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Abstract. The covert security model (Aumann and Lindell, TCC 2007)
offers an important security/efficiency trade-off: a covert player may ar-
bitrarily cheat, but is caught with a certain fixed probability. This per-
mits more efficient protocols than the malicious setting while still giving
meaningful security guarantees. However, one drawback is that cheating
cannot be proven to a third party, which prevents the use of covert pro-
tocols in many practical settings. Recently, Asharov and Orlandi (ASI-
ACRYPT 2012) enhanced the covert model by allowing the honest player
to generate a proof of cheating, checkable by any third party. Their model,
which we call the PVC (publicly verifiable covert) model, offers a very
compelling trade-off.

Asharov and Orlandi (AO) propose a practical protocol in the PVC
model, which, however, relies on a specific expensive oblivious transfer
(OT) protocol incompatible with OT extension. In this work, we improve
the performance of the PVC model by constructing a PVC-compatible
OT extension as well as making several practical improvements to the
AO protocol. As compared to the state-of-the-art OT extension-based
two-party covert protocol, our PVC protocol adds relatively little: four
signatures and an ≈ 67% wider OT extension matrix. This is a significant
improvement over the AO protocol, which requires public-key-based OTs
per input bit. We present detailed estimates showing (up to orders of
magnitude) concrete performance improvements over the AO protocol
and a recent malicious protocol.
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1 Introduction

Two-party secure computation addresses the problem where two parties need
to evaluate a common function f on their inputs while keeping the inputs pri-
vate. Several security models for secure computation have been proposed. The
most basic is the semi-honest model, where the parties are expected to follow
the protocol description but must not be able to learn anything about the other
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party’s input from the protocol transcript. A much stronger guarantee is pro-
vided by the malicious model, where parties may deviate arbitrarily from the
protocol description. This additional security comes at a cost. Recent garbled
circuit-based protocols [3, 17] have an overhead of at least 40× that of their
semi-honest counterparts, and are considerably more complex.

Aumann and Lindell [8] introduced a very practical compromise between
these two models, that of covert security. In the covert security model, a party
can deviate arbitrarily from the protocol description but is caught with a fixed
probability ε, called the deterrence factor. In many practical scenarios, this guar-
anteed risk of being caught (likely resulting in loss of business and/or embar-
rassment) is sufficient to deter would-be cheaters. Importantly, covert protocols
are much more efficient and simpler than their malicious counterparts.

Motivating the publicly verifiable covert (PVC) model. At the same
time, the cheating deterrent introduced by the covert model is relatively weak.
Indeed, a party catching a cheater certainly knows what happened and can re-
spond accordingly, e.g., by taking their business elsewhere. However, the impact
is largely limited to this, since the honest player cannot credibly accuse the
cheater publicly. If, however, credible public accusation were possible, the deter-
rent for the cheater would be immeasurably greater: suddenly, all the cheater’s
customers would be aware of the cheating and thus any cheating may affect the
cheater’s global customer base.

The addition of credible accusation greatly improves the covert model even in
scenarios with a small number of players, such as those involving the government.
Consider, for example, the setting where two agencies are engaged in secure
computation on their respective classified data. The covert model may often be
insufficient here. Indeed, consider the case where one of the two players deviates
from the protocol, perhaps due to an insider attack. The honest player detects
this, but we are now faced with the problem of identifying the culprit across two
domains, where the communication is greatly restricted due to trust, policy, data
privacy legislation, or all of the above. On the other hand, credible accusation
immediately provides the ability to exclude the honest player from the suspect
list, and focus on tracking the problem within one organization/trust domain,
which is dramatically simpler.

PVC definition and protocol. Asharov and Orlandi [7] proposed a security
model, covert with public verifiability, and an associated protocol, addressing
these concerns. At a high level, they proposed that when cheating is detected, the
honest player is able to publish a “certificate of cheating” which can be checked
by any third party. In this work, we abbreviate their model as PVC: publicly
verifiable covert. Their proposed protocol (which we call the “AO protocol”) has
performance similar to the original covert protocol of Aumann and Lindell [8],
with the exception of requiring signed-OT, a special form of oblivious transfer
(OT). Their signed-OT construction is based on the OT of Peikert et al. [18],
and thus requires several expensive public-key operations.

In this work, we propose several critical performance improvements to the
AO protocol. Our most technically involved contribution is a novel signed-OT



extension protocol which eliminates per-instance public-key operations. Before
discussing our contributions and technical approach in Sect. 1.1, we review the
AO protocol.

The Asharov-Orlandi (AO) PVC protocol [7]. The AO protocol is based
on the covert construction of Aumann and Lindell [8]. Let P1 be the circuit
generator, P2 be the evaluator, and f(·, ·) be the function to be computed. Recall
the standard garbled circuit (GC) construction in the semi-honest model: P1

constructs a garbling of f and sends it to P2 along with the wire labels associated
with its input. The parties then run OT, with P1 acting as the sender and
inputting the wire labels associated with P2’s input, and P2 acting as the receiver
and inputting as its choice bits the associated bits of its input.

We now adapt this protocol to the PVC setting. Recall the “selective failure”
attack on P2’s input wires, where P1 can send P2 via OT an invalid wire label
for one P2’s two inputs and learn one of P2’s input bits based on whether P2
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instead of f . Party P1 then constructs λ (the GC replication factor) garblings of
f ′ and P2 checks that λ− 1 of the GCs are correctly constructed, evaluating the
remaining GC to derive the output. The main difficulty of satisfying the PVC
model is ensuring that neither party can improve its odds by aborting (e.g.,
based on the other party’s challenge). For example, if P1 could abort whenever
P2’s challenge would reveal P1’s cheating, this would enable P1 to cheat without
the risk of generating a proof of cheating. Thus, P1 sends the GCs to P2 through
a 1-out-of-λ OT; namely, in the ith input to the OT P1 provides openings for
all the GCs but the ith, as well as the input wire labels needed to evaluate GCi.
Party P2 inputs a random γ, checks that all GCs besides GCγ are constructed
correctly, and if so, evaluates GCγ .

Finally, it is necessary for P1 to operate in a verifiable manner, so that
an honest P2 has proof if P1 tries to cheat and gets caught. (Note that GCs
guarantee that P2 cannot cheat in the GC evaluation at all, so we only worry
about catching P1.) The AO protocol addresses this by having P1 sign all its
messages and the parties using signed -OT in place of all standard OTs (including
wire label transfers and GC openings). Informally, the signed-OT functionality
proceeds as follows: rather than the receiver R getting message mb from the
sender S for choice bit b, R receives ((b,mb), σ), where σ is S’s signature of
(b,mb). This guarantees that if R detects any cheating by S, it has S’s signature
on an inconsistent set of messages, which can be used as proof of this cheating.
Asharov and Orlandi show that this construction is ε-PVC-secure for ε = (1 −
1/λ)(1− 2−ν+1).

1.1 Our Contribution

Our main contribution is a signed-OT extension protocol built on the recent
malicious OT extension of Asharov et al. [6]. Informally, signed-OT extension
ensures that (1) a cheating sender S is held accountable in the form of a “cer-
tificate of cheating” that the honest receiver R can generate, and (2) a malicious



R cannot defame an honest S by presenting a false “certificate of cheating”.
Achieving the first goal is fairly straightforward by having S simply sign all its
messages. The challenge is in simultaneously protecting against a malicious R.
In particular, we need to commit R to its particular choices throughout the OT
extension protocol to prevent it from defaming an honest S, while maintaining
that those commitments do not leak any information about R’s choices.

Recall that in the standard OT extension protocol of Ishai et al. [12] (cf.
Fig. 3), R constructs a random matrix M , and S obtains a matrix M ′ derived
from M , S’s random string s and R’s vector of OT inputs r. The key challenge
of adapting this protocol to the signed variant is to efficiently prevent R from
submitting a malleated M as part of the proof without it ever explicitly revealing
M to S (as this would leak R’s choice bits). We achieve this by observing that
S does in fact learn some of M , as in the OT extension construction some of
the columns of M and M ′ are the same (i.e., those corresponding to zero bits of
S’s string s). We prevent R from cheating by having S include in its signature
carefully selected information from the columns in M which S sees. Finally, we
require that R generates each row of M from a seed, and that R’s proof of
cheating includes this seed such that the row rebuilt from the seed is consistent
with the columns included in S’s signature. We show that this makes it infeasible
for R to successfully present an invalid row in the proof of cheating. We describe
this approach in greater detail in Sect. 3.3

As another contribution, we present a new more communication efficient PVC
protocol, building off of the AO protocol; see Sect. 4. Our main (simple) trick
there is a careful amendment allowing us to send GC hashes instead of GCs; this
is based on an idea from Goyal et al. [11].

We work in the random oracle model, a slight strengthening of the assump-
tions needed for standard OT extension and free-XOR, two standard secure
computation tools.

