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Abstract. The ASASA construction is a new design scheme introduced
at Asiacrypt 2014 by Biruykov, Bouillaguet and Khovratovich. Its ver-
satility was illustrated by building two public-key encryption schemes, a
secret-key scheme, as well as super S-box subcomponents of a white-box
scheme. However one of the two public-key cryptosystems was recently
broken at Crypto 2015 by Gilbert, Plût and Treger. As our main contri-
bution, we propose a new algebraic key-recovery attack able to break at
once the secret-key scheme as well as the remaining public-key scheme, in
time complexity 263 and 239 respectively (the security parameter is 128
bits in both cases). Furthermore, we present a second attack of indepen-
dent interest on the same public-key scheme, which heuristically reduces
its security to solving an LPN instance with tractable parameters. This
allows key recovery in time complexity 256. Finally, as a side result, we
outline a very efficient heuristic attack on the white-box scheme, which
breaks an instance claiming 64 bits of security under one minute on a
single desktop computer.
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1 Introduction

The idea of creating a public-key cryptosystem by obfuscating a secret-key ci-
pher was proposed by Diffie and Hellman in 1976, in the same seminal paper
that introduced the idea of public-key encryption [DH76]. While the RSA cryp-
tosystem was introduced only a year later, creating a public-key scheme based
on symmetric components has remained an open challenge to this day. The in-
terest of this problem is not merely historical: beside increasing the variety of
? Supported by the CORE ACRYPT project from the Fond National de la Recherche,
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available public-key schemes, one can hope that a solution may help bridging the
performance gap between public-key and secret-key cryptosystems, or at least
offer new trade-offs in that regard.

Multivariate cryptography is one way to achieve this goal. This area of re-
search dates back to the 1980’s [MI88, FD86], and has been particularly active
in the late 1990’s and early 2000’s [Pat95, Pat96, RP97, FJ03, . . . ]. Many of the
proposed public-key cryptosystems build an encryption function from a struc-
tured, easily invertible polynomial, which is then scrambled by affine maps (or
similarly simple transformations) applied to its input and output to produce the
encryption function.

This approach might be aptly described as an ASA structure, which should be
read as the composition of an affine map “A”, a nonlinear transformation of low
algebraic degree “S” (not necessarily made up of smaller S-boxes), and another
affine layer “A”. The secret key is the full description of the three maps A,S,A,
which makes computing both ASA and (ASA)−1 easy. The public key is the
function ASA as a whole, which is described in a generic manner by providing
the polynomial expression of each output bit in the input bits (or group of n
bits if the scheme operates on F2n). Thus the owner of the secret key is able
to encrypt and decrypt at high speed, depending on the structure of S. The
downside is slow public key operations, and a large key size.

The ASASA construction. Historically, attempts to build public-key encryp-
tion schemes based on the above principle have been ill-fated [FJ03, BFP11,
DGS07, DFSS07, WBDY98, . . . ]6. However several new ideas to build multi-
variate schemes were recently introduced by Biryukov, Bouillaguet and Khovra-
tovich at Asiacrypt 2014 [BBK14]. The paradigm federating these ideas is the
so-called ASASA structure: that is, combining two quadratic mappings S by in-
terleaving random affine layers A. With quadratic S layers, the overall scheme
has degree 4, so the polynomial description provided by the public key remains
of reasonable size.

This is very similar to the 2R scheme by Patarin [PG97], which fell victim
to several attacks [Bih00, DFKYZD99], including a powerful decomposition at-
tack [DFKYZD99, FP06], later developed in a general context by Faugère et al.
[FvzGP10, FP09a, FP09b]. The general course of this attack is to differentiate
the encryption function, and observe that the resulting polynomials in the input
bits live in a “small” space entirely determined by the first ASA layers. This es-
sentially allows the scheme to be broken down into its two ASA sub-components,
which are easily analyzed once isolated. A later attempt to circumvent this and
other attacks by truncating the output of the cipher proved insecure against
the same technique [FP06] — roughly speaking truncating does not prevent the
derivative polynomials from living in too small a space.

In order to thwart attacks including the decomposition technique, the authors
of [BBK14] propose to go in the opposite direction: instead of truncating the
6 HFEv- seems to be an exception in this regard.

2



cipher, a perturbation is added, consisting in new random polynomials of degree
four added at fixed positions, prior to the last affine layer7. The idea is that
these new random polynomials will be spread over the whole output of the
cipher by the last affine layer. When differentiating, the “noise” introduced by
the perturbation polynomials is intended to drown out the information about
the first quadratic layer otherwise carried by the derivative polynomials, and
thus to foil the decomposition attack.

Based on this idea, two public-key cryptosystems are proposed. One uses
random quadratic expanding S-boxes as nonlinear components, while the other
relies on the χ function, most famous for its use in the SHA-3 winner Keccak.
However the first scheme was broken at Crypto 2015 by a decomposition attack
[GPT15]: the number of perturbation polynomials turned out to be too small
to prevent this approach. This leaves open the question of the robustness of the
other cryptosystem, based on χ, to which we answer negatively.

Black-box ASASA. Besides public-key cryptosystems, the authors of [BBK14]
also propose a secret-key (“black-box”) scheme based on the ASASA structure,
showcasing its versatility. While the structure is the same, the context is entirely
different. This black-box scheme is in fact the exact counterpart of the SASAS
structure analyzed by Biryukov and Shamir [BS01]: it is a block cipher operating
on 128-bit inputs; each affine layer is a random affine map on Z128

2 , while the
nonlinear layers are composed of 16 random 8-bit S-boxes. The secret key is the
description of the three affine layers, together with the tables of all S-boxes.

In some sense, the “public key” is still the encryption function as a whole;
however it is only accessible in a black-box way through known or chosen-
plaintext or ciphertext attacks, as any standard secret-key scheme. A major
difference however is that the encryption function can be easily distinguished
from a random permutation because the constituent S-boxes have algebraic de-
gree at most 7, and hence the whole function has degree at most 49; in particular,
it sums up to zero over any cube of dimension 50. The security claim is that the
secret key cannot be recovered, with a security parameter evaluated at 128 bits.

White-box ASASA. The structure of the black-box scheme is also used as a
basis for several white-box proposals. In that setting, a symmetric (black-box)
ASASA cipher with small block (e.g. 16 bits) is used as a super S-box in a design
with a larger block. A white-box user is given the super S-box as a table. The
secret information consists in a much more compact description of the super
S-box in terms of alternating linear and nonlinear layers. The security of the
ASASA design is then expected to prevent a white-box user from recovering the
secret information.

7 A similar idea was used in [Din04].

3



1.1 Our contribution

Algebraic attack on the secret-key and χ-based public-key schemes.
Despite the difference in nature between the χ-based public-key scheme and the
black-box scheme, we present a new algebraic key-recovery attack able to break
both schemes at once. This attack does not rely on a decomposition technique.
Instead, it may be regarded as exploiting the relatively low degree of the encryp-
tion function, coupled with the low diffusion of nonlinear layers. Furthermore, in
the case of the public-key scheme, the attack applies regardless of the amount of
perturbation. Thus, contrary to the attack of [GPT15], there is no hope of patch-
ing the scheme by increasing the number of perturbation polynomials. As for the
secret-key scheme, our attack may be seen as a counterpart to the cryptanalysis
of SASAS in [BS01], and is structural in the same sense.

