
Composable & Modular Anonymous Credentials:
Definitions and Practical Constructions

Jan Camenisch1, Maria Dubovitskaya1, Kristiyan Haralambiev2, and

Markulf Kohlweiss3

1 IBM Research – Zurich
2 Google Inc.

3 Microsoft Research

Abstract. It takes time for theoretical advances to get used in practical
schemes. Anonymous credential schemes are no exception. For instance,
existing schemes suited for real-world use lack formal, composable defi-
nitions, partly because they do not support straight-line extraction and
rely on random oracles for their security arguments. To address this gap,
we propose unlinkable redactable signatures (URS), a new building block
for privacy-enhancing protocols, which we use to construct the first ef-
ficient UC-secure anonymous credential system that supports multiple
issuers, selective disclosure of attributes, and pseudonyms. Our scheme
is one of the first such systems for which both the size of a credential
and its presentation proof are independent of the number of attributes
issued in a credential. Moreover, our new credential scheme does not rely
on random oracles. As an important intermediary step, we address the
problem of building a functionality for a complex credential system that
can cover many different features. Namely, we design a core building
block for a single issuer that supports credential issuance and presen-
tation with respect to pseudonyms and then show how to construct a
full-fledged credential system with multiple issuers in a modular way.
We expect this definitional approach to be of independent interest.

Keywords: Structure preserving signatures, vector commitments,
anonymous credentials, universal composability, Groth-Sahai proofs.

1 Introduction

Digital signature schemes are a fundamental cryptographic primitive. Besides
their use for signing digital items, they are used as building blocks in more com-
plex cryptographic schemes such as blind signatures [6, 45], group signatures [16,
57], direct anonymous attestation [21], electronic cash [43], voting schemes [52],
adaptive oblivious transfer [33, 24], and anonymous credentials [13].

For protocols constructed like this to be efficient, special properties are de-
manded from a signature scheme, in particular when the protocol needs to
achieve strong privacy properties. The most important such properties seem
to be that the issuance of a signature and its later use in a protocol is unlinkable
as well as that the scheme is able to sign multiple messages (without employing a
hash function). The first signature scheme that met these requirements is a blind

signature scheme by Brands [19]. The drawback of blind signatures, however, is
that when using the signature later in a higher-level protocol it must typically be
revealed so that a third party can be convinced of its validity. Thus, a signature
can be used only once, which turns out to be quite limiting for applications such
as group signatures, multi-show anonymous credentials, and compact e-cash [26].

Camenisch and Lysyanskaya [31, 32] were the first to design signature schemes
(CL-signatures) overcoming these drawbacks. Their schemes are secure under the
Strong RSA, the q-SDH, or the LRSW assumption, respectively, and allow for an
alternative approach when using a signature in a protocol: instead of revealing
the signature to a party, the user employs zero-knowledge proofs to convince the
party that she possesses a valid signature. While in theory this is possible for any
signature scheme, CL-signatures were the first that enabled efficient proofs using
generalized Schnorr proofs of knowledge. This is due to the algebraic properties of
CL-signatures, i.e., no hash function is applied to the message and the signature
and message values are either exponents or group elements.

Since the introduction of CL-signatures, the area of privacy preserving pro-
tocols flourished considerably and numerous new protocols based on them have
been proposed. This has also made it apparent, however, that CL-signatures still
have a number of drawbacks:

1. Random oracles. To make generalized Schnorr proofs of knowledge non-
interactive (which is often required), one needs to resort to the Fiat-Shamir
heuristic, i.e., to the random oracle model, and thus looses all provable se-
curity guarantees when the oracle is instantiated by a hash function [37].

2. Straight-line extraction. When designing a protocol to be secure in the UC
model [36], rewinding can not be used to prove security. As a result, witnesses
in generalized Schnorr proofs of knowledge need to be encrypted under a
public key encoded in the common reference string (CRS). As the witnesses
(messages signed with CL-signatures) are discrete logarithms, this is rather
expensive [27] and may render the overall protocol impractical.

3. Linear size. When proving ownership of a CL-signature on many messages,
all of them are needed for the verification of the signature and therefore a
proof of possession of a signature will be linear in the number of messages.

A promising ingredient to overcome these drawbacks is the work by Groth
and Sahai [49], who for the first time constructed efficient non-interactive zero-
knowledge proofs (NIZK) without using random oracles, albeit for a limited set
of languages. Indeed, the set of languages covered by these so-called GS-proofs
does not include the ones covered by generalized Schnorr protocols and therefore
many authors started to look for a compatible CL-signatures replacement, i.e.,
structure-preserving signature schemes [2, 3, 1]. Together with GS-proofs, these
new schemes can also be used as signatures of knowledge [42] and thus are
applicable in scenarios previously addressed with CL-signatures.

However, structure-preserving signatures still suffer in terms of performance
when signing multiple messages (cf. drawback (3)), which is a typical requirement
in applications such as anonymous credentials. Indeed, as for CL-signatures, the
size of proofs with structure-preserving signatures grows linearly with the num-

2

ber of messages. As the constant factor for GS-proofs is larger than for gener-
alized Schnorr proofs, structure-preserving signatures loose their attractiveness
as a building block for such applications.

Our contribution. In this paper, our goal is to address the three drawbacks of
CL-signatures discussed above. To this end, we propose a new type of signa-
ture scheme, unlinkable redactable signatures (URS), in which one can redact
message-signature pairs and reveal only their relevant parts each time they
are used. Moreover, signatures in URS are unlinkable and the same message-
signature pair can be redacted and revealed multiple times without being linked
back to its origin. The real-world efficiency of URS is comparable to that of
CL-signatures when a single message is signed and becomes superior when the
number of messages signed grows. We view our contribution as threefold: First,
in §2, we formally define URS. We present property-based security definitions
for unlinkability and unforgeability and also a UC functionality for URS. Com-
paring the two definitions we find the seemingly common phenomenon that the
functionality-based definition requires a key-registration process (allowing for the
extraction of keys in the proof) while the property based definition per se does
not require that. We validate our definitions by showing that an URS scheme
satisfying strengthened property-based security definitions with key extraction
securely implements our UC functionality.

Second, in §3, we construct an efficient URS scheme from vector commit-
ments [56, 61, 38], structure-preserving signatures [2, 3], and (a minimal dose of)
non-interactive proofs of knowledge (NIPoK), which in practice can be instanti-
ated by witness-indistinguishable Groth-Sahai proofs [49]. As we are interested in
practical efficiency, we instantiate our scheme with concrete building block that
deliberately rely on stronger assumptions (see §4.3). However, if one is willing
to accept a less efficient scheme, a CDH-based vector commitment scheme [38]
secure under less strong assumptions. We show how to make use of algebraic
properties in our building blocks to minimize the witness size of the NIPoK.

Third, in §4, to demonstrate the versatility of our URS scheme as a CL-
signature scheme ‘replacement’, we employ it to design the first efficient univer-
sally composable anonymous credential system that supports multiple issuers,
pseudonyms, and selective disclosure of attributes.

Anonymous credential systems usually need to support an ecosystem of dif-
ferent features. Therefore, a single ideal functionality providing all the features
such as pseudonyms, selective attribute disclosure, predicates over attributes,
revocation, inspection, etc. would be very complex and hard to both create and
use in a modular way—not to mention credible security proofs.

Nevertheless, ideal functionalities are very attractive for modeling the com-
plexity of anonymous credential schemes. Indeed an early seminal paper [30]
attempted exactly this, but was foiled by drawback (2)—as well as by the im-
maturity of the UC framework at the time. To overcome this complexity, we
present a flexible and modular approach for constructing UC-secure anonymous
credentials. Namely, we design a core building block for a single issuer that sup-
ports credential issuance and presentation with respect to pseudonyms. We then

3

show how to compose multiple such blocks to construct in a modular way a
full-fledged credential system with multiple issuers.

Besides being composable, our system is also arguably one of the first schemes
to support efficient non-interactive attribute disclosure with cost independent of
the number of attributes issued without having to rely on random oracles. Even
in the random oracle model this has been an elusive goal. Therefore, because of
the composability and efficient selective disclose, our scheme is very attractive
and quickly surpasses schemes based on blind signatures and CL-signatures [20,
32] when the number of attributes grows.

Related work. We compare our signatures and credential schemes with other
related work, a full comparison is deferred to the full paper [10]. As there are a
multitude of papers on redactable, quotable, and sanitizable signatures [50, 22,
63, 7], we focus on the most influential definitional work and the most promising
approaches in terms of efficiency.

A variety of signature schemes with flexible signing capabilities and strong
privacy properties have been proposed [41, 18, 8, 7, 11, 15, 35]. While these works
provide a fresh definitional approach, their schemes are very inefficient, espe-
cially when redacting a message vector with a large number of attributes. Some
schemes built on vector commitments [56, 60] achieve better efficiency but only
consider one-time-show credentials, and while the scheme in [56] is not defined
formally, the scheme in [60] involves interaction.

