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Abstract. Oblivious RAM (ORAM) is a cryptographic primitive that allows a
trusted CPU to securely access untrusted memory, such that the access patterns
reveal nothing about sensitive data. ORAM is known to have broad applications
in secure processor design and secure multi-party computation for big data. Un-
fortunately, due to a logarithmic lower bound by Goldreich and Ostrovsky (Jour-
nal of the ACM, ’96), ORAM is bound to incur a moderate cost in practice. In
particular, with the latest developments in ORAM constructions, we are quickly
approaching this limit, and the room for performance improvement is small.
In this paper, we consider new models of computation in which the cost of obliv-
iousness can be fundamentally reduced in comparison with the standard ORAM
model. We propose the Oblivious Network RAM model of computation, where
a CPU communicates with multiple memory banks, such that the adversary ob-
serves only which bank the CPU is communicating with, but not the address
offset within each memory bank. In other words, obliviousness within each bank
comes for free—either because the architecture prevents a malicious party from
observing the address accessed within a bank, or because another solution is used
to obfuscate memory accesses within each bank—and hence we only need to
obfuscate communication patterns between the CPU and the memory banks. We
present new constructions for obliviously simulating general or parallel programs
in the Network RAM model. We describe applications of our new model in secure
processor design and in distributed storage applications with a network adversary.
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1 Introduction

Oblivious RAM (ORAM), introduced by Goldreich and Ostrovsky [18, 19], allows a
trusted CPU (or a trusted computational node) to obliviously access untrusted memory
(or storage) during computation, such that an adversary cannot gain any sensitive infor-
mation by observing the data access patterns. Although the community initially viewed
ORAM mainly from a theoretical perspective, there has recently been an upsurge in
research on both new efficient algorithms (c.f. [8, 13, 22, 36, 39, 43, 46]) and practical
systems [9, 11, 12, 21, 30, 35, 37, 38, 44, 48] for ORAM. Still the most efficient ORAM
implementations [10, 37, 39] require a relatively large bandwidth blowup, and part of
this is inevitable in the standard ORAM model. Fundamentally, a well-known lower
bound by Goldreich and Ostrovsky states that any ORAM scheme with constant CPU
cache must incur at least Ω(logN) blowup, where N is the number of memory words,
in terms of bandwidth and runtime. To make ORAM techniques practical in real-life
applications, we wish to further reduce its performance overhead. However, since lat-
est ORAM schemes [39, 43] have practical performance approaching the limit of the
Goldreich-Ostrovsky lower bound, the room for improvement is small in the standard
ORAM model. In this paper, we investigate the following question:

In what alternative, realistic models of computation can we significantly lower the
cost of oblivious data accesses?

Motivated by practical applications, we propose the Network RAM (NRAM) model
of computation and correspondingly, Oblivious Network RAM (O-NRAM). In this new
model, one or more CPUs interact with M memory banks during execution. Therefore,
each memory reference includes a bank identifier, and an offset within the specified
memory bank. We assume that an adversary cannot observe the address offset within
a memory bank, but can observe which memory bank the CPU is communicating with.
In other words, obliviousness within each bank “comes for free”. Under such a threat
model, an Oblivious NRAM (O-NRAM) can be informally defined as an NRAM whose
observable memory traces (consisting of the bank identifiers for each memory request)
do not leak information about a program’s private inputs (beyond the length of the
execution). In other words, in an O-NRAM, the sequence of bank identifiers accessed
during a program’s execution must be provably obfuscated.

1.1 Practical Applications

Our NRAM models are motivated by two primary application domains:

Secure processor architecture. Today, secure processor architectures [1,12,30,35,40,
41] are designed assuming that the memory system is passive and untrusted. In par-
ticular, an adversary can observe both memory contents and memory addresses during
program execution. To secure against such an adversary, the trusted CPU must both
encrypt data written to memory, and obfuscate memory access patterns.

Our new O-NRAM model provides a realistic alternative that has been mentioned in
the architecture community [30,31] and was inspired by the Module Parallel Computer
(MPC) model of Melhorn and Vishkin [32]. The idea is to introduce trusted decryption
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logic on the memory DIMMs (for decrypting memory addresses). This way, the CPU
can encrypt the memory addresses before transmitting them over the insecure memory
bus. In contrast with traditional passive memory, we refer to this new type of memory
technology as active memory. In a simple model where a CPU communicates with a
single active memory bank, obliviousness is automatically guaranteed, since the adver-
sary can observe only encrypted memory contents and addresses. However, when there
are multiple such active memory banks, we must obfuscate which memory bank the
CPU is communicating with.
Distributed storage with a network adversary. Consider a scenario where a client (or
a compute node) stores private, encrypted data on multiple distributed storage servers.
We consider a setting where all endpoints (including the client and the storage servers)
are trusted, but the network is an untrusted intermediary. In practice, trust in a storage
server can be bootstrapped through means of trusted hardware such as the Trusted Plat-
form Module (TPM) or as IBM 4758; and network communication between endpoints
can be encrypted using standard SSL. Trusted storage servers have also been built in
the systems community [3]. On the other hand, the untrusted network intermediary can
take different forms in practice, e.g., an untrusted network router or WiFi access point,
untrusted peers in a peer-to-peer network (e.g., Bitcoin, TOR), or packet sniffers in
the same LAN. Achieving oblivious data access against such a network adversary is
precisely captured by our O-NRAM model.

1.2 Background: The PRAM Model

Two of our main results deal with the parallel-RAM (PRAM) model, which is a syn-
chronous generalization of the RAM model to the parallel processing setting. The
PRAM model allows for an unbounded number of parallel processors with a shared
memory. Each processor may access any shared memory cell and read/write conflicts
are handled in various ways depending on the type of PRAM considered:

– Exclusive Read Exclusive Write (EREW) PRAM: A memory cell can be ac-
cessed by at most one processor in each time step.

– Concurrent Read Exclusive Write (CREW) PRAM: A memory cell can be read
by multiple processors in a single time step, but can be written to by at most one
processor in each time step.

– Concurrent Read Concurrent Write (CRCW) PRAM: A memory cell can be
read and written to by multiple processors in a single time step. Reads are assumed
to complete prior to the writes of the same time step. Concurrent writes are resolved
in one of the following ways: (1) Common—all concurrent writes must write the
same value; (2) Arbitrary—an arbitrary write request is successful; (3) Priority—
processor id determines which processor is successful.