While the same attack applies to both schemes, their respective bottlenecks
for the time complexity come from different stages of the attack. For the χ
scheme, the time complexity is dominated by the need to compute the kernel
of a binary matrix of dimension 213, which can be evaluated to 239 basic linear
operations8. As for the black-box scheme, the time complexity is dominated by
the need to encrypt 263 chosen plaintexts, and the data complexity follows.

This attack actually only peels off the last linear layer of the scheme, reducing
ASASA to ASAS. In the case of the black-box scheme, the remaining layers can
be recovered in negligible time using Biryukov and Shamir’s techniques [BS01].
In the case of the χ scheme, removing the remaining layers poses non-trivial
algorithmic challenges (such as how to efficiently recover quadratic polynomials
A,B,C ∈ Z2[X1, . . . , Xn]/〈X2

i − Xi〉, given A + B · C), and some of the algo-
rithms we propose may be of independent interest. Nevertheless, in the end the
remaining layers are peeled off and the secret key is recovered in time complexity
negligible relative to the cost of removing the first layer.

LPN-based attack on the χ scheme. As a second contribution, we present
an entirely different attack, dedicated to the χ public-key scheme. This attack
exploits the fact that each bit at the output of χ is “almost linear” in the input:
indeed the nonlinear component of each bit is a single product, which is equal to
zero with probability 3/4 over all inputs. Based on this property, we are able to
heuristically reduce the problem of breaking the scheme to an LPN-like instance
with easy-to-solve parameters. By LPN-like instance, we mean an instance of a
problem very close to the Learning Parity with Noise problem (LPN), on which
typical LPN-solving algorithms such as the Blum-Kalai-Wasserman algorithm
(BKW) [BKW03] are expected to immediately apply. The time complexity of
this approach is higher than the previous one, and can be evaluated at 256 basic
8 In practice, vector instructions operating on 128-bit inputs would mean that the
meaningful size of the matrix is 213−7 = 26, and in this context the number of basic
linear operations would be much lower. We also disregard asymptotic improvements
such as the Strassen or Coppersmith-Winograd algorithms and their variants. The
main point is that the time complexity is quite low — well within practical reach.
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operations. However it showcases a different weakness of the χ scheme, providing
a different insight into the security of ASASA constructions. In this regard, it is
noteworthy that the security of another recent multivariate scheme, presented
by Huang et al. at PKC’12 [HLY12], was also reduced to an easy instance of
LWE [Reg05], which is an extension of LPN, in [AFF+14]9.

Heuristic attack on the white-box scheme. Finally as a side result, we
describe a key-recovery attack on white-box ASASA. The attack technique is
unrelated to the previous ones, and its motivation relies on heuristics rather
than a theoretical model. On the other hand it is very effective on the smallest
white-box instances of [BBK14] (with a security level of 64 bits), which we
break under a minute on a laptop computer. Thus it seems that the security
level offered by small-block ASASA is much lower than anticipated.

The same attack on white-box schemes was found independently by Dinur,
Dunkelman, Kranz and Leander [DDKL15]. Their approach focuses on small-
block ASASA instances, and is thus only applicable to the white-box scheme of
[BBK14]. Section 5 of [DDKL15] is essentially the same attack as ours, minus
some heuristic improvements (see [MDFK15]). On the other hand, the authors
of [DDKL15] present other methods to attack small-block ASASA instances that
are less reliant on heuristics, but as efficient as our heuristically improved variant,
and thus provide a better theoretical basis for understanding small-block ASASA,
as used in the white-box scheme of [BBK14].

1.2 Structure of the article

Section 3 provides a brief description of the three ASASA schemes under attack.
In Section 4, we present our main attack, as applied to the secret-key (“black-
box”) scheme. In particular, an overview of the attack is given in Section 4.1.
The attack is then adapted to the χ public-key scheme in Section 5.1, while the
LPN-based attack on the same scheme is presented in Section 5.2. Finally, our
attack on the white-box scheme is presented in Section 6.

1.3 Implementation and full version

Due to space constraints, some subordinate algorithms and proofs were removed
from the print version of this article. However none of the missing material is
essential to understanding the attacks. The full version is available on ePrint
[MDFK15]. It is also available at the following link, together with implementa-
tions of our attacks:

https://www.dropbox.com/sh/3glwc5x181fekre/AAASeG7D-CGKM2gLmr-UVBK9a

9 On this topic, the authors of [BBK14] note that “the full application of LWE to
multivariate cryptography is still to be explored in the future”.
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2 Notation and preliminaries

The sign 4= denotes an equality by definition. |S| denotes the cardinality of a set
S. The log() function denotes logarithm in base 2.

Binary vectors. We write Z2 as a shorthand for Z/2Z. The set of n-bit vectors
is denoted interchangeably by {0, 1}n or Zn2 . However the vectors are always
regarded as elements of Zn2 with respect to addition + and dot product 〈·|·〉. In
particular, addition should be understood as bitwise XOR. The canonical basis of
Zn2 is denoted by e0, . . . , en−1.
For any v ∈ {0, 1}n, vi denotes the i-th coordinate of v. In this context, the
index i is always computed modulo n, so v0 = vn and so forth. Likewise, if F is
a function mapping into {0, 1}n, Fi denotes the i-th bit of the output of F .
For a ∈ {0, 1}n, 〈F |a〉 is a shorthand for the function x 7→ 〈F (x)|a〉.
For any v ∈ {0, 1}n, bvck denotes the truncation (v0, . . . , vk−1) of v to its first k
coordinates.
For any bit b, b stands for b+ 1.

Derivative of a binary function. For F : {0, 1}m → {0, 1}n and δ ∈ {0, 1}m,
we define the derivative of F along δ as ∂F/∂δ 4= x 7→ F (x)+F (x+δ). We write
∂dF/∂v0 . . . ∂vd−1

4= ∂(. . . (∂F/∂v0) . . . )/∂vd−1 for the order-d derivative along
v0, . . . , vd−1 ∈ {0, 1}m. For convenience we may write F ′ instead of ∂F/∂v when
v is clear from the context; likewise for F ′′.
The degree of Fi is its degree as an element of F2[x0, . . . , xm−1]/〈x2

i − xi〉 in the
binary input variables. The degree of F is the maximum of the degrees of the
Fi’s.

Cube. A cube of dimension d in {0, 1}n is simply an affine subspace of dimen-
sion d. The terminology comes from [DS09]. Note that summing a function F
over a cube C of dimension d, i.e. computing

∑
c∈C F (c), amounts to comput-

ing the value of an order-d differential of F at a certain point: it is equal to
∂dF/∂v0 . . . ∂vd−1(a) for a, (vi) such that C = a + span{v0, . . . , vd−1}. In par-
ticular if F has degree d, then it sums up to zero over any cube of dimension
d+ 1.

Bias. For any probability p ∈ [0, 1], the bias of p is |2p− 1|. Note that the bias
is sometimes defined as |p−1/2| in the literature. Our choice of definition makes
the formulation of the Piling-up Lemma more convenient [Mat94]:

Lemma 1 (Piling-up Lemma). For X1, . . . , Xn independent random binary
variables with respective biases b1, . . . , bn, the bias of X =

∑
Xi is b =

∏
bi.
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Learning Parity with Noise (LPN). The LPN problem was introduced in
[BKW03], and may be stated as follows: given (A,As+ e), find s, where:

– s ∈ Zn2 is a uniformly random secret vector.
– A ∈ ZN×n2 is a uniformly random binary matrix.
– e ∈ ZN2 is an error vector, whose coordinates are chosen according to a

Bernoulli distribution with parameter p.

