
How Secure is AES under Leakage

Andrey Bogdanov1 and Takanori Isobe2

1 Technical University of Denmark, Denmark. anbog@dtu.dk
2 Sony Corporation, Japan. Takanori.Isobe@jp.sony.com

Abstract. While traditionally cryptographic algorithms have been de-
signed with the black-box security in mind, they often have to deal with
a much stronger adversary – namely, an attacker that has some access to
the execution environment of a cryptographic algorithm. This can hap-
pen in such grey-box settings as physical side-channel attacks or digital
forensics as well as due to Trojans.
In this paper, we aim to address this challenge for symmetric-key cryp-
tography. We study the security of the Advanced Encryption Standard
(AES) in the presence of explicit leakage: We let a part of the inter-
nal secret state leak in each operation. We consider a wide spectrum
of settings – from adversaries with limited control all the way to the
more powerful attacks with more knowledge of the computational plat-
form. To mount key recoveries under leakage, we develop several novel
cryptanalytic techniques such as differential bias attacks. Moreover, we
demonstrate and quantify the effect of uncertainty and implementation
countermeasures under such attacks: black-boxed rounds, space random-
ization, time randomization, and dummy operations. We observe that the
residual security of AES can be considerable, especially with uncertainty
and basic countermeasures in place.

Key words: Grey-box, side-channel attacks, leakage, AES, bitwise mul-
tiset attacks, differential bias attacks, malware, mass surveillance

1 Introduction

1.1 Background: black box, grey box and white box

It is symmetric-key algorithms that are in charge of bulk data encryption and
authentication in the field. Plenty of multiple wide-spread applications such as
mobile networks, access control, banking, content protection, and storage en-
cryption often feature only symmetric-key algorithms, with no public-key cryp-
tography involved.

Traditionally, the security of symmetric-key cryptographic primitives has
been analyzed in the black-box model, where the adversary is mainly limited
to observing and manipulating the inputs and outputs of the algorithm, the
related-key model [2] being a notable extension. Multiple techniques have been
extensively elaborated upon, such as differential and linear cryptanalysis, in-
tegral and algebraic attacks, to call a small subset of the cryptanalytic tools
available today. Cryptographers have excelled at preventing those by design [8].



In late 1990s, with the introduction of timing attacks [13] by Kocher, differ-
ential fault analysis [1] by Boneh, DeMillo and Lipton, simple power analysis as
well as differential power analysis [14] by Kocher, Jaffe and Jun, the research
community has become aware of side-channel attacks that operate in the grey-box
model: Now the attacker has access to the physical parameters of cryptographic
implementations or can even inject faults into their execution. Numerous coun-
termeasures have been proposed to hamper those attacks, providing a practical
level of security in many cases.

Since mid 2000s, a trend of side-channel analysis has been towards analytical
side-channel attacks that assume leakage of fixed values of variables instead of
stochastic variables and whose techniques border the black-box cryptanalysis. So,
collision attacks [22] by Shramm et al observe an equation within one or several
executions of an algorithm. Algebraic side-channel attacks [21] by Renauld and
Standaert work under the assumption that the attacker can see the Hamming
weight of the internal variables of an algorithm. The attacker uses the techniques
of algebraic cryptanalysis to solve the systems of nonlinear equations arising from
collisions and algebraic side-channel attacks [5, 19, 20]. Dinur and Shamir [9]
apply integral and cube attacks to block ciphers in a setting where a fixed bit
after a round is leaked due to physical probing, power analysis or similar. Also
differential fault analysis uses elements of differential cryptanalysis.

As an extreme development of the grey-box setting, the white-box model [7]
by Chow et al poses the assumption that the adversary has full control over the
implementation of the cryptographic algorithm. The major goal of white-box
cryptography is to protect the confidentiality of secret keys in such a white-
box environment. However, all published white-box implementations of standard
symmetric-key algorithms such as AES to date have been practically broken in
this model [18]. The white-box setting may be too strong for standard symmetric-
key algorithms such as AES, because such a cipher was designed with the black-
box security in mind.

1.2 Leakage and AES

In this paper, we enhance the Dinur-Shamir setting [9] and aim to bridge the
gap between the physical side-channel attacks, the techniques of provable leakage
resilience [17] and white-box setting (dealing with attackers too hard to protect
against). Namely, we let the AES implementation leak some information during
its execution which is defined as follows.

Definition 1 (Leakage model) A malicious agent leaks a part of the interme-
diate internal secret state (including the key state) of a cryptographic algorithm
in each algorithm execution.

To apply this setting to AES (we will talk about AES-128 most of the time), we
make it more concrete and fix several important parameters of the leak:

Frequency: There is a single leak per encryption/decryption. This simplifies
complexity estimations in our analysis. If more leaks are available in each
execution, the complexities can be adjusted accordingly.

2



Granularity: A leak can only happen after a full round. This situation corre-
sponds e.g., to a 32-bit serial or round-based hardware implementation of
AES or a software implementation using an instruction set extension such as
AES-NI available on most Intel/AMD CPUs or the Cryptography Extension
on ARMv8.

Knowledge: The attacker does not have any knowledge of the location of leaked
bits, i.e., it does not know the bit position and the number of round of
leaked bits. He also does not know whether the leak is from the key schedule
or data processing part. This circumstance models the limited control of the
adversary over the platform.

We let several parameters vary in our analysis3:

Time and space: The location of the leak in terms of the round number (time)
and bit position within the round (space) can either be fixed or vary.

Known/chosen plaintext/ciphertext: We consider both known and chosen text
models. In case of a passive attacker, we talk about the known text setting.
Otherwise, the attacker is allowed to choose text.

Alignment: We consider single-bit leaks, byte leaks and multiple-bit leaks.
While single-bit leaks are more likely to happen due to physical probing,
byte leaks correspond more to software settings.

1.3 Our contributions

The contributions of this paper are as follows. The cryptanalytic results are also
summarized in Table 1.

AES under basic leakage and bitwise multiset attacks. We develop a
bitwise multiset attack, which exploits relations of sets of plaintexts and internal
states, to evaluate the security of AES if the time and space of the leakage is
fixed. Our attack utilizes a bitwise multiset characteristic which is an extension
of Dinur-Shamir integral attacks [9]. Unlike their attacks, our attack is feasible
even if an attacker does not have any knowledge of the location of leaked bits.
See Section 2 and Table 1 for the details.