Comparison with existing approaches. The cost of our protocol is almost
the same as that of the covert protocol of Goyal et al. [11]; the only extra cost
is essentially a ≈ 67% wider OT extension matrix and four signatures. This
often negligible additional overhead (versus covert protocols) provides us with
dramatically stronger (than covert) deterrent. We believe that our PVC protocol
could be used in many applications where covert security is insufficient at the
order-of-magnitude cost advantage over previously-needed malicious protocols
or the PVC protocol of Asharov and Orlandi [7]. See Sect. 5 for more details.

Related work. The only directly related work is that of Asharov and Or-
landi [7], already discussed at length. We also note a recent line of work on
secure computation with cheaters (including fairness violators) punished by an
external entity, such as the Bitcoin network [4, 10, 16]. Similarly to the PVC
model and our protocols, this line of work relies on generating proofs of misbe-

3 Our construction is also interesting from a theoretical perspective in that we con-
struct signed-OT from any maliciously secure OT protocol, whereas Asharov and
Orlandi [7] build a specific construction based on the Decisional Diffie-Hellman prob-
lem.



Security κ FCC ECC

Short 80 1024 160
Long 128 3072 256

Fig. 1. Settings for (computational) security parameter κ and field size τ for various
security settings as recommended by NIST [9]. FCC denotes the setting of τ when
using finite field cryptography and ECC denotes the setting of τ when using elliptic
curve cryptography.

havior which could be accepted by a third-party authority. However, these works
address a different setting and use different techniques; in particular, they build
on maliciously-secure computation and require the Bitcoin framework.

2 Preliminaries

Let κ denote the (computational) security parameter, let ρ denote the statistical
security parameter, and let τ denote the field size. When considering concrete
costs, we utilize the security parameter and field size settings for key lengths
recommended by NIST [9]; see Fig. 1. We use ppt to denote “probabilistic
polynomial time” and let negl(·) denote a negligible function in its input. We
consider two-party protocols between parties P1 and P2, and when we use sub-
script i ∈ {1, 2} to denote a party we let subscript -i = 3 − i denote the other
party. We use i∗ ∈ {1, 2} to denote a malicious party and -i∗ = 3− i∗ to denote
the associated honest party.

We use bold lowercase letters (e.g., x) to denote bitstrings and use the no-
tation x[i] to denote the ith bit in bitstring x. Likewise, we use bold uppercase
letters (e.g., T) to denote matrices over bits. We use [n] to denote {1, . . . , n}. Let
“a← f(x1, x2, . . . )” denote setting a to be the deterministic output of f on in-
puts x1, x2, . . . ; the notation “a←$ f(x1, x2, . . . )” is the same except that f here
is randomized. We abuse notation and let a←$S denote selecting a uniformly
at random from set S.

Our constructions are in the FPKI model, where each party Pi can register a
verification key, and other parties can retrieve Pi’s verification key by querying
FPKI on idi. We use the notation SignPi(·) to denote a signature signed by Pi’s
secret key, and we assume that this signature can be verified by any third party.
We often leave off the subscript if the identity of the signing party is clear.

2.1 Publicly Verifiable Covert Security

We assume the reader is familiar with the covert security model; however, we re-
view the less familiar publicly verifiable covert (PVC) security model of Asharov
and Orlandi [7] below. When we say a protocol is “secure in the covert model,” we
assume it is secure under the strong explicit cheat formulation with ε-deterrent [8,
§3.4], for some value of ε.



Let π be a two-party protocol between parties P1 and P2 implementing func-
tion f . Following Aumann and Lindell [8], we call π non-halting if for honest Pi
and fail-stop adversary4 P-i, the probability that Pi outputs corrupted-i is negli-
gible. Consider the triple of algorithms (π′,Blame, Judgment) defined as follows:

– Protocol π′ is the same as π except that if an honest party P-i∗ outputs
corruptedi∗ when executing π, it computes Cert ← Blame(idi∗ , key,View-i∗),
where key denotes the type of cheating detected, and sends Cert to Pi∗ .

– Algorithm Blame is a deterministic algorithm which takes as input a cheating
identity id, a cheating type key, and a view View of a protocol execution,
and outputs a certificate Cert.

– Algorithm Judgment is a deterministic algorithm which takes as input a
certificate Cert and outputs either an identity id or ⊥.

Before proceeding to the definition, we first introduce some notation. Let
Execπ,A(z)(x1, x2; 1κ) denote the transcript (i.e., messages and output) produced
by P1 with input x1 and P2 with input x2 running protocol π, where adver-
sary A with auxiliary input z can corrupt parties before execution begins. Let
OutputPi(Execπ,A(z)(x1, x2; 1κ)) denote the output of Pi on the input transcript.

Definition 1. We say that (π′,Blame, Judgment) securely computes f in the pres-
ence of a publicly verifiable covert adversary with ε-deterrent (or, is ε-PVC-secure)
if the following conditions hold:

1. The protocol π′ is a non-halting and secure realization of f in the covert
model with ε-deterrent.

2. (Accountability) For every ppt adversary A corrupting party Pi∗ , there exists
a negligible function negl(·) such that if OutputP-i∗

(Execπ,A(z)(x1, x2; 1κ)) =
corruptedi∗ then Pr [Judgment(Cert) = idi∗ ] > 1 − negl(κ), where Cert ←
Blame(idi∗ , key,View-i∗) and the probability is over the randomness used in
the protocol execution.

3. (Defamation-free) For every ppt adversary A corrupting party Pi∗ and out-
putting a certificate Cert, there exists a negligible function negl(·) such that
Pr [Judgment(Cert) = id-i∗ ] < negl(κ), where the probability is over the ran-
domness used by A.

Note that, in particular, the PVC definition implicitly disallows Blame to reveal
P-i∗ ’s input. This is because π′ specifies that Cert is sent to Pi∗ .

2.2 Signed Oblivious Transfer

A central functionality for constructing PVC protocols is signed oblivious transfer
(signed-OT). Introduced by Asharov and Orlandi [7], we can define the basic
signed-OT functionality F as

(⊥, (mb,Signsk(b,mb)))←$F((m0,m1, sk), (b, vk)),

4 A fail-stop adversary is one which acts semi-honestly but may halt at any time.



where the signature scheme is assumed to be existentially unforgeable under
adaptive chosen message attack (EU-CMA). Namely, the sender S inputs two
messages m0 and m1 along with a signing key sk; the receiver R inputs a choice
bit b and a verification key vk; S receives no output whereas R receives mb

alongside a signature on (b,mb).
However, as in prior work [7], this definition is too strong for our signed-

OT extension construction to satisfy. We introduce a relaxed signed-OT variant
(slightly different from Asharov and Orlandi’s variant [7]) which is tailored for
OT extension and is sufficient for obtaining PVC-security. Essentially, we need
a signature scheme that satisfies a weaker notion than EU-CMA in which the
signing algorithm takes randomness, a portion of which can be controlled by the
adversary.5 This is because in our signed-OT extension construction, a malicious
party can influence the randomness used in the signing algorithm. In addition,
we introduce an associated data parameter to the signing algorithm which allows
the signer to specify some additional information unrelated to the message being
signed but used in the signature. In our construction, we use the associated data
to tie the signature to a specific counter (such as a session ID or message ID),
preventing a malicious receiver from “mixing” properly signed values to defame
an honest sender.

Let Π = (Gen,Sign,Verify) be a tuple of ppt algorithms over message space
M, associated data space D, and randomness spaces R1 and R2, defined as
follows:

1. Gen(1κ): On input security parameter 1κ, output key pair (vk, sk).
2. Signsk(m, a; (r1, r2)): On input secret key sk, message m ∈ M, associated

data a ∈ D, and randomness r1 ∈ R1 and r2 ∈ R2, output signature σ =
(a, σ′).

3. Verifyvk(m,σ): On input verification key vk, message m ∈M, and signature
σ, output 1 if σ is a valid signature for m and 0 otherwise.

For security, we need the condition that unforgeability remains even if the ad-
versary inputs some arbitrary r1 or r2. However, the adversary is prevented from
inputting values for both r1 and r2. This reflects the fact that in our signed-OT
extension construction, a malicious sender can control only r1 and a malicious
receiver can control only r2. We place a further restriction that the choice of r1
must be consistent ; namely, all queries to Sign must use the same value for r1.
Looking ahead, this property exactly captures the condition we need (r1 cor-
responds to the zero bits in the sender’s column selection string in the OT
extension), where the choice of r1 is made once and then fixed throughout the
protocol execution.

Towards our definition, we define an oracle Osk(·, ·, ·, ·) as follows. Let ⊥ be
a special symbol. On input (m, a, r1, r2), proceed as follows. If neither r1 nor r2

5 Our notion is similar to the ρ-EU-CMRA notion introduced by Asharov and Or-
landi [7]. It differs in that we allow different portions of the randomness to be cor-
rupted, but not both portions at once. Looking forward, this is needed because the
sender in our signed-OT functionality is only allowed to control some of the random-
ness.



Functionality FΠsignedOT

The functionality is parameterized by an EU-CMPRA signature scheme Π =
(Gen,Sign,Verify).