1.3 Results and Contributions

We introduce the Oblivious Network RAM model, and conduct the first systematic
study to understand the “cost of obliviousness” in this model. We consider running both
sequential programs and parallel progams in this setting. We propose novel algorithms
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Setting RAM to O-NRAM blowup c.f. Best known ORAM blowup

Sequential-to-sequential compiler

W =small Ô(logN) O(log2N/ log logN) [25]

W = Ω(log2N)
bandwidth: Ô(1) bandwidth: Ô(logN) [43]

runtime: Ô(logN) runtime: O(log2N/ log logN) [25]

W = Ω(N ε) Ô(1) Ô(logN) [43]

Parallel-to-sequential compiler

ω(M logN)-parallel O(1) Same as standard ORAM

Parallel-to-parallel compiler

M1+δ-parallel
O(log∗N)

best known: poly logN [7]
for any const δ > 0 lower bound: Ω(logN)

Table 1. A systematic study of “cost of obliviousness” in the Network ORAM model. W
denotes the memory word size in # bits, N denotes the total number of memory words, and M
denotes the number of memory banks. For simplicity, this table assumes that M = O(

√
N), and

each bank has O(
√
N) words. Like implicit in existing ORAM works [19, 25], small word size

assumes at least logN bits per word—enough to store a virtual address of the word.

that exploit the “free obliviousness” within each bank, such that the obliviousness cost
is significantly lower in comparison with the standard Oblivious (Parallel) RAMs. We
give a summary of our results below.

First, observe that if there are only O(1) number of memory banks, there is a trivial
solution with O(1) cost: just make one memory access (real or dummy) to each bank
for each step of execution. On the other hand, if there are Ω(N) memory banks each of
constant size (where N denotes the total number of memory words), then the problem
approaches standard ORAM [18, 19] or OPRAM [7]. The intermediate parameters are
therefore the most interesting. For simplicity, in this section, we mainly state our results
for the most interesting case when the number of banks M = O(

√
N), and each bank

can store up toO(
√
N) words. In Sections 3, 4 and 5, our results will be stated for more

general parameter choices. We now state our results (see also Table 1 for an overview).

“Sequential-to-sequential” compiler. First, we show that any RAM program can be
obliviously simulated on a Network RAM, consuming only O(1) words of local CPU
cache, with Ô(logN) blowup in both runtime and bandwidth, where–throughout the
paper–when we say the complexity of our scheme is Ô(f(N)), we mean that for any
choice of h(N) = ω(f(N)), our scheme attains complexity g(N) = O(h(N)). Fur-
ther, when the RAM program has Ω(log2N) memory word size, it can be obliviously
simulated on Network RAM with only Ô(1) bandwidth blowup (assuming non-uniform
memory word sizes as used by Stefanov et al. in [38]). In comparison, the best known
(constant CPU cache) ORAM scheme has roughly Ô(logN) bandwidth blowup for
Ω(log2N) memory word size [43]. For smaller memory words, the best known ORAM
scheme has O(log2 / log logN) blowup in both runtime and bandwidth [25].
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“Parallel-to-sequential” compiler. We demonstrate that parallelism can facilitate obliv-
iousness, by showing that programs with a “sufficient degree of parallelism” – specif-
ically, programs whose degree of parallelism P = ω(M logN) – can be obliviously
simulated in the Network RAM model with only O(1) blowup in runtime and band-
width. Here, we consider parallelism as a property of the program, but are not in fact
executing the program on a parallel machine. The overhead stated above is for the se-
quential setting, i.e., considering that both NRAM and O-NRAM have single proces-
sor. Our compiler works when the underlying PRAM program is in the EREW, CREW,
common CRCW or arbitrary CRCW model.

Beyond the low overhead discussed above, our compiled sequential O-NRAM has
the additional benefit that it allows for an extremely simple prefetching algorithm.
In recent work, Yu et al. [49] proposed a dynamic prefetching algorithm for ORAM,
which greatly improved the practical performance of ORAM. We note that our parallel-
to-sequential compiler achieves prefetching essentially for free: Since the underlying
PRAM program will make many parallel memory accesses to each bank, and since the
compiler knows these memory addresses ahead of time, these memory accesses can au-
tomatically be prefetched. We note that a similar observation was made by Vishkin [42],
who suggested leveraging parallelism for performance improvement by using (compile-
time) prefetching in serial or parallel systems.
“Parallel-to-parallel” compiler. Finally, we consider oblivious simulation in the par-
allel setting. We show that for any parallel program executing in t parallel steps with
P =M1+δ processors, we can obliviously simulate the program on a Network PRAM
with P ′ = O(P/ log∗ P ) processors, running in O(t log∗ P ) time, thereby achieving
O(log∗ P ) blowup in parallel time and bandwidth, and optimal work. In comparison,
the best known OPRAM scheme has poly logN blowup in parallel time and bandwidth.
The compiler works when the underlying program is in the EREW, CREW, common
CRCW or arbitrary CRCW PRAM model. The resulting compiled program is in the
arbitrary CRCW PRAM model.

1.4 Technical Highlights

Our most interesting technique is for the parallel-to-parallel compiler. We achieve this
through an intermediate stepping stone where we first construct a parallel-to-sequential
compiler (which may be of independent interest).

At a high level, the idea is to assign each virtual address to a pseudorandom mem-
ory bank (and this assignment stays the same during the entire execution). Suppose
that a program is sufficiently parallel such that it always makes memory requests in
P = ω(M logN)-sized batches. For now, assume that all memory requests within
a batch operate on distinct virtual addresses – if not we can leverage a hash table to
suppress duplicates, using an additional “scratch” bank as the CPU’s working mem-
ory. Then, clearly each memory bank will in expectation serve P/M requests for each
batch. With a simple Chernoff bound, we can conclude that each memory bank will
serve O(P/M) requests for each batch, except with negligible probability. In a sequen-
tial setting, we can easily achieve O(1) bandwidth and runtime blowup: for each batch
of memory requests, the CPU will sequentially access each bank O(P/M) number of
times, padding with dummy accesses if necessary (see Section 4).
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However, additional difficulties arise when we try to execute the above algorithm
in parallel. In each step, there is a batch of P memory requests, one coming from each
processor. However, each processor cannot perform its own memory request, since the
adversary can observe which processor is talking to which memory bank and can detect
duplicates (note this problem did not exist in the sequential case since there was only
one processor). Instead, we wish to

1. hash the memory requests into buckets according to their corresponding banks
while suppressing duplicates; and

2. pad the number of accesses to each bank to a worst-case maximum – as mentioned
earlier, if we suppressed duplicate addresses, each bank hasO(P/M) requests with
probability 1− negl(N).

