(X
′)),

KeyGen′(msk,mpk, Y ′) = KeyGen(msk,mpk, fk(Y
′)),

and Decrypt′(mpk, C,X ′, skY ′ , Y ′) = Decrypt(mpk, C, fe(X
′), skY ′ , fk(Y

′)).
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Lemma 1 (Embedding lemma [11]). If Π is correct and secure, then so is Π ′. This
holds for selective security and adaptive security.

Intuitively, the forward and backward direction of Relation (1) ensure that the correct-
ness and the security are preserving, respectively.

3 Conversion from ABE to DSE

In this section, we show how to construct DSE for dimension n from monotonic KP-
ABE (with bounds on the size of attribute sets and span programs). We note that by
simply swapping key and ciphertext attributes, we can also obtain CP-ABE-to-DSE
conversion. We first describe the conversion, then explain the intuition behind the con-
version later below.

3.1 The Conversion

Mapping Parameters. We map fDSE→KP
p : n 7→ (k̄, ¯̀, m̄, ψ) where

k̄ = n(n+ 1)κ+ 1, ¯̀= 2(nκ+ 1)(n+ 1),

m̄ = (nκ+ 1)(n+ 1) + 1, ψ = 2(n+ 1),

where we define κ := dlog2 pe. Moreover, we set the universe U as follows.

U =
{
Att[i][j][k][b]

∣∣∣ (i, j, k, b) ∈ [0, n]× [1, n]× [1, κ]× {0, 1}
}
∪ {D},

where D is a dummy attribute which will be assigned for all ciphertext. Hence, the
universe size is |U| = 2n(n+ 1)κ+ 1. Intuitively, Att[i][j][k][b] represents an indicator
for the condition“the k-th least significant bit of the binary representation of the j-th
element of the vector xi is b ∈ {0, 1}”.
Mapping Ciphertext Attributes. For x0 ∈ Znp and X = [x1, . . . ,xd1 ] ∈ Zn×d1p such
that d1 ≤ n, we map fDSE→KP

e : (x0,X) 7→ S where

S =
{
Att[i][j][k][b]

∣∣∣ (i, j, k) ∈ [0, d1]× [1, n]× [1, κ], b = xi[j][k]
}
∪ {D}.

Here, we define xi[j][k] ∈ {0, 1} so that they satisfy

xi[j] =

κ∑
k=1

2k−1 · xi[j][k].

Namely, xi[j][k] is the k-th least significant bit of the binary representation of xi[j].
Mapping Key Attributes. For y0 ∈ Znp and Y = [y1, . . . ,yd2 ] ∈ Zn×d2p such that
d2 ≤ n, we map fDSE→KP

k : (y0,Y) 7→ (L, ρ) as follows. Let the numbers of rows and
columns of L be

` = (2nκ+ 1)(n+ 1) + d2 + 1, m = (nκ+ 1)(n+ 1) + 1,
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respectively. We then define

L =



e1 e1 + ed2+2 y>0
Y>

E J
E J
...

. . .
E J


∈ Z`×mp , (2)

of which each sub-matrix E and J both appears n+ 1 times, where we define

E =


g

g
. . .

g
0 0 . . . 0

 ∈ Z(2nκ+1)×n
p , J =



−1
−1
−1
−1

. . .
−1
−1

1 1 . . . 1


∈ Z(2nκ+1)×nκ

p (3)

where g = (0, 1, 0, 2, . . . , 0, 2i, . . . , 0, 2κ−1)> ∈ Z2κ
p .

Next, we define the map ρ : [1, `]→ U as follows.
• If i ≤ d2 + 1, we set ρ(i) := D.
• Else, we have i ∈ [d2 + 2, `]. We then write

i = (d2 + 1) + (2nκ+ 1)i′ + i′′

with a unique i′ ∈ [0, n+ 1] and a unique i′′ ∈ [0, 2nκ].
− If i′′ = 0, we again set ρ(i) = D.
− Else, we have i′′ ∈ [1, 2nκ]. We then write

i′′ = 2κj′ + 2k′ + b′ + 1

with unique j′ ∈ [0, n− 1], k′ ∈ [0, κ− 1], and b′ ∈ {0, 1}. We finally set

ρ(i) = Att[i′][j′ + 1][k′ + 1][b′].

Intuition. We explain the intuition behind the conversion. S can be seen as a binary
representation of the information of (x0,X). In the span program (L, ρ), E is used to
reproduce the information of (x0,X) in the matrix while J is used to constrain the
form of linear combination among rows to a certain form.4 In some sense, the roll of
the lower part of the matrix L (the last (2nκ + 1)(n + 1) rows) is similar to universal
circuit while the upper part of the matrix contains the information of (y0,Y).

4 A somewhat similar technique to ours that restricts the form of linear combination of vectors
was used in [9] in a different context (for constructing a monotone span program that tests
co-primality of two numbers).



11

3.2 Correctness of the Conversion

We show the following theorem. The implication from KP-ABE to DSE would then
follow from the embedding lemma (Lemma 1).

Theorem 1. For n ∈ N, for any x0 ∈ Znp , X ∈ Zn×d1p , y0 ∈ Znp and Y ∈ Zn×d2p , it
holds that

RKP
N (S, (L, ρ)) = 1⇔ RDSE

n

(
(x0,X), (y0,Y)

)
= 1

with N = fDSE→KP
p (n), S = fDSE→KP

e (x0,X), and (L, ρ) = fDSE→KP
k (y0,Y).