AES under leakage with space/time uncertainty and differential bias
attacks. We let time, space or both be randomized. The space randomization
makes the position of leaked bits random in each execution. The time random-
ization makes the round number of leaked bits random in each execution. A
3 Further models are worth consideration as well. For instance, the Dinur-Shamir
model of the side-channel cube attacks [9] can be seen as a special case of our
leakage model, with the following differences: First, in the Dinur-Shamir model, the
adversary knows the location of the leak. Second, the Dinur-Shamir model does not
consider leaks of more that a single bit. Third, Dinur-Shamir do not allow for leaks
from the key schedule. Finally, the time and location of a leak are fixed, while we
allow for time and space uncertainty in our consideration.

3



Fixed Unknown

Time Uncertainty Time and Space

Uncertainty

#3

#5

#7

#9

#11

#13

#15

#17

#19

1 round

2 round

3 round

4 round

5 round

6 round

7 round

8 round

9 round

10 round

P

C

PositionKey

$1

$2

$3

$4

$5

$6

$7

$8

$9

$10

1 round

2 round

3 round

4 round

5 round

6 round

7 round

8 round

9 round

10 round

P

C

Key Position

1 round

2 round

3 round

4 round

5 round

6 round

7 round

8 round

9 round

10 round

P

C

Key

1 round

2 round

3 round

4 round

5 round

6 round

7 round

8 round

9 round

10 round

P

C

Key#0

#21

Random Unknown

Space Uncertainty

$0

Fig. 1. AES with space and/or time uncertainty

combination of time and space randomization is also an advanced model we
consider. See Figure 1 for an illustration.

This setting takes account of a more realistic environment, such as the lack
of knowledge of the implementation, and the presence of countermeasures. Here,
our multiset attacks are infeasible, as no clean multiset is available. To cope
with that, we develop a differential bias attack and a biased state attack inspired
by techniques for distinguishing attacks against stream ciphers [15,16,23]. More
specifically, by properly choosing differences and values of plaintexts, we create
biased (differential) states, where the distribution of bitwise differences or value
is strongly biased only if the key is correctly guessed. Thus, we are able to distin-
guish the leak corresponding to the correct key. See Section 3 for the techniques
as well as Section 4 and Table 1 for the results.

AES under noisy leakage. We consider leakage with noise, where the attacker
does not know exactly if the variable it accesses corresponds to the execution of
the algorithm under attack. For example, it can be the case if multiple instances
of encryption (with different keys) are run simultaneously or if the implemen-
tation uses dummy operations to hide the AES execution. The differential bias
attack remains applicable in this setting, with adjusted complexities. See Section
6 and Table 1 for details. To characterize noise, we define π to be the probability
that the leak is correctly read. The complexities of our attacks grow quadratically
with the increase of 1/π.

Further results. We discuss the applicability of our attacks to AES-192 and
AES-256, multiple-bit leakage, and other granularities of the leaks in Section 8.

Our observations and recommendations. To summarize the residual se-
curity of AES under leakage in the various settings, we observe the following.

4



Table 1. Security of AES-128 under leakage in various settings

Time and space BB round(s) Best Bit alignment Byte alignment

of leaked bits attack Time Data Section Time Data Section

Fixed time/space none MA∗2 218 28 CC Sec.3 212 28 CC Sec. 7.1

round 9 MA∗1 244 234 CP Sec.3 242 234 CP Sec. 7.1

rounds 1, 9 MA 247 28 CP Sec.3 244 234 CP Sec. 7.1

Uncertain space none BSA 226 226 CC Sec.5.1 223 223 CC Sec. 7.2

round 9 DBA 248 242 CP Sec.5.1 241 239 CP Sec. 7.2

rounds 1, 2, 8, 9 DBA 263 242 CP Sec.5.1 256 242 CP Sec. 7.2

Uncertain time none BSA 223 223 CC Sec.5.2 223 223 CC Sec. 7.2

round 9 DBA 248 238 CP Sec.5.2 244 238 CP Sec. 7.2

rounds 1, 2, 8, 9 DBA 261 237 CP Sec.5.2 253 237 CP Sec. 7.2

Uncertain none BSA 233 233 CC Sec.5.3 224 224 CC Sec. 7.2

space and time round 9 DBA 258 246 CP Sec.5.3 247 243 CP Sec. 7.2

rounds 1, 2, 8, 9 DBA 272 245 CP Sec.5.3 262 242 CP Sec. 7.2

Random none BSA 253 253 CC Sec.6 244 244 CC Sec. 7.2

space and time round 9 DBA 268 256 CP Sec.6 257 253 CP Sec. 7.2

w/ π = 2−10 rounds 1, 2, 8, 9 DBA 282 255 CP Sec.6 272 252 CP Sec. 7.2

Random none BSA 273 273 CC Sec.6 264 264 CC Sec. 7.2

space and time round 9 DBA 278 266 CP Sec.6 267 263 CP Sec. 7.2

w/ π = 2−20 rounds 1, 2, 8, 9 DBA 292 265 CP Sec.6 282 262 CP Sec. 7.2

*1 : 32-bit partial key recovery attack, *2 : 8-bit partial key recovery attack

BB round(s): Black-boxed round(s), KP: Known Plaintext, CP: Chosen Plaintext

CC: Chosen Ciphertext, MA: Multiset Attack, DBA: Differential Bias Attack

BSA: Biased State Attack, π is the probability to read a correct leak

First, if no rounds are black-boxed and all intermediate internal states can be
visible to the attacker, there are practical attacks, even with uncertain time and
space. Second, to approach practical infeasibility of attacks in our leakage model
without black-boxing, a substantial level of noise are be needed, π = 2−10 and
lower when combined with randomized time and space.

On the other hand, the black-boxing of round 9 is very effective. Indeed, if
round 9 is black-boxed4 (i.e., when the state between round 9 and round 10 is
invisible to the attacker), the complexities of our attacks grow beyond 244 even
with fixed time and space. Third, if uncertainty in time and space is combined
with the black-boxed 9th round, our attacks require more than 258 operations,
even with clean leaks. Then, if more rounds (1,2,8, and 9) are black-boxed, the
complexities increase to 272. If noise is applied as countermeasure on top of that,
it is possible to attain security levels of 280 and beyond against our attacks.

Thus, black-boxed round 9, noise or both are needed to hamper our attacks
at a practical security level under leakage. Note that a high-budget organization
can practically afford an attack of complexity 280 and higher [12]. However, the
countermeasures considered here may still be effective against a mass surveillance
attacker.