At this point, we can assign processors to the memory requests in a round-robin
manner, such that which processor accesses which bank is “fixed”. Now, to achieve
the above two tasks in O(log∗ P ) parallel time, we need to employ non-trivial parallel
algorithms for “colored compaction” [4] and “static hashing” [5, 17], for the arbitrary
CRCW PRAM model, while using a scratch bank as working memory (see Section 5).

1.5 Related Work

Oblivious RAM (ORAM) was first proposed in a seminal work by Goldreich and Ostro-
vsky [18,19] where they laid a vision of employing an ORAM-capable secure processor
to protect software against piracy. In their work, Goldreich and Ostrovsky showed both a
poly-logarithmic upper-bound (commonly referred to as the hierarchical ORAM frame-
work) and a logarithmic lower-bound for ORAM—both under constant CPU cache.
Goldreich and Ostrovsky’s hierarchical construction was improved in several subse-
quent works [6, 20, 22, 25, 33, 45–47]. Recently, Shi et al. proposed a new, tree-based
paradigm for constructing ORAMs [36], thus leading to several new constructions that
are simple and practically efficient [8,13,39,43]. Notably, Circuit ORAM [43] partially
resolved the tightness of the Goldreich-Ostrovsky lower bound, by showing that certain
stronger interpretations of their lower bound are indeed tight.

Theoretically, the best known ORAM scheme (with constant CPU cache) for small
O(logN)-sized memory words3 is a construction by Kushilevitz et al. [25], achieving
O(log2N/ log logN) bandwidth and runtime blowup. Path ORAM (variant with O(1)
CPU cache [44]) and Circuit ORAM can achieve better bounds for bigger memory
words. For example, Circuit ORAM achieves O(logN)ω(1) bandwidth blowup for a
word size ofΩ(log2N) bits; and forO(logN)ω(1) runtime blowup for a memory word
size of N ε bits where 0 < ε < 1 is any constant within the specified range.

ORAMs with larger CPU cache sizes (caching up to Nα words for any constant
0 < α < 1) have been suggested for cloud storage outsouring applications [20, 38, 47].
In this setting, Goodrich and Mitzenmacher [20] first showed how to achieve O(logN)
bandwidth and runtime blowup.

Other than secure processors and cloud outsourcing, ORAM is also noted as a key
primitive for scaling secure multi-party computation to big data [23, 26, 43, 44]. In this

3 Every memory word must be large enough to store the logical memory address.
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context, Wang et al. [43,44] pointed out that the most relevant ORAM metric should be
the circuit size rather than the traditionally considered bandwidth metrics. In the secure
computation context, Lu and Ostrovsky [27] proposed a two-server ORAM scheme
that achieves O(logN) runtime blowup. Similarly, ORAM can also be applied in other
RAM-model cryptographic primitives such as (reusable) Garbled RAM [14–16,28,29].

Goodrich and Mitzenmacher [20] and Williams et al. [48] observed that computa-
tional tasks with inherent parallelism can be transformed into efficient, oblivious coun-
terparts in the tradiotional ORAM setting—but our techniques apply to the NRAM
model of computation. Finally, Oblivious RAM has been implemented in outsourced
storage settings [37, 38, 45, 47, 48], on secure processors [9, 11, 12, 30, 31, 35], and atop
secure multiparty computation [23, 43, 44].

Comparison of our parallel-to-parallel compiler with the work of [7]. Recently,
Boyle, Chung and Pass [7] proposed Oblivious Parallel RAM, and presented a con-
struction for oblivious simulation of PRAMs in the PRAM model. Our result is in-
comparible to their result: Our security model is weaker than theirs since we assume
obliviousness within each memory bank comes for free; on the other hand, we obtain
far better asymptotical and concrete performance. We next elaborate further on the dif-
ferences in the results and techniques of the two works. [7] provide a compiler from
the EREW, CREW and CRCW PRAM models to the EREW PRAM model. The se-
curity notion achieved by their compiler provides security against adversaries who see
the entire access pattern, as in standard oblivious RAM. However, their compiled pro-
gram incurs a poly log overhead in both the parallel time and total work. Our compiler
is a compiler from the EREW, CREW, common CRCW and arbitrary CRCW PRAM
models to the arbitrary CRCW PRAM model and the security notion we achieve is the
weaker notion of oblivious network RAM, which protects against adversaries who see
the bank being accessed, but not the offset within the bank. On the other hand, our com-
piled program incurs only a log∗ time overhead and its work is asymptotically the same
as the underlying PRAM. Both our work and the work of [7] leverage previous results
and techniques from the parallel computing literature. However, our techniques are pri-
marily from the CRCW PRAM literature, while [7] use primarily techniques from the
low-depth circuit literature, such as highly efficient sorting networks.

2 Definitions

2.1 Background: Random Access Machines (RAM)

We consider RAM programs to be interactive stateful systems 〈Π, state, D〉, consisting
of a memory array D of N memory words, a CPU state denoted state, and a next
instruction function Π which given the current CPU state and a value rdata read from
memory, outputs the next instruction I and an updated CPU state denoted state′:

(state′, I)← Π(state, rdata)

Each instruction I is of the form I = (op, . . .), where op is called the op-code whose
value is read, write, or stop. The initial CPU state is set to (start, ∗, stateinit). Upon
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input x, the RAM machine executes, computes output z and terminates. CPU state is
reset to (start, ∗, stateinit) when the computation on the current input terminates.

On input x, the execution of the RAM proceeds as follows. If state = (start, ∗, stateinit),
set state := (start, x, stateinit), and rdata := 0. Now, repeat the doNext() till termina-
tion, where doNext() is defined as below:

doNext()

1. Compute (I, state′) = Π(state, rdata). Set state := state′.
2. If I = (stop, z) then terminate with output z.
3. If I = (write, vaddr,wdata) then set D[vaddr] := wdata.
4. If I = (read, vaddr,⊥) then set rdata := D[vaddr].

2.2 Network RAM (NRAM)

Nework RAM. A Network RAM (NRAM) is the same as a regular RAM, except that
memory is distributed across multiple banks, Bank1, . . . ,BankM . In an NRAM, every
virtual address vaddr can be written in the format vaddr := (m, offset), where m ∈
[M ] is the bank identifier, and offset is the offset within the Bankm .