Input: The sender inputs messages m0 and m1 such that |m0| = |m1|, secret
key sk, associated data a, randomness r∗1 , and signatures σ∗0 and σ∗1 . The receiver
inputs choice bit b, verification key vk, and randomness r∗2 . If the sender (resp.,
the receiver) is honest, then r∗1 = σ∗0 = σ∗1 = ⊥ (resp., r∗2 = ⊥).

Output: The functionality computes σb = Signsk((b,mb), a; (r∗1 , r
∗
2)) for b ∈

{0, 1}. The sender receives no output. The receiver receives the following out-
put based on if the sender is corrupt or not:

– If either σ∗0 6= ⊥ or σ∗1 6= ⊥, the functionality outputs ((b,mb), σ
∗
b ) if and only

if Verifyvk((0,m0), σ∗0) = Verifyvk((1,m1), σ∗1) = 1, where σ∗b ← σb if σ∗b = ⊥;
otherwise it outputs abort.

– If σ∗0 = σ∗1 = ⊥, the functionality outputs ((b,mb), σb).

Fig. 2. Signed oblivious transfer functionality.

equal ⊥, output ⊥. Otherwise, proceed as follows. If r1 = ⊥ and r′1 has not been
set, set r′1 uniformly at random; if r1 6= ⊥ and r′1 has not been set, set r′1 = r1;
if r2 = ⊥, set r′2 uniformly at random; otherwise, set r′2 = r2. Finally, output
Signsk(m, a; (r′1, r

′
2)).

Now, consider the following game Sig-forgeCMPRA
A,Π (κ) for signature scheme Π

between ppt adversary A and ppt challenger C.

1. C runs (vk, sk)←$Gen(1κ) and sends vk to A.
2. A, who has oracle access to Osk(·, ·, ·, ·), outputs a tuple (m, (a, σ′)). Let Q

be the set of messages and associated data pairs input to Osk(·, ·, ·, ·).
3. A succeeds if and only if (1) Verifyvk(m, (a, σ

′)) = 1 and (2) (m, a) 6∈ Q.

Definition 2. Signature scheme Π = (Gen,Sign,Verify) is existentially unforge-
able under adaptive chosen message and partial randomness attack (EU-CMPRA)
if for all ppt adversaries A there exists a negligible function negl(·) such that
Pr[Sig-forgeCMPRA

A,Π (κ)] < negl(κ).

Signed-OT functionality. We are now ready to introduce our relaxed signed-
OT functionality. As is our EU-CMPRA signature, it is tailored for OT exten-
sion, and is sufficient for building PVC protocols. This functionality, denoted
by FΠsignedOT, is parameterized by an EU-CMPRA signature scheme Π and is
defined in Fig. 2. As in standard OT, the sender inputs two messages (of equal
length) and the receiver inputs a choice bit. However, in this formulation we al-
low a malicious sender to specify some random value r∗1 as well as signatures σ∗0
and σ∗1 . Likewise, a malicious receiver can specify some random value r∗2 . (Honest
players input ⊥ for these values.) If both players are honest, the functionality
computes σ ← Sign((b,mb); (r1, r2)) with uniformly random values r1 and r2
and outputs ((b,mb), σ) to the receiver. However, if either party is malicious and



specifies some random value, this is fed into the Sign algorithm. Likewise, if the
sender is malicious and specifies some signature σ∗b 6= ⊥, this value is used as
the signature sent to the receiver.

Note that FΠsignedOT is nearly identical to the signed-OT functionality pre-
sented by Asharov and Orlandi [7, Functionality 2]; it differs in the use of EU-
CMPRA signature schemes instead of ρ-EU-CMRA schemes. We also note that it
is straightforward to adapt FΠsignedOT to realize OTs with more than two inputs

from the sender. We let
(
λ
1

)
-FΠsignedOT denote a 1-out-of-λ variant of FΠsignedOT.

A compatible commitment scheme. Our construction of an EU-CMPRA sig-
nature scheme (cf. Sect. 3.3) uses a non-interactive commitment scheme, which
we define here. Our definition follows the standard commitment definition, ex-
cept we tweak the Com algorithm to take an additional associated data value.

Let ΠCom = (ComGen,Com) be a tuple of ppt algorithms over message space
M and associated data space D, defined as follows:

1. ComGen(1κ): On input security parameter 1κ, compute parameters params.
2. Com(m, a; r): On input message m ∈ M, associated data a ∈ D, and ran-

domness r, output commitment com.

A commitment can be opened by revealing the randomness r used to construct
that commitment.

We now define security for our commitment scheme. We only consider the
binding property; namely, the inability for a ppt adversary to open a commit-
ment to some other value than that committed to. Security is the same as for
standard commitment schemes, except we allow the adversary to control the
randomness used in ComGen.

Consider the game Com-bindA,ΠCom
(κ) for commitment scheme ΠCom between

a ppt adversary A and a ppt challenger C, defined as follows.

1. A sends randomness r to C.
2. C computes params← ComGen(1κ; r) and sends params to A.
3. A outputs (com,m1, a1, r1,m2, a2, r2) and wins if and only if (1) m1 6= m2,

and (2) com = Com(params,m1, a1; r1) = Com(params,m2, a2; r2).

Definition 3. A commitment scheme ΠCom = (ComGen,Com) is (computation-
ally) binding if for all ppt adversaries A, there exists a negligible function negl(·)
such that Pr[Com-bindA,ΠCom

(κ)] < negl(κ).

3 Signed Oblivious Transfer Extension

We now present our main contribution: an efficient instantiation of signed obliv-
ious transfer (signed-OT) extension. We begin in Sect. 3.1 by describing in de-
tail the logic of the construction, iteratively building it up from the passively
secure protocol of Ishai et al. [12]. We motivate the need for EU-CMPRA signa-
ture schemes in Sect. 3.2 and present a compatible such scheme in Sect. 3.3. In
Sect. 3.4 we present the proof of security.



S’s inputs: Message pairs {(x0
j ,x

1
j )}j∈[m]

, where each x0
j ,x

1
j ∈ {0, 1}n.

R’s inputs: Selection bits r = (r1, . . . , rm).
Common inputs: Security parameter κ; number of base OTs ` (= κ); hash
function H : N× {0, 1}` → {0, 1}n; ideal functionality FOT.

1. Initial OT Phase:

S computes s←$ {0, 1}`.
R generates a random m× ` matrix T, where the jth row is tj and the
ith column is ti. Likewise, R generates a random m× ` matrix V, where
the jth row is vj and the ith column is vi.

S and R run FOT ` times in parallel, where S acts as the receiver with
input si in the ith OT and R acts as the sender with input (ti,vi) in
the ith OT.

2. OT Extension Phase (Part I):

For i ∈ [m], R sets ui ← ti ⊕ vi ⊕ r, and sends ui to S.

3. OT Extension Phase (Part II):

Let Q be the m × ` matrix where each column qi = (si · (ui ⊕ vi)) ⊕
((1− si) · ti). Note that qi = (si · r)⊕ ti and qj = (rj · s)⊕ tj .

For j ∈ [m], S computes y0
j ← x0

j ⊕H(j,qj) and yij ← xij ⊕H(j,qj ⊕ s),
and sends y0

j and y1
j to R.

For j ∈ [m], R computes xj ← y
rj
j ⊕H(j, tj).

4. Output:

S outputs ⊥ and R outputs {xj}j∈[m].

Fig. 3. Protocol implementing passively secure OT extension [5, 12].

3.1 Intuition for the Construction

Consider the OT extension protocol of Ishai et al. [12] in Fig. 3, run between
sender S and receiver R. This protocol is secure against a semi-honest R and
malicious S. We show how to convert this protocol into one which satisfies the
FΠsignedOT functionality defined in Fig. 2. For clarity of presentation, we build
on the protocol of Fig. 3 and later discuss how to support a malicious R as well,
based on the malicious OT extension protocol of Asharov et al. [6].

As a first attempt, suppose S simply signs all its messages in Step 3. Recall
that we will use this construction to have P1 send the appropriate input wire
labels to P2; namely, P1 acts as S in the OT extension and inputs the wire labels
for P2’s input wires whereas P2 acts as R and inputs its input bits. Thus, our
first step is to enhance the protocol in Fig. 3 to have S send σ′←$ Sign((j,y0

j ))

and σ′′←$Sign((j,y1
j )) in Step 3.

Now, if P2 gets an invalid (with respect to a signed GC sent in the PVC
protocol of Sect. 4) wire label xj , it can easily construct a certificate Cert
which demonstrates P1’s cheating. Namely, it outputs as its certificate the tuple(
b, j,y0

j ,y
1
j , σ
′, σ′′, tj

)
along with the (signed by P1 and opened) GC contain-

ing the invalid wire label. A third party can (1) check that σ′ and σ′′ are valid



signatures and (2) compute xbj ← H(j, tj) ⊕ ybj and check that xbj is indeed an
invalid wire label for the given garbled circuit.

This works for protecting against a malicious P1; however, note that P2 can
easily defame an honest P1 by outputting t∗j 6= tj as part of its certificate (in

which case xbj ← H(j, t∗j ) ⊕ ybj will very likely be an invalid wire label). Thus,
the main difficulty in constructing signed-OT extension is tying P2 to its choice
of the matrix T generated in Step 1 of the protocol so it cannot blame an honest
P1 by using invalid rows t∗j in its certificate.