Proof. Define I ⊂ [`] as I := { i | ρ(i) ∈ S } and define LI as the sub-matrix of L
formed by all the rows of which index is in I . From the definition of fDSE→KP

e , we have
that LI is in the form of

LI =



e1 e1 + ed2+2 y>0
Y>

E0 J′

E1 J′

...
. . .

Ed1 J′

1>nκ
. . .

1>nκ


∈ Z`I×mI

p

where `I := (nκ+ 1)(d1 + 1) + n− d1 + d2 + 1 and mI := (nκ+ 1)(n+ 1) + 1 and

Ei =


gi,1

gi,2
. . .

gi,n
0 0 . . . 0

 ∈ Z(nκ+1)×n
p , J′ =


−1
−1

. . .
−1

1 1 . . . 1

 ∈ Z(nκ+1)×nκ
p .

for i ∈ [0, d1], where

gi,j =
(
xi[j][1], 2xi[j][2], . . . , 2κ−1xi[j][κ]

)>
∈ Zκp .

We remark that it holds that 〈1κ,gi,j〉 = xi[j] by the definition of xi[j][k] and thus
E>i · 1nκ+1 = xi holds. We also remark that if v>J′ = 0 holds for some v ∈ Znκ+1

p ,
then there exists v ∈ Zp such that v = v1nκ+1. These properties will be used later.

To prove the theorem statement is now equivalent to prove that

e1 ∈ span(L>I ) ⇔
(
x0 + span(X)

)
∩
(
y0 + span(Y)

)
6= ∅.
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Forward Direction (⇒). Suppose e1 ∈ span(L>I ). Then, there exists u ∈ Z`Ip such
that u>LI = e>1 . We write u as

u> =
(
v︸︷︷︸
1

, v>︸︷︷︸
d2

, u>0︸︷︷︸
nκ+1

, u>1︸︷︷︸
nκ+1

, . . . , u>d1︸︷︷︸
nκ+1

, ud1+1︸ ︷︷ ︸
1

, . . . , un︸︷︷︸
1

)
.

We then write

u>LI =

(
v,
(
v + 〈u0, e1〉

)
,
(
vy>0 + v>Y> +

d1∑
i=0

u>i Ei

)
,
(
u>0 · J′

)
, . . . ,

(
u>d1 · J

′
)
,
(
ud1+11

>
nκ+1

)
, . . . ,

(
un1

>
nκ+1

))

Since u>LI = e>1 , we have ud1+1 = · · · = un = 0, by comparing each element of the
vector. Furthermore, since u>i ·J′ = 0 for i ∈ [0, d1], there exist {ui ∈ Zp}i∈[0,d1] such
that ui = ui1nκ+1. By comparing the first and the second element of the vector, we
obtain v = 1 and v + 〈u0, e1〉 = 1 + u0〈1>nκ+1, e1〉 = 1 + u0 = 0. Hence, u0 = −1.
Finally, we have that

∑d1
i=0 u

>
i Ei + vy>0 + v>Y> = 0 and thus

−
d1∑
i=0

E>i ui = y0 + Y · v.

The left hand side of the equation is

−
d1∑
i=0

E>i ui = −u0E
>
0 · 1nκ+1 −

d1∑
i=1

uiE
>
i · 1nκ+1

= x0 −
d1∑
i=1

ui · xi ∈
(
x0 + span(X)

)
.

while the right hand side is y0 + Y · v ∈ (y0 + span(Y)). This implies that
(
x0 +

span(X)
)
∩
(
y0 + span(Y)

)
6= ∅.

Converse Direction (⇐). Suppose
(
x0 + span(X)

)
∩
(
y0 + span(Y)

)
6= ∅. Hence,

there exist sets {ui ∈ Zp}i∈[1,d1] and {vi ∈ Zp}i∈[1,d2] such that x0 +
∑d1
i=1 uixi =

y0 +
∑d2
i=1 viyi. We set a vector u as

u> =
(
1, v1, . . . , vd2︸ ︷︷ ︸

d2

−1>nκ+1,−u11
>
nκ+1, . . . ,−ud11>nκ+1︸ ︷︷ ︸

(nκ+1)(d1+1)

, 0, . . . , 0︸ ︷︷ ︸
n−d1

)
).
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Therefore, we have

u>LI =

(
1, 1− 1,

(
y>0 +

d2∑
i=1

viy
>
i − 1>nκ+1(E0 +

d1∑
i=1

uiEi)
)
,

(
− 1>nκ+1J

′
)
,
(
− u11

>
nκ+1J

′
)
, . . . ,

(
− un1>nκ+1J

′
)
, 0 . . . , 0

)
=

(
1, 0,

(
y>0 +

d2∑
i=1

viy
>
i

)
−
(
x>0 +

d1∑
i=1

uix
>
i

)
, 0 . . . , 0

)
= e>1

as desired. This concludes the proof of the theorem.

4 From DSE to Non-Monotonic ABE

In [27], it is shown that DSE can be converted into monotonic CP-ABE with large uni-
verse (and bounds on the size of attribute sets and span programs). In this section, we
extend their result to show that non-monotonic CP-ABE with large universe and the
same bounds can be constructed from DSE. We note that our transformation is very
different from that of [27] even if we only consider monotonic CP-ABE because of ex-
positional reasons. We also note that by simply swapping key and ciphertext attributes,
we immediately obtain DSE-to-non-monotonic-KP-ABE conversion. Again, we first
describe the conversion, provide some intuition later below.