3 Description of ASASA schemes

3.1 Presentation and notations

ASASA is a general design scheme for public or secret-key ciphers (or cipher
components). An ASASA cipher is composed of 5 interleaved layers: the letter
A represents an affine layer, and the letter S represents a nonlinear layer (not
necessarily made up of smaller S-boxes). Thus the cipher may be pictured as:

x x′ y y′ z z′
Ax Sx Ay Sy Az

We borrow the notation of [GPT15] and write the encryption function F as:

F = Az ◦ Sy ◦Ay ◦ Sx ◦Ax

Moreover, x = (x0, . . . , xn−1) is used to denote the input of the cipher; x′ is the
output of the first affine layer Ax; and so on, as pictured above. The variables x′i,
yi, etc., will often be viewed as polynomials over the input bits (x0, . . . , xn−1).
Similarly, F denotes the whole encryption function, while F y = Sx ◦ Ax is the
partial encryption function that maps the input x to the intermediate state y,
and likewise F x′ = Ax, F y′ = Ay ◦ Sx ◦Ax, etc.

One secret-key (“black-box”) and two public-key ASASA ciphers are pre-
sented in [BBK14]. The secret-key and public-key variants are quite different in
nature, even though our main attack applies to both. We now present in turn
the black-box and white-box constructions and the public-key variant based on
χ.

3.2 Description of the black-box scheme

It is worth noting that the following ASASA scheme is the exact counterpart of
the SASAS structure analyzed by Biryukov and Shamir [BS01], with swapped
affine and S-box layers.

Black-box ASASA is a secret-key encryption scheme, parameterized by m,
the size of the S-boxes and k, the number of S-boxes. Let n = km be the number
of bits of the scheme. The overall structure of the cipher follows the ASASA
construction, with layers as follows:
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– Ax, Ay, Az are a random invertible affine mappings Zn2 → Zn2 . Without loss of
generality, the mappings can be considered purely linear, because the affine
constant can be integrated into the preceding or following S-box layer. In
the remainder we assume the mappings to be linear.

– Sx, Sy are S-box layers. Each S-box layer consists in the application of k
parallel random invertible m-bit S-boxes.

All linear layers and all S-boxes are uniformly random among invertible elements,
and independent from each other.

In the concrete instance of [BBK14], each S-box layer contains k = 16 S-
boxes over m = 8 bits each, so that the scheme operates on blocks of n = 128
bits. The secret key consists in three n-bit matrices and 2k m-bit S-boxes, so the
key size is 3 ·n2 + 2k ·m2m-bit long. With the previous parameters this amounts
to 14 KB.

It should be pointed out that the scheme is not IND-CPA secure. Indeed, an
8-bit invertible S-box has algebraic degree (at most) 7, so the overall scheme has
algebraic degree (at most) 49. Thus, the sum of ciphertexts on entries spanning a
cube of dimension 50 is necessarily zero. As a result the security claim in [BBK14]
is only that the secret key cannot be recovered, with a security parameter of 128
bits.

3.3 Description of the white-box scheme

As an application of the symmetric ASASA scheme, Biryukov et al. propose its
use as a basis for designing white-box block ciphers. In a nutshell, their idea is to
use ASASA to create small ciphers of, say, 16-bit blocks and to use them as super
S-boxes in e.g. a substitution-permutation network (SPN). Users of the cipher
in the white-box model are given access to super S-boxes in the form a table,
which allows them to encrypt and decrypt at will. Yet if the small ciphers used
in building the super S-boxes are secure, one cannot efficiently recover their keys
even when given access to their whole codebook, meaning that white-box users
cannot extract a more compact description of the super S-boxes from their tables.
This achieves weak white-box security as defined by Biryukov et al. [BBK14]:

Definition 1 (Key equivalence [BBK14]). Let E : {0, 1}κ × {0, 1}n →
{0, 1}n be a (symmetric) block cipher. E(k) is called the equivalent key set of k if
for any k′ ∈ E(k) one can efficiently compute E′ such that ∀ p E(k, p) = E′(k′, p).

Definition 2 (Weak white-box T -security [BBK14]). Let E : {0, 1}κ ×
{0, 1}n → {0, 1}n be a (symmetric) block cipher. W(E)(k, ·) is said to be a T -
secure weak white-box implementation of E(k, ·) if ∀ p W(E)(k, p) = E(k, p)
and if it is computationally expensive to find k′ ∈ E(k) of length less than T bits
when given full access to W(E)(k, ·).

Example 1. If S16 is a secure cipher with 16-bit blocks, then the full codebook
of S16(k, ·) as a table is a 220-secure weak white-box implementation of S16(k, ·).
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For their instantiations, Biryukov et al. propose to use several super S-boxes
of different sizes, among others:

– A 16-bit ASASA16 where the nonlinear permutations S are made of the
parallel application of two 8-bit S-boxes, with conjectured security of 64 bits
against key recovery.

– A 20-bit ASASA20 where the nonlinear permutations S are made of the
parallel application of two 10-bit S-boxes, with conjectured security of 100
bits against key recovery.

– A 24-bit ASASA24 where the nonlinear permutations S are made of the
parallel application of three 8-bit S-boxes, with conjectured security of 128
bits against key recovery.

3.4 Description of the χ-based public-key scheme

The χ mapping was introduced by Daemen [Dae95] and later used for several
cryptographic constructions, including the SHA-3 competition winner Keccak.
The mapping χ : {0, 1}n → {0, 1}n is defined by:

χi(a) = ai + ai+1ai+2

The χ-based ASASA scheme presented in [BBK14] is a public-key encryption
scheme operating on 127-bit inputs, the odd size coming from the fact that χ is
only invertible on inputs of odd length. The encryption function may be written
as:

F = Az ◦ (P + χ ◦Ay ◦ χ ◦Ax)

where:

– Ax, Ay, Az are random invertible affine mappings Z127
2 → Z127

2 . In the re-
mainder we will decompose Ax as a linear map Lx followed by the addition
of a constant Cx, and likewise for Ay, Az.

– χ is as above.
– P is the perturbation. It is a mapping {0, 1}127 → {0, 1}127. For 24 output

bits at a fixed position, it is equal to a random polynomial of degree 4. On
the remaining 103 bits, it is equal to zero.

Since χ has degree only 2, the overall degree of the encryption function is 4.
The public key of the scheme is the encryption function itself, given in the form
of degree 4 polynomials in the input bits, for each output bit. The private key
is the triplet of affine maps (Ax, Ay, Az).

Due to the perturbation, the scheme is not actually invertible. To circumvent
this, some redundancy is required in the plaintext, and the 24 bits of perturbation
must be guessed during decryption. The correct guess is determined first by
checking whether the resulting plaintext has the required redundancy, and second
by recomputing the ciphertext from the tentative plaintext and checking that it
matches. This is not relevant to our attack, and we refer the reader to [BBK14]
for more information.
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4 Structural attack on black-box ASASA

Our goal in this section is to recover the secret key of the black-box ASASA
scheme, in a chosen-plaintext model. For this purpose, we begin by peeling off
the last linear layer, Az. Once Az is removed, we obtain an ASAS structure, which
can be broken using Biryukov and Shamir’s techniques [BS01] in negligible time.
Thus the critical step is the first one.