The first efficient multi-show anonymous credential scheme is [30]. It was
extended with efficient attribute disclosure [25] and had real-world exposure [34,
21]. It can, however, only be non-interactive in the random oracle model. Non-
interactive credentials in the standard model have been built from P-signatures
[13, 14]. An instantiation of our URS scheme, however, is almost twice more effi-
cient than [13] despite the fact that the latter does not support signing multiple
messages. Belenkiy et al. [12] show how to use the randomizability of P-signatures
for delegation and Chow et al. [44] extend the randomizable group signatures
scheme underlying [12] with a flexible attribute mechanism. Izabachène et al. [55]
extends the work of [13] with vector commitments; their scheme is, however, not
secure under our definitions. In independent work, Hanser and Slamanig [51]
present a credential system with efficient (independent of the number of at-
tributes) attribute disclosure. However, their system is only secure in the generic
group model [47]. Furthermore, it uses hash function to encode attributes and
thus does not enable efficient protocol design. None of these schemes is (univer-
sally) composable. Camenisch et al. [28] have recently proposed property-based
definitions of anonymous credentials and of the necessary building blocks, given
a construction and proved it secure. Their definitions turn out to be rather com-
plex, indicating that for complex systems functionality-based definitions might
be easier to handle. Indeed, for their definition of privacy, Camenisch et al. make
use of what they call ‘filter’ which is very reminiscent of an ideal functionality.
Finally, the construction they provide is based on CL-signatures and thus suffers
from the drawbacks of that approach.

4

An important factor that is often neglected is the compatibility of schemes
with zero-knowledge proofs to enable efficient protocol design. Because of its
compatibility with Groth-Sahai proofs, efficiency and composability, immediate
further applications of our URS scheme include efficient e-cash, credential-based
key exchange, e-voting, auditing, and others.

2 Definitions of Unlinkable Redactable Signatures

Redactable signatures are an instance of homomorphic [7] or controlled-malleable
signatures [41]. For our credentials application the most useful redaction opera-
tion is to selectively white-list or quote a subset of messages and their positions
from a message vector of length n ([7] consider the quoting of sub-sentences).
We denote the message space of all valid message vectors as M. We also refer
to the redacted message as a quote of the original message. To distinguish the
original vector from the quote of all messages we denote the original vector as
m = (1,m1, . . . ,mn) and a quote as mI = (2,m′1, . . . ,m

′
n). We represent each

valid quoting transformation by a set I ⊆ [1, n] of message positions and denote
quoting either by I(m) or mI . We denote the ith message element either by m[i]
or mi. A quote mI from m is of the form

mI [i] = m′i =

{
mi i ∈ I
⊥ otherwise

.

Note that the message itself already reveals whether it is a quote. Chase et al.
[41] call such a scheme tiered and we refer to the vectors m and mI as Tier 1
and Tier 2 vectors respectively. The vector mI can be sparse and can have a
much shorter encoding than m. Finally, we define Zero(m, I) = (1, m̃1, . . . , m̃n),
with m̃j = mj for j ∈ I and m̃j = 0 for j /∈ I. This should not be confused with
the operator I that outputs a Tier 2 message.

2.1 Property-Based Definitions for Unlinkable Redactable Signatures

One can define the security of redactable signatures by instantiating controlled-
malleable signature definitions for simulatability, simulation unforgeability, and
simulation context-hiding of Chase et al. [41] with the quoting transformation
class T = {I(·)|I ⊆ [1..n]} above. We prefer, however, to give our own unforge-
ability and unlinkability definitions that are more specific and do not rely on
simulation and extraction. This makes them simpler and easier to prove, and
thus more efficiently realizable. Together with key extractability they are never-
theless sufficient to realize the strong guarantees of our UC functionality.

Definition 1 (Unlinkable Redactable Signatures). An unlinkable
redactable signature scheme URS consists of the following algorithms:

URS.SGen(1κ)→ SP . SGen takes the security parameter 1κ as input and outputs
the system parameters SP.

5

URS.Kg(SP)→ (pk , sk). Kg takes the system parameters SP as an input and
outputs public verification and private signing keys (pk , sk). The verification
key pk defines the message space M.

URS.Sign(sk ,m)→ σ. Sign takes the signing key sk and a message m ∈ M as
input and produces a signature σ.

URS.Derive(pk , I,m, σ)→ σI . Derive takes the public key pk, a selection vector
I, a message m and a signature σ (both of Tier 1) as input. It produces a
Tier 2 signature σI for mI .

URS.Verify(pk , σ,m)→ 0/1. Verify takes the verification key pk, a signature σ,
and a message m of Tier 1 or Tier 2 as input and checks the signature.

We omit the URS qualifier when it is clear from the context.

Correctness. Informally, correctness requires that for honestly generated keys,
both honestly generated and honestly derived signatures must always verify.

Unforgeability. Unforgeability captures the requirement that an attacker, who is
given Tier 1 and Tier 2 signatures on messages of his choice, should not be able
to produce a signature on a message that is not derivable from the set of signed
messages in his possession. More formally:

Definition 2 (Unforgeability). Let H output unique handles, for instance
implemented using a counter. For a redactable signature scheme URS.{SGen,
Kg,Sign,Derive,Verify}, tables Q1, Q2, Q3, and an adversary A, consider the fol-
lowing game:

– Step 1. SP ← SGen(1k); (pk , sk)
$←− Kg(SP); Q1, Q2, Q3 ← ∅.

– Step 2. (m∗I , σ
∗)

$←− AOSign(·),ODerive(·,·),OReveal(·)(pk), where OSign, ODerive, and
OReveal behave as follows:

OSign(m) ODerive(h, I) OReveal(h)

h← H; σ ← Sign(sk ,m) if (h,m, σ) ∈ Q1 if (h,m, σ) ∈ Q1

add (h,m, σ) to Q1 σ′ ← Derive(pk , I,m, σ) add m to Q3

return h add mI to Q2; return σ′ return σ

A signature scheme URS satisfies unforgeability if for all such PPT algorithms A
there exists a negligible function ν(·) such that in the above game the probability
(over the random choices of Kg, Sign, Derive and A) that Verify(pk , σ∗,m∗I) = 1
and ∀m ∈ Q3, m∗I 6= mI , and m∗I /∈ Q2 is less than ν(κ).

Note that we do not consider a Tier 1 signature itself as a forgery. However,
if the adversary manages to produce a valid Tier 1 signature on a message
m without calling Sign(m) and either Reveal(h) or Derive(h, I) on all subsets
I ⊆ [1..n] for the corresponding handle h, he can use this Tier 1 signature to
break unforgeability by deriving a Tier 2 signature from it.

Unlinkability. Informally, unlinkability ensures that an adversarial signer cannot
distinguish which of two Tier 1 signatures of his choosing was used to derive a
Tier 2 signature. More formally:

6

Definition 3 (Unlinkability). For the signature scheme URS.{SGen,Kg,Sign,
Derive,Verify} and a stateful adversary A, consider the following game:

– Step 1. SP ← SGen(1k).

– Step 2. (pk , I,m(0),m(1), σ(0), σ(1))
$←− A(SP), where m

(0)
I = m

(1)
I ,

Verify(pk , σ(0),m(0)) = 1, and Verify(pk , σ(1),m(1)) = 1.

– Step 3. Pick b← {0, 1} and form σ
(b)
I

$←− Derive(pk , I,m(b), σ(b)).

– Step 4. b′
$←− A(σ

(b)
I).

The signature scheme URS is unlinkable if for any polynomial time adversary A
there exists a negligible function ν(·) such that Pr[b = b′] < 1+ν(κ)

2 .

Note that this definition is very strong, as the adversary can even pick pk .

2.2 Ideal Functionality for Unlinkable Redactable Signatures

We now give an alternative characterization of unlinkable redactable signatures
using an ideal functionality FURS defined as follows:

Functionality FURS

The functionality maintains tables K andQ initialized to ∅ and flags kg and keyleak

which are initially unset.

– On input (keygen, sid) from S, verify that sid = (S, sid′) for some sid′ and

that flag kg is unset. If not, then return ⊥. Else, send (initF, sid) to SIM and

wait for a message (initF, sid,SP ,Kg, Sign,Derive,Verify) from SIM, where

Kg, Sign, and Derive are PPT algorithms and Verify is a deterministic algo-

rithm. Then, store SP , Kg, Sign, Derive, and Verify, run (pk , sk) ← Kg(SP),

set flag kg , store (pk , sk) in K, and return (verificationKey, sid , pk) to S.

– On input (checkPK, sid , pk ′) from some party P , verify that the flag kg is

set. Check whether pk′ = pk or whether (pk ′, sk ′) for some sk ′ was stored in

K. In this case, return (checkedPK, sid , true). Else, if (pk ′,⊥) was stored in

K return (checkedPK, sid , false). Else, send (checkPK, sid , pk ′) to SIM, wait

for (checkedPK, sid , sk ′) from SIM, add (pk ′, sk ′) to K. If sk ′ 6= ⊥, return

(checkedPK, sid , true) to P . Otherwise, return (checkedPK, sid , false) to P .

– On input (leakSK, sid) from S verify that sid = (S, sid′) for some sid′. If not,

return ⊥. Else, if flag kg is set, set flag keyleak and return (leakSK, sid , sk),

otherwise - abort.

– On input (sign, sid ,m) from S, verify that sid = (S, sid′) for some sid′

and that the flag kg is set. If not, return ⊥. Else, run σ ← Sign(sk ,m) and

Verify(pk , σ,m). If Verify is successful, return (signature, sid ,m, σ) to S and

add m to Q, otherwise return ⊥.

– On input (derive, sid , pk ′, I,m, σ) from some party P , run

Derive(pk ′, I,m, σ) and if it fails, return ⊥. Otherwise, if the flag kg is

set and pk = pk ′ then set sk tmp = sk. If there is an entry (pk ′, sk ′) ∈ K
recorded, set sk tmp = sk ′. If sk tmp was set run σ′ ← Sign(sk tmp,Zero(m, I))

and return Derive(pk ′, I,Zero(m, I), σ′). Otherwise, return the output of

Derive(pk ′, I,m, σ). (Continue on the next page.)