4 E.g., partly unrolled hardware implementations aimed to reduce latency [6] may
have this property.

5



2 Preliminaries

This section fixes AES notations that we will use throughout the paper and
describes the leakage attack by Dinur-Shamir on AES as a starting point.

2.1 Notations of AES

AES is a block cipher with a 128-bit internal state and a 128/192/256-bit key
K, referred to as AES-128, AES-192 and AES-256, respectively. In most parts of
this paper, we refer to AES-128 whenever speaking of AES. The internal state is
represented by a 4×4 byte matrix, and the key is represented by a 4×4/4×6/4×8
matrix. For example, a 4×4 internal state consisting of 16 byte cells is expressed
as follows.

S =


s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15


AES consists of a data processing part and a key schedule. The data processing
part adopts a substitution-permutation network whose round function consists
of four layers: SubBytes, ShiftRow, MixColumns and AddRoundKey. SubBytes is
a nonlinear transformation applying a 8-bit S-box to each cell. ShiftRow rotates
bytes in row r by r positions to the left. MixColumns is a linear transforma-
tion applying a 4 × 4 diffusion matrix with branch number 5 to each column.
AddRoundKey adds a 128-bit subkey to a 128-bit state by an XOR operation.
Note that AddRoundKey is also performed before the first round as whitening
and that MixColumns is omitted in the last round. Subkeys are generated by a
key schedule. For the details of the key schedule of AES, we refer to [11].

Two types of internal states in each round of AES-128 are defined as follows:
#1 is the state before SubBytes in round 1, #2 is the state after MixColumns
in round 1, #3 is the state before SubBytes in round 2,. . ., #19 is the state
before SubBytes in round 10, and #20 is the state after ShiftRow in round 10
(MixColumns is omitted in the last round). The states in the last round of AES-
192 are addressed as #23 and #24, and of AES-256 as #27 and #28. We let
#0 be a plaintext and #21, #25 and #29 be a ciphertext in AES-128/192/256,
respectively. 128-bit subkeys are denoted as $0 , $1, . . ., and so on. The i-th byte
in the state x is denoted as xi and the j-th bit in xi is represented as xi[j].

2.2 Dinur-Shamir chosen-plaintext attack on AES-128 with leakage

As a starting point of our analysis, we outline the leakage attack proposed by
Dinur and Shamir in [9]. As explained above, the Dinur-Shamir model is differ-
ent from our leakage models as the adversary knows the time (round number)
and space (bit position inside the round) of the leak, only single-bit leaks are
considered there, and no leaks from the key schedule are allowed.

In the attack of [9], one uses the following multiset properties of a byte: In
set A, all 28 values appear exactly once; In set C, all 28 values are fixed to a

6



constant; In set B, the XOR sum of all 28 values is zero; In set U, all 28 values
is not A, C or B. Let an N -round attack be an attack based on leaked bits after
the N -th round function, e.g., a 2-round attack is based on only leaked bits of
#5.

In the first step, the attacker guesses 4 bytes of the key $0, and chooses a set
of 28 plaintexts, so that #2 consists of Λ-set in which only one byte is A and the
other 15 bytes are C. If 4 bytes of $0 are correctly guessed, #5 consists of 4 bytes
of A and 12 bytes of C, while in a wrong key, all bytes in #5 become U. Thus,
by checking whether the all 28 values of #5 are fixed, an attacker is able to sieve
wrong keys after 232 operations. The procedure can be repeated for three times
with the three 4-byte sets of the key $0 depending on the position of the leaked
bit. The remaining 4 bytes of $0 are exhaustively searched. Time complexity is
estimated as 242 (≈ (232 × 28 × 3)) encryptions and the required data is 234

(= 232 × 4) chosen plaintexts. The work [9] also proposes other types of 2-round
attack using cubes, with a time complexity of 235. However, the details are not
given.

The paper [9] mentioned that 3- and 4-round attacks were possible by using
similar techniques but omitted the details. As A expands into all state after 3
rounds even if the key is correctly guessed, at least the 2-round attack has a
limited application to 3 and 4 rounds.

3 AES under Leakage with Fixed Time and Space

In this section, we present new key recovery attacks on AES under leakage with
fixed time and space. That is, a bit of the internal state is leaked whose location
(round and bit position) is unknown but fixed for the entire attack. Our attack is
an extension of the Dinur-Shamir integral attacks [9]. While their attack requires
the location of leaked bits in advance, our attack is feasible even if an attacker
does not have any knowledge of it. First, we describe a technique to detect
whether leaked bits come from the key schedule or the data transformation, and
show that leaked bits from the key schedule are of very limited use for a key
recovery attack in this setting. Then we introduce key recovery attacks based on
leaked bits from the data transformation. Our attacks utilize a bitwise multiset
characteristic.

Formalization of fixed time and space. The fixed (unknown) location set-
ting assumes that each execution of encryption leaks only one bit of the inter-
nal state at the fixed location. Specifically, leaked bits are assumed to come
from internal states after each round function of the data processing part:
#3,#5, . . . ,#19 or each state of the key schedule (i.e., subkeys): $0 , $1, . . ., $10
at the fixed position of the fixed rounds in each encryption, e.g., #911[2] or $58[5].
The adversary is able to access the encryption function with known/chosen plain-
texts/ciphertexts and obtain corresponding leaked bits.

7



・Correct Key

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

Mix

Column
S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

SubByte Shiftrow

P

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

?

?

?

?

C

C

C

C

C

C

C

C

C

C

C

C

?

C

C

C

C

C

C

?

C

C

?

C

C

?

C

C

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

A

C

C

C

C

A

C

C

C

C

A

C

C

C

C

A

A

A

A

A

C

C

C

C

C

C

C

C

C

C

C

C

A

C

C

C

C

A

C

C

C

C

A

C

C

C

C

A

B

B

B

B

C

C

C

C

C

C

C

C

C

C

C

C

B

B

B

B

C

C

C

C

C

C

C

C

C

C

C

C

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

・Wrong Key

A

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

A

A

A

C

C

C

C

C

C

C

C

C

C

C

C

A

C

C

C

C

A

C

C

C

C

A

C

C

C

C

A

A

A

A

A

C

C

C

C

C

C

C

C

C

C

C

C

A

C

C

C

C

A

C

C

C

C

A

C

C

C

C

A

A

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

A

A

A

C

C

C

C

C

C

C

C

C

C

C

C

A

A

A

A

C

C

C

C

C

C

C

C

C

C

C

C

A

C

C

C

C

C

C

A

C

C

A

C

C

A

C

C

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

#1 #2 #3 #5 #7 #9#4 #6 #8

$0
$1 $2 $3 $4

Fig. 2. Bitwise multiset characteristics over 4-round AES-128

Leakage from key schedule. The states in the key schedule, $0 , $1, . . ., $10,
are deterministic with respect to the value of the key, i.e., if a key is fixed, all
states of the key schedule are fixed independently of the values of plaintexts. On
the other hand, the states in the data processing part depend on the values of
plaintexts. This difference allows us to detect whether leaked bits come from the
key schedule. More specifically, we encrypt N different plaintexts and obtain N
leaked bits. If all N bits are the same, they come from the key schedule with
probability (1− 2−N ).