Towards this end, consider the following modification. In Step 1, R now
additionally sends commitments to each tj to S, and S signs these and sends
them as part of its messages in Step 3. This prevents R from later changing tj
to blame S. This does not quite work, however, as R could simply commit to an
incorrect t∗j in the first place! Clearly, R cannot send T to S, as this would leak
R’s selection bits, yet we still need R to somehow be committed to its choice of
the matrix T. The key insight is noting that S does in fact know some of the
bits of T; namely, it knows those columns at which si = 0 (as it learns ti in the
base OT). We can use this information to tie R to its choice of T such that it
cannot later construct some matrix T∗ 6= T to defame S.

We do this by enhancing Step 3 as follows. Let I0 be the set of indices i such
that si = 0 (recall that s is the random selection bits of S input to the base OTs
in Step 1). Let tj,i denote the ith bit in row tj . Note that S knows the values
of tj,i for i ∈ I0, and could thus compute {(i, tj,i)}i∈I0 as a “binding” of R’s
choice of tj . By including this information in its signature, S enforces that any
t∗j that R tries to use to blame S must match in the given positions. This brings
us closer to our goal; however, there are still two issues that we need to resolve:

1. Sending {(i, tj,i)}i∈I to R leaks s, which allows R to learn both of S’s inputs.
We address this by increasing the number of base OTs in Step 1 and having
S only send some subset I ⊆ I0 such that |I| = κ. Thus, while R learns that
si = 0 for i ∈ I, by increasing the number of base OTs enough, R does not
have enough information to recover s.

2. R can still flip one bit in tj and pass the check with high probability. We
fix this by having each tj be generated by a seed kj . Namely, R computes
tj ← G(kj) in Step 1, where G is a random oracle6. Then, when blaming
S, R must reveal kj instead of tj . Thus, with high probability a malicious
polytime R cannot find some k∗j 6= kj such that the Hamming distance
between G(k∗j ) and G(kj) is small enough that the above check succeeds.

Finally, note that we have thus far considered the passively secure OT ex-
tension protocol, which is insecure against a malicious R. We thus utilize the
maliciously secure OT extension protocol of Asharov et al. [6]. The only way
R can cheat in passively secure OT extension is by using different r values in
Step 2. Asharov et al. add a “consistency check” phase between Steps 2 and 3 to
enforce that r is consistent. This does not affect our construction, and thus we

6 Note that G cannot be a pseudorandom generator because the input to G is not
necessarily uniform as the inputs may be adversarially chosen by R.



can include this step to complete the protocol.7 We refer the reader to Asharov
et al. [6] for the justification and intuition of this step; as far as this work is
concerned we can treat this consistency check as a “black box”.

Observation 1 (OT extension matrix size) We set `, the number of base
OTs, so that leaking κ bits to R does not allow it to recover s and thus both
messages. We do this as follows. Let `′ be the number of base OTs required in
malicious OT extension [6]. We set ` = `′+κ and require that when S chooses s,
it first fixes κ randomly selected bits to zero before randomly setting the rest of
the bits. Now, when S reveals I to R, the number of unknown bits in s is equal to
`′ and thus the security of the Asharov et al. scheme carries over to our setting.
Asharov et al. set `′ ≈ 1.6κ, and thus us using κ extra columns results in an
≈ 67% matrix size increase.

Observation 2 (Batching signatures) The main computational cost of our
protocol is the signatures sent by S in Step 4. This cost can easily be brought
to negligible, as follows. Recall that when using our protocol for transferring the
input wire labels of a GC using free-XOR we can optimize the communication
slightly by setting x0

j ← H(j,qj) and y1
j ← x0

j ⊕∆ ⊕H(j,qj ⊕ s), where ∆ is

the free-XOR global offset. Thus, S only needs to send (and sign) y1
j .

The most important idea, however, is to batch messages across OT executions
and have S sign (and send) only one signature which includes all the necessary
information across many OTs. Namely, using the free-XOR optimization above,
S signs and sends the tuple (I, {y1

j , {tj,i}i∈I}j∈[m]) to R. We note that the j
values need not be sent as they are implied by the protocol execution.

Fig. 4 gives the full protocol for signed-OT extension. For clarity of presen-
tation, this description, and the following proof of security, does not take into
account the optimizations described in Observation 2.

3.2 Towards a Proof of Security

Before presenting the security proof, we first motivate the need for EU-CMPRA
signature schemes. As mentioned in Sect. 3.1, ideally we could just have S sign
everything using an EU-CMA signature scheme; however, this presents opportu-
nities for R to defame S. Thus, we need to enforce that R cannot output an xbj
value different from the one sent by S. We do so by using a binding commitment
scheme ΠCom = (ComGen,Com), and show that the messages sent by S in Step 4
are essentially binding commitments to the underlying xbj values.

We define ΠCom as follows, where G : {0, 1}κ → {0, 1}` and H : N×{0, 1}` →
{0, 1}κ are random oracles, and ` ≥ κ.

1. ComGen(1κ): choose set I ⊆ [`] uniformly at random subject to |I| = κ;
output params← I.

7 The reason this does not affect our construction is because the consistency check
phase only involves R sending messages to S. A malicious R cannot defame S because
we are only enforcing that R’s value r is consistent.



S’s inputs: Messages {(x0
j ,x

1
j )}j∈[m]

where x0
j ,x

1
j ∈ {0, 1}n; signing key sk.

R’s inputs: Selection bits r = (r1, . . . , rm); verification key vk.
Common inputs: Security parameter κ; statistical security parameter ρ; number
of base OTs `; number of check functions µ; random oracle G : {0, 1}κ → {0, 1}`;
random oracle H : N × {0, 1}` → {0, 1}n; random oracle H ′ : {0, 1}m → {0, 1}κ;
EU-CMA signature scheme Π = (KeyGen′, Sign′,Verify′); ideal functionality FOT.

1. Initial OT Phase:

S computes s ∈ {0, 1}` as follows. Let I be a set of indices, where |I| = κ.
For i ∈ I, S sets si = 0. Then, S fills the remaining bits at random.

For j ∈ [m], R computes kj←$ {0, 1}κ and sets tj ← G(kj).

Let T be an m × ` matrix, where the jth row is tj and the ith column
is ti. Let V be an m × ` matrix, where the jth row is vj and the ith
column is vi. S and R run FOT ` times in parallel, where S acts as the
receiver with input si and R acts as the sender with input (ti,vi).

2. OT Extension Phase (Part I):

For i ∈ [`], R sets ui ← ti ⊕ vi ⊕ r, and sends ui to S.

3. Consistency check of r:

Same as in maliciously-secure OT extension protocol of Asharov et al. [6].

4. OT Extension Phase (Part II):

Let Q be the m × ` matrix where each column qi = (si · (ui ⊕ vi)) ⊕
((1− si) · ti). Note that qi = (si · r)⊕ ti and qj = (rj · s)⊕ tj .

Let I be the set defined in Step 1, and let tj,i denote the ith bit in row
tj . S sends I to R, who checks that |I| = κ and otherwise aborts.

For j ∈ [m], S computes y0
j ← x0

j ⊕ H(j,qj) and y1
j ← x1

j ⊕
H(j,qj ⊕ s) and signatures σ′j ← Sign′sk

(
(I, j,y0

j , {tj,i}i∈I)
)
, and σ′′j ←

Sign′sk
(
(I, j,y1

j , {tj,i}i∈I)
)
, and sends

(
j,y0

j ,y
1
j , {tj,i}i∈I , σ

′
j , σ
′′
j

)
to R.

For j ∈ [m], R computes xj ← y
rj
j ⊕H(j, tj).

5. Output:

S outputs ⊥; R outputs
{
xj ,
(
j, rj ,kj , I,y

0
j ,y

1
j , {tj,i}i∈I , σ

′
j , σ
′′
j

)}
j∈[m]

.

Fig. 4. Signed-OT extension, based on the OT extension protocol of Asharov et al. [6].

2. Com(params,m, j; r): On input parameters I ← params, message m, counter
j, and randomness r ∈ {0, 1}κ, proceed as follows. Compute t ← G(r), set
com← (j,m⊕H(j, t), I, {ti}i∈I), and output com.

We make the assumption that given I, one can derive the randomness input
to ComGen. (We use this when defining our EU-CMPRA signature scheme below,
which uses a generic binding commitment scheme). We can satisfy this by simply
letting the randomness input to ComGen be the set I.

In our signed-OT extension protocol, the set I chosen by S is used as params
and the kj values chosen by R are used as the randomness to Com. The com-
mitment value com is exactly the message signed and sent by S in Step 4. Thus,
ignoring the signatures for now, we have an OT extension protocol that binds
S to its xbj values, and thus prevents a malicious R from defaming an honest S.