7

– On input (verify, sid , pk ′, σ,mI) from some party P , compute result ←
Verify(pk ′, σ,mI). If the flag kg is set, pk ′ = pk , flag keyleak is not set, and

@ m ∈ Q such that mI = I(m), then output (verified, sid ,mI , 0). Other-

wise, output (verified, sid ,mI , result).

We point out some aspects of the ideal functionality. The functionality needs
to output concrete values as signatures of messages and redacted signatures,
as well as key material. To generate and verify these values, FURS requires the
adversary/simulator SIM to provide it with a number of polynomial-time al-
gorithms. This is in line with how ideal functionalities for signatures, and in
particular blind signatures, have been defined before [6, 36, 45, 54, 58]. We con-
sider static corruptions of protocol machines, but allow the simulator to request
the signing key at any time by sending the leakSK message. This allows us to
ensure that the privacy properties for users are still enforced even if the signer
leaks its secret key. The functional and security properties are enforced by the
functionality no matter how these (adversarial) algorithms compute the values.
Unforgeability is enforced by the fact that FURS will output false (0) for verifi-
cation queries for which the message (or a corresponding original message) has
not been signed, provided that the signer is not corrupted and the signing key
not leaked. (If the signer is corrupted statically, (keygen, sid) will not be sent
and hence kg not set and unforgeability not enforced.) Unlinkability of redacted
signature is enforced by FURS as follows. It generates a fresh redacted signature
only from those parts of the original message that are quoted, i.e., the hidden
message parts are set to zero, and thus redacted signatures from FURS do not
contain any information about the hidden parts of messages. More precisely, this
is enforced for the keys generated by FURS and for any keys that an honest party
successfully checked before generating a redacted signature. Unless mentioned
otherwise, the reply of the functionality upon a failed check or verification is ⊥.

2.3 Key Registration and UC Realizability

We now want to construct a protocol RURS that realizes FURS using a URS
scheme in the FCRS-hybrid model where SP is the reference string and each call
to FURS is essentially replaced by running one of the algorithms of URS. While
this can be done (the detailed description ofRURS is given in the full version [10]),
there are a number of hurdles that need to be overcome. These hurdles are quite
typical and include, e.g., that we need to be able to extract the secret keys from
the adversary to be able to simulate properly. They are, however, often treated
only informally in security proofs. Here we want to make them explicit and treat
them formally correct. So our goal is to prove a statement (Theorem) of the
form:

If URS is correct, unforgeable, unlinkable, and X then RURS securely
realizes FURS in the FCRS-hybrid model.

8

What do we have to require from X to make this theorem true? To prove the
theorem we have to show indistinguishability between the ideal world and the
real world. In the ideal world, an environment Z interacts with the simulator
SIM and functionality FURS. In the real world, the environment Z interacts
with the real adversary A and the protocol RURS.

We provide a tentative description of SIM in the ideal world: when re-
ceiving the (initF, sid) message from FURS, it generates a trapdoor td (in ad-
dition to SP) and returns (initF, sid ,SP ,Kg,Sign,Derive,Verify). On receiving
the (checkPK, sid , pk) message, is uses the trapdoor to extract the secret key sk
and returns sk to FURS.

To make this work, we extend URS with several algorithms: CheckPK is run
by RURS on receiving a message (checkPK, sid , pk). SGenT and ExtractKey are
the trapdoored parameter generation and key extraction algorithm for SIM.
CheckKeys is used to define what it means to extract a valid key.

URS.CheckPK(pk)→ 0/1. CheckPK is a deterministic algorithm that takes a
public key pk as an input and checks that it is correctly formed. It outputs 1
if pk is correct, and 0 otherwise.

URS.SGenT(1κ)→ (SP , td). SGenT is a system parameters generation algorithm
that takes the security parameter 1κ as input and outputs the system param-
eters SP and a trapdoor td for the key extraction algorithm.

URS.ExtractKey(pk , td)→ sk . ExtractKey is an algorithm that takes a public key
pk and a trapdoor td as input. It extracts the corresponding secret key sk.

URS.CheckKeys(pk , sk)→ 0/1. CheckKeys is an algorithm that takes a public pk
and a private sk keys and checks if they constitute a valid signing key pair.
It outputs 1 if they do, and 0 otherwise.

Strengthened Correctness requires that honestly generated keys, but also keys
for which predicate CheckKeys(pk , sk) holds can be used to create signatures
that will verify. It moreover guarantees that CheckPK(pk) holds for honestly
generated public keys.

Parameter Indistinguishability. Informally, parameter indistinguishability en-
sures that the SP produced by SGenT and SGen are computationally indis-
tinguishable. It is formally defined as follows:

Definition 4 (Parameter Indistinguishability). A redactable signature
scheme URS.{SGen,Kg,Sign,Derive,Verify} with alternative parameter genera-
tion SGenT is parameter indistinguishable if for any polynomial time adversary
A there exists a negligible function ν(·) such that Pr[(SP0 , td) ← SGenT(1k);

SP1 ← SGen(1k); b← {0, 1}; b′ ← A(SPb) : b = b′] < 1+ν(κ)
2 .

Key Extractability. Informally, the key extractability ensures that if SGenT was
run and if CheckPK outputs 1, then the extraction algorithm ExtractKey(pk , td)
will output a valid secret key sk , i.e. CheckKeys(pk , sk) = 1.

9

Definition 5 (Key Extractability). A redactable signature scheme URS.{
SGen,Kg,Sign,Derive,Verify} with additional algorithms (CheckPK, SGenT,
CheckKeys,ExtractKey) is key extractable if CheckKeys is correct and for
any polynomial time adversary A there exists a negligible function ν(·) such
that Pr[(SP , td) ← SGenT(1k); pk ← A(SP , td); sk ← ExtractKey(pk , td) :
(CheckPK(pk) = 1 ∧ CheckKeys(pk , sk) = 0))] < ν(κ).

Composable Unlinkability holds even when parameters in the unlinkability game
are generated using (SP , td) ← SGenT(1k) and A is handed td. This allows for
the use of the game in a hybrid argument when proving the security of the simu-
lator. We note that in such an adapted unlinkability game the trapdoor td must
only enable key-extraction, and crucially does not allow the adversary to extract
a Tier 1 signature from a Tier 2 signature (this would break unlinkability). In
our instantiation this is achieved by splitting SP into several parts. The trapdoor
is only generated for the part used for key extraction.

UC realization. We prove that if an unlinkable redactable signature URS is cor-
rect, parameter indistinguishable, key extractable, unforgeable, and unlinkable,
then RURS securely realizes FURS. More formally, we have the following theorem
(which is proven in the full version of this paper [10]).

Theorem 1. Let URS be an unlinkable redactable signature scheme. If URS is
correct, parameter indistinguishable, key-extractable, unforgeable, and compos-
able unlinkable then RURS securely realizes FURS in the FCRS-hybrid model.

3 The Construction of Our Redactable Signature Scheme

As a first step toward our full solution, we will construct an unforgeable and
unlinkable URS scheme without key extraction. The scheme should be of in-
dependent interest, in case universal composability is not a design requirement.
This isolation of key extraction, seemingly only needed for universal composition,
is a nice feature of our definitions.

Let G be a bilinear group generator that takes as an input security parameter
1κ and outputs the descriptions of multiplicative groups grp = (p,G, G̃,Gt, e,
G , G̃) where G, G̃, and Gt are groups of prime order p, e is an efficient, non-
degenerating bilinear map e : G× G̃ → Gt, and G and G̃ are generators of the
groups G and G̃, respectively.

Our construction makes use of a structure preserving signature (SPS) scheme
SPS.{Kg,Sign,Verify} and a vector commitment scheme VC.{Setup,Commit,
Open,Check}. We recall that the structure-preserving property of the signature
scheme requires that verification keys, messages, and signatures are group ele-
ments and the verification predicate is a conjunction of pairing product equa-
tions. The intuition behind our construction is susceptibly simple: Use SPS.Kg to
generate a signing key pair and VC.Setup to add commitment parameters to the
public key. To sign a vector m, first, commit to m and then sign the resulting
commitment C. To derive a quote for a subset I of the messages, simply open

10

the commitment to the messages in mI . We verify a signature on a quote by
verifying both the structure-preserving signature (SPS.Verify) and checking the
opening of the commitment (VC.Check).

Such a scheme has, however, several shortcomings. First, it is linkable, as
the same commitment is reused across multiple quotes of the same message.
Even if both the underlying SPS scheme and the commitment scheme are indi-
vidually re-randomizable, this seems hard to avoid as the unforgeability of the
SPS scheme prevents randomization of the message. Second, such a construction
is only heuristically secure. Existing vector commitments do not guarantee that
multiple openings cannot be combined and mauled into an opening for a different
sub-vector. We call vector commitment schemes that prevent this opening non-
malleable. (Recently, [51] constructed an SPS scheme allowing for randomization
within an equivalence class. However, their commitments cannot be opened to
arbitrary vectors of Zp and are not provably opening non-malleable.)