4.1 The Conversion

Mapping Parameters. We map fCP→DSE
p : (k̄, ¯̀, m̄, ¯̀) 7→ n = 4¯̀+ m̄ + 2k̄ ¯̀. We

assume that the universe of attributes is Zp.This restriction can be easily removed by
using collision resistant hash.

Mapping Ciphertext Attributes. For a span program (L, ρ), we map fCP→DSE
e :

(L, ρ) 7→ (x0,X) as follows. Let ` × m̄ be the dimension of L, where ` ≤ ¯̀. (If
the number of columns is smaller, we can adjust the size by padding zeroes.) Let `0, `1
be such that ` = `0 + `1, and without loss of generality, we assume that the first `0
rows of L are associated with positive attributes and the last `1 rows with negative at-
tributes by the map ρ. We denote L as L = [L0;L1] using matrices L0 ∈ Z`0×m̄p and
L1 ∈ Z`1×m̄p . We then define fCP→DSE

e (L, ρ) = (x0,X) with

x0 = −e1 ∈ Znp , X> =

L0

¯̀︷︸︸︷ G0

L1 I`1

¯̀−`1︷︸︸︷
G1

 ∈ Z(`0+2`1)×n
p ,
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where Gb ∈ Z`b×
¯̀(k̄+1)

p for each b ∈ {0, 1} is defined as

Gb =


p
(
ρ(b`0 + 1)

)> (¯̀−`b)(k̄+1)︷︸︸︷
p
(
ρ(b`0 + 2)

)>
. . .

p
(
ρ(b`0 + `b)

)>


where p() is a function that takes an element of Zp or its negation ({¬x|x ∈ Zp}) as an
input and outputs a vector p(x) = (1, x, x2, . . . , xk̄)> ∈ Zk̄+1

p .

Mapping Key Attributes. For a set S = (S1, . . . , Sk) such that k ≤ k̄, we map
fCP→DSE
k : S 7→ (y0,Y) where

y0 = 0n ∈ Znp , Y> =

(
m̄︷︸︸︷ H I(k̄+1)¯̀

H I(k̄+1)¯̀

)
∈ Z2(k̄+1)¯̀×n

p ,

of which H is defined as

H = I¯̀⊗ qS =


qS

qS
. . .

qS

 ∈ Z
(

(k̄+1)¯̀
)
×¯̀

p ,

where qS = (qS [1], . . . ,qS [k̄ + 1])> ∈ Zk̄+1
p is defined as a coefficient vector from

QS [Z] =

k+1∑
i=1

qS [i] · Zi−1 =

k∏
i=1

(Z − Si).

If k < k̄, the coordinates qS [k + 2], . . . ,qS [k̄ + 1] are all set to 0.

Intuition. The matrices X and Y constructed above can be divided into two parts. The
first `0 rows of X> and the first (k̄ + 1)¯̀ rows of Y> deal with positive attributes.The
lower parts of X> and Y> deal with negation of attributes. Here, we explain how
we handle negated attributes. Positive attributes are handled by a similar mechanism.
I(k̄+1)¯̀ in Y> and G1 in X> restricts the linear combination of the rows of X> and
Y> to a certain form in order to two affine spaces to have a intersection. As a result, we
can argue that the coefficient of the i-th row of L1 in the linear combination should be
multiple of QS(ρ(`0 + i))5. Since we have that QS(x) = 0 iff x ∈ S for any x ∈ Zp,
this means that the coefficient of the vector in the linear combination should be 0 if
ρ(`0 + i) = ¬Att and Att ∈ S. This restriction is exactly what we need to emulate
predicate of non-monotonic CP-ABE.

5 Here, We treat negated attributes ({¬x|x ∈ Zp}) as elements of Zp. Namely, if ρ(`0 + i) =
¬Att for some Att ∈ Zp, QS(ρ(`0 + i)) := QS(Att).
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4.2 Correctness of the Conversion

We show the following theorem. The implication from DSE to non-monotonic CP-ABE
with large universe would then follow from the embedding lemma.

Theorem 2. For any span program (L ∈ Z`×mp , ρ) such that ` ≤ ¯̀and m ≤ m̄ and S
such that |S| ≤ k̄, let N = (k̄, ¯̀, m̄, ¯̀), we have that

RDSE
n ((x0,X), (y0,Y)) = 1⇔ RCP

N (S, (L, ρ)) = 1

where n = fCP→DSE
p (N), (x0,X) = fCP→DSE

e (L, ρ), and (y0,Y) = fCP→DSE
k (S).

Proof. Let I ⊂ [1, `] be I = { i | (ρ(i) = Att ∧ Att ∈ S) ∨ (ρ(i) = ¬Att ∧ Att 6∈ S) }.
We also let LI be the sub-matrix of L formed by rows whose index is in I .

To prove the theorem statement is equivalent to prove that(
x0 + span(X)

)
∩
(
y0 + span(Y)

)
6= ∅ ⇔ e1 ∈ span(L>I ).

Forward Direction (⇒). Suppose that there exist u ∈ Z`0+2`1
p and v ∈ Z2(k̄+1)¯̀

p such
that x>0 + u>X> = y>0 + v>Y> = v>Y>. We denote these vectors as

u> = ( u>0︸︷︷︸
`0

, u>1︸︷︷︸
`1

, u>2︸︷︷︸
`1

), v> = ( v>1︸︷︷︸
k̄+1

, . . . , v>¯̀︸︷︷︸
k̄+1

w>1︸︷︷︸
k̄+1

, . . . , w>¯̀︸︷︷︸
k̄+1

.)