Otherwise, the definition of NRAM is identical to the definition of RAM.

Probablistic NRAM. Similar to the probablistic RAM notion formalized by Goldre-
ich and Ostrovsky [18,19], we additionally define a probablistic NRAM. A probablistic
NRAM is an NRAM whose CPU state is initialized with randomness ρ (that is unob-
servable to the adversary). If an NRAM is deterministic, we can simply assume that the
CPU’s initial randomness is fixed to ρ := 0. Therefore, a deterministic NRAM can be
considered as a special case of a probablistic NRAM.

Outcome of execution. Throughout the paper, we use the notation RAM(x) or NRAM(x)
to denote the outcome of executing a RAM or NRAM on input x. Similarly, for a prob-
ablistic NRAM, we use the notation NRAMρ(x) to denote the outcome of executing on
input x, when the CPU’s initial randomness is ρ.

2.3 Oblivious Network RAM (O-NRAM)

Observable traces. To define Oblivious Network RAM, we need to first specify which
part of the memory trace an adversary is allowed to observe during a program’s execu-
tion. As mentioned earlier in the introduction, each memory bank has trusted logic for
encrypting and decrypting the memory offset. The offset within a bank is transferred in
encrypted format on the memory bus. Hence, for each memory access op := “read” or
op := “write” to virtual address vaddr := (m, offset), the adversary observes only the
op-code op and the bank identifier m , but not the offset within the bank.

Definition 1 (Observable traces). For a probabilistic NRAM, we use the notation
Trρ(NRAM, x) to denote its observable traces upon input x, and initial CPU random-
ness ρ:

Trρ(NRAM, x) := {(op1,m1), (op2,m2), . . . , (opT ,mT )}
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where T is the total execution time of the NRAM, and (opi,mi) is the op-code and
memory bank identifier during step i ∈ [T ] of the execution.

We remark that one can consider a slight variant model where the opcodes {opi}i∈[T ]

are also hidden from the adversary. Since to hide whether the operation is a read or
write, one can simply perform one read and one write for each operation – the differ-
ences between these two models are insignificant for technical purposes. Therefore, in
this paper, we consider the model whose observable traces are defined in Definition 1).
Oblivious Network RAM. Intuitively, an NRAM is said to be oblivious, if for any two
inputs x0 and x1 resulting in the same execution time, their observable memory traces
are computationally indistinguishable to an adversary.

For simplicity, we define obliviousness for NRAMs that run in deterministic T time
regardless of the inputs and the CPU’s initial randomness. One can also think of T as the
worst-case runtime, and that the program is always padded to the worst-case execution
time. Oblivious NRAM can also be similarly defined when its runtime is randomized –
however we omit the definition in this paper.

Definition 2 (Oblivious Network RAM). Consider an NRAM that runs in determin-
istic time T = poly(λ). The NRAM is said to be computationally oblivious if no
polynomial-time adversary A can win the following security game with more than
1
2 + negl(λ) probability. Similarly, the NRAM is said to be statistically oblivious if
no adversary, even computationally unbounded ones, can win the following game with
more than 1

2 + negl(λ) probability.

– A chooses two inputs x0 and x1 and submits them to a challenger.
– The challenger selects ρ ∈ {0, 1}λ, and a random bit b ∈ {0, 1}. The challenger

executes NRAM with initial randomness ρ and input xb for exactly T steps, and
gives the adversary Trρ(NRAM, xb).

– A outputs a guess b′ of b, and wins the game if b′ = b.

2.4 Notion of Simulation

Definition 3 (Simulation). We say that a deterministic RAM := 〈Π, state, D〉 can be
correctly simulated by another probabilistic NRAM := 〈Π ′, state′, D′〉 if for any input
x for any initial CPU randomness ρ, RAM(x) = NRAMρ(x). Moreover, if NRAM is
oblivious, we say that NRAM is an oblivious simulation of RAM.

Below, we explain some subtleties regarding the model, and define the metrics for
oblivious simulation.
Uniform vs. non-uniform memory word size. The O-NRAM simulation can either
employ uniform memory word size or non-uniform memory word size. For example,
the non-uniform word size model has been employed for recursion-based ORAMs in the
literature [39, 43]. In particular, Stefanov et al. describe a parametrization trick where
they use a smaller word size for position map levels of the recursion [39].
Metrics for simulation overhead. In the ORAM literature, several performance met-
rics have been considered. To avoid confusion, we now explicitly define two metrics
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that we will adopt later. If an NRAM correctly simulates a RAM, we can quantify the
overhead of the NRAM using the following metrics.

– Runtime blowup. If a RAM runs in time T , and its oblivious simulation runs in
time T ′, then the runtime blowup is defined to be T ′/T . This notion is adopted by
Goldreich and Ostrovsky in their original ORAM paper [18, 19].

– Bandwidth blowup. If a RAM transfers Y bits between the CPU and memory, and
its oblivious simulation transfers Y ′ bits, then the bandwidth blowup is defined to
be Y ′/Y . Clearly, if the oblivious simulation is in a uniform word size model, then
bandwidth blowup is equivalent to runtime blowup. However, bandwidth blowup
may not be equal to runtime blowup in a non-uniform word size model.

In this paper, we consider oblivious simulation of RAMs in the NRAM model, and
we focus on the case when the Oblivious NRAM has only O(1) words of CPU cache.

3 Sequential Oblivious Simulation

We first consider oblivious (sequential) simulation of arbitrary RAMs in the NRAM
model. The detailed proofs and algorithms for this section will appear in the full ver-
sion. Most of the techniques used here (with the exception of how to obliviously store
the position map in a separate bank) are inspired by the work on practical ORAM by
Stefanov, Shi, and Song [38]. Here we describe how we have adjusted their techniques
to fit the Network RAM model.

Let M denote the number of memory banks in our NRAM, where each bank has
O(N/M) capacity. For simplicity we first describe a simple Oblivious NRAM with
O(M) CPU private cache. In the beginning, every block i ∈ [N ] is assigned randomly
to a bank j ∈ [M ]. We also maintain locally (i) a position map that maps every block to
each bank; (ii) a cache of M queues, which are initially empty. To read/write a block i:

– We retrieve its bank number x from the position map;
– We first look for block i in the local queue x. If it is not there, we send a dummy

memory request to a random location. Otherwise we read and then remove block i
from the memory bank x;

– We pick a fresh random memory bank x′, and we push block i to the queue x′ in
the local cache.