Our main design goal is to address both of these weaknesses while avoiding a
large performance overhead. Our main tool for this is an efficient non-interactive
proof-of-knowledge. Intuitively, we hide the commitments and their openings,
as well as a small part of the signature to achieve unlinkability. Hiding the
commitment opening also helps solve the malleability problems for commitments.
To achieve real-world efficiency we show how to exploit the re-randomizability of
the SPS (and optionally the commitment scheme as described in the full version
[10]).

Before describing our redactable signature scheme in more detail, we present
a vector commitment scheme that uses a variant of polynomial commitments
from [56]. While our changes are partly cosmetic, they simplify the assumption
needed for opening non-malleability.

3.1 Vector Commitments Simplified

A vector of messages m ∈ Znp is committed using a polynomial f(x) that
has a value f(i) = mi at the position i. In Lagrange form such a polynomial
is a linear combination f(x) =

∑n
i=1mifi(x) of Lagrange basis polynomials

fi(x) =
∏n
j=0,j 6=i

x−j
i−j . To batch-open a vector commitment for a position set

I ⊆ {1, . . . , n}, one uses a polynomial fI(x) =
∑
i∈I mifi(x). For such a poly-

nomial, it holds that fI(i) = mi for i ∈ I; and fI(0) = 0. (The additional root
at 0 is necessary to achieve opening non-malleability). The reuse of the same
Lagrange basis polynomials, which yields polynomials of not the lowest possible
degree, reduces the number of variable bases in the equation of Check below and
increases efficiency when used for the construction of bigger protocols such as
anonymous credential. Also, note that f(x)−fI(x) is divisible by the polynomial
pI(x) = x ·

∏
i∈I(x − i). We use the polynomial p(x) = x ·

∏n
i=1(x − i) which

is divisible by pI(x) for any I ⊆ {1, . . . , n} to randomize commitments to make
them perfectly hiding.

Construction. We reuse the notation of §2 and use Tier 1 vectors m for the
vectors being committed and Tier 2 vectors mI for batch openings at positions

11

I. We also let grp = (p,G, G̃,Gt, e,G , G̃) be bilinear map parameters generated
by a bilinear group generator G(1κ).

VC.Setup(grp). Pick α ← Zp and compute (G1, G̃1, . . . ,Gn+1, G̃n+1), where

Gi = G(αi) and G̃i = G̃(αi). Output parameters pp = (grp, G1, G̃1, . . . ,
Gn+1, G̃n+1). Values G1, . . . , Gn+1 suffice to compute Gφ(α) for any polyno-
mial φ(x) of maximum degree n+ 1 (and similarly for G̃φ(α)).
Furthermore, for the above defined fi(x), p(x), and pI(x), we implicitly define
Fi = Gfi(α), P = Gp(α), PI = GpI(α) , and P̃I = G̃pI(α) . These group elements
can be computed from the parameters pp.

VC.Commit(pp,m, r). Output C =
∏n
i=1 F

mi
i P r.

VC.Open(pp, I,m, r). Let w(x) = f(x)−fI(x)+r·p(x)
pI(x)

and compute the witness

W = Gw(α) using parameters pp.
VC.Check(pp, C,mI ,W). Accept if e(C, G̃) = e(W, P̃I)e(

∏
i∈I F

mi
i , G̃).

Note that pI(x) always has the factor x. This is essential for achieving opening
non-malleability. If pI(x) would be 1 for I = ∅, as in the original polynomial
commitment scheme of [56], then C would be a valid batch opening witness for
the empty set of messages.

Security analysis. We require the commitment scheme to be com-
plete, batch binding, and opening non-malleable. Completeness is stan-
dard for a commitment scheme follows easily from the following equa-

tion: e(C, G̃) = e(G , G̃)f(α)+r·p(α) = e(G , P̃I)
f(α)−fI (α)+r·p(α)

pI (α) e(G , G̃)fI(α) =
e(W, P̃I)e(

∏
i∈I F

mi
i , G̃).

Next, we define the batch binding and opening non-malleability properties:

Definition 6 (Batch binding). For a vector commitment scheme VC.{Setup,
Commit,Open,Check} and an adversary A consider the following game:

– Step 1. grp ← G(1κ) and pp ← VC.Setup(grp)
– Step 2. C,mI ,W,m

′
I′ ,W

′ ← A(pp)

Then, the commitment scheme satisfies batch binding if for all such PPT algo-
rithms A there exists a negligible function ν(·) such that the probability (over the
choices of G,Setup, and A) that 1 = VC.Check(pp, C,mI ,W) = VC.Check(pp,
C,m′I′ ,W

′) and that there exist i ∈ I ∩ I ′ such that mi 6= m′i is at most ν(κ).
(Note that mI and m′I′ are Tier 2 vectors, and thus encode the sets I and I ′

respectively.)

Definition 7 (Opening non-malleability). For a vector commitment scheme
VC.{Setup,Commit,Open,Check} and an adversary A consider the following
game:

– Step 1. grp ← G(1κ) and pp ← VC.Setup(grp)
– Step 2. m, I ← A(pp)
– Step 3. Pick random r, compute C←VC.Commit(pp,m, r),

and W←VC.Open(pp, I,m, r).
– Step 4. W ′, I ′ ← A(C,W)

12

Then the commitment scheme satisfies opening non-malleability if for all such
PPT algorithms A there exists a negligible function ν(·) such that the probability
(over the choices of G, Setup, Commit, and A that 1 = VC.Check(pp, C,mI′ ,W

′),
and I 6= I ′ is at most ν(κ).

In the following theorems we make use of the n-BSDH assumption [48] and
the n-RootDH assumption that are defined next. See the full version of this
paper [10] for its generic group model proof. (We note that this assumption is
only required for opening non-malleability, which is ignored by most existing
constructions of anonymous credentials from vector commitments.)

Definition 8 (n-SDH Assumption). The n-strong Diffie-Hellman (n-SDH)
assumption [17] states that there exists a G that for all algorithms A, the follow-
ing advantage

AdvnSDH
G (λ) = Pr

[
(p, e,G,G)

$← G ; x, c
$← Zp ;

A(1λ, p,G, G,Gx, . . . , Gx
n

) = (c,G1/(x+c))
]
≤ negl(λ).

The n-BSDH assumption is defined identically to n-SDH except that now A
is challenged to compute (c, e(G , G̃1/(x+c)). Note that the n-BSDH assumption
is already implied by the n-SDH assumption.

Definition 9 (n-RootDH Assumption).
For an adversary A consider the following game:

– Step 1. grp ← G(1κ)
– Step 2. Pick random α, r ← Z∗p, compute X = (Gα·

∏n
i=1(α−i))r.

– Step 3. (J, state)← A(G, G̃ , {Gαi , G̃αi}n+1
i=1 , X)

– Step 4. Compute Y = (G
∏
i∈J (α−i))r.

– Step 5. J ′, Z ← A(state, Y)

Then the group generator G satisfies the n-RootDH assumption if for all such
PPT algorithms A there exists a negligible function ν(·) such that the probability
(over the choices of G, α, r, and A that J and J ′ are subsets of [1..n], J ′ 6= J ,
and Z = (G

∏
i∈J′ (α−i))r is at most a negligible function ν(κ).

Theorem 2. The commitment scheme VC defined above is batch binding under
the (n + 1)-BSDH assumption. The proof is similar to that of [56] and can be
found in the full version [10].

Theorem 3. The commitment scheme VC defined above is opening non-
malleable under the n-RootDH assumption. The proofs can be found in the full
version [10].

3.2 Non-interactive Zero-Knowledge and Witness Indistinguishable
Proof Systems

Let R be an efficiently computable binary relation. For pairs (W,Stmt) ∈ R we
call Stmt the statement and W the witness. Let L be the language consisting of

13

statements in R. A non-interactive zero-knowledge (NIZK) proof-of-knowledge
system for a language L consists of the following algorithms and protocols:

Π.Setup(grp)→ CRS . On input grp ← (1κ), it outputs common parameters (a
common reference string) CRS for the proof system.

Π.Prove(CRS ,W,Stmt)→ π. On input a statement Stmt and a witness W , it
generates a zero-knowledge proof π that the witness satisfies the statement.

Π.Verify(CRS , π,Stmt)→ 0/1. On input Stmt and π, it outputs 1 if π is valid,
and 0 otherwise.

We explain the notation for the statements Stmt . We call extractable (f -
extractable [13]) witnesses that can be (only partially) extracted from the corre-
sponding proof, respectively. To express the “extractability” property of the wit-
nesses we use notation introduced by Camenisch et al. [29]. For the extractable
witnesses we use the “knowledge” notation (K), and for the f -extractable wit-
nesses we use “existence” (E) notation. (If function f is constant, nothing can
be extracted.) We define K as a set of extractable witnesses and E as a set of
the witnesses that we can only prove existence about. We only consider proofs
for multi-exponentiations (for existence) and pairing products (for existence and
knowledge) equations. The following is an examplary statement:

Stmt = K
{
Yi, Ỹi ∈ K

}n
i=1

; E{xj ∈ E}mj=1 : z =

m∏
j=1

Gxj

∧ e(G , G̃) =

n∏
i=1

(
e(Yi, B̃i) · e(Ai, Ỹi)

)
.

For simplicity of presentation, we do not explicitly specify public values of a
statement as additional input to the algorithms, since they are clear from the
description of the statement and the list of witnesses.
We employ different proof systems that are either witness indistinguishable
or zero-knowledge in terms of privacy, and either extractable or simulation-
extractable in term of soundness. For the security proofs we introduce the fol-
lowing algorithms:

Π.ExtSetup(grp)→ (CRS , tdext). On input grp, it outputs a common reference
string CRS and a trapdoor tdext for extraction of valid witnesses from valid
proofs. This is for witness-indistinguishable extractable proofs.