If the leaked bits come from the key schedule, information theoretically, the
attacker is able to get at most one bit of the subkey information, as each encryp-
tion leaks the same state information at the fixed location. In addition, since an
attacker does not know where leaked bits come from, leaked information from
the leaked bits is negligible. Therefore, we will focus on the case where leaked
bits come from the data processing part in the following.

3.1 Bitwise multiset characteristic

Our attacks utilize the following bitwise multiset property in the data transform.

Proposition 1 (Bitwise zero-sum property) If only one byte of #2 is A
and the other 15 bytes are C (Λ set), the bitwise XOR-sum of 28 multiset of any
bits in #3 to #10 is zero.

Proof. As shown in Fig. 2, if #2 consists of a Λ set, #3 is also a Λ set, and #5
consists of 4 bytes of A and 12 bytes of C. Then, #7 and #9 consist of 16 bytes
of A and B, respectively. In the 28 multiset of each bit of A, C and B, the XOR
sum becomes zero [4]. ⊓⊔

3.2 Chosen-plaintext bitwise multiset attack

The bitwise zero-sum property allows us to develop chosen-plaintext key recovery
attacks using leaked bits at a fixed position in #3, #5, #7 or #9. Our attack

8



firstly guesses 4 bytes of the key $0, and chooses a set of 28 plaintexts resulting
in Λ set in #2. If 4 bytes of $0 are correctly guessed, the bitwise XOR sum of 28

leaked bits in any bit position of #3 to #10 is zero (Proposition 1). Otherwise,
the probability that the bitwise XOR sum of leaked bits of #5, #7 and #9 is
zero is 2−1. If this procedure repeats with N different sets of 28 plaintexts, wrong
keys can be detected with a probability of (1− 2−N ).

First, we prepare a table of 232 plaintexts in which all values of #00, #05,
#010, #015 appear once and the other 12 bytes are fixed, and corresponding
leaked bits. Assuming that the leaked bits can come from any position of #5,
#7 or #9, our attack is performed as follows:

1. Guess $00, $05, $010, $015 (4 bytes ) and choose #21, #22, #23 (3 bytes).
2. Compute 28 the 4 bytes of #00, #05, #010, #015 backwards with all 28

values of #20.
3. Get 28 leaked bits by accessing the prepared table, and compute the XOR

sum of 28 leaked bits.
4. Repeat steps 1 to 3 N times with different values of #21, #22, #23. If all

N sets of XOR-sums are zero, regard it as a correct key.
5. Repeat steps 1 to 4 with all 232 key candidates for $00, $05, $010, $015.
6. Repeat steps 1 to 5 for three times with the other three 4-byte sets of the

key $0 and corresponding bitwise multiset characteristics and tables.

The number of surviving keys after the above procedure is estimated as (1 +
2−N × (232 − 1))4. If the remaining key candidates are exhaustively searched,
time complexity is estimated as {(232 × 28 × N) × 4} + (1 + 2−N × (232 −
1))4 encryptions. When N = 22, the time complexity is estimated as 246.46

encryptions, the required data is 234 (= 232 × 4) chosen plaintexts and the
required memory is 234 bits. This attack is successful if leaked bits come from
any bits of #5, #7 and #9 without any knowledge of the location of leaked bits.

3.3 Partial key recovery attack using leaked bits from #3

If leaked bits come from #3, a 32-bit partial key-recovery attack is feasible as
AES takes 2 rounds to achieve the full diffusion. If 4 bytes of keys $0 are guessed
correctly, 28 multiset in only one byte of #3 is not C as shown in Fig. 2, while
for a wrong key, 28 multisets in 4 bytes of one column are not C. We exploit the
gap of the number of C in #3 between a correct key and a wrong key.

We guess the column in #3 where leaked bits come from and then guess
corresponding 4 bytes of $0. We check whether the 28 multiset of leaked bits
is fixed with N different sets of 28 plaintexts. A correct key can be detected
with probability of (1− 2−8N ) if leaked bits come from the byte which is C for
a correct key and B for a wrong key. We repeat this 4 × 4/3 times by guessing
different columns and the byte position of leaked bits in #3 and corresponding 4
bytes of $0. The corresponding 32 bits of the key $0 can be recovered with about
244 (≈ 232 × 28 × 4× 4× 4/3) encryptions when N = 4, 234 chosen ciphertexts
and 234 memory.

9



・Correct Key

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

A

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Inverse

SubByte

Inverse

Shiftrow

C

A

C

C

C

C

A

C

C

C

C

A

C

C

C

C

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

・Wrong Key

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

#20 #19 #18

$10

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

#17 #16 #15 #14
A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

#13

B

B

B

B

C

C

C

C

C

C

C

C

C

C

C

C

B

C

C

C

C

B

C

C

C

C

B

C

C

C

C

B

?

C

C

C

C

?

C

C

C

C

?

C

C

C

C

?

?

C

C

C

C

?

C

C

C

C

?

C

C

C

C

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

Inverse

MixColumn

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

A

C

C

C

C

C

C

A

C

C

A

C

C

A

C

C

A

A

A

A

C

C

C

C

C

C

C

C

C

C

C

C

A

A

A

A

C

C

C

C

C

C

C

C

C

C

C

C

A

A

A

A

C

C

C

C

C

C

C

C

C

C

C

C

A

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

A

A

A

C

C

C

C

C

C

C

C

C

C

C

C

A

C

C

C

C

A

C

C

C

C

A

C

C

C

C

A

A

C

C

C

C

A

C

C

C

C

A

C

C

C

C

A

A

C

C

C

C

C

C

A

C

C

A

C

C

A

C

C

A

A

A

A

C

C

C

C

C

C

C

C

C

C

C

C

A

A

A

A

C

C

C

C

C

C

C

C

C

C

C

C

A

A

A

A

C

C

C

C

C

C

C

C

C

C

C

C

$9 $8 $7 $6

Fig. 3. Bitwise multiset characteristics in 4-round AES-128 in backward direction

3.4 Chosen-ciphertext bitwise multiset attack

In the chosen-ciphertext setting, backward direction attacks are feasible by using
leaked bits from #13, #15, #17 or #19. As shown in Fig. 3, if 4 bytes of $10 are
correctly guessed and a set of ciphertexts is properly chosen, the XOR-sum of 28

multiset of any bit in #12 to #17 is zero (Proposition 1). Since states #13, #15
and #17 correspond to #7, #5 and #3, respectively, chosen-ciphertext attacks
using these bits are feasible in the same manner as for chosen-plaintext attacks.