Hence, x>0 + u>X and v>Y can be written as

x>0 + u>X =
(
−e>1 + u>0 L0 + u>1 L1︸ ︷︷ ︸

m̄

,0>¯̀ ,u0[1] · p(ρ(1))>, . . . ,u0[`0] · p(ρ(`0))>︸ ︷︷ ︸
(k̄+1)`0

,

0>(¯̀−`0)(k̄+1), u
>
1︸︷︷︸
`1

,0>¯̀−`1 ,

u2[1] · p(ρ(`0 + 1))>, . . . ,u2[`1] · p(ρ(`0 + `1))>︸ ︷︷ ︸
(k̄+1)`1

,0>(¯̀−`1)(k̄+1)

)
(4)

and

v>Y = (0>m̄, 〈v1,qS〉, . . . , , 〈v¯̀,qS〉︸ ︷︷ ︸
¯̀

,v>1 , . . . ,v
>
¯̀︸ ︷︷ ︸

(k̄+1)¯̀

,

〈w1,qS〉, . . . , , 〈w¯̀,qS〉︸ ︷︷ ︸
¯̀

,w>1 , . . . ,w
>
¯̀︸ ︷︷ ︸

(k̄+1)¯̀

). (5)

First, by comparing the m̄ + ¯̀+ 1-th to m̄ + (k̄ + 2)¯̀-th elements of the vector,
we obtain that vi = u0[i] · p(ρ(i)) for i ∈ [1, `0] and vi = 0k̄+1 for i ∈ [`0 + 1, ¯̀].
Furthermore, by comparing m̄+ 1-th to m̄+ ¯̀-th elements of the vector, we have

〈vi,qS〉 = u0[i] · 〈p(ρ(i)),qS〉 = u0[i] ·QS
(
ρ(i)

)
= 0
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for i ∈ [1, `0]. The second equation above follows from the definition of p() and qS .
SinceQS(ρ(i)) =

∏
ω∈S(ρ(i)−ω) 6= 0 if ρ(i) 6∈ S, we have that u0[i] = 0 if ρ(i) 6∈ S.

That is, u0[i] = 0 for i ∈ [1, `0]\I .
Next, by comparing the last (k̄ + 1)¯̀ elements in the vector, we obtain that wi =

u2[i] · p(ρ(`0 + i)) for i ∈ [1, `1] and wi = 0k̄+1 for i ∈ [`1 + 1, ¯̀]. By comparing
the m̄ + (k̄ + 2)¯̀ + 1-th to m̄ + (k̄ + 3)¯̀-th elements in the vector, we have that
(u>1 ,0

>
¯̀−`1

) = (〈w1,qS〉, . . . , , 〈w¯̀,qS〉) and thus

u1[i] = 〈wi,qS〉 = u2[i] · 〈p(ρ(`0 + i)),qS〉 = u2[i] ·QS(ρ(`0 + i))

holds for i ∈ [1, `1]. From the above, we have that u1[i] = 0 if ρ(`0 + i) = ¬Att and
Att ∈ S for some Att. This implies that u1[i] = 0 if (`0 + i) 6∈ I for i ∈ [1, `1].

Finally, by comparing the first m̄ elements in the vector, we obtain that −e>1 +
u>0 L0 + u>1 L1 = 0>. Let u0,I be a subvector of u0 which is obtained by deleting all
elements u0[i] for i 6∈ I . Similarly, we define u1,I as a vector obtained by deleting all
elements u1[i] for i such that (`0 + i) 6∈ I from u1. Since u0[i] = 0 for i ∈ [1, `0]\I
and u1[i] = 0 for i ∈ [1, `1] such that (`0 + i) 6∈ I , it follows that (u>0,I ,u

>
1,I)LI =

u>0 L0 + u>1 L1 = e>1 and thus e1 ∈ span(L>I ) as desired.

Converse Direction (⇐). The converse direction can be shown by repeating the above
discussion in reverse order. Assume that e1 ∈ span(L>I ). Then there exists u′ ∈ Z|I|p
such that u′>LI = e>1 . We extend u′ to define u′′ ∈ Z`0+`1

p so that u′′I = u′ and

u′′[i] = 0 for i 6∈ I hold. Here, u′′I ∈ Z|I|p is a subvector of u′′ which is obtained
by deleting all elements u′′[i] for i 6∈ I . These conditions completely determine u′′.
We denote this u′′ as u′′> = (u>0 ,u

>
1 ) using u0 ∈ Z`0p and u1 ∈ Z`1p . We note that

u>0 L0 + u>1 L1 = e>1 holds by the definition.
Next we define vi for i ∈ [¯̀] as vi = u0[i] · p(ρ(i)) if i ∈ [`0] and vi = 0k̄+1 if

i ∈ [`0 + 1, ¯̀]. We claim that 〈vi,qS〉 = 0 holds for i ∈ [¯̀]. Here, we prove this. The
case for i ∈ [`0 + 1, ¯̀] is trivial. For the case of i ∈ [1, `0], we have

〈vi,qS〉 = u0[i] · 〈p(ρ(i)),qS〉 = u0[i] ·QS(ρ(i)) = 0.

The last equation above holds because we have QS(ρ(i)) = 0 if i ∈ I and u0[i] = 0
otherwise, by the definition of u0[i].