Π.SimSetup(grp)→ (CRS , tdext, tdsim) It outputs a CRS and the extraction
and simulation trapdoors. This is for proofs that are also zero-knowledge.

Π.SimProve(CRS , tdsim,Stmt)→ π. On input CRS and a trapdoor tdsim, it out-
puts a simulated proof π such that Π.Verify(CRS , π,Stmt) = 1.

Π.Extract(CRS , tdext, π,Stmt)→W. On input a proof π and a trapdoor tdext, it
extracts a witness W that satisfies the statement Stmt of the proof π.
For simulation-extractable NIZK proofs (that are non-malleable) we also al-

low an additional public input to the Prove,Extract,SimProve, and Verify algo-
rithms – a message (label) L, which is non-malleably attached to the proof (i.e.
the signature of knowledge is computed on this message). We provide a formal
definition below.

14

Definition 10 (Simulation Extractability). A proof system Π is called sim-
ulation extractable with labels if for any PPT adversary A and security parameter
λ there exists a negligible function negl(·) such that:

Pr[(CRS , tdsim, tdext)
$← SimSetup(1λ); (Stmt∗, L∗, π)← AOSim(tdsim,·,·)(CRS);

W ← Extract(CRS , tdext, π,Stmt∗, L∗) : Verify(CRS , π,Stmt∗, L∗) = 1∧
(W,Stmt∗) /∈ R ∧ OSim was never queried with (Stmt∗, L∗)] ≤ negl(λ).

3.3 Our Redactable Signature Scheme

We construct our redactable signature scheme URS from a structure-preserving
signature scheme SPS, a vector commitment scheme VC, and an extractable
and witness-indistinguishable non-interactive proof-of-knowledge system Π de-
scribed in the previous section. Some SPS and vector commitment schemes might
also support randomization; we already discussed such a property for vector com-
mitments in the last sub-section; for signatures we refer the reader to [2, 3]. We
denote the randomization algorithm of signatures by SPS.Rand. We denote the
randomizable elements of a SPS signature Σ by ψrnd(Σ) and the other elements
by ψwit(Σ). (For a non-randomizable SPS signature ψwit(Σ) =Σ.)

Our construction does not utilize any randomizability in the vector commit-
ment scheme itself. In the full version [10] we analyze batch-binding and opening
non-malleability in presence of such a randomization algorithm.

Construction.
URS.SGen(1κ). Compute grp ← G(1κ), pp ← VC.Setup(grp), CRS ←

Π.Setup(grp), output SP = (grp, pp,CRS).
URS.Kg(SP). Obtain grp from SP , generate (pksps, sksps)← SPS.Kg(grp), out-

put pk = (pk sps ,SP) and sk = (sk sps , pk).
URS.Sign(sk ,m). Pick r ← Zp, compute C = VC.Commit(pp,m, r) and Σ ←

SPS.Sign(sksps, C), and return σ = (Σ,C, r).
URS.Derive(pk , I,m, σ). First, compute W = VC.Open(pp, I,m, r). Then, if

a SPS.Rand algorithm is present, randomize the signature as Σ′ ←
SPS.Rand(pk sps , Σ); otherwise, set Σ′ ← Σ. And compute the proof π ←
Π.Prove(CRS ;C,W,ψwit(Σ

′); KC,W,ψwit(Σ
′) : SPS.Verify(pksps, Σ

′, C) ∧
VC.Check(pp, C,mI ,W)). Return σ = (ψrnd(Σ

′), π) as the signature on mI .
URS.Verify(pk , σ,mI). Check that Π.Verify

(
CRS ;π; KC,W,ψwit(Σ

′) :

SPS.Verify(pksps, Σ
′, C)

)
= VC.Check(pp, C,mI ,W) = 1.

Theorem 4. URS is an unforgeable redactable signature scheme, if the SPS
scheme is unforgeable, the vector commitment scheme satisfies the batch binding
and opening non-malleability property, and the proof-of-knowledge system is ex-
tractable and witness indistinguishable. The proofs of Theorems 4 is provided in
the full version [10].

Theorem 5. URS is an unlinkable redactable signature scheme if the proof-of-
knowledge system is witness indistinguishable. The proofs are given in the full
version of this paper [10].

15

Strengthened scheme for an universally composable construction. To be able to
satisfy the UC functionality, we require an additional key-extraction property.
We thus build an augmented redactable signature scheme URS from a redactable
signature scheme URS∗(without key extraction) and a zero-knowledge non-inter-
active proof-of-knowledge system Π∗.
URS.SGen(1κ). Run SP∗ ← URS∗.SGen(1κ), get grp from SP∗, run CRS sk ←

Π∗.Setup(grp), and output SP = (SP∗,CRS sk).
URS.Kg(SP). Obtain SP∗ and CRS sk from SP , sample randomness r, and run

(pk∗, sk∗)← URS∗.Kg(SP∗; r). Compute the proof
πsk ← Π∗.Prove (CRS sk; (sk∗, r); Ksk∗ Er : (pk∗, sk∗) = URS∗.Kg(SP∗; r)) .
Output pk = (SP , pk∗, πsk) and sk = (sk∗, pk). We note that
URS∗.Kg(SP∗; r) fixes the randomness of the a key generation algorithm.

URS.CheckPK(SP , pk).
Check Π∗.Verify(CRS sk;πsk; Ksk Er : (pk , sk) = URS∗.Kg(SP∗; r)) = 1.

Sign, Derive, Verify are almost unchanged and use pk∗ internally. SGenT and
ExtractKey use the extraction setup and extractor of the proof system respec-
tively, while CheckKeys checks that the relation R holds for pk and sk .

Note that Groth-Sahai proofs can be used to implement key-extraction by
proving a binary, or n-ary decomposition of the secret key [62]. But this comes at
a huge cost of more than 61,000 group elements at 128-bit security, even if this
cost is only incurred once by every user per public key. We propose instead to use
fully structure-preserving signatures (FSPS) [5] such that sk consists of group
elements and can be easily extracted. FSPS for signing single group elements can
be as cheap as 15 elements per signature and proofs of key possession consist of
just 18 elements.

Theorem 6. The strengthened scheme URS is an unforgeable, unlinkable, and
key extractable redactable signature scheme, if the underlying redactable signature
scheme URS∗ is unforgeable and unlinkable, and the proof-of-knowledge system
Π∗is zero-knowledge and extractable.

Unforgeability and unlinkability are corollaries of Theorem 4 and Theorem 5.
Key-extractability follows directly from the extractability of the proof system.
Signing group elements as additional parts of the message. While the presented
redactable signature scheme can sign and quote a large number of values in Zp
very efficiently, in certain applications, like the one presented in the next section,
one might also need to sign a small number of additional group elements. In the
Derive algorithm these elements will either be part of the derived message, and
given in the clear after derivation, or be treated as part of the witness, i.e.,
hidden from the verifier. The detailed construction and the security proofs are
given in the full version [10].

4 From Unlinkable Redactable Signatures to Anonymous
Credentials

As we designed our UC-secure URS scheme as a building block for privacy-
preserving protocols, anonymous credentials are a natural application. Indeed, an

16

(unlinkable) redactable signature scheme is already a simple selective-disclosure
credential system where the attributes issued to users are the messages signed
in Tier 1 signatures and a user can later reveal a subset of her attributes by
deriving a Tier 2 signature. However, in an anonymous credential system, users
also require secret keys and pseudonyms (pseudonymous public keys), on which
credentials can be issued and with respect to which credentials can be presented.
This allows users to prove that they possess several credentials issued from dif-
ferent parties on the same secret key [20, 32].

In this section, we extend the functionality of URS in two ways: (1) we bind
Tier 1 signatures to user secret keys in a way that prevents the derivation of
signatures without knowledge of the secret and (2) we bind Tier 2 derived sig-
natures to the unique context, cxt (nonce), to prevent replay attacks in which
an attacker shows the same signature derived twice.

We first recall the algorithms of a multi-issuer anonymous credential system
and then provide an instantiation using URS. To be modular and to simplify the
analysis, we then provide an ideal functionality for a single issuer. The function-
ality is carefully designed to self-compose naturally into a full-fledged credential
system with multiple issuers. Finally, we provide a concrete instantiation of our
generic construction and analyze its efficiency.

4.1 Algorithms of Our Anonymous Credential System

Let us first introduce the parties and the algorithms of a multi-issuer anonymous
credential system supporting user attributes (cf. [20, 32]). Its protagonists are
users (U), issuers (I), and verifiers (V). Each user has a secret key X , from
which she can derive (cryptographic) pseudonyms P . To get a credential issued,
a user sends to the issuer a pseudonym P together with a (non-interactive) proof
πX ,P that she is privy to the underlying secret key. The issuer will then issue her
a credential Cred on P containing the attributes a the issuer vouches for. The
user can then present the credential to a verifier under a potentially different
pseudonym P ′ by sending, together with P ′, a (non-interactive) proof πX ,Cred

that she possesses a credential on the attributes aI . Recall that I defines which
attributes shall be revealed.