Adding in the signatures (cf. Sect. 3.3) gives us an EU-CMPRA signature scheme.
Namely, S is tied to its messages due to the signatures and R is prevented from
“changing” the messages to defame S due to the binding property of the com-
mitment scheme.

We now prove that the commitment scheme described above is binding. We
actually prove something stronger than what is required in our protocol. Namely,
we prove that an adversary who can control both random values still cannot
win, whereas when we use this commitment scheme in our signed-OT extension
protocol, only one of the two random values can be controlled by any one party.

Theorem 1. Protocol ΠCom is binding according to Definition 3.

Proof. Adversary A needs to come up with choices of I, m, m′, j, j′, r, and
r′ such that (j,m ⊕ H(j, t), I, {ti}i∈I) = (j′,m′ ⊕ H(j′, t′), I, {t′i}i∈I′), where
t ← G(r) and t′ ← G(r′). Clearly, j = j′. Thus, A must find t and t′ such
that ti = t′i for all i ∈ I. However, by the property that G is a random oracle,

the values t and t′ are distributed uniformly at random in {0, 1}`. Thus, the
probability that A finds two bitstrings t and t′ that match in κ bits is negligible,
regardless of the choice of I. �

3.3 An EU-CMPRA Signature Scheme

We now show that the messages sent by S in Step 4 form an EU-CMPRA signature
scheme. Let Π ′ = (Gen′,Sign′,Verify′) be an EU-CMA signature scheme and
ΠCom = (ComGen,Com) be a commitment scheme satisfying Definition 3 (e.g.,
the scheme presented in Sect. 3.2). Consider the scheme Π = (Gen,Sign,Verify)
defined as follows.

1. Gen(1κ): On input 1κ, run (vk, sk)←$Gen′(1κ) and output (vk, sk).
2. Signsk(m, j; (r∗1, r

∗
2)): On input message m ∈ {0, 1}κ, counter j ∈ N, and ran-

domness r∗1 and r∗2, proceed as follows. Compute params ← ComGen(1κ; r∗1)
and com ← Com(params,m, j; r∗2). Next, choose m′←$ {0, 1}κ and com-
pute com′ ← Com(params,m′, j; r∗2).8 Output σ ← (j, params, r∗2, com, com

′,
Sign′sk((params, com)),Sign′sk((params, com′))).

3. Verifypk(m, σ): On input message m and signature σ, parse σ as (j, params, r,
com′, com′′, σ′, σ′′), and output 1 if and only if (1) Com(params,m; r) = com′,
(2) Verify′vk((params, com′), σ′) = 1, and (3) Verify′vk((params, com′′), σ′′) = 1;
otherwise output 0.

As explained in Sect. 3.2, this signature scheme exactly captures the behavior
of S in our signed-OT extension protocol. We now prove that this is indeed an
EU-CMPRA signature scheme.

Theorem 2. Given an EU-CMA signature scheme Π ′ = (Gen′,Sign′,Verify′)
and a commitment scheme ΠCom = (ComGen,Com) secure according to Defini-
tion 3, then Π = (Gen,Sign,Verify) described above is an EU-CMPRA signature
scheme.
8 This extra commitment on a random message is needed for our signed-OT extension

proof.



Proof. Let A be a ppt adversary attacking Π. We construct an adversary B
attacking Π ′. Adversary B receives vk from the challenger and initializes A
with vk as input. Let (m, j, r∗1, r

∗
2) be the input of A to its signing oracle.

Adversary B emulates the execution of A’s signing oracle as follows: it com-
putes params ← ComGen(1κ; r∗1) and com ← Com(params,m, j; r∗2), chooses m′

uniformly at random and computes com′ ← Com(params,m′, j; r∗2), constructs
σ ← (j, params, r∗2, com, com

′,Sign′sk((params, com)),Sign′sk((params, com′))), and
sends σ to A. After each of A’s queries, B stores (m, j) in set QA and stores all
the messages it sent to its signing oracle in set QB.

Eventually, A outputs (m, (j, σ′)) as its forgery. Adversary B checks that
Verifyvk(m, (j, σ′)) = 1 and that (m, j) 6∈ QA . If not, B outputs 0. Otherwise, B
parses σ′ as (params, r, com′, com′′, σ′, σ′′) and checks that com′ 6∈ QB. If so, it
outputs (com′, σ′); otherwise it outputs 0.

Note that Sig-forgeCMPRA
A,Π (κ) = 1 and Sig-forgeCMA

B,Π′(κ) = 0 if and only if
Verifyvk(m, (j, params, r, com′, com′′, σ′, σ′′)) = 1 and (m, j) 6∈ QA but com′ ∈
QB. Fix some (m, (j, params, r, com1, com1′ , σ1, σ1′)) such that this is the case.
Thus it holds that com1 ∈ QB. This implies that B queried Sign′ on com1,
which means that A queried its signing oracle on some (m′, j′, r∗1, r

∗
2), where

m′ 6= m, and received back (j′, params, r′, com1, com2′ , σ1′′ , σ2′). However, this
implies that Com(params, com1; r) = m and Com(params, com1; r′) = m′. Thus,
Pr[Sig-forgeCMPRA

A,Π (κ)] = Pr[Sig-forgeCMA
B,Π (κ)] + Pr[Com-bindB′,ΠCom

(κ)] for some
ppt adversary B′. We now bound Pr[Com-bindB′,ΠCom

(κ)].

Adversary B′ runs almost exactly like B. On the first query (m, j, r∗1, r2) by
A, it sets r = r∗1 if r∗1 6= ⊥ and otherwise it sets r uniformly at random; B′ then
sends r to C, receiving back params.

Let (m1, j1, r
∗
1, r
∗
2) and (m2, j2, r

∗
1, r
∗′
2 ) be the two queries made by A re-

sulting in a common commitment value. Let (j1, params, r1, com1, com
′
1, σ1, σ1′)

and (j2, params, r2, com1, com
′
2, σ1′′ , σ2′) be the corresponding signatures result-

ing from A’s queries. Adversary B′ sends (com1,m1, j1, r
∗
2,m2, j2, r

∗′
2 ) to its chal-

lenger and wins with probability one, contradicting the security of the commit-
ment scheme. Thus, we have that Pr[Com-bindB′,ΠCom

(κ)] < negl(κ), completing
the proof. �

3.4 Proof of Security

We are now ready to prove the security of our signed-OT extension protocol.
Most of the proof complexity is hidden in the proofs of the associated EU-CMPRA
signature scheme and commitment scheme. Thus, the signed-OT extension sim-
ulator is relatively straightforward, and mostly involves parsing the output of
FΠsignedOT and passing the correct values to the adversary. The analysis follows
almost exactly that of Asharov et al. [6] and thus we elide most of the details.

Theorem 3. Let Π = (Gen,Sign,Verify) be the EU-CMPRA signature scheme
in Sect. 3.3. Then the protocol in Fig. 4 is a secure realization of FΠsignedOT in
the FOT-hybrid model.



Proof. We separately consider the case where S is malicious and R is malicious.
The case where the parties are either both honest or both malicious is straight-
forward.

Malicious S. Let A be a ppt adversary corrupting S. We construct a simulator
S as follows.

1. The simulator S acts as an honest R would in Step 1, extracting s from A’s
input to FOT.

2. The simulator S acts as an honest R would in Steps 2 and 3.
3. Let I and

(
j,y0

j ,y
1
j , {tj,i}i∈I , σ

′
j,0, σ

′
j,1

)
, for j ∈ [m], be the messages sent

by A in Step 4. If any of these are invalid, S sends abort to FΠsignedOT and
simulates R aborting, outputting whatever A outputs.

4. For j ∈ [m], proceed as follows. The simulator S extracts x0
j ← y0

j ⊕H(j,qj)

and x1
j ← y1

j⊕H(j,qj⊕s), constructs σ∗j,b ← (j, I,kj , (I, (j,y
b
j , I, {tj,i}i∈I)),

(I, (j,y1−b
j , I, {tj,i}i∈I)), σ

′
j,b, σ

′
j,1−b) for b ∈ {0, 1}, and sends x0

j , x1
j , σ

∗
j,0,

and σ∗j,1 to FΠsignedOT, receiving back either ((b,mb), σj,b) or abort.
5. If S received abort in any of the above iterations, it simulates R abort-

ing, outputting whatever A outputs. Otherwise, for j ∈ [m], S parses σj,b
as (j, I,kj , (I, (j,y

b
j , I, {tj,i}i∈I)), (I, (j,y

1−b
j , I, {tj,i}i∈I)), σ

′
j,b, σ

′
j,1−b), con-

structs message σj ← (j,y0
j ,y

1
j , {tj,i}i∈I , σ

′
j,0, σ

′
j,1), and acts as an honest R

would when receiving messages I and {σj}j∈[m].

6. The simulator S outputs whatever A outputs.

It is easy to see that this protocol perfectly simulates a malicious sender since S
acts exactly as an honest R would (beyond feeding the appropriate messages to
FΠsignedOT).

Malicious R. Let A be a ppt adversary corrupting R. We construct a simulator
S as follows.

1. The simulator S acts as an honest S would in Step 1, extracting matrices T
and V through S’s FOT inputs, and thus the values {kj}j∈[m].