Also, #19 is affected by only one byte of $10. Thus, one byte of $10 can be
recovered by the exhaustive search with 8 leaked bits from different ciphertexts
after guessing 128 positions of the leaked bit. Time complexity is estimated as
218 (= 28×128×8) encryptions, the required data is about 28 known ciphertexts,
and the memory consumption is negligible.

3.5 Combined key recovery attacks on AES

Finally, we introduce a key recovery attack on the full AES-128 by combining
the forward and the backward direction attacks. Since we do not know in which
round the bits leak, we guess it and then mount each round attack in the following
order: #19 → #17 → #3 → #5 → #7 → #9 → #13 → #15, i.e., if a correct
key is not found by the guessed-round attack, the next round attack is applied
in that given order. Our attacks find a correct key successfully except the case
where the leaked bits come from #11. Thus the success probability without any
knowledge of locations of leaked bits is 0.899 (= 8/9).

Time complexity is estimated as 248 (≈ 218 + 244 + 244 + 246.46 + 246.46)
encryptions. The required data is about 235 (= 234 +234) chosen plaintexts and
234 chosen ciphertexts and the required memory is 234 bits. Note that if the
leaked bits come from #3, #17, #19, partial key recovery attacks are possible.

10



・Correct Key

A A A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A A A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

?

?

?

?

?

?

?

?

A
A

A
A

A
A
A
A

A
A

A
A

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

・Wrong Key

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

#1 #2 #3 #5 #7#4 #6
A

A

A

A

A
A

A
A

P = #0

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S
P

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

$0

SubByte Shiftrow
Mix

Column

$1 $2 $3

Fig. 4. Truncated differential characteristic over 3-round AES-128

4 Uncertainty and Differential Bias Attacks

The attacker can also have limited control over the execution environment. In
particular, the time and space can be uncertain. We assume now that the at-
tacker does not know bit positions and/or the number of rounds of leaked bits.
Moreover, the values leaked can be incorrect due to noise or other operations
executed in parallel to encryption/decryption. This can happen both for purely
technical reasons on a complex multi-process platform and due to countermea-
sures. This section deals with these uncertainties and develops a cryptanalytic
technique that is coined differential bias attack.

In a nutshell, the technique works as follows. Let Zi be a leaked bit from
an i-th execution of the encryption function. Our attacks observe a stream of
leaked bits Z0, Z1, Z2, Z3, . . . and recover the correct key by applying techniques
of distinguishing attacks from the domain of stream ciphers [15, 16, 23]. More
specifically, we guess a part of the key $0, and set well-chosen differences for a
pair of plaintexts resulting in biased differential states, where the distribution of
bitwise differences is biased, if the part of key $0 is correctly guessed. As a leaked
bit stream from biased differential states is also biased, we are able to detect the
bit stream corresponding to the correct key by checking bias on the differences
of bits. Also, if leakage after round 9 is available, a more powerful attack, called
biased state attack, is feasible by using similar techniques.

Formalization of uncertain time and space. We assume a random unknown
round (time) and/or bit position (space) within the round of the leak. Again,
each execution of encryptions leaks only one bit of internal states at the random
location. More formally, leaked bits are assumed to randomly come from the
target space of internal states. For example, if the target space consists of all
states after each round function of the data transform and key schedule, it is the
leakage from states #0,#3, . . . ,#19,#21 and states $0, $1, . . ., $10. A target
space can be a subset of those states if some rounds are black-boxed (and, thus,
not visible to the attacker).

11



4.1 Truncated differential characteristic

Our attacks utilize a bytewise truncated differential characteristic of Fig. 4,
where a colored-cell is a probability-one non-zero truncated difference, a blank
cell is a probability-one zero truncated difference, and ? is an unknown truncated
difference. Define 4 bytes of differences {∆#00, ∆#05, ∆#010, ∆#015} in a pair
of plaintexts as (∆#00,∆#05,∆#010,∆#015) = S−1(MC−1(∆#20, 0, 0, 0)),
where S−1 and MC−1 are the inverses of SubBytes and MixColumns in a column,
respectively, and ∆#20 is an arbitrary byte difference in #20. Given {∆#20,
#20, . . . ,#23} and {$00, $05, $010, $015}, {∆#00,∆#05,∆#010, ∆#015} and
{#00,#05,#010,#015} are determined. Let #0′ be a plaintext having differ-
ences {∆#00, ∆#05, ∆#010, ∆#015}, i.e., #0′0 = #00 ⊕∆#00,#0′5 = #05 ⊕
∆#05,#0′10 = #010 ⊕ ∆#010,#0′15 = #015 ⊕ ∆#015. Also, let #′1, . . . ,#′21
be the corresponding states of #0′, and Z ′

0, Z
′
1, Z

′
2, Z

′
3, . . . be leaked bits of each

execution of #0′.

4.2 Biased differential state

Choosing 4-byte differences {∆#00, ∆#05, ∆#010, ∆#015} properly and guess-
ing the 4 bytes of {$00, $05, $010, $015} correctly, we are able to create biased
differential states in #3: consisting of 15 bytes of probability-one zero differences
and 1 byte of a probability-one non-zero difference, #5: consisting of 12 bytes
of probability-one zero differences and 4 bytes of probability-one non-zero dif-
ferences, and #7: consisting of 16 bytes of probability-one non-zero differences.
As shown in Fig. 4, a correct key has 27 bytes of probability-one zero differences
#31, . . . ,#315 and #54, . . . ,#515 and 21 bytes of probability-one non-zero dif-
ferences #31, #50, . . . ,#53, and #70, . . . ,#715, while a wrong key has only 12
bytes of probability-one zero differences #34, . . . ,#315 and does not have any
probability-one non-zero difference in the state of the data processing part.