A credential system Cred defines a set of algorithms: a system parameters
generation algorithm SGen; an issuer setup algorithm Kg; a user secret generation
algorithm SecGen; algorithms for pseudonym generation and verification NymGen
and NymVerify, respectively; an algorithm to request a credential RequestCred; an
algorithm for issuing a credential IssueCred; an algorithm to check a newly issued
credential for correctness CheckCred; an algorithm to show a credential with
respect to a pseudonym (to create a credential proof) Prove; and an algorithm
to verify a credential proof Verify.

A more detailed discussion of these algorithms is given in the full version [10].
We instantiate these algorithms by adding support for user secrets, pseudonyms
and contexts to our redactable signature scheme. Besides the URS algorithms,
we use pseudonym generation and verification algorithms based on a structure
preserving commitment scheme SPC and a hard relation to generate credential

17

specific secrets. A hard relation has a generator KRgap that generates a witness
(XCred and a public value YCred), and a verification algorithm VRgap, such that
it is easy to verify (XCred , YCred) but hard to compute XCred from YCred . This
hardness is used to prevent a network adversary that observes the issuing pro-
tocol from impersonating the user.

Table 1 gives the construction of our credential scheme. We group the core
credential algorithms into those used for setup, issuing and presentation. In our
security definition and the proof we will make use of additional algorithms for
simulation and extraction.

4.2 Ideal Functionality for Credentials

To tame the complexity of definitions for credential systems with many different
issuers, we chose to give a definition FCred of a scheme for a single issuer only,
that then can be used as building block to a a full-fledged credential system
with multiple issuers. The single issuer functionally FCred will just allow users
to get a credential on a pseudonym from the issuer and to prove ownership of a
credential by the issuer w.r.t. a given pseudonym.

To serve as a secure building block, FCred must be carefully designed. On the
one hand it must deal with the unforgeability of credentials and on the other
hand it must provide the hooks such that colluding users cannot mix and match
credentials from different issuers. To address the former FCred binds issued cre-
dentials to the respective users’ secret key X and for the latter FCred will enforce
that credential proofs will not verify w.r.t. a pseudonym P unless a correspond-
ing credential got issued to the X underlying that pseudonym. Then, provided
adversarial users are unable to provide different X’s for the same pseudonym,
credentials from different issuers issued to different users (i.e., different X’s) can-
not be matched. As a consequence of this, the generation of user secret keys and
pseudonyms is not done inside FCred but users are require to input their secret
key X the pseudonym P (as cryptographic values) to FCred on the calls to get
credentials issued or to generate a credential proof. Thus we assume that al-
gorithms (SecGen,NymGen,NymVerify) to generate user secret keys, to generate
pseudonyms, and to verify pseudonyms are available. FCred is given NymVerify
as an input parameter and will use this algorithm, to check the relation between
P and X. For the security properties guaranteed by FCred, we do not make any
assumptions about the security properties of these algorithms. However, for the
security of the overall credential scheme, pseudonym need to be commitments
to X, i.e., to be binding and hiding w.r.t. X.

In the following we provide the definition of FCred and a protocol RCred that
realizes FCred using FCA and FCRS, assuming static corruptions.

Single issuer ideal functionality. The starting point for our credential function-
ality is the ideal functionality of unlinkable redactable signatures, extended in a
number of ways. Similar to FURS (and in line with other UC-functionalities such
as Fsig that need to output cryptographic values), FCred is handed a number
of cryptographic algorithms by the simulator. These algorithms allow FCred to

18

S
e
tu

p
a
lg
o
ri
th

m
s Cred.SGen(1κ): Compute SPURS ← URS.SGen(1κ); CRSX ← Π.Setup(1κ); ppSPC

← SPC.Setup(SPURS); and output SP = (SPURS,CRSX , ppSPC).
Cred.Kg(SP): Compute (pkURS, skURS)← URS.KeyGen(SPURS), and output

(sk , pk) = (skURS, pkURS).
Cred.SecGen(SP) : Take G from SP , pick random x← Zp,X = Gx. Output X .
Cred.NymGen(SP ,X) : (P ,O)← SPC.Commit(ppSPC,X). Output (P , aux (P) = O).
Cred.NymVerify(SP ,X ,P , aux (P)) : Parse aux (P) as O . Output the result of

SPC.Check(ppSPC,P ,O).

Is
su

in
g
a
lg
o
ri
th

m
s

Cred.RequestCred(SP , pk ,X ,P , aux (P)) :
(XCred , YCred)← KRgap; πX ,P ← Π.Prove(CRSX ; (X , XCred , aux (P));StmtP),
where StmtP =

(
KX , aux (P) : NymVerify(SP ,X ,P , aux (P)) = 1

)
.

Add XCred , YCred ,P , aux (P) to aux (Cred) and YCred to πX ,P .
Cred.IssueCred(SP , sk ,P ,a, πX ,P):

1. Verify the request for issuance πX ,P :
If Π.Verify(CRSX ;πX ,P ;StmtP) = 0, return ⊥.

2. Else, generate a credential by creating a Tier 1 signature on the vector of
messages, providing the pseudonym and a gap problem challenge, and
calling σ ← URS.Sign(sk , (P , YCred ,a)) and output Cred = σ.

Cred.CheckCred(SP , pk ,X ,P , aux (P),Cred , aux (Cred),a) : Output the result of
URS.Verify(pk ,Cred , (P , YCred ,a)).

P
re

se
n
ta

ti
o
n

a
lg
o
ri
th

m
s

Cred.Prove(SP , pk ,X ,P ′, aux (P)′,Cred , aux (Cred),a, I, cxt)→ πX ,Cred :
1. Obtain XCred , YCred , P , aux (P) from aux (Cred) and σ from Cred .
2. Run σI ← URS.Derive(pk , I, (P , YCred ,a), σ)).
3. Compute a proof of knowledge of the secret, pseudonym, where the context

is non-malleably attached as a label to the proof:
πX ,Cred = Π.Prove(CRSX ; (X ,P ,
aux (P), aux (P)′, YCred , XCred);Stmt , cxt);Stmt =(

KX ,P , aux (P), aux (P)′, YCred , XCred : NymVerify(SP ,X ,P ′, aux (P)′) =
1 ∧ NymVerify(SP ,X ,P , aux (P)) = 1 ∧ URS.Verify(pk , σI , (P , YCred ,a)I)) =
1 ∧ VRgap(XCred , YCred) = 1

)
.

Add σI to πX ,Cred as a part of the public input.
Cred.Verify(SP , pk ,P ′, πX ,Cred ,aI , cxt) : Output the result of Π.Verify(CRSX ;
πX ,Cred;Stmt(SP ,P ′, σI ,aI), cxt).

S
im

u
la
ti
o
n

a
n
d

e
x
tr
a
c
ti
o
n

a
lg
o
ri
th

m
s

Cred.SGenT(1κ) : (SPURS, td)← URS.SGenT(1κ);
(CRSX , tdext, tdsim)← Π.SimSetup(1κ); ppSPC ← SPC.Setup(SPURS).
Output

(
SP = (SPURS,CRSX , ppSPC), tdext = (td, tdext), tdsim

)
.

Cred.Extract(SP , tdext, pk ,P
′, πX ,Cred ,aI , cxt):

Take (X, aux (P)) from Π.Extract(SP ; tdext;πX ,Cred ; Stmt)).
Cred.SimProve(SP , sk , tdsim, P

′,aI , cxt)→ πX ,Cred :
1. X ← SecGen(SP); (P , aux (P))← NymGen(SP ,X).
2. Let a0 be a Tier 1 message restored from aI by replacing ⊥-s with 0-s as if

it was derived from the original message a by applying Zero(a, I).
3. σ ← URS.Sign(sk , (P , YCred ,a0))
4. σI ← URS.Derive(pk , I, (P , YCred ,a0), σ)).
5. Compute a proof of knowledge of the secret, pseudonym, and the

correctness of the signature on a context:
πX ,Cred ← Π.SimProve(CRSX ; tdsim;P ′;Stmt , cxt).

Table 1. Algorithms of our credential system

19

produce cryptographic artifacts for proofs of credential ownership and attribute
disclosure, to verify such proofs (when they are coming from the adversary),
and to extract values from proofs. (We note that there are no artifacts for the
credentials themselves.) While these algorithms can be completely adversarial,
FCred will enforce that algorithms and the artifacts produced by them) satisfy
the required unforgeability and privacy properties. In fact, because of the privacy
properties, FCred needs to run these algorithms itself and cannot ask the simu-
lator for the artifacts as is sometimes done (cf. FURS and the UC-functionalities
for blind signatures [6, 45]).

We now describe the steps of our ideal functionality FCred (cf. Figure 1) and
explain the security properties it ensures and how it does so. Note that because
we consider static corruption, FCred and SIM are aware of which parties are
corrupted.

FCred maintains two tables for bookkeeping: MISS stores information about
issued credentials and MPRES stores information about credentials that pro-
duced presentation proofs. It then handles requests as follows. Upon receiving
a (keygen, sid) message, FCred performs a setup by asking the simulator for the
system parameters, the keys of the issuer, trapdoors, a set of algorithms and
a list of corrupted parties. The message (leakSK, sid) is handled in exactly the
same way as for redactable signatures.

Next, upon receiving a (issueCred, sid , qid ,U ,X ,P , aux (P)) message from
a user U , FCred initiates credential issuing by sending a corresponding message
to the issuer specified in sid = (I, sid ′). If I responds to the request with a list
of attributes a, FCred verifies that X ,P , and aux (P) form a valid pseudonym
(i.e., NymVerify outputs 1), and, if so, records in MISS that a credential with
attributes a to user U w.r.t. secret X has been issued.