2. The simulator S uses the values extracted above to extract selection bits r
after receiving the ui values from A in Step 2.

3. The simulator S acts as an honest S would in Step 3.
4. Let I0 be the indices at which s (generated in Step 1) is zero, and let I ⊆ I0

be a set of size κ. For j ∈ [m], S sends rj , vk, and I to FΠsignedOT, re-

ceiving back ((rj ,x
rj
j ), σj,rj ); S parses σj,rj as (j, I, r, (I, (j, crj , I, {tj,i}i∈I)),

(I, (j, c1−rj , I, {tj,i}i∈I)), σ
′
j,rj

, σ′j,1−rj ).

5. In Step 4, S sends I and (j, c0, c1, {tj,i′}i′∈I′ , σ
′
j,0, σ

′
j,1), for j ∈ [m], to A.

6. The simulator S outputs whatever A outputs.

The analysis is almost exactly that of the malicious receiver proof in the con-
struction of Asharov et al. [6]; we thus give an informal security argument here
and refer the reader to the aforementioned work for the full details.

A malicious R has two main attacks: using inconsistent choices of its selection
bits r and trying to cheat in the signature creation in Step 4. This latter attack



is prevented by the security of our EU-CMPRA signature scheme. The former is
prevented by the consistency check in Step 3. Namely, Asharov et al. show that
the consistency check guarantees that: (1) most inputs are consistent with some
string r, and (2) the number of inconsistent inputs is small and thus allow R
to only learn a small number of bits of s. Thus, for specific choices of ` and µ,
the probability of a malicious R cheating is negligible. Asharov et al. provide
concrete parameters for various settings of the security parameter [6, §3.2]; let
`′ denote the number of base OTs used in their protocol. Now, in our protocol
we set ` = `′ + κ; S leaks κ bits of s when revealing the set I in Step 4, and
so is left with `′ unknown bits of s. Thus, the security argument presented by
Asharov et al. carries over into our setting. �

4 Our Complete PVC Protocol

As noted above, the main technical challenge of the PVC model is in the signed-
OT construction and model definitions. The AO protocol in the FΠsignedOT-
hybrid model is relatively straightforward: the natural (but careful) combina-
tion of taking a non-halting covert protocol, having the GC generator P1 sign
appropriate messages, and replacing OTs with signed-OTs works. In particular,
our signed-OT extension can be naturally modified and used in place of the
signed-OT primitive in the AO protocol.

In this section we present a new PVC protocol based on signed-OT extension.
Our protocol is similar to the AO protocol in the FΠsignedOT-hybrid model, but
with applying several simple yet very effective optimizations, resulting in a much
lower communication cost.

We present our protocol by starting off with the AO protocol and pointing
out the differences. We presented the AO protocol intuition in the Introduc-
tion; see Fig. 5 for its formal description; due to lack of space, we omit the
(straightforward) Blame and Judgment algorithms. In presenting our changes,
we sketch the improvement each of them brings. Thus, we start by reviewing the
communication cost of the AO protocol.

Communication cost of the AO protocol. Using state-of-the-art optimiza-
tions [13, 19, 20], the size of each GC sent in Step 5 is 2κ|GC |, where |GC | is
the number of non-XOR gates in circuit C (note that |GC | = |GC′ | for cir-
cuit C ′ generated in Step 1 since the XOR-tree only adds XOR gates to the
circuit, which are “free” [13]). Let τ be the field size (in bits), ν the XOR-
tree replication factor, λ the GC replication factor, and n the length of the
inputs, and assume that each signature is of length τ and the commitment and
decommitment values are of length κ. Using the signed-OT instantiations of
Asharov and Orlandi [7, Protocols 1 and 2], we get a total communication cost
of τ(7νn+ 11) + 2λκνn+ `(2κ|GC |+ τ) + 2nλ(κ+ τ) + τ(3 + 2λ+ 11(λ− 1)) +
λκ(2(n+ νn)(λ− 1) + 2n(λ− 1) + n).

As an example, consider the secure computation of AES(m,k), where P1

inputs message m ∈ {0, 1}128 and P2 inputs key k ∈ {0, 1}128, and suppose we
set both the GC replication factor λ and the XOR-tree replication factor ν to 3,



Private inputs: P1 has input x1 ∈ {0, 1}n and P2 has input x2 ∈ {0, 1}n.
Common inputs: Security parameter κ; XOR-tree replication factor ν; gar-
bled circuit replication factor λ; circuit C(·, ·); commitment scheme ΠCom =
(Com,Open); ideal functionalities FΠsignedOT and

(
λ
1

)
-FΠsignedOT for EU-CMPRA

signature scheme Π.

1. P1 and P2 define a new circuit C′(x1,x
1
2, . . . ,x

ν
2) = C(x1,

⊕
i∈[ν] x

i
2). Let

w1, . . . , wn denote the input wires of x1 and let wn+(i−1)ν , . . . , wn+iν denote
the input wires of xi2.

2. For i ∈ [ν − 1], P2 chooses xi2←$ {0, 1}n. P2 sets xν2 ← (
⊕

i∈[ν−1] x
i
2)⊕ x2.

3. For j ∈ [λ], i ∈ [n+ νn], and b ∈ {0, 1}, P1 chooses kjwn+i,b
←$ {0, 1}κ.

4. P1 and P2 run νn instantiations of FΠsignedOT, where in the ith execution

P1 acts as the sender with input (k1
wn+i,0‖ . . . ‖k

λ
wn+i,0,k

1
wn+i,1‖ . . . ‖k

λ
wn+i,1)

and P2 acts as the receiver with input x
di/ne
2 [i mod ν]. If P2’s output is abort1,

it outputs abort1.
5. For j ∈ [λ], P1 constructs garbled circuit GCj of circuit C′, where for i ∈ [n+

νn] the keys for input wire wi are kjwi,0 and kjwi,1. P1 sends (GCj , Sign(GCj))
to P2, who checks that the signature is valid; if not, P2 outputs abort1.

6. For i ∈ [n] and j ∈ [λ], P1 chooses b←$ {0, 1}, computes com-
mitments (cjwi,0,o

j
wi,0

)←$Com(kjwi,0) and (cjwi,1,o
j
wi,0

)←$Com(kjwi,1), and
sends (cwi,b, Sign(cwi,b)) and (cwi,b̄, Sign(cwi,b̄)) to P2, who checks that the
signatures are valid; if not, P2 outputs abort1.

7. P1 and P2 run
(
λ
1

)
-FΠsignedOT with P1 as the sender inputting

({kiwp,b}i∈[λ]\{j},p∈[n+νn],b∈{0,1}
, {oiwp,b}i∈[λ]\{j},p∈[n],b∈{0,1}

, {kjwi,x1[i]}i∈[n]
)

as its jth input and P2 as the receiver inputting γ←$ [λ] as its input; if P2’s
output is abort1, it outputs abort1.

8. P2 does the following:

For j ∈ [λ]\{γ}, i ∈ [n], and b ∈ {0, 1}, P2 checks that Open(cjwi,b,

ojwi,b) = kjwi,b. If not, P2 sets key ← InvalidDecommitment and moves to
Step 9.

For j ∈ [λ]\{γ}, P2 uses the input wire keys received from the signed-OT
in Step 7 to check that GCj is a correctly garbled circuit. If not, P2 sets
key← InvalidCircuit and moves to Step 9.

For j ∈ [λ]\{γ}, P2 checks that the keys received in the signed-OT
in Step 4 match the keys sent by P1 in Step 7. If not, P2 sets key ←
SelectiveOTAttack and moves to Step 9.

9. If any of the above checks fail, P2 computes Cert ← Blame(id1, key,View2),
publishes Cert, and outputs corrupted1. Otherwise, P2 uses the keys to com-
pute C′(x1,x

1
2, . . . ,x

ν
2) and outputs the result.

Fig. 5. The AO PVC protocol [7, Protocol 3].

giving a cheating probability of ε = 1/2. Letting κ = 128 and τ = 256, we have
a total communication cost of 9.3 Mbit (where we assume that the AES circuit
has 9,100 non-XOR gates [15]).

Our modifications. We make the following modifications to the AO protocol:



– In Step 6, instead of using a commitment scheme we can use a hash function.
This saves on communication in Step 7 as P1 no longer needs to send the
openings {oiwp,b} to the commitments in the signed-OT, and is secure when
treating H as a random oracle since the keys are generated uniformly at
random and thus it is infeasible for P2 to guess the committed values. The
total savings are 2n(λ− 1)κλ bits; in our example, this saves us 196 kbit.

– In Step 3, we use a random seed to generate the input wire keys. Namely,
for all j ∈ [λ] we compute sj←$ {0, 1}κ, and compute the input wire keys

for circuit j as kjw1,0
‖kjw1,1

‖ · · · ‖kjwn+νn,0
‖kjwn+νn,1

← G(sj), where G is a
pseudorandom generator. Now, in the 1-out-of-λ signed-OT in Step 7 we can
just send the seeds to the input wire keys rather than the input wire keys
themselves. The total savings are 2(n + νn)(λ− 1)λκ− n(λ− 1)λκ bits; in
our example, this saves us 688 kbit.