In addition, a pair of plaintexts has 12 bytes of probability-one zero differ-
ences and 4 bytes of probability-one non-zero differences for both a correct key
and a wrong key. Also, the key schedule has 176 (= 16×11) bytes of probability-
one zero differences, as the subkeys are always fixed under the same key.

4.3 Bitwise differential bias in biased differential state

For a probability-one zero/non-zero truncated difference, we derive positive and
negative bitwise differential biases. Our attack exploits the gap of the number
of positive and negative biases between a correct key and a wrong key when a
pair of #0 and #′0 is encrypted.

Positive bitwise bias for probability-one zero truncated difference.
If a bytewise pair #xy and #x′

y has a probability-one zero truncated differ-
ence, a bitwise difference at the same position is also zero with probability one:
Pr(∆[#xy[j],#

′xy[j]] = 0) = 1, 0 ≤ j ≤ 7, where ∆[a, b] = a⊕ b. A correct key
has 1720 (= 27× 8 + 176× 8 + 12× 8) positive bitwise differential biases, while
a wrong key has only 1600 (= 12× 8 + 176× 8 + 12× 8) such biases.

12



Table 2. Bitwise differential biases for truncated differential of Fig. 4

Positive biases toward zero Negative biases toward zero

Correct key #3i[j] (1 ≤ i ≤ 15, 0 ≤ j ≤ 7) #30[j] (0 ≤ j ≤ 7)
#5i[j] (4 ≤ i ≤ 15, 0 ≤ j ≤ 7) #5i[j] (0 ≤ i ≤ 3, 0 ≤ j ≤ 7)

#7i[j] (0 ≤ i ≤ 15, 0 ≤ j ≤ 7)

Wrong key #3i[j] (4 ≤ i ≤ 15, 0 ≤ j ≤ 7) -

Both keys #0i[j] (i ̸= 0, 5, 9, 15 ≤ j ≤ 7) #0i[j] (i = 0, 5, 9, 15, 0 ≤ j ≤ 7)
$xi[j](0 ≤ x ≤ 10, 1 ≤ i ≤ 15, 0 ≤ j ≤ 7)

Negative bitwise bias for probability-one non-zero truncated differ-
ence. If a pair #xy and #x′

y has a probability-one non-zero truncated differ-
ence, the probability that a bitwise difference at the same bit position is zero is
estimated as follows: Pr(∆[#xy[j],#

′xy[j]] = 0) = 127/255 = 1/2 · (1− 2−7.99)
In experiments with 240 randomly-chosen plaintexts and keys, we confirmed that
these negative biases toward zero exist in each bit of the probability-one non-zero
truncated difference, where the experimental value is Pr(∆[#7i[j],#

′7i[j]] =
0) = 1/2 · (1− 2−7.92).

A correct key has 200 (= 21× 8 + 4× 8) negative bitwise differential biases,
while a wrong key has 32 (= 0 + 4 × 8) ones. The summary of bitwise posi-
tive/negative differential biases for the truncated differential of Fig. 4 is shown
in Table 2.

4.4 Bitwise differential biases in the stream of leaked bits

Suppose that values of the other bits of the states in the data processing part
and the key schedule are randomly distributed, i.e., the probability that differ-
ences of other bitwise pairs become zero is 2−1. Let Nall, Nbiasp , Nbiasn , and
Nrandom be the number of bitwise pairs in entire space, positive biased space
(toward zero), negative biased space (toward zero) and randomly-distributed
space, respectively, and xc and xw be those of a correct key and a wrong key,
respectively (see Fig. 5). The probabilities that a difference of a bitwise pair
of randomly-chosen leaked bits is zero (∆[Zi, Z

′
j ] = 0) for a correct key and a

wrong key are estimated as follows:

Prc(∆[Zi, Z
′
j ] = 0) = 1/2·(N c

random/Nall)+N c
biasn/Nall ·(127/255)+N c

biasp/Nall,

P rw(∆[Zi, Z
′
j ] = 0) = 1/2·(Nw

random/Nall)+Nw
biasn/Nall·(127/255)+Nw

biasp/Nall.

Our attack observes leaked bits Z0, Z1, Z2, Z3, . . . and Z ′
0, Z

′
1, Z

′
2, Z

′
3, . . ., and

then computes the probability of ∆[Zi, Z
′
j ] = 0 in order to distinguish a stream

coming from the distribution for a correct key from streams coming from the
distribution for a wrong key.

The number of required samples for distinguishing the two distributions with
probability of 1− α is given by the following lemmata.

13



Nall

Nw
bias

Nw
random

Nall

Nc
bias

Nc
random

Correct keyWrong key

Bitwise pairs of leaked bits

Zi Z’j

Bitwise pairs of leaked bits

Zi Z’j

p pNw
bias n

Nc
bias n

Fig. 5. Bias in leaked stream

P

C

Z0, Z1,   Z2 ,…,  ZNs-1

AES-128

P’

C’

AES-128
Z’0  ,Z’1, Z’2, ,…, Z’Ns-1

Fig. 6. Bitwise pairs of leaked bits

Lemma 1 [15, 16] Let X and Y be two distributions and suppose that the in-
dependent events E occur with probabilities PrX(E) = p in X and PrY (E) =
(1 + q) · p in Y. Then the discrimination D of the distributions is p · q2.

Lemma 2 [15] The number of samples Nsample that is required for distinguish-
ing two distributions that have discrimination D with success probability 1 − α
is (1/D) · (1− 2α) · log2 1−α

α .

Assuming that the target event E is ∆[Zi, Z
′
j ] = 0 , X is the distribution for

a wrong key, and Y is the distribution for a correct key, p and q are estimated
as p = Prw(∆[Zi, Z

′
j ] = 0) and

q =
−N c

biasn
+Nw

biasn
+ 255(N c

biasp
−Nw

biasp
)

255Nall −Nw
biasn

+ 255Nw
biasp

.

For success probability 1− 2−32, the estimated number of required samples is:

Nsample = (pq2)−1 · (1− 2 · 2−32) · log2
1− 2−32

2−32
≈ 2 · 32 · q−2 = 26 · q−2.

4.5 Chosen-plaintext differential bias attack

First, this attack prepares 232 chosen plaintexts in which all 232 values of #00,
#05, #010, #015 appear once and the other 12 bytes are fixed, and obtains Ns

leaked bits in each plaintext, i.e., each plaintext is encrypted Ns times. Given a
pair of P and P ′, N2

s (= Ns × Ns) pairs of leaked bits are obtained as shown
in Fig. 6. After we make a table of the values of {#00, #05, #010, #015} and
corresponding Ns leaked bits, our attack is performed as follows:

1. Guess the 4 bytes of key $00, $05, $010, $015, and choose∆#20, #20, . . . ,#23.
2. Compute a pair of 4 bytes of plaintexts, #00, #05, #010, #015 and #0′0, #0′5,

#0′10, #0′15, resulting in biased #3, #5 and #7 states if a key is correctly
guessed.