Upon receiving a credential proof request in the form of a (proveCred, . . .)
message, FCred verifies whether the provided X ,P , and aux (P) form a valid
pseudonym and whether a credential with attributes a to user U w.r.t. secret X
has been issued. Then, FCred creates a cryptographic artifact for the proof using
the Cred.SimProve algorithm where no information that must not be revealed is
input to the algorithm. This will guarantee the privacy properties of the creden-
tial proof for honest users. Furthermore, before outputting the proof to the user,
FCred will verify it using Cred.Verify as to ensure correctness.

Finally, upon receiving the (verifyCredProof, . . .) message, FCred has to
determine whether or not the proof should be accepted. Here we need to deal
with unforgeability of credential proofs (and thus of credentials) if the issuer is
honest and its secret key has not been leaked. Naturally, FCred should accept
proofs that it has generated itself. Apart from that, FCred could in principle just
accept all proofs for which the revealed attributes correspond to a credential
that was issued. This would allow the adversary to also produce proofs that
match credentials that were not issued to dishonest users but only to an honest
user. To prevent this, we require an extraction algorithm Cred.Extract which, on
input a credential proof, will generate a user secret. Then, FCred will accept a
credential proof only if the revealed attributes correspond to a credential that

20

was issued to a corrupted users w.r.t. the X ′ extracted from the proof. That,
however, would still allow (dishonest) users to mix and match their credentials.
Therefore, FCred will accept the proofs only if the extracted X ′ underlies the
pseudonym P ′ w.r.t. which the proof verifies. Therefore, FCred checks the latter
using NymVerify.

Realization of FCred. A protocol RCred that realizes FCred can be obtained from
the algorithms described in §4.1 in the (FCRS,FCA)-hybrid model where SP is the
reference string and each call to FCred is replaced by running the corresponding
algorithms. The detailed description of RCred is given in the full version [10].

For efficiency reasons related to the integration of pseudonyms (which re-
quires zero-knowledge proofs and thus whitebox techniques), RCred does not use
RURS as a (blackbox) subroutine. We will, however, carefully align the internals
of FCred and RCred with those of FURS and RURS respectively, such that we can
use the UC emulation theorem in one of the hybrid steps of our security proof.

Theorem 7. Let URS be an unlinkable redactable signature scheme according
to Definition 1, SPC be a structure-preserving commitment scheme, Rgap be
a verifiable relation, Π be a non-interactive proof of knowledge system. Then
RCred securely realizes FCred in the (FCRS,FCA)-hybrid model if URS is correct,
unlinkable, unforgeable, and key extractable, SPC is binding, the non-interactive
proof-of-knowledge system is zero-knowledge and simulation extractable, and the
Rgap relation is hard. The proof is provided in the full version [10].

Building a full-fledged credential system with multiple issuers. We now explain
how to use our credential functionality to support multiple issuers using multiple
sessions of FCred, one for each issuer, together with algorithms (SecGen,NymGen,
NymVerify) to generate user secret keys, to generate pseudonyms, and to verify
pseudonyms. The pseudonyms are required to be both hiding and binding w.r.t.
the user secret to provide privacy to the honest users and to prevent colluding
users from sharing credentials unless they all user the same user secret. A user
now can generate a user secret and different pseudonyms on them and then use
multiple calls to the FCred instances for different issuers to get credentials on
her pseudonyms. To compose a presentation proof that reveals attributes from
different credentials, the user creates a pseudonym P ′ and uses the corresponding
FCred instances to generate the required proofs with respect to this pseudonym.
Because the pseudonym is the same in different proofs and each proof guarantees
the same underlying secret in the credential and the pseudonym, the collection of
these proofs together results in a single proof for multiple credentials. Each proof
block guarantees unlinkability and unforgeability, and because the pseudonym is
both binding and hiding this composed proof is also unforgeable and unlinkable
with respect to other proof collections. The verification is done by querying the
corresponding FCred instances for verification of each particular proof part and by
checking that the pseudonym is the same in each proof part. A formal definition
of a full-fledged credential scheme and proof that the scheme just sketched meets
it is left as future work.

21

Functionality FCred(NymVerify)

The functionality maintains tablesMISS andMPRES initialized to ∅ and flags kg

and keyleak which are initially unset.

– On input (keygen, sid) from I, verify that sid = (I, sid′) for some sid′ and

that flag kg is unset. If not, then return ⊥. Else, do the following:

1. Send (initF, sid) to SIM and wait for a message (initF, sid ,SP , sk , pk ,

tdsim, tdext,Cred.SimProve,Cred.Verify,Cred.Extract) from SIM, where

SP are the system parameters, tdsim and tdext are the simulation and

extraction trapdoors respectively, and the rest are polynomial-time

algorithms. Store all of these values and set flag kg .

2. Return (verificationKey, sid , pk) to I.

– On input (leakSK, sid) from I verify that sid = (I, sid ′) for some sid ′. If

not, return ⊥. Else, if flag kg is set, set flag keyleak and return

(leakSK, sid , sk), otherwise - abort.

– On input (issueCred, sid , qid ,X ,P , aux (P)) from U , check sid = (I, sid′)
for some sid ′, and that flag kg is set. If not, return ⊥. Else send a public

delayed output (issueCred, sid , qid ,P) to I.

– On input (issueCred, sid , qid ,a) from I, check for

(issueCred, sid , qid ,X ,P , aux (P)) from U , and verify that sid = (I, sid′) for

some sid ′ and that the flag kg is set. If not, return ⊥. Else, do the following:

1. Run b← NymVerify(SP ,P ,X , aux (P)). If b = 0, return ⊥.

2. Add (ISS ,⊥,X ,a) to MISS .

3. Send a public delayed output (credIssued, sid , qid ,a) to U .

4. When (credIssued, sid , qid ,a) is delivered to U , update the issuance

record by adding the user to (ISS ,U ,X ,a) of MISS .

– On input (proveCred, sid ,X ,P ′, aux (P)′, I,a, cxt) from U , do the following:

1. Check if kg is set. If not, return ⊥.

2. Check if NymVerify(SP ,P ′,X , aux (P)′) = 1. If not, return ⊥.

3. Check if (ISS ,U ,X ,a) exists. If not, return ⊥.

4. πX ,Cred ← Cred.SimProve(SP , sk , tdsim,P
′,aI , cxt).

5. Check if Cred.Verify(SP , pk ,P ′, πX ,Cred ,aI , cxt) = 0, then output ⊥.

6. Add (PRES ,U , cxt ,X ,P ′, aux (P)′,aI , πX ,Cred) to MPRES .

7. Return (credProved, sid ,aI , πX ,Cred) to U .

– On input (verifyCredProof, sid , pk ′,P ′, π′
X ,Cred ,a

′
I , cxt

′) from some party

P, do the following:

1. Verify the proof result = Cred.Verify(SP , pk ′, P ′, π′
X ,Cred ,a

′
I , cxt

′).

2. If pk 6= pk ′, or keyleak is set, or I is dishonest, or result = 0, send

(verified, sid ,a′
I , result) to P.

3. Else, if there is a record (PRES , ∗, cxt ′, ∗,P ′, ∗,a′
I , π

′
X ,Cred) return

(verified, sid ,a′
I , 1) to P.

4. Else, run (X ′, aux (P)′)← Cred.Extract(SP, tdext, pk ,P
′, π′

X ,Cred ,a
′
I , cxt

′).

5. If NymVerify(SP ,P ′,X ′, aux (P)′) = 0, return (verified, sid ,a′
I , 0) to P.

6. Else, if there is a record (ISS ,U ,X ′,a) in MISS for a corrupted user U
such that aI = a′

I , return (verified, sid ,a′
I , 1) to P.

7. Otherwise return (verified, sid ,a′
I , 0) to P.

Fig. 1. The ideal functionality for single issuer anonymous credentials

22

4.3 Instantiation and Efficiency Analysis

To analyze the efficiency of our scheme we consider a concrete instantiation sce-
nario. We instantiate our non-interactive construction with Groth-Sahai proofs
[49], the structure-preserving commitment scheme of [4], and our unlinkable
redactable signature scheme presented in §3.3. We use disjunctive proofs to
make the proof system simulation-extractable [23], see [59] for the efficient in-
stantiation with 48 group elements overhead in the XDH setting that forms the
basis of our efficiency analysis. As a hard relation we pick the Computational
Diffie-Hellman problem. The URS scheme is instantiate with the fully structure-
preserving signature scheme by Abe et al. [5], Groth-Sahai proofs, and the vector
commitment scheme from §3.1. The proof of Theorem 8 follows from Theorems
6-7.

Theorem 8. The credential system described above securely realizes FCred de-
fined in §4.2 if the SXDH, n-RootDH, n-BSDH, q-SDH, XDLIN, co-CDH, and
DBP assumptions hold. Consult building blocks for definitions of assumptions.

We refer to the full version [10] for the comparison with prior work. We
stress that the complexity of the Prove and Verify algorithms is independent of
the number of all attributes contained in a credential.