4.1 Attack overview

Before progressing further, it is important to observe that the secret key of the
scheme is not uniquely defined. In particular, we are free to compose the input
and output of any S-box with a linear mapping of our choosing, and use the
result in place of the original S-box, as long as we modify the surrounding linear
layers accordingly. Thus, S-boxes are essentially defined up to linear equivalence.
When we claim to recover the secret key, this should be understood as recovering
an equivalent secret key; that is, any secret key that results in an encryption
function identical to the black-box instance under attack.

In particular, in order to remove the last linear layer of the scheme, it is
enough to determine, for each S-box, the m-dimensional subspace corresponding
to its image through the last linear layer. Indeed, we are free to pick any basis of
this m-dimensional subspace, and assert that each element of this basis is equal
to one bit at the output of the S-box. This will be correct, up to composing the
output of the S-box with some invertible linear mapping, and composing the
input of the last linear layer with the inverse mapping; which has no bearing on
the encryption output.

Thus, peeling off Az amounts to finding the image space of each S-box
through Az. For this purpose, we will look for linear masks a, b ∈ {0, 1}n over
the output of the cipher, such that the two dot products 〈F |a〉 and 〈F |b〉 of the
encryption function F along each mask are each equal to one bit at the output
of the same S-box in the last nonlinear layer Sy. Let us denote the set of such
pairs (a, b) by S (as in “solution”).

In order to compute S, the core property at play is that if masks a and b are
as required, then the binary product 〈F |a〉〈F |b〉 has degree only (m − 1)2 over
the input variables of the cipher (meaning that 〈F |a〉〈F |b〉 sums to zero over any
cube of dimension (m− 1)2 + 1), whereas it has degree 2(m− 1)2 in general.

We define the two linear masks a and b we are looking for as two vec-
tors of binary unknowns. Then f(a, b) = 〈F |a〉〈F |b〉 may be expressed as a
quadratic polynomial over these unknowns, whose coefficients are 〈F |ei〉〈F |ej〉
for (ei) the canonical basis of Zn2 . Now, the fact that f(a, b) sums to zero over
some cube C gives us a quadratic condition on (a, b), whose coefficients are∑
c∈C〈F (c)|ei〉〈F (c)|ej〉.
By computing n(n − 1)/2 cubes of dimension (m − 1)2 + 1, we thus derive

n(n−1)/2 quadratic conditions on (a, b). The resulting system can then be solved
by relinearization. This yields the linear space K spanned by S.

10



However we want to recover S, rather its linear combinations K. Thus in
a second step, we compute S as S = K ∩ P , where P is essentially the set of
elements that stem from a single product of two masks a and b. While P is not
a linear space, by guessing a few bits of the masks a, b, we can get many linear
constraints on the elements of P satisfying these guesses, and intersect these
linear constraints with K.

The first step may be regarded as the core of the attack, and it is also
the computationally most expensive: essentially we need to encrypt plaintexts
spanning n(n − 1)/2 cubes of dimension (m − 1)2 + 1. We recall that in the
actual black-box scheme of [BBK14], we have S-boxes over m = 8 bits, and the
total block size is n = 128 bits, covered by k = 16 S-boxes, so the complexity
is dominated by the computation of the encryption function over 213 cubes of
dimension 50, i.e. 263 encryptions.

4.2 Description of the attack

We use the notation of Section 3.1: let F = Az ◦ Sy ◦ Ay ◦ Sx ◦ Ax denote the
encryption function. We are interested in linear masks a ∈ {0, 1}n such that
〈F |a〉 depends only on the output of one S-box. Since 〈F |a〉 = 〈Sy ◦ Ay ◦ Sx ◦
Ax|(Az)Ta〉, this is equivalent to saying that the active bits of (Az)Ta span a
single S-box.

In fact we are searching for the set S of pairs of masks (a, b) such that (Az)Ta
and (Az)Tb span the same single S-box. Formally, if we let (e0, . . . , en−1) be the
canonical basis of Zn2 , and let Ot = span{ei : mt ≤ i < m(t+ 1)} be the span of
the output of the t-th S-box, then:

S = {(a, b) ∈ {0, 1}n × {0, 1}n : ∃ t, (Az)Ta ∈ Ot and (Az)Tb ∈ Ot}

The core property exploited in the attack is that if (a, b) belongs to S, then
〈F |a〉〈F |b〉 has degree at most (m − 1)2, as shown by Lemma 2 below. On the
other hand, if (a, b) 6∈ S, then 〈F |a〉〈F |b〉 is akin to the product of two indepen-
dent random polynomials of degree (m − 1)2, and it reaches degree 2(m − 1)2

with overwhelming probability.

Lemma 2. Let G be an invertible mapping {0, 1}m → {0, 1}m for m > 2. For
any two m-bit linear masks a and b, H = 〈G|a〉〈G|b〉 has degree at most m− 1.

Proof. It is clear that the degree cannot exceed m, since we depend on only m
variables (and we live in F2). What we show is that it is less than m− 1, as long
as m > 2. If a = 0 or b = 0 or a = b, this is clear, so we can assume that a, b are
linearly independent. Note that there is only one possible monomial of degree
m, and its coefficient is equal to

∑
x∈{0,1}m H(x). So all we have to show is that

this sum is zero.
Because G is invertible, G(x) spans each value in {0, 1}m once as x spans

{0, 1}m. As a consequence, the pair (〈G|a〉, 〈G|b〉) takes each of its 4 possible
values an equal number of times. In particular, it takes the value (1, 1) exactly
1/4 of the time. Hence 〈G|a〉〈G|b〉 takes the value 1 exactly 2m−2 times, which
is even for m > 2. Thus

∑
x∈{0,1}m H(x) = 0 and we are done.
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In the remainder, we regard two masks a and b as two sequences of n binary
unknowns (a0, . . . , an−1) and (b0, . . . , bn−1).

Step 1: kernel computation. If a, b are as desired, 〈F |a〉〈F |b〉 has degree at
most (m−1)2. Hence the sum of this product over a cube of dimension (m−1)2+1
is zero, as this amounts to an order-(m−1)2 + 1 differential of a degree (m−1)2

function. Let then C denote a random cube of dimension (m− 1)2 + 1 – that is,
a random affine space of dimension (m− 1)2+1, over {0, 1}n. We have:∑

c∈C
〈F (c)|a〉〈F (c)|b〉 =

∑
c∈C

∑
i<n

aiFi(c)
∑
j<n

bjFj(c)

=
∑
i,j<n

(∑
c∈C

Fi(c)Fj(c)
)
aibj

=
∑
i<j<n

(∑
c∈C

Fi(c)Fj(c)
)

(aibj + ajbi)

To deduce the last line, notice that
∑
c∈C FiFi = 0 since F has degree less

than dimC. Since the equation above really only says something about aibj+ajbi
rather than aibj (which is unavoidable, since the roles of a and b are symmetric),
we define E = Zn(n−1)/2

2 , see its canonical basis as ei,j for i < j < n, and define
λ(a, b) ∈ E by: λ(a, b)i,j = aibj + ajbi. By convention we set λj,i = λi,j and
λi,i = 0. The previous equations tells us that knowing only the n(n− 1)/2 bits∑
c∈C Fi(c)Fj(c) yields a quadratic condition on (a, b), and more specifically a

linear condition on λ(a, b). Whence we proceed as follows:

Algorithm 1: GenerateCondition
Input: A random cube C of dimension (m− 1)2 + 1 over {0, 1}n