– In Step 5, P1 generates each GCj from a seed sjGC. (This idea was first put

forward by Goyal et al. [11].) That is, sjGC specifies the randomness used
to construct all wire keys except for the input wire keys which were set in
Step 3. Instead of P1 sending each GC to P2 in Step 5, P1 instead sends a
commitment cjGC ← H(GCj). Now, in Step 7, P1 can send the appropriate

seeds {sjGC}j∈[λ]\{j} in the jth input of the 1-out-of-λ signed-OT to allow P2

to check the correctness of the check GCs. We then add an additional step
where, if the checks pass, P1 sends GCγ (along with a signature on GCγ) to
P2, who can check whether H(GCγ) = cγGC. Note that this does not violate
the security conditions required by the PVC model because P2 catches any
cheating of P1 before the evaluation circuit is sent. If P1 tries to cheat here,
P2 already has a commitment to the circuit so can detect any cheating. The
total savings are (λ− 1)2κ|GC | − λτ − λκ(λ− 1) bits; in our example, this
saves us 4.6 Mbit.

Our PVC protocol and its cost. Fig. 6 presents our optimized protocol.
For simplicity, we sign each message in Steps 5 and 6 separately; however, we
note that we can group all the messages in a given step into a single signature
(cf. Observation 2). The Blame and Judgment algorithms are straightforward
and similar to the AO protocol (Blame outputs the relevant parts of the view,
including the cheater’s signatures, and Judgment checks the signatures). We
prove the following theorem in the full version.

Theorem 4. Let λ < p(κ) and ν < p(κ), for some polynomial p(·), be parame-
ters to the protocol, and set ε = (1−1/λ)(1−2−ν+1). Let f be a ppt function, let
H be a random oracle, let FΠsignedOT and

(
λ
1

)
-FΠsignedOT be the

(
2
1

)
-signed-OT

and
(
λ
1

)
-signed-OT ideal functionalities, respectively, where Π is an EU-CMPRA

signature scheme. Then the protocol in Fig. 6 securely computes f in the pres-
ence of (1) an ε-PVC adversary corrupting P1 and (2) a malicious adversary
corrupting P2.

Using our AES circuit example, we find that the total communication cost
is now 2.5 Mbit, plus the cost of signed-OT/signed-OT extension. In this par-
ticular example, signed-OT requires around 1 Mbit and signed-OT extension



Private inputs: P1 has input x1 ∈ {0, 1}n; P2 has input x2 ∈ {0, 1}n.
Common inputs: Security parameter κ; XOR-tree replication factor ν; garbled
circuit replication factor λ; circuit C(·, ·); hash function H : {0, 1}∗ → {0, 1}κ;

pseudorandom generator G : {0, 1}κ → {0, 1}2(n+νn)κ; ideal functionalities
FΠsignedOT and

(
λ
1

)
-FΠsignedOT for EU-CMPRA signature scheme Π.

1. P1 and P2 define a new circuit C′(x1,x
1
2, . . . ,x

ν
2) = C(x1,

⊕
i∈[ν] x

i
2). Let

w1, . . . , wn denote the input wires of x1 and let wn+(i−1)ν , . . . , wn+iν denote
the input wires of xi2.

2. For i ∈ [ν − 1], P2 chooses xi2←$ {0, 1}n and sets xν2 ← (
⊕

i∈[ν−1] x
i
2)⊕ x2.

3. For j ∈ [λ], P1 chooses sj←$ {0, 1}κ and computes kjw1,0
‖kjw1,1

‖ · · · ‖
kjwn+νn,0

‖kjwn+νn,1
← G(sj).

4. P1 and P2 run νn instantiations of FΠsignedOT, where in the ith execution

P1 acts as the sender with input (k1
wn+i,0‖ · · · ‖k

λ
wn+i,0,k

1
wn+i,1‖ · · · ‖k

λ
wn+i,1)

and P2 acts as the receiver with input x
di/ne
2 [i mod ν]. If Pi’s output is aborti,

it outputs aborti.
5. For j ∈ [λ], P1 computes sjGC←$ {0, 1}κ and uses sjGC as the randomness

used to generate garbled circuit GCj , where for i ∈ [n + νn] the keys for
input wire wi are kjwi,0 and kjwi,1. P1 computes cjGC ← H(GCj) and sends

(cjGC,Sign(cjGC)) to P2, who checks that the signature is valid; if not, P2

outputs abort1.
6. For i ∈ [n] and j ∈ [λ], P1 computes cjwi,0 ← H(kjwi,0) and cjwi,1 ← H(kjwi,1),

and sends (cwi,b, Sign(cwi,b)), (cwi,b̄, Sign(cwi,b̄)) to P2, where b←$ {0, 1}. P2

checks that the signatures are valid; if not, P2 outputs abort1.
7. P1 and P2 run

(
λ
1

)
-FΠsignedOT with P1 as the sender and P2 as the receiver.

P2 uses γ←$ [λ] as its input and P1 uses ({si, siGC}i∈[λ]\{j}, {kjwi,x1[i]}i∈[n])
as its jth input. If Pi’s output is aborti, it outputs aborti.

8. P2 does the following:

For j ∈ [λ]\{γ}, i ∈ [n], and b ∈ {0, 1}, P2 checks that H(kjwi,b) = cjwi,b.
If not, P2 sets key← InvalidDecommitment and moves to Step 12.

For j ∈ [λ]\{γ}, P2 uses sj and sjGC received from
(
λ
1

)
-FΠsignedOT to check

that GCj is a correctly garbled circuit and that H(GCj) = cjGC. If not,
P2 sets key← InvalidCircuit and moves to Step 12.

For j ∈ [λ]\{γ}, P2 checks that the keys received in FΠsignedOT match
the keys generated by sj received in Step 7. If not, P2 sets key ←
SelectiveOTAttack and moves to Step 12.

9. Let ((γ,mγ), σ) be P2’s output of
(
λ
1

)
-FΠsignedOT. P2 sends (γ, σ) to P1, who

checks that the signature is valid and otherwise outputs abort2.
10. P1 sends (GCγ , Sign(GCγ)) to P2, who checks that the signature is valid; if

not, P2 outputs abort1.
11. P2 checks that H(GCγ) = cγGC. If not, P2 sets key ← InvalidCircuitHash and

moves to Step 12.
12. If any of the above checks fail, P2 computes Cert ← Blame(id1, key,View2),

publishes Cert, and outputs corrupted1. Otherwise, P2 uses the keys to com-
pute C′(x1,x

1
2, . . . ,x

ν
2) and outputs the result.

Fig. 6. Our PVC protocol.



requires around 1.4 Mbit. However, as we show below, as the number of OTs
required grows, signed-OT extension quickly outperforms signed-OT, both in
communication and computation.

5 Comparison with Prior Work

We now compare our signed-OT extension construction (including optimizations,
and in particular, the signature batching of Observation 2) with the signed-OT
protocol of Asharov and Orlandi [7], along with a comparison of existing covert
and malicious protocols and our PVC protocol using both signed-OT and signed-
OT extension. All comparisons are done through calculating the number of bits
transferred and estimated running times based on the relative cost of public-key
versus symmetric-key operations. We use a very conservative (low-end) estimate
on the public/symmetric speed ratio. We note that this ratio does vary greatly
across platforms, being much higher on low power mobile devices, which often
employ a weak CPU but have hardware AES support. For such platforms our
numbers would be even better.

Recall that τ is the field size (in bits), ν is the XOR-tree replication factor,
λ is the GC replication factor, n is the input length, and we assume that each
signature is of length τ .

Communication cost. We first focus on the communication cost of the two
protocols. The signed-OT protocol of Asharov and Orlandi [7] is based on the
maliciously secure OT protocol of Peikert et al. [18], and inherits similar costs.
Namely, the communication cost of executing ` OTs each of length n is (6`+11)τ
if n ≤ τ , and (6` + 11)τ + 2n` if n > τ . Signed-OT requires the additional
communication of a signature per OT, adding an additional τ` bits. In the
underlying secure computation protocol we have that n = λκ, where λ is the
garbled circuit replication factor. For simplicity, we set λ = 3 (which along with
an XOR-tree replication factor of three equates to a deterrence factor of ε = 1/2)
and thus n = 3κ. Thus, the total communication cost of executing t signed-OTs
is τ (7t + 11) bits if 3κ ≤ τ and τ (7t + 11) + 6κt bits otherwise.

On the other hand, the cost of signed-OT extension for t OTs is (6`+ 11)τ +
2`t+ `t+ µ` log `+ 4µ`κ+ κ log `+ (n+ κ)t+ τ . Asharov et al. [6, §3.2] present
concrete choices of µ and ` for various security parameters. However, in our
setting we need to increase ` by κ bits. Thus, let `′ be the particular choice
of ` specified by Asharov et al. We then set ` = `′ + κ. Thus, for short se-
curity parameter we set ` = 133 + 80 = 213 and µ = 3, and for long secu-
rity parameter we set ` = 190 + 128 = 318 and µ = 2. Thus, the total com-
munication cost of executing t signed-OTs when using signed-OT extension is
(6`+ 12)τ + (3`+ n + κ)t + µ`log`+ 4µ`κ+ κlog` bits.