The size of the credential proof is roughly 178 group elements (148 when using
the SPS of [2] instead of FSPS). This means that the communication efficiency
for showing a credential with respect to a pseudonym is around 11 KB (9 KB for
SPS) at 128-bit security level, which is close to Idemix credentials [32] as the size
of pairing groups is much smaller than the size of RSA groups and because the
size of Idemix credential proofs is linear in the number of attributes. Besides,
Idemix credentials do not provide such strong formal security guarantees, i.e.
they require random oracles for non-interactive proofs and are not universally
composable. Our non-UC scheme is comparable in efficiency with the credential
system of Izabachène et al. [55] that has credential proofs of around 8 KB, while
our UC scheme has larger proof sizes. Our scheme is much less efficient than the
scheme of [51] but their scheme relies on hash functions in their construction
and thus does not enable efficient protocol design.

Open questions. We leave the construction of a scheme that achieves the same
functionality as ours with the efficiency of [51]—perhaps using fully structure
preserving signatures of equivalence classes—as an interesting open problem.
Other interesting questions are exploiting the lack of opening non-malleability
for attacks on existing constructions and efficiently basing the opening non-
malleability property of vector commitments on a more standard cryptographic
assumption than the n-RootDH assumption of Definition 9.

Acknowledgments

The authors would like to thank Sherman Chow and the anonymous reviewers
for their helpful comments and suggestions. The research leading to these re-
sults was supported in part by the European Community’s Seventh Framework
Programme for the project FutureID (grant agreement no. 318424).

23

References

1. M. Abe, M. Chase, B. David, M. Kohlweiss, R. Nishimaki, and M. Ohkubo.
Constant-size structure-preserving signatures: Generic constructions and simple
assumptions. ASIACRYPT 2012.

2. M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, and M. Ohkubo. Structure-
preserving signatures and commitments to group elements. CRYPTO 2010.

3. M. Abe, J. Groth, K. Haralambiev, and M. Ohkubo. Optimal structure-preserving
signatures in asymmetric bilinear groups. CRYPTO 2011.

4. M. Abe, K. Haralambiev, and M. Ohkubo. Group to group commitments do not
shrink. EUROCRYPT 2012.

5. M. Abe, M. Kohlweiss, M. Ohkubo, and M. Tibouchi. Fully structure-preserving
signatures and shrinking commitments. EUROCRYPT 2015.

6. M. Abe and M. Ohkubo. A framework for universally composable non-committing
blind signatures. ASIACRYPT 2009.

7. J. H. Ahn, D. Boneh, J. Camenisch, S. Hohenberger, A. Shelat, and B. Waters.
Computing on authenticated data. TCC 2012.

8. N. Attrapadung, B. Libert, and T. Peters. Computing on Authenticated Data:
New Privacy Definitions and Constructions. ASIACRYPT 2012.

9. M. H. Au, W. Susilo, and Y. Mu. Constant-size dynamic k-TAA. ISCN 2006.

10. J. Camenisch, M. Dubovitskaya, K. Haralambiev, and M. Kohlweiss. Compos-
able & Modular Anonymous Credentials: Definitions and Practical Constructions.
Cryptology ePrint Archive, Report 2015/580.

11. M. Backes, S. Meiser, and D. Schröder. Delegatable functional signatures. Cryp-
tology ePrint Archive, Report 2013/408.

12. M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya, and
H. Shacham. Randomizable proofs and delegatable anonymous credentials.
CRYPTO 2009.

13. M. Belenkiy, M. Chase, M. Kohlweiss, and A. Lysyanskaya. P-signatures and
noninteractive anonymous credentials. TCC 2008.

14. M. Belenkiy, M. Chase, M. Kohlweiss, and A. Lysyanskaya. Compact e-cash and
simulatable VRFs revisited. PAIRING 2009.

15. M. Bellare and G. Fuchsbauer. Policy-based signatures. Cryptology ePrint Archive,
Report 2013/413.

16. M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures:
Formal definitions, simplified requirements, and a construction based on general
assumptions. EUROCRYPT 2003.

17. D. Boneh and X. Boyen. Short signatures without random oracles. EURO-
CRYPT 2004.

18. E. Boyle, S. Goldwasser, and I. Ivan. Functional signatures and pseudorandom
functions. Cryptology ePrint Archive, Report 2013/401.

19. S. Brands. Untraceable off-line cash in wallets with observers (extended abstract).
CRYPTO 1994.

20. S. Brands. Restrictive blinding of secret-key certificates. EUROCRYPT 1995.

21. E. F. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation. ACM
CCS 2004.

22. C. Brzuska, H. Busch, Ö. Dagdelen, M. Fischlin, M. Franz, S. Katzenbeisser,
M. Manulis, C. Onete, A. Peter, B. Poettering, and D. Schröder. Redactable
signatures for tree-structured data: Definitions and constructions. ACNS 2010.

24

23. J. Camenisch, N. Chandran, and V. Shoup. A public key encryption scheme secure
against key dependent chosen plaintext and adaptive chosen ciphertext attacks.
EUROCRYPT 2009.

24. J. Camenisch, M. Dubovitskaya, G. Neven, and G. M. Zaverucha. Oblivious trans-
fer with hidden access control policies. PKC 2011.

25. J. Camenisch and T. Groß. Efficient attributes for anonymous credentials. ACM
CCS 2008.

26. J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact e-cash. EURO-
CRYPT 2005.

27. J. Camenisch, A. Kiayias, and M. Yung. On the portability of generalized schnorr
proofs. EUROCRYPT 2009.

28. J. Camenisch, S. Krenn, A. Lehmann G.L. Mikkelsen and G. Neven and M.. Ped-
ersen Formal Treatment of Privacy-Enhancing Credential Systems. SAC 2015.
Cryptology ePrint Archive, Report 2014/708.

29. J. Camenisch, S. Krenn, and V. Shoup. A framework for practical universally
composable zero-knowledge protocols. ASIACRYPT 2011.

30. J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. EUROCRYPT 2001.

31. J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols.
SCN 2002.

32. J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials
from bilinear maps. CRYPTO 2004.

33. J. Camenisch, G. Neven, and A. Shelat. Simulatable adaptive oblivious transfer.
EUROCRYPT 2007.

34. J. Camenisch and E. Van Herreweghen. Design and implementation of the idemix
anonymous credential system. ACM CCS 2002.

35. S. Canard and R. Lescuyer. Protecting privacy by sanitizing personal data: a new
approach to anonymous credentials. ASIACCS 2013.

36. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. IEEE FOCS 2001.

37. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited
(preliminary version). ACM STOC 1998.

38. D. Catalano and D. Fiore. Vector commitments and their applications. PKC 2013.
39. D. Catalano and D. Fiore. Vector commitments and their applications. PKC 2013.
40. D. Catalano, D. Fiore, and M. Messina. Zero-knowledge sets with short proofs.

EUROCRYPT 2008.
41. M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. Malleable signatures:

New definitions and delegatable anonymous credentials. IEEE CSFS 2013.
42. M. Chase and A. Lysyanskaya. On signatures of knowledge. CRYPTO 2006.
43. D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. CRYPTO 1988.
44. S. S. M. Chow, Y. J. He, L. C. K. Hui, and S. M. Yiu. SPICE - simple privacy-

preserving identity-management for cloud environment. ACNS 2012.
45. M. Fischlin. Round-optimal composable blind signatures in the common reference

string model. CRYPTO 2006.
46. G. Fuchsbauer. Commuting signatures and verifiable encryption. EURO-

CRYPT 2011.
47. G. Fuchsbauer, C. Hanser, and D. Slamanig. Euf-cma-secure structure-preserving

signatures on equivalence classes. Cryptology ePrint Archive, Report 2014/944.
48. V. Goyal. Reducing trust in the PKG in identity based cryptosystems.

CRYPTO 2007.

25

49. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups.
EUROCRYPT 2008.

50. S. Haber, Y. Hatano, Y. Honda, W. Horne, K. Miyazaki, T. Sander, S. Tezoku,
and D. Yao. Efficient signature schemes supporting redaction, pseudonymization,
and data deidentification. ASIACCS 2008.

51. C. Hanser and D. Slamanig. Structure-preserving signatures on equivalence classes
and their application to anonymous credentials. ASIACRYPT 2014.

52. M. Hirt and K. Sako. Efficient receipt-free voting based on homomorphic encryp-
tion. EUROCRYPT 2000.

53. D. Hofheinz and E. Kiltz. Secure hybrid encryption from weakened key encapsu-
lation. CRYPTO 2007.

54. D. Hofheinz and V. Shoup. Gnuc: A new universal composability framework. IACR
Cryptology ePrint Archive, Report 2011/303.

55. M. Izabachène, B. Libert, and D. Vergnaud. Block-wise p-signatures and non-
interactive anonymous credentials with efficient attributes. IMA Int. Conf. 2011.

56. A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to poly-
nomials and their applications. ASIACRYPT 2010.

57. A. Kiayias and M. Yung. Group signatures with efficient concurrent join. EURO-
CRYPT 2005.

58. A. Kiayias and H.-S. Zhou. Equivocal blind signatures and adaptive uc-security.
TCC 2008.

59. M. Kohlweiss and I. Miers. Accountable tracing signatures. Cryptology ePrint
Archive, Report 2014/824.

60. M. Kohlweiss and A. Rial. Optimally private access control. In ACM WPES 2013.
61. B. Libert and M. Yung. Concise mercurial vector commitments and independent

zero-knowledge sets with short proofs. TCC 2010.
62. S. Meiklejohn. An extension of the groth-sahai proof system. In Brown University

Masters thesis, 2009.
63. R. Nojima, J. Tamura, Y. Kadobayashi, and H. Kikuchi. A storage efficient

redactable signature in the standard model. ISC 2009.

26