1 Let sum = (0, . . . , 0) ∈ E
2 for c ∈ C do
3 (x0, . . . , xn−1)← F (c)
4 t← (xixj for i < j < n) ∈ E
5 sum = sum+ t

6 return sum

Let M be a binary matrix of size (n2/2) × (n(n − 1)/2), whose rows are
separate outputs of Algorithm 1. Let K be the kernel of this matrix. Then for
all (a, b) ∈ S, λ(a, b) is necessarily inK. ThusK contains the span of the λ(a, b)’s
for (a, b) ∈ S. Because M contains more than n(n − 1)/2, with overwhelming
probability K contains no other vector10. This is confirmed by our experiments.
10 This point is the only reason we pick n2/2 rows rather than only n(n− 1)/2; but we

may as easily choose n(n− 1)/2 plus some small constant. In practice it we can just
pick n(n − 1)/2 rows, and add more as required until the kernel has the expected
dimension km(m− 1)/2.
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Complexity analysis. Overall, the dominant cost is to compute 2(m−1)2+1 en-
cryptions per cube, for n2/2 cubes, which amounts to a total of n22(m−1)2 en-
cryptions. With the parameters of [BBK14], this is 263 encryptions. In practice,
we could limit ourselves to dimension-(m−1)2+1 subcubes of a single dimension-
(m − 1)2 + 2 cube, which would cost only 2(m−1)2+2 encryptions. However we
would still need to sum (pairwise bit products of) ciphertexts for each subcube,
so while this approach would certainly be an improvement in practice, we believe
it is cleaner to simply state the complexity as n22(m−1)2 encryption equivalents.

Beside that, we also need to compute the kernel of a matrix of dimension
n(n − 1)/2, which incurs a cost of roughly n6/8 basic linear operations. With
the parameters of [BBK14], we need to invert a binary matrix of dimension 213,
costing around 239 (in practice, highly optimized) operations, so this is negligible
compared to the required number of encryptions.

Step 2: extracting masks. Let:

P = {λ ∈ E : ∃ a, b ∈ {0, 1}n, λ = λ(a, b)}

Clearly we have λ(S) ⊆ K ∩ P . In fact, we assume λ(S) = K ∩ P , which is
confirmed by our experiments. We now want to compute K ∩ P .

However we do not need to enumerate the whole intersection K ∩P directly:
for our purpose, it suffices to recover enough elements of λ(S) such that the
corresponding masks span the output space of all S-boxes. Indeed, recall that
our end goal is merely to find the image of all k S-boxes through the last linear
layer. Thus, in the remainder, we explain how to find a random element in K∩P .
Once we have found km linearly independent masks in this manner, we will be
done.

The general idea to find a random element of K ∩ P is as follows. We begin
by guessing the value of a few pairs (ai, bi). This yields linear constraints on
the λi,j ’s. As an example, if (a0, b0) = (0, 0), then ∀i, λ0,i = 0. Because the
constraints are linear and so is the space K, finding the elements of K satisfying
the constraints only involves basic linear algebra. Thus, all we have to do is
guess enough constraints to single out an element of S with constant probability,
and recover that element as the one-dimensional subspace of K satisfying the
constraints.

More precisely, assume we guess 2r bits of a, b as:

a0, . . . , ar−1 = α0, . . . , αr−1

b0, . . . , br−1 = β0, . . . , βr−1

We view pairs (αi, βi) as elements of Z2
2. Assume there exists some linear depen-

dency between the (αi, βi)’s: that is, for some (µi) ∈ {0, 1}r:

r−1∑
i=0

µi(αi, βi) = (0, 0)

13



Then for all j < n, we have:
r−1∑
i=0

µiλi,j = bj

r−1∑
i=0

µiai + aj

r−1∑
i=0

µibi = 0 (1)

Now, since Z2
2 has dimension only 2, we can be sure that there exist r − 2

independent linear relations between the (αi, βi)’s, from which we deduce as
above (r−2)n linear relations on the λi,j ’s. In the full version of this article (see
Section 1.3), we prove that at least (r − 2)(n− r) of these relations are linearly
independent.

Now, the cardinality of S is k(2m − 1)(2m − 2) ≈ k22m. Hence if we choose
r = blog(|S|)/2c ≈ m + 1

2 log k, and randomly guess the values of (ai, bi) for
i < r, then we can expect that with constant probability there exists exactly one
element in S satisfying our guess. More precisely, each element has a probability
(close to) 2−2b|S|/2c ≈ 2−|S| of fitting our guess of 2r bits, so this probability
is close to |S|

(
|S|−1(1 − |S|−1)|S|−1) ≈ 1/e. Thus, if we denote by T the sub-

space of E of vectors satisfying the linear constraints induced by our guess, with
probability roughly 1/3, λ(S) ∩ T contains a single element.

On the other hand,K is generated by pairs of masks corresponding to distinct
bits for each S-box in Sy. Hence dimK = km(m−1)/2 = n(m−1)/2. As shown
earlier, from our 2r guesses, we deduce (at least) (r− 2)(n− r) linear conditions
on the (λi,j)’s, so codim T ≥ (r− 2)(n− r). Since we chose r = m+ 1

2 log k, this
means:

codim T ≥ (m− 2 + 1
2 log k) · (n−m− 1

2 log k)

dimK = (m− 1) · (n/2)

Thus, having 1
2 log k ≥ 1, i.e. k ≥ 4, and m + 1

2 log k ≥ n/2, which is easily the
case with concrete parameters m = 8, k = 16, n = 128, we have codim T ≥
dimK, and so K∩T is not expected to contain any extra vector beside the span
of λ(S) ∩ T . This is confirmed by our experiments.

In summary, if we pick r = m+ 1
2 log k and randomly guess the first r pairs

of bits (ai, bi), then with probability close to 1/e, K ∩ T contains only a single
vector, which belongs to λ(S) ∩ T and in particular to λ(S). In practice it may
be worthwhile to guess a little less then m + 1

2 log k pairs to ensure K ∩ T is
nonzero, then guess more as needed to single out a solution. Once we have a
single element in λ(S), it is easy to recover the two masks (a, b) it stems from11.

In the end, we recover two masks (a, b) coming from the same S-box. If we
repeat this process n = km times on average, the masks we recover will span
the output of each S-box (indeed we recover 2 masks each time, so n tries is
more than enough with high probability). Furthermore, checking whether two
masks belong to the same S-box is very cheap (for two masks a, b, we only need
to check whether λ(a, b) is in K), so we recover the output space of each S-box.
11 It can be shown that λ is invertible except on its zero output, which is reached only

when a = 0, b = 0 or a = b. An inversion algorithm is given in the full version of
this article (cf. Section 1.3).
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Complexity analysis. In order to get a random element in S, each guess of 2r
bits yields roughly 1/3 chance of recovering an element by intersecting linear
spaces K and T . Since K has dimension n(m− 1)/2, the complexity is roughly
(n(m− 1)/2)3 per try, and we need 3 tries on average for one success. Then the
process must be repeated n times. Thus the complexity may be evaluated to
roughly 3

8n
4(m− 1)3 basic linear operations. With the parameters of [BBK14],

this amounts to 236 linear operations, so this step is negligible compared to
Step 1 (and quite practical besides).

Before closing this section, we note that our attack does not really depend
on the randomness of the S-boxes or affine layers. All that is required of the
S-boxes is that the degree of zizj vary depending on whether i and j belong to
the same S-box. This makes the attack quite general, in the same sense as the
structural attack of [BS01].