We define u2[i] ∈ Zp for i ∈ [1, `1] as u2[i] = u1[i]/QS(ρ(`0 + i)) if u1[i] 6= 0
and u2[i] = 0 if u1[i] = 0. We have to show that u2[i] are well defined by showing that
QS(ρ(`0 + i)) 6= 0 if u1[i] 6= 0 (i.e., division by 0 does not occur). If u1[i] 6= 0, then
(`0 + i) ∈ I by the definition of u1. It implies that (ρ(`0 + i) = ¬Att)∧ (Att 6∈ S) for
some Att ∈ Zp and thus QS(ρ(`0 + i)) =

∏
ω∈S(Att− ω) 6= 0 holds as desired.

We also define wi as wi = u2[i] · p(ρ(`0 + i)) for i ∈ [1, `1] and wi = 0k̄+1 for
i ∈ [`1 + 1, ¯̀]. Then, we have

〈wi,qS〉 = u2[i] · 〈p(ρ(`0 + i)),qS〉 = u2[i] ·QS(ρ(`0 + i)) = u1[i]

for i ∈ [1, `1] and 〈wi,qS〉 = 0 for i ∈ [`1 + 1, ¯̀].
Finally, we define u and v as u> = (u>0 ,u

>
1 ,u

>
2 ) and v> = (v>1 , . . . ,v

>
¯̀ ,w

>
1 , . . . ,

w>¯̀ ). Then, Equation (4) and (5) hold. By the properties of u and v we investigated so
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far, it is straightforward to see that x>0 + u>X> = y>0 + v>Y holds. This concludes
the proof of the theorem.

5 From KP(CP)-ABE to KASP(CASP)

In this section, we show that monotonic KP-ABE with small universe (without bounds
on the size of span programs) can be converted into KASP. We note that we can also
obtain CP-ABE-to-CASP conversion by simply swapping key and ciphertext attribute.

5.1 The Conversion

Mapping Parameters. We show how to construct KASP for dimension n from mono-
tonic KP-ABE for parameter N = (nκ+ 1,−,−,−) and the size of attribute universe
is |U| = 2nκ + 1. Here, κ = dlog2 pe. That is, we define fKASP→KP

p (n) = N . We set
the universe of attributes as

U =
{
Att[i][j][b]

∣∣∣ (i, j, b) ∈ [1, n]× [1, κ]× {0, 1}
}
∪ {D}.

Intuitively, Att[i][j][b] represents an indicator for the condition “the j-th least significant
bit of the binary representation of the i-th element of the vector x is b ∈ {0, 1}”. D is a
dummy attribute which will be assigned for all ciphertexts.
Mapping Ciphertext Attributes. For x ∈ Znp , we map fKASP→KP

e : x 7→ S where

S =
{
Att[i][j][b]

∣∣∣ (i, j) ∈ [1, n]× [1, κ], b = x[i][j]
}
∪ {D},

where we define x[i][j] ∈ {0, 1} in such a way that x[i] =
∑κ
j=1 2j−1 ·x[i][j]. In other

words, x[i][j] is the j-th least significant bit of the binary representation of x[i] ∈ Zp.
Mapping Key Attributes. For an arithmetic span program (Y = (y1, . . . ,y`) ∈
Zm×`p ,Z = (z1, . . . , z`) ∈ Zm×`p , ρ) such that Y,Z ∈ Zm×`p , we define the map
fKASP→KP
k : (Y,Z, ρ) 7→ (L, ρ′) as follows. First, we define

L =


G1 J
G2 J

...
. . .

G` J

 ∈ Z
(

(2κ+1)`
)
×
(
κ`+m

)
p , (6)

where the matrix J ∈ Z(2κ+1)×κ
p is defined as in Equation (3) (by setting n = 1) while

Gi is defined as

Gi = [g · y>i ; z>i ] = (0m,yi,0m, 2yi, · · · ,0m, 2κ−1yi, zi)
> ∈ Z(2κ+1)×m

p

where g = (0, 1, 0, 2, . . . , 0, 2i, . . . , 0, 2κ−1)> ∈ Z2κ
p .

Next, we define the map ρ′ : [(2κ+ 1)`]→ U as follows.
• If i = 0 mod (2κ+ 1), we set ρ(i) := D.
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• Else, we write

i = (2κ+ 1)i′ + 2j′ + b′ + 1

with unique i′ ∈ [0, ` − 1], j′ ∈ [0, κ − 1], and b′ ∈ {0, 1}. We finally set ρ′(i) =
Att[ρ(i′ + 1)][j′ + 1][b′].

Intuition. S can be seen as a binary representation of the information of x. In the
span program (L, ρ′), J is used to constrain the form of linear combination among
rows to a certain form. Gi as well as ρ′, along with the above restriction, are designed
so that linear combination of rows of Gi only can be a scalar multiple of the vector
(x[ρ(i)]yi + zi)

>. Therefore, (L, ρ′) essentially works as an arithmetic span program.

5.2 Correctness of the Conversion

We show the following theorem. The implication from KP-ABE with parameter N =
(nκ + 1,−,−,−) to KASP with dimension n would then follow from the embedding
lemma.

Theorem 3. For any x ∈ Znp , Y ∈ Zm×`p , Z ∈ Zm×`p , and ρ : [`]→ [n], it holds that

RKP
N (S, (L, ρ′)) = 1⇔ RKASP

n (x, (Y,Z, ρ)) = 1

where N = fKASP→KP
p (n), S = fKASP→KP

e (x), and (L, ρ′) = fKASP→KP
k (Y,Z, ρ).