To avoid the overflow of local queues, we use a background eviction technique from
Stefanov, Shi, and Song [38], which ensures that the local queues do not grow too
much, while still maintaining obliviousness. Although storing the position map takes
O(N logM) bits of CPU cache, in the full version we describe a recursion technique [36,
38] that can reduce this storage toO(1). Finally, to further reduce the space fromO(M)
to O(1), we can store the CPU cache in a separate memory bank. However, this is chal-
lenging, as indicated below.

Main challenge. Placing the cache in a special memory bank to achieve constant client
storage might violate obliviousness, since different operations to the cache might have
different memory traces. The key challenge is to design a special data structure to
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store the cache inside the memory bank that ensures constant worst-case cost for each
query—specifically, each queue in the eviction cache must support pop, push, ReadAn-
dRm operations. Partly to design this special data structure, we modified the analysis of
the deamortized Cuckoo hash table construction [2] to achieve negligible failure prob-
ability.

We defer details of our algorithms and techniques to the full version and next state
our main theorem for our sequential-to-sequential compiler.

Theorem 1 (O-NRAM simulation of arbitrary RAM programs). AnyN -word RAM
with a word size ofW = Ω(log2N) bits can be simulated by an Oblivious NRAM (with
non-uniform word sizes) that consumes O(W ) bits of CPU cache, and with O(M)
memory banks each of O(W · (M + N/M + Nδ)) bits in size. Further, the oblivious
NRAM simulation incurs Ô(1) bandwidth blowup and Ô(logN) run-time blowup.

4 Sequential Oblivious Simulation of Parallel Programs

We are eventually interested in parallel oblivious simulation of parallel programs (Sec-
tion 5). As a stepping stone, we first consider sequential oblivious simulation of parallel
programs. However, we emphasize that the results in this section can be of independent
interest. In particular, one way to interpret these results is that “parallelism facilitates
obliviousness”. Specifically, if a program exhibits a sufficient degree of parallelism,
then this program can be made oblivious at only const overhead in the Network RAM
model. The intuition for why this is so, is that instructions in each parallel time step can
be executed in any order. Since subsequences of instructions can be executed in an arbi-
trary order during the simulation, many sequences of memory requests can be mapped
to the same access pattern, and thus the request sequence is partially obfuscated.

4.1 Parallel RAM

To formally characterize what it means for a program to exhibit a sufficient degree of
parallelism, we will formally define a P -parallel RAM. In this section, the reader should
think of parallelism as a property of the program to be simulated – we actually charac-
terize costs assuming both the non-oblivious and the oblivious programs are executed
on a sequential machine (different from Section 5).

An P -parallel RAM machine is the same as a RAM machine, except the next in-
struction function outputs P instructions which can be executed in parallel.

Definition 4 (P -parallel RAM). An P -Parallel RAM is a RAM which has a next in-
struction functionΠ = Π1, . . . ,ΠP such that on input (state = state1|| · · · ||stateP , rdata =
rdata1|| · · · ||rdataP ), Π outputs P instructions (I1, . . . , IP ) and P updated states
state′1, . . . , state

′
P such that for p ∈ [P ], (Ip , state′p) = Πp(statep , rdatap). The in-

structions I1, . . . , IP satisfy one of the following:

– All of I1, . . . , IP are set to (stop, z) (with the same z).
– All of I1, . . . , IP are either of the form. (read, vaddr,⊥) or (write, vaddr,wdata).

Finally, the state state has size at most O(P ).
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As a warmup exercise, we will first consider a special case where in each parallel
step, the memory requests made by each processor in the underlying P -parallel RAM
have distinct addresses—we refer to this model as a restricted PRAM. Later in Sec-
tion 4.3, we will extend the result to the (arbitrary) CRCW PRAM case. Thus, our final
compiler works when the underlying P -parallel RAM is in the EREW, CREW, common
CRCW or arbitrary CRCW PRAM model.

Definition 5 (Restricted P -parallel RAM). For a P -parallel RAM denoted PRAM :=
〈D, state1, . . ., stateP , Π1, . . . ΠP 〉, if every batch of instructions I1, . . . , IP have
unique vaddr’s, we say that PRAM is a restricted P -parallel RAM.

4.2 Warmup: Restricted Parallel RAM to Oblivious NRAM

Our goal is to compile any P -parallel RAM (not necessarily restricted), into an efficient
O-NRAM. As an intermediate step that facilitates presentation, we begin with a basic
construction of O-NRAM from any restricted, parallel RAM. In the following section,
we extend to a construction of O-NRAM from any parallel RAM (not necessarily re-
stricted).

Let PRAM := 〈D, state1, . . . , stateP , Π1, . . . ΠP 〉 be a restricted P -Parallel RAM,
for P = ω(M logN). We now present an O-NRAM simulation of PRAM that requires
M + 1 memory banks, each with O(N/M + P ) physical memory, where N is the
database size.

Setup: Pseudorandomly assign memory words to banks. The setup phase takes the
initial states of the PRAM, including the memory array D and the initial CPU state,
and compiles them into the initial states of the Oblivious NRAM denoted ONRAM.

To do this, the setup algorithm chooses a secret key K, and sets ONRAM.state =
PRAM.state||K. Each memory bank of ONRAM will be initialized as a Cuckoo hash
table. Each memory word in the PRAM’s initial memory array D will be inserted into
the bank numbered (PRFK(vaddr) mod M) + 1, where vaddr is the virtual address
of the word in PRAM. Note that the ONRAM’s (M + 1)-th memory bank is reserved
as a scratch bank whose usage will become clear later.

doNext(): //We only consider read and write instructions here but not stop.

1: For p := 1 to P : (opp , vaddrp ,wdatap) := Πp(statep , rdatap)

2: (rdata1, rdata2, . . . , rdatap) := Access
({

opp , vaddrp ,wdatap
}
p∈[P ]

)
Fig. 1. Oblivious simulation of each step of the restricted parallel RAM.

Simulating each step of the PRAM’s execution. Each doNext() operation of the
PRAM will be compiled into a sequence of instructions of the ONRAM. We now de-
scribe how this compilation works. Our presentation focuses on the case when the next
instruction’s op-codes are reads or writes. Wait or stop instructions are left unmodified
during the compilation.
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Access
(
{opp, vaddrp,wdatap}p∈P

)
:

1: for p = 1 to P do
2: m ← (PRFK(vaddrp) mod M) + 1;
3: queue[m] := queue[m].push(p, opp , vaddrp ,wdatap);

// queue is stored in a separate scratch bank.
4: end for
5: for m = 1 to M do
6: if |queue[m]| > max then abort
7: Pad queue[m] with dummy entries (⊥,⊥,⊥,⊥) so that its size is max;
8: for i = 1 to max do
9: (p, op, vaddr,wdata) := queue[m].pop()

10: rdatap := ReadBank(m, vaddr)
// Each bank is a deamortized Cuckoo hash table.