5 Attacks on the χ-based public-key scheme

In this section, our goal is to recover the private key of the χ-based ASASA
scheme, using only the public key. For this purpose, we peel off one layer at a
time, starting with the last affine layer Az. We actually propose two different
ways to achieve this. The first attack is our main algebraic attack from Section 4,
with some modifications to account for the peculiarity of χ and the presence of
the perturbation. It is presented in Section 5.1. The second attack reduces the
problem to an instance of LPN, and is presented in Section 5.2. Once the last
affine layer has been removed with either attack, we move on to attacking the
remaining layers in Section 5.3.

5.1 Algebraic attack on the χ scheme

The χ scheme can be attacked in exactly the same manner as the black-box
scheme in Section 4. Using the notations of Section 3.1, we have:

zizi+1 = (y′i + y′i+1y
′
i+2) · (y′i+1 + y′i+2y

′
i+3)

= y′iy
′
i+1 + y′iy

′
i+2y

′
i+3

Here the crucial point is that y′i+2 is shared by the only degree-4 term of both
sides. Thus the degree of zizi+1 is bounded by 6. Likewise, the degree of zi+1(zi+
zi+2) = zizi+1 + zi+1zi+2 is also bounded by 6, as the sum of two products
of the previous form. On the other hand, any product of linear combinations
(
∑
αizi)(

∑
βizi) not of the previous two forms does not share common y′i’s in

its higher-degree terms, so no simplification occurs, and the product reaches
degree 8 with overwhelming probability.

As a result, we can proceed as in Section 4. Let n = 127 be the size of the
scheme, p = 24 the number of perturbation polynomials. The positions of the
p perturbation polynomials are not defined in the original paper; in the sequel
we assume that they are next to each other. Other choices of positions increase
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the tedium of the attack rather than its difficulty. A brief discussion of random
positions for perturbation polynomials is offered in the full version of this article
(see Section 1.3). Due to the rotational symmetry of χ, the positions of the
perturbed bits is only defined modulo rotational symmetry; for convenience, we
assume that perturbed bits are at positions zn−p to zn−1.

The full attack presented below has been verified experimentally for small
values of n.

Step 1: kernel computation. We fill the rows of an n(n − 1)/2 × n(n −
1)/2 matrix with separate outputs of Algorithm 1, with the difference that the
dimension of cubes in the algorithm is only 7 (instead of (m − 1)2 + 1 = 50
in the black-box case). Then we compute the kernel K of this matrix. Since
n(n−1)/2 ≈ 213 the complexity of this step is roughly 239 basic linear operations.

Step 2: extracting masks. The second step is to intersect K with the set P of
elements of the form λ(a, b) to recover actual solutions (see Section 4, step 2). In
Section 4 we were content with finding random elements of K ∩P . Now we want
to find all of them. To do so, instead of guessing a few pairs (ai, bi) as earlier, we
exhaust all possibilities for (a0, b0) then (a1, b1) and so forth along a tree-based
search. For each branch, we stop when the dimension of K intersected with the
linear constraints stemming from our guesses of (ai, bi)’s is reduced to 1. Each
branch yields a solution λ(a, b), from which the two masks a and b can be easily
recovered.

Step 3: sorting masks. Let ai = ((Lz)T)−1ei be the linear mask such that
zi = 〈F |ai〉 (for the sake of clarity we first assume Cz = 0; this has no impact
on the attack until step 4 in Section 5.3 where we will recover Cz). At this
point we have recovered the set S of all (unordered) pairs of masks {ai, ai+1}
and {ai, ai−1 + ai+1} for i < n − p, i.e. such that the corresponding zi’s are
not perturbed. Now we want to distinguish masks ai−1 + ai+1 from masks ai.
For each i such that zi−1, zi, zi+1 are not perturbed, this is easy enough, as ai
appears exactly three times among unordered pairs in S: namely in the pairs
{ai, ai−1}, {ai, ai+2} and {ai, ai−1+ai+1}; whereas masks of the form ai−1+ai+1
appear only once, in {ai−1 + ai+1, ai}.

Thus we have recovered every ai for which zi−1, zi, zi+1 are not perturbed.
Since perturbed bits are next to each other, we have recovered all unperturbed
ai’s save the two ai’s on the outer edge of the perturbation, i.e. a0 and an−p−1.
We can also order all recovered ai’s simply by checking whether {ai, ai+1} is in S.
In other words, we look at S as the set of edges of a graph whose vertices are the
elements of pairs in S; then the chain (a1, . . . , an−p−2) is simply the longest path
in this graph. In fact we recover (a1, . . . , an−p−2), minus its direction: that is, so
far, we cannot distinguish it from (an−p−2, . . . , a1). If we look at the neighbours
of the end points of the path, we also recover {a0, a0+a2} and {an−p−1, an−p−3+
an−p−1}. However we are not equipped to tell apart the members of each pair
with only S at our disposal.
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To find a0 in {a0, a0+a2} (and likewise an−p−2 in {an−p−1, an−p−3+an−p−1}),
a very efficient technique is to anticipate a little and use the distinguisher in Sec-
tion 5.2. Namely, in short, we differentiate the encryption function F twice using
two fixed random input differences δ1 6= δ2, and check whether for a fraction 1/4
of possible choices of (δ1, δ2), 〈∂2F/∂δ1∂δ2|x〉 is equal to a constant with bias
2−4: this property holds if and only if x is one of the ai’s. This only requires
around 216 encryptions for each choice of (δ1, δ2), and thus completes in neg-
ligible time. Another more self-contained approach is to move on to the next
step (in Section 5.3), where the algorithm we use is executed separately on each
recovered mask ai, and fails for a0 +a2 but not a1. However this would be slower
in practice.

We assume either solution was chosen and we now know the whole or-
dered chain (a0, . . . , an−p−1) of masks corresponding to unperturbed bits. At
this stage we are only missing the direction of the chain, i.e. we cannot distin-
guish (a0, . . . , an−p−1) from (an−p−1, . . . , a0). This will be corrected at the next
step.

As mentioned earlier, we propose two different techniques to recover the
first linear layer of the χ scheme: one algebraic technique, and another based on
LPN. We have now just completed the algebraic technique. In the next section we
present the LPN-based technique. Afterwards we will move on to the remaining
steps, which are common to both techniques, and fully break the cipher with
the knowledge of (a0, . . . , an−p−1), in Section 5.3.

5.2 LPN-based attack on the χ scheme

We now present a different approach to remove the last linear layer of the χ
scheme. This approach relies on the fact that each output bit of χ is almost
linear, in the sense that the only nonlinear component is the product of two
input bits. In particular this nonlinear component is zero with probability 3/4.
The idea is then to treat this nonlinear component as random noise. To achieve
this we differentiate the encryption function F twice. So the first ASA layers of
F ′′ yield a constant; then ASAS is a noisy constant due to the weak nonlinearity;
and ASASA is a noisy constant accessed through Az. This allows us to reduce the
problem of recovering Az to (a close variant of) an LPN instance with tractable
parameters.