Proof. Define I ⊂ [1, (2κ + 1)`] as I = { i | ρ′(i) ∈ S }. We define LI as the sub-
matrix of L formed by rows whose index is in I . From the definition of fKASP→KP

e , we
have that LI is in the form of

LI =


G′1 J′

G′2 J′

...
. . .

G′` J′

 ∈ Z
(

(κ+1)`
)
×
(
κ`+m

)
p ,

where

G′i = [gi · y>i ; z>i ] ∈ Z(κ+1)×m
p , J′ =


−1
−1

. . .
−1

1 1 . . . 1

 ∈ Z(κ+1)×κ
p ,

and where gi = (x[ρ(i)][1], 2x[ρ(i)][2], . . . , 2κ−1x[ρ(i)][κ])> ∈ Zκp . We note that
we have 〈1κ,gi〉 = x[ρ(i)] by the definition of x[ρ(i)][j] and thus G′

>
i · 1κ+1 =

x[ρ(i)]yi + zi holds. We also remark that if v>J′ = 0 holds for some v ∈ Zκ+1
p , then

there exists v ∈ Zp such that v = v1κ+1. These properties will be used later below.
To prove the theorem statement is equivalent to prove that

e1 ∈ span(L>I ) ⇔ e1 ∈ span({x[ρ(i)]yi + zi}i∈[`]).
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Forward Direction (⇒). We assume that e1 ∈ span(L>I ). From this, there exists u ∈
Z(κ+1)`
p such that u>LI = e>1 . We write this u as

u> =
(
u>1︸︷︷︸
κ+1

, u>2︸︷︷︸
κ+1

, . . . , u>`︸︷︷︸
κ+1

)
.

Therefore, we have that

e>1 = u> · LI =

∑
i∈[`]

u>i G
′
i,u
>
1 J
′, . . . ,u>` J

′

 .

Since u>i · J′ = 0 for i ∈ [`], there exist {ui ∈ Zp}i∈[`] such that ui = ui1κ+1. Then,
we have

e>1 =
∑
i∈[`]

u>i G
′
i =

∑
i∈[`]

ui1
>
κ+1G

′
i =

∑
i∈[`]

ui(x[ρ(i)] · yi + zi)
>.

This implies e1 ∈ span({x[ρ(i)]yi + zi}i∈[`]), as desired.
Converse Direction (⇐). We assume that e1 ∈ span({x[ρ(i)]yi + zi}i∈[`]). Then,
there exist {ui ∈ Zp}i∈[`] such that

∑
i∈[`] ui(x[ρ(i)] · yi + zi) = e1. We set a vector

u ∈ Z(κ+1)`
p as u> =

(
u11

>
κ+1, . . . , u`1

>
κ+1

)
. Then, we have that

u> · LI =

∑
i∈[`]

ui1
>
κ+1G

′
i, u11

>
κ+1J

′, . . . ,u`1
>
κ+1J

′


=

∑
i∈[`]

ui(x[ρ(i)]yi + zi)
>,0>κ , . . . ,0

>
κ

 = e>1 .

This implies e1 ∈ span(L>I ), as desired. This concludes the proof of the theorem.

6 Implications of Our Result

In this section, we discuss consequences of our results.
Equivalence between (bounded) ABE and DSE. We have shown that monotonic
KP/CP-ABE for (k̄, ¯̀, m̄, ϕ) implies DSE (without delegation) in Section 3 and DSE
implies non-monotonic KP/CP-ABE with large universe for (k̄, ¯̀, m̄, ϕ) in Section 4.
Since non-monotonic KP/CP-ABE with large universe for (k̄, ¯̀, m̄, ϕ) trivially implies
monotonic KP/CP-ABE with small universe for (k̄, ¯̀, m̄, ϕ), our results indicate that
these PE schemes are essentially equivalent in the sense that they imply each other.
Equivalence between K(C)ASP and KP(CP)-ABE. Next, we consider the case where
there is no restriction on the size of span programs. In Section 5, we showed that
monotonic KP-ABE for ((k̄ + 1)κ,−,−,−) implies KASP for (k̄,−,−,−). In the
full version [4], we also show the converse direction. That is, we show that KASP for
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Table 1. Comparison among DSE Schemes

Schemes |mpk| |C| |sk| Delegation Security Assumption

Hamburg11 [27] O(n) O(d1) O(d2) X Selective Parameterized
CW14 [18] O(n2) O(nd1) O(n) X Selective Static
CZF12 [15] O(n) O(d1) O(d2) X Adaptive Static

Sec. 3 + RW13 [40] O(1) O(nd1κ) O(n2κ) X Selective Parameterized
Sec. 3 + ALP11 [5] O(n2κ) O(1) O(n4κ2) X Selective Parameterized
Sec. 3 + OT12 [38] O(1) O(n2d1κ) O(n2κ) ? Adaptive Static
Sec. 3 + A15 [3] O(1) O(nd1κ) O(n2κ) ? Adaptive Parameterized
Sec. 3 + A15 [3] O(n2κ) O(1) O(n4κ2) ? Adaptive Parameterized
Sec. 3 + A15 [3] O(n2κ) O(n4κ2) O(1) ? Adaptive Parameterized
† n is the dimension of the scheme; d1 and d2 denote the dimension of the space

associated with the ciphertext and private key, respectively; κ = dlog2 pe.
‡ “Delegation” shows if key delegation is supported. “?” means unknown.