11: if op = write then wdata := rdatap
12: WriteBank(m, vaddr,wdata)
13: end for
14: end for
15: return (rdata1, rdata2, . . . , rdataP )

Fig. 2. Obliviously serving a batch of P memory requests with distinct virtual addresses.

As shown in Figure 1, for each doNext instruction, we first compute the batch of in-
structions I1, . . . , IP , by evaluating theP parallel next-instruction circuitsΠ1, . . . ,ΠP .
This results in P parallel read or write memory operations. This batch of P memory op-
erations (whose memory addresses are guaranteed to be distinct in the restricted parallel
RAM model) will then be served using the subroutine Access.

We now elaborate on the Access subroutine. Each batch will have P = ω(M logN)
memory operations whose virtual addresses are distinct. Since each virtual address is
randomly assigned to one of the M banks, in expectation, each bank will get P/M =
ω(logN) hits. Using a balls and bins analysis, we show that the number of hits for each
bank is highly concentrated around the expectation. In fact, the probability of any con-
stant factor, multiplicative deviation from the expectation is negligible in N . Therefore,
we choose max := 2(P/M) for each bank, and make precisely max number of accesses
to each memory bank. Specifically, the Access algorithm first scans through the batch of
P = ω(M logN) memory operations, and assigns them to M queues, where the m-th
queue stores requests assigned to the m-th memory bank. Then, the Access algorithm
sequentially serves the requests to memory banks 1, 2, . . . ,M , padding the number of
accesses to each bank to max. This way, the access patterns to the banks are guaranteed
to be oblivious.

The description of Figure 2 makes use of M queues with a total size of P =
ω(M logN) words. It is not hard to see that these queues can be stored in an addi-
tional scratch bank of size O(P ), incurring only constant number of accesses to the
scratch bank per queue operation. Further, in Figure 2, the time at which the queues are
accessed, and the number of times they are accessed are not dependent on input data
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(notice that Line 7 can be done by linearly scanning through each queue, incurring a
max cost each queue).
Cost analysis. Since max = 2(P/M), in Figure 2 (see Theorem 2), it is not hard to see
each batch of P = ω(M logN) memory operations will incur Θ(P ) accesses to data
banks in total, and Θ(P ) accesses to the scratch bank. Therefore, the ONRAM incurs
only a constant factor more total work and bandwidth than the underlying PRAM.

Theorem 2. Let PRF be a family of pseudorandom functions, and PRAM be a re-
stricted P -Parallel RAM for P = ω(M logN). Let max := 2(P/M). Then, the con-
struction described above is an oblivious simulation of PRAM using M banks each of
O(N/M + P ) words in size. Moreover, the oblivious simulation performs total work
that is constant factor larger than that of the underlying PRAM.

Proof. Assuming the execution never aborts (Line 6 in Figure 2), then Theorem 2 fol-
lows immediately, since the access pattern is deterministic and independent of the in-
puts. Therefore, it suffices to show that the abort happens with negligible probability on
Line 6. This is shown in the following lemma.

Lemma 1. Let max := 2(P/M). For any PRAM and any input x, abort on Line 6 of
Figure 2 occurs only with negligible probability (over choice of the PRF).

Proof. We first replace PRF with a truly random function f . Note that if we can prove
the lemma for a truly random function, then the same should hold for PRF, since oth-
erwise we obtain an adversary breaking pseudorandomness.

We argue that the probability that abort occurs on Line 6 of Figure 2 in a particular
step i of the execution is negligible. By taking a union bound over the (polynomial
number of) steps of the execution, the lemma follows.

To upper bound the probability of abort in some step i, consider a thought experi-
ment where we change the order of sampling the random variables: We run PRAM(x)
to precompute all the PRAM’s instructions up to and including the i-th step of the
execution (independently of f ), obtaining P distinct virtual addresses, and only then
choose the outputs of the random function f on the fly. That is, when each virtual mem-
ory address vaddrp in step i is serviced, we choose m := f(vaddrp) uniformly and
independently at random. Thus, in step i of the execution, there are P distinct virtual
addresses (i.e., balls) to be thrown into M memory banks (i.e., bins). Due to standard
Chernoff bounds, for P = ω(M logN), we have P/M = ω(logN) and so the proba-
bility that there exists a bin whose load exceeds 2(P/M) isN−ω(1), which is negligible
in N .

We note that in order for the above argument to hold, the input x cannot be chosen
adaptively, and must be fixed before the PRAM emulation begins.

4.3 Parallel RAM to Oblivious NRAM

Use a hash table to suppress duplicates. In Section 4.2, we describe how to oblivi-
ously simulate a restricted parallel-RAM in the NRAM model. We now generalize this
result to support any P -parallel RAM, not necessarily restricted ones. The difference
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Access
(
{opp, vaddrp,wdatap, p}p∈P

)
:

/* HTable, queue, and result data structures are stored in a scratch bank. For obliviousness,
operations on these data structures must be padded to the worst-case cost as we elaborate in
the text.*/

1: for p = 1 to P : HTable[opp, vaddrp] := (wdatap, p) // hash table insertions
2: for {(op, vaddr),wdata, p} ∈ HTable do // iterate through hash table
3: m := (PRFK(vaddr) mod M) + 1
4: queue[m] := queue[m].push(op, vaddr,wdata);
5: end for
6: for m = 1 to M do
7: if |queue[m]| > max then abort
8: Pad queue[m] with dummy entries (⊥,⊥,⊥) so that its size is max;
9: for i = 1 to max do

10: (op, vaddr,wdata, p) := queue[m].pop()
11: result[p] := ReadBank(m, vaddr)
12: if op = write then wdata := rdata
13: WriteBank(m, vaddr,wdata)
14: end for
15: end for
16: return (result[1], . . . , result[p]) // hash table lookups

Fig. 3. Obliviously serving a batch of P memory request, not necessarily with distinct vir-
tual addresses.

is that for a generic P -parallel RAM, each batch of P memory operations generated
by the next-instruction circuit need not have distinct virtual addresses. For simplicity,
imagine that the entire batch of memory operations are reads. In the extreme case, if all
P = ω(M logN) operations correspond to the same virtual address residing in bank
m , then the CPU should not read bank m as many as P number of times. To address
this issue, we rely on an additional Cuckoo hash table [34] denoted HTable to suppress
the duplicate requests (see Figure 3, and the doNext function is defined the same way
as Section 4.2).