We now describe the attack in detail. First, pick two distinct random differ-
ences δ1, δ2 ∈ {0, 1}n. Then compute the order 2 differential of the encryption
function along these two differences. That is, let F ′′ = ∂F/∂δ1∂δ2. This second-
order differential is constant at the output of F y′ = Ay ◦ χ ◦ Ax, since χ has
degree only two:

(F y
′
)′′(x) 4= ∂F y

′
/∂δ1∂δ2 = C(δ1, δ2)
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Now if we look at a single bit at the output of F z = χ ◦ F y′ , we have:

(F z)′′i (x) = (F y
′
)′′i (x) + F y

′

i+1F
y′

i+2(x) + F y
′

i+1F
y′

i+2(x+ δ1)

+ F y
′

i+1F
y′

i+2(x+ δ2) + F y
′

i+1F
y′

i+2(x+ δ1 + δ2) (2)

That is, a bit at the output of (F z)′′ still sums up to a constant, plus the sum of
four bit products. If we look at each product as an independent random binary
variable that is zero with probability 3/4, i.e. bias 2−1, then by the Piling-up
Lemma (Lemma 1) the sum is equal to zero with bias 2−4.

Experiments show that modeling the four products as independent is not
quite accurate: a significant discrepancy is introduced by the fact that the four
inputs of the products sum up to a constant. For the sake of clarity, we will
disregard this for now and pretend that the four products are independent. We
will come back to this issue later on.

Now a single linear layer remains between (F z)′′ and F ′′. Let si ∈ {0, 1}n
be the linear mask such that 〈F |si〉 = F zi (once again we assume Cz = 0, and
postpone taking Cz into account until step 4 of the attack). Then 〈F ′′|si〉 is
equal to a constant with bias 2−4. Now let us compute N different outputs of
F ′′ for some N to be determined later, which costs 4N calls to the encryption
function F . Let us stack these N outputs in an N × n matrix A.

Then we know that A·si is either the all-zero or the all-one vector (depending
on (F y′)′′i ) plus a noise of bias 2−4. Thus finding si is essentially an LPN problem
with dimension n = 127 and bias 2−4 (i.e. noise 1/2 + 2−5). Of course this is not
quite an LPN instance: A is not uniform, there are n solutions instead of one, and
there is no output vector b (although we could isolate the last column of A and
define it as the output vector). However in practice none of this should hinder
the performance of a BKW algorithm [BKW03]. Thus we make the heuristic
assumption that BKW performs here as it would on a standard LPN instance12.

In the end, we recover the masks si such that zi = 〈F |si〉. Before moving on to
the next stage of the attack, we go back to the earlier independence assumption.

Dependency between the four products. In the reasoning above, we have
modeled the four bit products in Equation 2 as independent binary random
variables with bias 2−1. That is, we assumed the four products would behave as:

Π = W1W2 +X1X2 + Y1Y2 + Z1Z2

12 To the best of our knowledge, we have yet to see an LPN-like problem with a matrix A
on which BKW underperforms significantly compared to the uniform case, unless the
problem was specifically crafted for this purpose. The existence of multiple solutions
is also a notable difference in our case. However in a classic application of BKW with
a fast Fourier transform at the end, this only means that the Fourier transform will
output several solutions. Note that the dimension of the Fourier transform will be
close to 127/3 ≈ 42 [LF06], and we have only ≈ 214 solutions, so they are distinct
on their last 42 bits with very high probability.

18



where Wi, Xi, Yi, Zi are uniformly random independent binary variables. This
yields an expectancy E[Π] with bias 2−4. As noted above, this is not quite
accurate, and we now provide a more precise model that matches with our ex-
periments.

Since F y′ has degree two, (F y′)′′ is a constant, dependent only on δ1 and δ2.
This implies that in the previous formula, we haveW1 +X1 +Y1 +Z1 = (F y′)′′i+1
and W2 +X2 + Y2 + Z2 = (F y′)′′i+2. To capture this, we look at:

E(c1, c2) = E[Π |W1 +X1 + Y1 + Z1 = c1,W2 +X2 + Y2 + Z2 = c2]

It turns out that E(0, 0) has a stronger bias, close to 2−3; while perhaps sur-
prisingly, E(a, b) for (a, b) 6= (0, 0) has bias zero, and is thus not suitable for our
attack. Since G′′ is essentially random, this means that our technique will work
for only a fraction 1/4 of output bits. However, once we have recovered these
output bits, we can easily change δ1, δ2 to obtain a new value of G′′ and start
over to find new output bits.

After k iterations of the above process, a given bit at position i ≤ 127 will
have probability (3/4)k of remaining undiscovered. In order for all 103 unper-
turbed bits to be discovered with good probability, it is thus enough to perform
k = − log(103)/ log(3/4) ≈ 16 iterations.

In the end we recover all linear masks ai corresponding to unperturbed bits
at the output of the second χ layer; i.e. ai = ((Az)T)−1ei for 0 ≤ i < n − p.
The ai’s can then be ordered into a chain (a0, . . . , an−p−1) like in Section 5.1:
neighbouring ai’s are characterized by the fact that 〈F |ai〉〈F |ai+1〉 has degree 6.
We postpone distinguishing between (a0, . . . , an−p−1) and (an−p−1, . . . , a0) until
Section 5.3.

Complexity analysis. According to [LF06, Theorem 2], the number of samples
needed to solve an LPN instance of dimension 127 and bias 2−4 is N = 244

(attained by setting a = 3 and b = 43). This requires 4N = 246 encryptions.
Moreover the dominant cost in the time complexity is to sort the 244 samples a
times, which requires roughly 3 ·44 ·244 < 252 basic operations. Finally, as noted
above, we need to iterate the process 16 times to recover all unperturbed output
bits with good probability, so our overall time complexity is increased to 256

for BKW, and 250 encryptions to gather samples (slightly less with a structure
sharing some plaintexts between the 16 iterations).

5.3 Peeling off the remaining ASAS layers

Using either the algebraic attack from Section 5.1 or the LPN-based attack from
Section 5.2, we have recovered the ordered chain (a0, . . . , an−p−1) of linear masks
such that zi = 〈F |ai〉. More exactly we have recovered either (a0, . . . , an−p−1)
or (an−p−1, . . . , a0). For simplicity assume we have recovered (a0, . . . , an−p−1).
We will be able to distinguish between the two cases later on.

Essentially, this means we have peeled off the last affine layer Az — or more
accurately, its linear component, over the unperturbed bits. Note that we can-
not hope to recover Az over perturbed bits, as perturbed bits are by definition
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uniformly random polynomials of degree 4, and a linear combination of uni-
formly random polynomials of degree 4 is still a uniformly random polynomial
of degree 4. In other words, the perturbation is essentially defined modulo affine
equivalence.

We now move on to peeling off the remaining layers one by one. We point
out once again that all steps below have been verified experimentally.

Step 4: from ASAS to ASA. The next layer we wish to peel off is a χ layer,
which is entirely public. It may seem that applying χ−1 should be enough. The
difficulty arises from the fact that we do not know the full output of χ, but
only n − p bits. Furthermore, if our goal was merely to decrypt some specific
ciphertext, we could use other techniques, e.g. the fact that guessing one bit at
the input of χ produces a cascade effect that allows recovery of all other input
bits from output bits, regardless of the fact that the function has been truncated
[Dae95]. However our goal is different: we want to recover the secret key, not just
be able to decrypt messages. For this purpose we want to cleanly recover the
input of χ in the form of degree 2 polynomials, for every unperturbed bit. We
propose a technique to achieve this below.