Fig. 7 presents a comparison of the communication cost of both approaches
when executing 1,000 and 10,000 OTs, for various keylength settings and under-
lying public-key cryptosystems. We see improvements from 1.1–10.3×, depending
on the number of OTs, the underlying public-key cryptosystem, and the size of
the security parameter. Note that for a smaller number of OTs (such as 100),



1,000 OTs 10,000 OTs

Security sOT sOT-ext Improvement sOT sOT-ext Improvement

Short (FFC) 7,179 2,539 2.8× 71,691 11,305 6.3×
Short (ECC) 1,602 1,398 1.1× 16,002 10,164 1.6×

Long (FFC) 21,538 7,694 2.8× 215,074 20,888 10.3×
Long (ECC) 2,563 2,288 1.1× 25,603 15,482 1.7×

Fig. 7. Communication cost (in kbits) of transferring the input wire labels for P2 when
using signed-OT (sOT) versus signed-OT extension (sOT-ext) for 1,000 and 10,000
OTs.

signed-OT is more efficient, which makes sense due to the overhead of OT ex-
tension and the need to compute the base OTs. However, as the number of OTs
grows, we see that signed-OT extension is superior across the board.

Computational cost. We now look at the computational cost of the two proto-
cols. Let ξ denote the cost of a public-key operation (we assume exponentiations
and signing take the same amount of time), and let ζ denote the cost of a
symmetric-key operation (where we let ζ denote the cost of operating over κ
bits; e.g., hashing a 2κ-bit value costs 2ζ). We assume all other operations are
“free”. This is obviously a very coarse analysis; however, it gives a general idea
of the performance characteristics of the two approaches.

The cost of executing ` OTs on n-bit messages is (14` + 12)ξ if n ≤ τ and
(14` + 12)ξ + 2`nκ ζ if n > τ . Signed-OT requires an additional 2`ξ operations
(for signing and verifying). We again set n = 3κ, and thus the cost of executing
t signed-OTs is (16t + 12)ξ if 3κ ≤ τ and (16t + 12)ξ+ 6tζ otherwise.

The cost of our signed-OT extension protocol for t OTs (where we assume
t > κ and we hash the input prior to signing in Step 4) is `

κ tζ + (14` + 12)ξ +

2` tκζ + 6`µ tκζ + 2 log `+ 2t `+n+κκ ζ + 2ξ. As above, we set ` = 213 and µ = 3 for
short security parameter, ` = 318 and µ = 2 for long security parameter, and
n = 3κ. Thus, the cost of executing t signed-OTs is (14`+ 14)ξ+((5 + 6µ) `κ
+8)tζ + 2log`ζ.

Fig. 8 presents a comparison of the computational cost of both approaches
when executing 1,000 and 10,000 OTs, for various keylength settings and un-
derlying public-key cryptosystems. Here we see that regardless of the number
of OTs and public-key cryptosystem used, signed-OT extension is (often much)
more efficient, and as the number of OTs increases so does this improvement.
For as few as 1,000 OTs we already see a 3.5–5.1× improvement, and for 10,000
OTs we see a 30.9–42.4× improvement.

Comparing covert, PVC, and malicious protocols. We now compare the
computation cost of our PVC protocol in Fig. 6, using both signed-OT and



1,000 OTs 10,000 OTs

Security sOT sOT-ext Improvement sOT sOT-ext Improvement

Short (FFC) 16.0 3.1 5.1× 160.0 3.8 42.4×
Short (ECC) 5.3 1.1 4.9× 53.3 1.7 30.9×

Long (FFC) 144.1 40.2 3.6× 1440.1 40.7 35.4×
Long (ECC) 14.4 4.1 3.5× 144.1 4.5 31.9×

Fig. 8. Computation cost (in millions of “time units”) of transferring the input wire
labels for P2 when using signed-OT (sOT) versus signed-OT extension (sOT-ext) for
1,000 and 10,000 OTs. We assume symmetric-key operations take 1 “time unit”, FFC
(resp., ECC) operations take 1000 (resp., 333) “time units” for the short security
parameter, and FFC (resp., ECC) operations take 9000 (resp., 900) “time units” for
the long security parameter [1].

f # inputs # gates GMS
OurssOT-ext

OurssOT

OurssOT-ext
Lin

OurssOT-ext

16384-bit Comp. 16,384 32,229 0.85–0.73 17.1–86.7 357.0–1887.2
Hamming 16000 16,000 97,175 0.90–0.79 11.0–67.0 224.7–1408.4
16×16 Matrix Mult. 8192 4,186,368 1.00–0.98 1.2–3.1 14.2–54.3
1024-bit Sum 1,024 2,977 0.71–0.61 6.7–10.2 166.6–258.2
1024-bit Mult. 1,024 6,371,746 1.00–0.99 1.0–1.2 10.1–13.9
1024-bit RSA 1,024 15,149,856,895 1.00–1.00 1.0–1.0 9.6–9.6

Fig. 9. Ratio of computation cost of various secure computation protocols with our
signed-OT extension construction, using a deterrence factor of 1/2 for the covert and
PVC protocols. GMS denotes the covert protocol of Goyal et al. [11], OurssOT denotes
the optimized Asharov-Orlandi protocol run using signed-OT, OurssOT-ext denotes the
same protocol using signed-OT extension, and Lin denotes Lindell’s malicious proto-
col [17]. We let f denote the function being computed, # inputs denote the number of
input bits required as input by P2, and # gates denote the number of non-XOR gates
in the resulting circuit. All circuit information is taken from the PCF compiler [14,
Table 5]. We report each ratio as a range; the first number uses ξ = 125 as the cost
of public-key operations and the second number uses ξ = 1250, where we assume a
symmetric-key operation costs ζ = 1.

signed-OT extension, with the covert protocol of Goyal et al. [11] and the mali-
cious protocol of Lindell [17].9

Fig. 9 presents a comparison of the computation cost of our protocol using
both signed-OT (OurssOT) and signed-OT extension (OurssOT-ext), as well as
comparisons to the Goyal et al. protocol (GMS) and Lindell protocol (Lin). Due
to lack of space, the detailed cost formulas appear in the full version. We fix
κ = 128, λ = ν = 3 (giving a deterrence factor of ε = 1/2), and assume the
use of elliptic curve cryptography (and thus τ = 256). We expect public-key

9 Lindell’s malicious protocol can also be adapted into a covert protocol; however, we
found that the computation cost is much more than that of Goyal et al., at least for
deterrence factor 1/2.



operations to take between 125–1250× more than symmetric-key operations,
depending on implementation details, whether one uses AES-NI, etc. This range
is a very conservative estimate using the Crypto++ benchmark [2], experiments
using OpenSSL, and estimated ratios of running times between finite field and
elliptic curve cryptography [1].

When comparing against GMS, we find that OurssOT-ext is slightly more
expensive, due almost entirely to the larger number of base OTs in the signed-OT
extension. We note that in practice, however, a deterrence factor of 1/2 may not
be sufficient for a covert protocol but may be sufficient for a PVC protocol, due
to the latter’s ability to “name-and-shame” the perpetrator. When increasing
the deterrence factor for the covert protocol to ε ≈ .9, the cost ratios favor
OurssOT-ext. For example, for 16×16 matrix multiplication, the ratio becomes
3.60–3.53×, depending on the cost of public-key operations (versus 1.00–0.98×).

Comparing OurssOT-ext with OurssOT, we find that the former is 1.0–86.7×
more efficient, depending largely on the characteristics of the underlying circuit.
For circuits with a large number of inputs but a relatively small number of gates
(e.g., 16384-bit Comp., Hamming 16000, and 1024-bit Sum) this difference is
greatest, which makes sense, as the cost of the OT operations dominates. The
circuits for which the ratio is around 1.0 (e.g., 1024-bit RSA) are those that have
a huge number of gates compared to the number of inputs, and thus the cost of
processing the GC far outweighs the cost of signed-OT/signed-OT extension.

Finally, comparing OurssOT-ext with Lin, the former is 9.6–1887.2× more
efficient, again depending in a large part on the characteristics of the circuit.
We see that for circuits with a large number of inputs this difference is starkest;
e.g., for the Hamming 16000 circuit, we get an improvement of 224.7–1408.4×.
The reason we see such large improvements for these circuits is that Lin requires
cut-and-choose oblivious transfer, which cannot take advantage of OT extension.
Thus, the number of public-key operations is huge compared to the circuit size,
and this cost has a large impact on the overall running time. Note, however, that
even for circuits where the number of gates dominates, we still see a relatively
significant improvement (e.g., 14.2–54.3× for 16×16 Matrix Mult.). These results
demonstrate that for settings where public shaming is enough of a deterrent from
cheating, OurssOT-ext presents a better choice than malicious protocols.
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