The HTable will be stored in the scratch bank. We can employ a standard Cuckoo
hash table that need not be deamortized. As shown in Figure 3, we need to support hash
table insertions, lookups, and moreover, we need to be able to iterate through the hash
table. We now make a few remarks important for ensuring obliviousness. Line 1 of Fig-
ure 3 performs P = ω(M logN) number of insertions into the Cuckoo hash table. Due
to standard Cuckoo hash analysis, we know that these insertions will take O(P ) total
time except with negligible probability. Therefore, to execute Line 1 obliviously, we
simply need to pad with dummy insertions up to some max′ = c ·P , for an appropriate
constant c.

Next, we describe how to execute the loop at Line 2 obliviously. The total size of
the Cuckoo hash table is O(P ). To iterate over the hash table, we simply make a linear
scan through the hash table. Some entries will correspond to dummy elements. When
iterating over these dummy elements, we simply perform dummy operations for the for
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loop. Finally, observe that Line 16 performs lookups to the Cuckoo hash table, and each
hash table lookup requires worst-case O(1) accesses to the scratch bank.
Cost analysis. Since max = 2(P/M) (see Theorem 2), it is not hard to see each batch
ofP = ω(M logN) memory operations will incurO(P ) accesses to data banks in total,
and O(P ) accesses to the scratch bank. Note that this takes into account the fact that
Line 1 and the for-loop starting at Line 2 are padded with dummy accesses. Therefore,
the ONRAM incurs only a constant factor more total work and bandwidth than the
underlying PRAM.

Theorem 3. Let max = 2(P/M). Assume that PRF is a secure pseudorandom func-
tion, and PRAM is a P -Parallel RAM for P = ω(M logN). Then, the above construc-
tion obliviously simulates PRAM in the NRAM model, incurring only a constant factor
blowup in total work and bandwidth consumption.

Proof. (sketch.) Similar to the proof of Theorem 2, except that now we have the ad-
ditional hash table. Note that obliviousness still holds, since, as discussed above, each
batch of P memory requests requires O(P ) accesses to the scratch bank, and this can
be padded with dummy accesses to ensure the number of scratch bank accesses remains
the same in each execution.

5 Parallel Oblivious Simulation of Parallel Programs

In the previous section, we considered sequential oblivious simulation of programs that
exhibit parallelism – there, we considered parallelism as being a property of the pro-
gram which will actually be executed on a sequential machine. In this section we con-
sider parallel and oblivious simulations of parallel programs. Here, the programs will
actually be executed on a parallel machine, and we consider classical metrics such as
parallel runtime and total work as in the parallel algorithms literature.

We introduce the Network PRAM model – informally, this is a Network RAM with
parallel processing capability. Our goal in this section will be to compile a PRAM into
an Oblivious Network PRAM (O-NPRAM), a.k.a., the “parallel-to-parallel compiler”.

Our O-NPRAM is the Network RAM analog of the Oblivious Parallel RAM (OPRAM)
model by Boyle et al. [7]. Goldreich and Ostrovsky’s logarithmic ORAM lower bound
(in the sequential execution model) directly implies the following lower bound for stan-
dard OPRAM [7]: Let PRAM be an arbitrary PRAM with P processors running in par-
allel time t. Then, any P -parallel OPRAM simulating PRAM must incur Ω(t logN)
parallel time. Clearly, OPRAM would also work in our Network RAM model albeit not
the most efficient, since it is not exploiting the fact that the addresses in each bank are
inherently oblivious. In this section, we show how to perform oblivious parallel simu-
lation of “sufficiently parallel” programs in the Network RAM model, incurring only
O(log∗N) blowup in parallel runtime, and achieving optimal total work. Our tech-
niques make use of fascinating results in the parallel algorithms literature [4, 5, 24].

5.1 Network PRAM (NPRAM) Definitions

Similar to our NRAM definition, an NPRAM is much the same as a standard PRAM,
except that 1) memory is distributed across multiple banks, Bank1, . . . ,BankM ; and 2)
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every virtual address vaddr can be written in the format vaddr := (m, offset), where
m is the bank identifier, and offset is the offset within the Bankm. We use the notation
P -parallel NPRAM to denote an NPRAM with P parallel processors, each with O(1)
words of cache. If processors are initialized with secret randomness unobservable to the
adversary, we call this a probablistic NPRAM.
Observable traces. In the NPRAM model, we assume that an adversary can observe
the following parts of the memory trace: 1) which processor is making the request; 2)
whether this is a read or write request; and 3) which bank the request is going to. The
adversary is unable to observe the offset within a memory bank.

Definition 6 (Observable traces for NPRAM). For a probabilisticP -parallel NPRAM,
we use Trρ(NPRAM, x) to denote its observable traces upon input x, and initial CPU
randomness ρ (collective randomness over all processors):

Trρ(NPRAM, x) :=
[(
(op11,m

1
1), . . . , (op

P
1 ,m

P
1 )
)
, . . . ,

(
(op1T ,m

1
T ), . . . , (op

P
T ,m

P
T )
)]

where T is the total parallel execution time of the NPRAM, and {(op1i ,m1
i ), . . . , (op

P
i ,m

P
i )}

is of the op-codes and memory bank identifiers for each processor during parallel step
i ∈ [T ] of the execution.

Based on the above notion of observable memory trace, an Oblivious NPRAM can
be defined in a similar manner as the notion of O-NRAM (Definition 2).
Metrics. We consider classical metrics adopted in the vast literature on parallel algo-
rithms, namely, the parallel runtime and the total work. In particular, to characterize the
oblivious simulation overhead, we will consider

– Parallel runtime blowup. The blowup of the parallel runtime comparing the O-
NPRAM and the NPRAM.

– Total work blowup. The blowup of the total work comparing the O-NPRAM and
the NPRAM. If the total work blowup isO(1), we say that the O-NPRAM achieves
optimal total work.

5.2 Construction of Oblivious Network PRAM

Preliminary: colored compaction. The colored compaction problem [4] is the follow-
ing:

Given n objects ofm different colors, initially placed in a single source array, move
the objects to m different destination arrays, one for each color. In this paper, we
assume that the space for the m destination arrays are preallocated. We use the
notation di to denote the number of objects colored i for i ∈ [m].