From the previous step, we are in possession of (a0, . . . , an−p−1) as defined
above. Since by definition zi = 〈F |ai〉, this means we know zi for 0 ≤ i < n− p.
Note that y′i has degree only 2, and we know that zi = y′i+ y′i+1y

′
i+2. In order to

reverse the χ layer, we set out to recover y′i, y′i+1, y
′
i+2 from knowledge of only

zi, by using the fact that y′i, y′i+1, y
′
i+2 are quadratic.

This reduces to the following problem: given P = A+B ·C, where A,B,C are
degree-2 polynomials, recover A,B,C. A closer look reveals that this problem
is not possible exactly as stated, because P can be equivalently written in four
different ways as: A+B ·C, A+B+B ·C, A+C+B ·C, A+B + C+B ·C. On
the other hand, we assume that for uniformly random A,B,C, the probability
that P may be written in some unrelated way, i.e. P = C + D · E for C,D,E
distinct from the previous four cases, is overwhelmingly low. This situation has
never occurred in our experiments. Thus our problem reduces to:

Problem 1. Given P = A+B·C, where A,B,C are degree-2 polynomials, recover
degree-2 polynomials A′, B′, C ′ such that P = A′ +B′ · C ′.

Our previous assumption says A′ ∈ span{A,B,C, 1}; B′, C ′ ∈ span{B,C, 1}.
A straightforward approach to tackle this problem is to write B formally as
a generic degree-2 polynomial with unknown coefficients. This gives us k =
1 + n + n(n + 1)/2 ≈ n2/2 binary unknowns. Then we observe that B · P has
degree only 4 (since B2 = B). Each term of degree 5 in B · P must have a
zero coefficient, and thus each term gives us a linear constraint on the unknown
coefficients of B. Collecting the constraints takes up negligible time, at which
point we have a k× k matrix whose kernel is span{B,C, 1}. This gives us a few
possibilities for B′, C ′, which we can filter by checking that A′ = P − B′ · C ′
has degree 2. The complexity of this approach boils down to inverting a k-
dimensional binary matrix, which costs essentially 23k basic linear operations.
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In our case this amounts to 239 basic linear operations. In the full version of
this article (cf. Section 1.3), we present a more elaborate, but faster algorithm
to solve Problem 1.

At this point, we have essentially removed the first two ASASA layers (as-
suming Cz = 0, but this actually has no impact up to this point). More work
is required to fully recover the layers, and analyze the remaining ASA layers.
However the core of the attack is over. A detailed description of the remaining
steps to fully recover the remaining layers is provided in the full version of this
article (see Section 1.3).

6 A practical attack on white-box ASASA

In this section we show that the actual security of small-block ASASA ciphers is
much lower than was estimated by Biryukov et al. We describe a procedure that
attempts to recover the secret components of the structure, thus breaking the
weak white-box security notion (Definition 2). Our algorithm relies rather heavily
on heuristics, and evaluating its efficiency requires actual implementation. We
focused on two instance, the 16-bit ASASA16 with claimed security of 64 bits
and the 20-bit ASASA20 with claimed security of 100 bits. A straightforward
implementation of our algorithm is able to recover the secret components of the
16-bit instance in under a minute and of the 20-bit instance in a few hours, when
running on a standard PC. We recall that the source code is publicly available
(see Section 1.3). For the remainder of the section, we implicitly use the 16-bit
instance when describing the attack.

6.1 Attack overview

Our general black-box attack from Section 4 does not apply, because the block
size is too small to allow computing cubes of dimension 50. On the other hand,
the small block size makes it possible to compute the distribution of output
differences for a single input difference in very reasonable time. For instance,
one can compute and store the entire difference distribution table (DDT) of a
16-bit cipher in under a second using just a standard PC.

Remark 1. Our attack makes use of the full codebook of the ciphers, which in
general may be seen as a very strong requirement. This is however only natural in
the case of attacking white-box implementations, as the user is actually required
to be given the full codebook of the super S-boxes as part of the implementation.

From the results of Biryukov and Shamir [BS01], it is already enough to
recover only one of the external affine (or linear) layers in order to break the
security of ASASA. Indeed, this allows to reduce the cipher to either of ASAS or
SASA, which can then be attacked in practical time using their method. Thus we
focus on removing the first linear layer. In accordance with the opening remarks
of Section 4.1, this amounts to finding the image space of each S-box through
(Ax)−1.
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The general idea of the attack is to create an oracle able to recognize whether
an input difference δ activates one or two S-boxes in the first S-box layer Sx.
More accurately, we create a ranking function F such that F(δ) is expected to
be significantly higher if δ activates only one S-box rather than two. We propose
two choices for F .

Both choices begin by computing the entire output difference distribution
D(δ) for the input difference δ, i.e. the row corresponding to δ in the DDT.
Then the value of F(δ) is computed from D(δ). Choices for F are heuristic, but
experiments show they are quite efficient. We now present our two choices for
F .

Walsh transform. The idea behind this version of the attack is quite intuitive.
If δ activates only one S-box, then after the first SA layers, two inner states
computed from any two plaintexts with input difference δ are equal on the output
of the inactive S-box. Hence after the first ASA layers, they are equal along 28−1
non-zero linear masks. Since these masks only traverse a single S-box layer before
the output of the cipher, linear cryptanalysis [Mat94] tells us that we can expect
some linear masks to be biased at the output of the cipher. On the other hand
if both S-boxes are active in the first round, no such phenomenon occurs, and
linear biases on the output differences are expected to be weaker.

In order to measure this difference, we propose to compute, for every output
mask a, the value f(a) = (

∑
x∈{0,1}16〈∂F∂δ(x)|a〉) − 215 (where the sum is

computed in Z). That is, 2−15f(a) is the bias of the output differences D(δ)
along mask a. The function f can be computed efficiently, since it is precisely
the Walsh transform of the characteristic function of D(δ), and we can use a fast
Fourier transform algorithm. Then as a ranking function F we simply choose
max(f), i.e. the highest bias among all output masks.

Number of collisions. It turns out that performing the Walsh transform is
not truly necessary. Indeed, the number of collisions in D(δ) is higher when δ
activates only 1 S-box; where by number of collisions we mean 215 minus the
number of distinct values in D(δ). This may be understood as a consequence
of the fact that whenever δ activates a single S-box, only 27 output differences
are possible after the first ASA layers; and depending on the properties of the
active (random) S-box, the distribution between these differences may be quite
uneven. Whereas if both S-boxes are active, 215 differences are possible and the
distribution is expected to be less skewed. Thus we pick as ranking function F
the number of collisions in D(δ) in the previous sense.

Once we have chosen a ranking function F , we simply compute the ranking
of every possible input difference, sort the differences, and choose the highest
16 linearly independent differences according to our ranking. Our hope is that
these differences only activate a single S-box. In a second step, we will group
together differences that activate the same S-box. A more detailed description
of the attack, together with a discussion of the results, is provided in the full
version of this article (see Section 1.3).
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7 Conclusion

We presented a new algebraic attack able to efficiently break both the χ-based
public-key cryptosystem and the secret-key scheme of [BBK14]. In addition we
proposed another attack that heuristically reduces the key-recovery problem on
the χ scheme to an easy instance of LPN. In the case of the public-key scheme,
both attacks go through regardless of the amount of perturbation. For both
schemes, the attacks are quite structural (in the case of the black-box scheme, it
is in fact structural in the sense of [BS01]), and seem difficult to patch. Finally,
although the general attack on the black-box scheme does not carry over to the
small-block instances used for white-bow designs, we also showed a very efficient
dedicated attack on some of the small-block instances, casting a doubt on their
general suitability for that purpose.
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