3. GetN2
s pairs of leaked bits∆[Zi, Z

′
j ], 0 ≤ i, j < Ns by accessing the prepared

table.

14



4. Repeat steps 2-3 Nsample/N
2
s times with different values of #2.

5. Check whether a distribution of Nsample pairs is the one for a correct key. If
so, regard it as a candidate for the correct key.

6. Repeat steps 1 to 5 with all 232 candidates of keys $00, $05, $010, $015.
7. Repeat steps 1 to 6 for three times with the other three 4-byte sets of the

key $0, corresponding truncated differential characteristics, and the tables
of plaintexts and leaked bits.

In steps 3 to 5, we check Nsample pairs to detect a stream coming from
the biased distribution for a correct key. In the step 3, we count the number
of the events ∆[Zi, Z

′
j ] = 0, and estimate the probability Pr(∆[Zi, Z

′
j ] = 0).

The straight forward method requires N2
s operations to check all N2

s pairs. To
improve it, we first calculate the number of Zi = 0, 0 ≤ i < Ns, defined as Nzero.
Then the number of ∆[Zi, Z

′
j ] = 0 is estimated as(

Nzero × (Z ′
0 + . . . ,+Z ′

Ns−1) + ((Ns −Nzero)× (Z ′
0 + . . . ,+Z ′

Ns−1)
)
/Nall,

where a is the complement of a. These costs are estimated as Ns + (Ns + Ns)
additions and multiplications. It is assumed to be less than Ns one-round encryp-
tions. The number of surviving keys after the above procedure is estimated as
(1+2−α×(232−1))4. If the remaining key candidates are exhaustively searched,
the entire time complexity is estimated as (232 × 4×Nsample/Ns × 1/10) + (1+
2−32 × (232 − 1))4 ≈ 231 × Nsample/Ns encryptions and the required data is
234 × Ns (= 4 × 232 × Ns) chosen plaintexts with leaked bits. The memory
requirement is 234 ×Ns bits.

4.6 Chosen-ciphertext differential bias attack

If the decryption function is accessible, chosen-ciphertext attacks are applicable.
Similarly to the setting of bitwise mutiset attacks before, the chosen-ciphertext
attacks are more efficient and it makes sense to black-box the output of round
9 also in the cases with time and space uncertainty.

As shown in Fig. 7, the states #13, #15 and #17 correspond to #7, #5
and #3, respectively. Since the state #19 consists of 12 probability-one zero
truncated differences and 4 probability-one non-zero truncated differences, both
for a correct key and a wrong key, one additionally has 96 positive and 32 negative
bitwise differential biases in the chosen-ciphertext attack.

Biased state attack of #19: Leakage after round 9. If leaked bits from
#19 are obtained, a more powerful attack is feasible. Each byte in #19 can
be controlled by one byte of $10 and one byte of a ciphertext. Thus, we are
able to create a biased state in #19 whose one byte (8 bits) is fixed to 0, if the
corresponding byte of $10 is correctly guessed and the respective byte of the
ciphertext is property chosen. Suppose that the values of the other bits of the
states are randomly distributed. The probabilities that each leaked bit is zero
(Zi = 0) for a correct key is estimated as Prc(Zi = 0) = 1/2 · (N ′c

random/N ′
all) +

15



・Correct Key

A A A

A

A

A

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

A A

A

A

A

A

A

A

A

Inverse

SubByte
Inverse

Shiftrow

C

A A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

・Wrong Key

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

#20 #19 #18

$10

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

A

A

A

#17 #16 #15 #14
A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

#13
A

A

A

A

A

A

A

A

?

?

?

?

A A

A

A

A

A

A

A

?

A

A

A

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

A

A

A

?

A

A

A

?

?

?

?

A

A

A

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

Inverse

MixColumn

$9 $8 $7 $6

Fig. 7. Differential characteristic over 4-round AES-128 in backward direction

N ′c
biasp

/N ′
all, where N ′

all, N
′
biasp

, and N ′
random are the numbers of bits in entire

space, positive biased space and randomly-distributed space, respectively. Also,
Prw(Zi = 0) is assumed to be 1/2.

Assuming that the target event E is Zi = 0, p and q are estimated as p = 1/2
and q = N ′c

biasp
/N ′

all. For the success rate of 1 − 2−8 (α = 2−8), the sample

requirement is estimated as N ′
sample ≈ 2 · 8 · (q)−2 =24 · (q)−2. We repeat the

procedure for all 16 bytes of $10. Therefore, time complexity is estimated as
212 ×N ′

sample (= 16× 28 ×N ′
sample) encryptions and the required data is 212 ×

N ′
sample (= 16 × 28 ×N ′

sample) chosen ciphertexts. The memory requirement is
negligible.

4.7 Known-plaintext differential bias attack

Finally, we introduce a known-plaintext differential bias attack using a truncated
differential characteristic of Fig. 8. For a correct key, one has 24 (= 3×8) positive
bitwise differential biases toward zero and 8 negative bitwise differential biases
in #3, while for a wrong key, there are not such biases. The key schedule has
the same number of positive biases of chosen-plaintext attacks and the plaintext
has 32 (= 4× 8) negative biases in both of a correct and a wrong key.

This attack prepares 233 known plaintexts and makes a table of #00, #05,
#010, #015 and the corresponding Ns leaked bits. The expected number of the
entries of each value of #00, #05, #010, #015 is more than 1. We mount key
recovery attacks for $00, $05, $010, $015 in the same manner as in the chosen-
plaintext attack. In step 3, the prepared table contains the corresponding values
of #00, #05, #010, #015 with high probability. Thus, time complexity is es-
timated as 231 × Nsample/Ns encryptions and the required data is 235 × Ns

(= 4× 233 ×Ns) known plaintexts with leaked bits and the required memory is
about 235 ×Ns bits.

16



・Correct Key

A ?

?

?

?

?

?

?

?

?

?

?

?

A

?

?

?

?

?

?

?

?

?

?

?

?

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

A

?

?

?

?

A

?

?

?

?

A

?

?

?

?

A

A

A

A

A

?