Lemma 2 (Log∗-time parallel algorithm for colored compaction [4]). There is a
constant ε > 0 such that for all given n, m, τ , d1, . . . , dm ∈ N, with m = O(n1−δ) for
arbitrary fixed δ > 0, and τ ≥ log∗ n, there exists a parallel algorithm (in the arbitrary
CRCW PRAM model) for the colored compaction problem (assuming preallocated des-
tination arrays) with n objects, m colors, and d1, . . . , dm number of objects for each
color, executing in O(τ) time on dn/τe processors, consuming O(n+

∑m
i=1 di) space,

and succeeding with probability at least 1− 2−n
ε

.

17



parAccess
(
{opp, vaddrp,wdatap}p∈P

)
:

/* All steps can be executed in O(log∗ P ) time with P ′ = O(P/ log∗ P ) processors with all
but negligible probability.*/

1: Using the scratch bank as memory, run the parallel hashing algorithm on the batch
of P = M1+δ memory requests to suppress duplicate addresses. Denote the re-
sulting set as S, and pad S with dummy requests to the maximum length P .

2: In parallel, assign colors to each memory request in the array S. For each
real memory access {op, vaddr,wdata}, its color is defined as (PRFK(vaddr)
mod M) + 1. Each dummy memory access is assigned a random color. It is not
hard to see that each color has no more than max := 2(P/M) requests except
with negligible probability.

3: Using the scratch bank as memory, run the parallel colored compaction algorithm
to assign the array S to M preallocated queues each of size max (residing in the
scratch bank).

4: Now, each queue i ∈ [M ] contains max number of requests intended for bank i –
some real, some dummy. Serve all memory requests in the M queues in parallel.
Each processor i ∈ [P ′] is assigned the k-th memory request iff (k mod P ′) = i.
Dummy requests incur accesses to the corresponding banks as well.
For each request coming from processor p, the result of the fetch is stored in an
array result[p] in the scratch bank.

Fig. 4. Obliviously serving a batch of P memory requests using P ′ := O(P/ log∗ P ) pro-
cessors in O(log∗ P ) time. In Steps 1, 2, and 3, each processor will make exactly one access to
the scratch bank in each parallel execution step – even if the processor is idle in this step, it makes
a dummy access to the scratch bank. Steps 1 through 3 are always padded to the worst-case
parallel runtime.

Preliminary: parallel static hashing. We will also rely on a parallel, static hashing
algorithm [5, 24], by Bast and Hagerup. The static parallel hashing problem takes n
elements (possibly with duplicates), and in parallel creates a hash table of size O(n)
of these elements, such that later each element can be visited in O(1) time. In our
setting, we rely on the parallel hashing to suppress duplicate memory requests. Bast
and Hagerup show the following lemma:

Lemma 3 (Log∗-time parallel static hashing [5, 24]). There is a constant ε > 0 such
that for all τ ≥ log∗ n, there is a parallel, static hashing algorithm (in the arbitrary
CRCW PRAM model), such that hashing n elements (which need not be distinct) can be
done in O(τ) parallel time, with O(n/τ) processors and O(n) space, succeeding with
1− 2−(logn)

τ/ log∗ n − 2−n
ε

probability.

Construction. We now present a construction that allows us to compile a P -parallel
PRAM, where P =M1+δ for any constant δ > 0, into a O(P/ log∗ P )-parallel Obliv-
ious NPRAM. The resulting NPRAM has O(log∗ P ) blowup in parallel runtime, and is
optimal in total amount of work.

In the original P -parallel PRAM, each of the P processors does constant amount
of work in each step. In the oblivious simulation, this can trivially be simulated in
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O(log∗ P ) time with O(P/ log∗ P ) processors. Therefore, clearly the key is how to
obliviously fetch a batch of P memory accesses in parallel with O(P/ log∗ P ) proces-
sors, and O(log∗ P ) time. We describe such an algorithm in Figure 4. Using a scratch
bank as working memory, we first call the parallel hashing algorithm to suppress du-
plicate memory requests. Next, we call the parallel colored compaction algorithm to
assign memory request to their respective queues – depending on the destination mem-
ory bank. Finally, we make these memory accesses, including dummy ones, in parallel.

Theorem 4. Let PRF be a secure pseudorandom function, let M = N ε for any con-
stant ε > 0. Let PRAM be a P -parallel RAM for P =M1+δ , for constant δ > 0. Then,
there exists an Oblivious NPRAM simulation of PRAM with the following properties:

– The Oblivious NPRAM consumes M banks each of which O(N/M + P ) words in
size.

– If the underlying PRAM executes in t parallel steps, then the Oblivious NPRAM
executes in O(t log∗ P ) parallel steps utilizing O(P/ log∗ P ) processors. We also
say that the NPRAM has O(log∗ P ) blowup in parallel runtime.

– The total work of the Oblivious NPRAM is asymptotically the same as the underly-
ing PRAM.

Proof. We note that our underlying PRAM can be in the EREW, CREW, common
CRCW or arbitrary CRCW models. Our compiled oblivious NPRAM is in the arbi-
trary CRCW model.

We now prove security and costs separately.
Security proof. Observe that Steps 1, 2, and 3 in Figure 4 make accesses only to the
scratch bank. We make sure that each processor will make exactly one access to the
scratch bank in every parallel step – even if the processor is idle in this step, it makes
a dummy access. Further, Steps 1 through 3 are also padded to the worst-case run-
ning time. Therefore, the observable memory traces of Steps 1 through 3 are perfectly
simulatable without knowing secret inputs.

For Step 4 of the algorithm, since each of theM queues are of fixed length max, and
each element is assigned to each processor in a round-robin manner, the bank number
each processor will access is clearly independent of any secret inputs, and can be per-
fectly simulated (recall that dummy request incur accesses to the corresponding banks
as well).
Costs. First, due to Lemma 1, each of the M queues will get at most 2(P/M) memory
requests with probability 1 − negl(N). This part of the argument is the same as Sec-
tion 4. Now, observe that the parallel runtime for Steps 2 and 4 are clearly O(log∗ P )
with O(P/ log∗ P ) processors. Based on Lemmas 3 and 2, Steps 1 and 3 can be ex-
ecuted with a worst-case time of O(log∗ P ) on O(P/ log∗ P ) processors as well. We
note that the conditions M = N ε and P =M1+δ ensure negl(N) failure probability.
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