(k̄+ 1,−,−,−) implies non-monotonic KP-ABE for (k̄,−,−,−) with large universe.
Since non-monotonic KP-ABE for (k̄,−,−,−) trivially implies monotonic KP-ABE
for (k̄,−,−,−), our results indicate that these PE schemes are essentially equivalent
similarly to the above case. Similar implications hold for CP-ABE. See figure 1 for the
overview.

By applying the conversions to existing schemes, we obtain various new schemes.
The overviews of properties of resulting schemes and comparison with existing schemes
are provided in Table 1, 2, 3, and 4. All schemes in the tables are constructed in pair-
ing groups. In the tables, we count the number of group elements to measure the size
of master public keys (|mpk|), ciphertexts (|C|), and private keys (|sk|). Note that our
conversions only can be applied to ABE schemes supporting span programs over Zp.
Therefore, for ABE schemes constructed on composite order groups [32,2], our con-
versions are not applicable since they support span programs over ZN where N is a
product of several large primes. Similar restrictions are posed on DSE and K(C)ASP.
Though it is quite plausible that our conversions work even in such cases assuming
hardness of factoring N , we do not prove this in this paper.

New DSE Schemes. By applying our KP(CP)-ABE-to-DSE conversion to existing
KP(CP)-ABE schemes, we obtain many new DSE schemes. Table 1 shows overview
of obtained schemes.6 Specifically,
− From the unbounded KP-ABE schemes [38,40,3], we obtain the first DSE scheme

with constant-size master public key (without delegation). Note that all previous
schemes [27,15,18] require at leastO(n) group elements in master public key where
n is the dimension of the scheme.

− From KP-ABE scheme with constant-size ciphertexts [5,29,42,3], we obtain the first
DSE scheme with constant-size ciphertexts. All previous schemes [27,15,18] require

6 In the table, parameterized assumptions refer to q-type assumptions, which are non-interactive
and falsifiable but parameterized by some parameters of the scheme such as k, k̄.
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Table 2. Comparison among CP-ABE Schemes

Schemes Expressiveness Efficiency Security Assumption
Universe Policy |mpk| |C| |sk|

OT12 [38] Large Non-mono. Span. O(1) O(`) O(kϕ) Adaptive Static
AY15 [6], A15 [3] Large Mono. Span. O(1) O(`) O(k) Adaptive Parametrized
AY15 [6], A15 [3] Large Mono. Span. O(k̄) O(k̄`) O(1) Adaptive Parametrized
EMN+09 [20] Small AND-only O(k̄) O(1) O(k̄) Selective Static
CZF11 [14] Small AND-only O(k̄) O(1) O(k̄2) Selective Static
CCL+13 [13] Small Threshold O(k̄) O(1) O(k̄2) Adaptive Static

Sec. 3,4 + ALP11 [5] Large Non-mono. Span. O((k̄ ¯̀)2κ) O(1) O((k̄ ¯̀)4κ2) Selective Parametrized
Sec. 3,4 + T14 [42] Large Non-mono. Span. O((k̄ ¯̀)2κ) O(1) O((k̄ ¯̀)4κ2) Semi-adapt Static
Sec. 3,4 + A15 [3] Large Non-mono. Span. O((k̄ ¯̀)2κ) O(1) O((k̄ ¯̀)4κ2) Adaptive Parametrized
† k is the size of an attribute set associated with a key, ` is the number of rows of a span program matrix

associated with a ciphertext; k̄, ¯̀ are the maximums of k, ` (if bounded); ϕ is the maximum number of
allowed attribute multi-use in one policy (if bounded); κ = dlog2 pe.

at least O(d1) group elements in ciphertexts where d1 is the dimension of the affine
space associated to a ciphertext.

− From CP-ABE scheme with constant-size keys [6], we obtain the first DSE scheme
with constant-size private keys. All previous schemes require at least O(d2) group
elements in private keys where d2 is the dimension of the affine space associated to
a private key.

The schemes obtained from [38,3] achieves adaptive security. Furthermore, for schemes
obtained from [40,5,29], we can define key delegation algorithm. The details of the key
delegation algorithm will be given in the full version [4].

CP-ABE with Constant-Size Ciphertexts. By applying our DSE-to-non-monotonic-
CP-ABE conversion in Section 4 to the DSE scheme with constant-size ciphertexts
obtained above, we obtain the first non-monotonic CP-ABE with constant-size cipher-
texts. Previous CP-ABE schemes with constant-size ciphertexts [20,14,13] only support
threshold or more limited predicates7. See Table 2 for comparison (we list only relevant
schemes).

KP-ABE with Constant-Size Keys. By applying our DSE-to-non-monotonic-KP-ABE
conversion in Section 4 to the DSE scheme with constant-size keys obtained above,
we obtain the first non-monotonic KP-ABE with constant-size keys. See Table 3 for
comparison (we list only relevant schemes).

New KASP and CASP Schemes. By applying the KP(CP)-ABE-to-K(C)ASP conver-
sion in Section 5, we obtain many new K(C)ASP schemes. See Table 4 for the overview.
Specifically,
− From the unbounded KP-ABE, CP-ABE schemes of [40,3], we obtain the first KASP,

CASP schemes with constant-size master public key.

7 One would be able to obtain CP-ABE with constant-size ciphertexts supporting threshold for-
mulae by applying the generic conversion in [24] to a KP-ABE scheme proposed in [5]. How-
ever, the resulting scheme supports more limited predicate compared to ours. To the best of
our knowledge, this observation has not appeared elsewhere.
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Table 3. Comparison among KP-ABE Schemes

Schemes Expressiveness Efficiency Security Assumption
Universe Policy |mpk| |C| |sk|

OT12 [38] Large Non-mono. Span. O(1) O(kϕ) O(`) Adaptive Static
AY15 [6], A15 [3] Large Mono. Span. O(1) O(k) O(`) Adaptive Parameterized
AY15 [6], A15 [3] Large Mono. Span. O(k̄) O(1) O(k̄`) Adaptive Parameterized

Sec. 3,4 + A15 [3] Large Non-mono. Span. O((k̄ ¯̀)2κ) O((k̄ ¯̀)4κ2) O(1) Adaptive Parameterized
† k is the size of an attribute set associated with a ciphertext, ` is the number of rows of a span program

matrix associated with a key; k̄, ¯̀are the maximums of k, ` (if bounded); ϕ is the maximum number
of allowed attribute multi-use in one policy (if bounded); κ = dlog2 pe.

− From adaptively secure KP-ABE, CP-ABE schemes of [35,3], we obtain the first
adaptively secure KASP, CASP schemes with unbounded attribute multi-use.

− From KP-ABE schemes with constant-size ciphertexts [5,29,42,3], we obtain the
first KASP schemes with constant-size ciphertexts.

− From CP-ABE schemes with constant-size keys [3], we obtain the first CASP schemes
with constant-size keys.

Until recently, the only (K)ASP scheme in the literature was proposed by [30], which
is selectively secure and the master public key and ciphertext size are linear in the
dimension of the scheme. Very recently, adaptively secure KASP and CASP were given
in [17], albeit with the restriction of one-time use (of the same attribute in one policy).

We remark that the conversion is not applicable for schemes in [37,38] since these
schemes are KP-ABE for (∗, ∗, ∗, ϕ) where ϕ is polynomially bounded, whereas our
conversion requires the last parameter to be unbounded.

7 Application to Attribute-Based Signature

Here, we discuss that our techniques developed in previous sections are also applica-
ble to construct attribute-based signatures (ABS) [36,37]. ABS is an advanced form of
signature and can be considered as a signature analogue of ABE. In particular, it resem-
bles CP-ABE in the sense that a private key is associated with a set of attributes while
a signature is associated with a policy and a message. A user can sign on a message
with a policy if and only if she has a private key associated with a set satisfying the
policy. Roughly speaking, this property corresponds to the correctness and unforgeabil-
ity. For ABS, we also require privacy. That is, we require that one cannot obtain any
information about the attribute of the signer from a signature.

The construction of expressive ABS scheme with constant-size signatures has been
open. All previous ABS schemes with constant-size signatures [28,13] only supports
threshold predicates. The difficulty of constructing ABS with constant-size signatures
seems to be related to the difficulty of construction of CP-ABE with constant-size ci-
phertexts. That is, it is hard to set constant number of group elements so that they
include very complex information such as span programs.

To solve the problem, we first define the notion of predicate signature (PS) that is
a signature analogue of PE. Then we construct a PS scheme that is dual of ABS: a pri-
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Table 4. Comparison among KASP and CASP Schemes

Schemes Type Efficiency Security Attribute Assumption
|mpk| |C| |sk| multi-use

IW14 [30] KASP O(n) O(n) O(`) Selective yes Static
CGW15 [17] KASP O(n) O(n) O(`) Adaptive no Static
CGW15 [17] CASP O(n) O(`) O(n) Adaptive no Static

Sec. 5 + LW12[35] KASP O(nκ) O(nκ) O(`κ) Adaptive yes Parameterized
Sec. 5 + ALP11[5] KASP O(nκ) O(1) O(`nκ2) Selective yes Parameterized
Sec. 5 + RW13[40] KASP O(1) O(nκ) O(`κ) Selective yes Parameterized
Sec. 5 + A15[3] KASP O(nκ) O(1) O(`nκ2) Adaptive yes Parameterized
Sec. 5 + A15[3] KASP O(1) O(nκ) O(`κ) Adaptive yes Parameterized
Sec. 5 + LW12[35] CASP O(nκ) O(`κ) O(nκ) Adaptive yes Parameterized
Sec. 5 + RW13[40] CASP O(1) O(`κ) O(nκ) Selective yes Parameterized
Sec. 5 + A15[3] CASP O(1) O(`κ) O(nκ) Adaptive yes Parameterized
Sec. 5 + A15[3] CASP O(nκ) O(`nκ2) O(1) Adaptive yes Parameterized
† n is the dimension of the scheme; ` is the number of the columns of the matrices that

define an arithmetic span program (` reflects the size of an arithmetic span program);
κ = dlog2 pe.

vate key is associated with a policy and a signature with a set. The scheme achieves
constant-size signatures. This is not difficult to achieve because the signature is associ-
ated with a set which is a simpler object compared to a policy. The scheme is based on
PS scheme for threshold predicate with constant-size signatures by [28]. We change the
scheme mainly in two ways. At first, instead of using Shamir’s secret sharing scheme,
we use linear secret sharing scheme so that they support more general predicate. We
also add some modification so that the signature size be even shorter. The signatures of
the resulting scheme only consist of two group elements.

Since signature analogue of Lemma 1 holds, we can apply KP-ABE-to-non-monotonic-
CP-ABE conversion (combination of the results in Section 3 and 4) to obtain the first
ABS scheme with constant-size signatures supporting non-monotone span programs.
We refer to the full version [4] for the details.
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