?

?

?

?

?

?

?

?

?

?

?

A

?

?

?

?

A

?

?

?

?

A

?

?

?

?

A

A ?

?

?

?

?

?

?

?

?

?

?

?

P

A ?

?

?

?

?

?

?

?

?

?

?

?

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

・Wrong Key

#1 #2 #3 #5 #7#4 #6

$0

A

?

?

?

?

A

?

?

?

?

A

?

?

?

?

A

P = #0

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

A

?

?

?

?

A

?

?

?

?

A

?

?

?

?

A

A

A

A

A

?

?

?

?

?

?

?

?

?

?

?

?

A

?

?

?

?

A

?

?

?

?

A

?

?

?

?

A

A

?

?

?

?

A

?

?

?

?

A

?

?

?

?

A

SubByte Shiftrow
Mix

Column

$1 $2 $3

Fig. 8. Differential characteristic over 3-round AES-128 for known plaintext attack

5 AES under Leakage with Uncertainty in Time/Space

This section evaluates the security of AES if the attacker is uncertain about time
and space, that is, if the round of leak and/or the bit position of leak within
the round are randomized. Since the multiset of leaked bits at the fixed location
is not available in the random unknown setting, our bitwise multiset attacks
are not applicable to these variants. Thus, we estimate the costs of differential
(state) bias attacks on each variant of AES with countermeasures as shown in
Fig. 1.

Formalization of time/space uncertainty for AES. We speak of random-
ized time, when one bit of the state information is leaked at a fixed bit position
after a random number of rounds, e.g., #(2x + 1)10[7] (0 ≤ x ≤ 10) or $x3[4]
(0 ≤ x ≤ 10). We speak of randomized space, when one bit of the state infor-
mation is leaked at a random bit position after a fixed number of rounds, e.g.,
{#17i[j], $8i[j]} (0 ≤ i ≤ 15, 0 ≤ j ≤ 7). Randomized time and space occur,
when one bit of state information is leaked at a random bit position after a
random number of rounds, e.g., #(2x + 1)i[j] (0 ≤ x ≤ 10, 0 ≤ i ≤ 15 and
0 ≤ j ≤ 7) or $xi[j] (0 ≤ x ≤ 10, 0 ≤ i ≤ 15 and 0 ≤ j ≤ 7).

5.1 Uncertainty in space

The space randomization makes the bit position of leaked bits random in each
execution, i.e., Zi and Z ′

i randomly come from two 256-bit spaces consisting of a
128-bit state in the data processing part and a 128-bit state in the key schedule
at the unknown fixed round, assuming encryptions are executed with a 256-bit
working memory for a internal state and a subkey.

Assuming that leaked bits come from the states after round 2, i.e., {#5i[j]
and $2i[j]} and {#’5i[j] and $’2i[j]} (0 ≤ i ≤ 15, 0 ≤ j ≤ 7), the parame-

ters of our differential bias attacks are chosen as Nall = (256)2, N
(c)
biasp

= 224

17



(= 96 + 128), N
(w)
biasp

= 128 (= 0 + 128), N
(c)
biasn

= 32 and N
(w)
biasn

= 0 (see

Table 2). Then, Prc(∆[Zi, Z
′
j ] = 0) and Prw(∆[Zi, Z

′
j ] = 0) are estimated

as 1/2 · (1 + 2−8.192), and 1/2 · (1 + 2−9.000), respectively, and q = 2−9.42. In
our experiment with 240 randomly-chosen correct and wrong pairs of keys and
plaintexts, Prc(∆[Zi, Z

′
j ] = 0) and Prw(∆[Zi, Z

′
j ] = 0) are 1/2 · (1 + 2−8.191)

and 1/2 · (1 + 2−9.001), respectively, and q = 2−9.42. The number of required
samples to detect a stream for a correct key is estimated as Nsample = 224.84

(= 26 × 29.42×2). We experimentally confirmed that this number of samples is
enough for a successful attack. With Ns = (Nall)

1/2, time complexity is esti-
mated as 247.84 (= (231 × 224.84)/(28)) encryptions and the required data is 242

(= 234 × 28) chosen plaintexts and corresponding leaked bits with 242 bits of
prepared tables.

The details of attacks for Ns = (Nall)
1/2 are provided in Table 3, where q(e) is

our experimental value with 240 randomly-chosen correct and wrong pairs of keys
and plaintexts/ciphertexts, and T and D are time complexity and the amount
of the required data, respectively. Our theoretical values closely approximate
the experimental data in all cases. Since an attacker does not know the round
number of leaked bits, he firstly guesses the round of leaked bits and then mounts
an attack similar to the combined attack of the bitwise multiset attacks. If the
decryption is accessible, our attacks are successful except the case where leaked
bits come from states after 4 or 5 round only. Also, a known plaintext attack is
possible if leaked bits from #3 are available.

5.2 Uncertainty in time

The time randomization makes the round number of leaked bits random in each
execution, i.e., Zi and Z ′

i come from the fixed bit position at a random round
of the data processing part. Additionally, we take into account the leaked bits
from plaintexts #0 or ciphertexts #21 in the data processing part. For instance,
assuming that leaked bits come from 33-th bits of the data processing part,
i.e., #04[1], #34[1], . . ., #194[1] or #214[1], the attack parameters are given as

Nall = 112, N
(c)
biasp

= 3, N
(w)
biasp

= 2, N
(c)
biasn

= 1, N
(w)
biasn

= 0. Then q = 2−6.45,

Nsample = 219.9, T = 247.44 and D = 237.46.

The details of our attacks using leaked bits from the data processing part are
provided in Table 4, where the attack parameters of chosen-plaintext differential
bias attacks depend on the positions of leaked bits, but time and data com-
plexities are almost same for each position. We also evaluate a chosen-plaintext
attack when round 9 and round 1, 2, 8 and 9 rounds are black-boxed. i.e., {#19,
$9} and {#3,#5,#17, #19, $1, $2, $8, $9} are not available, respectively. Other
black-boxed variants are also evaluated by properly choosing attack parameters.
Since an attacker does not know the bit position of leaked bits, he firstly guesses
it and then mounts an attack. If the decryption is accessible, our attacks are fea-
sible as long as leaked bits after round 1, 2, 3, 6, 7, 8 or 9 in the data processing
part are available. A known plaintext attack is applicable if leaked bits from #3

18



are obtained. However, it is a 32-bit key recovery attack, because a bit of #3 is
affected by 32 bits of $0.

5.3 Uncertainty in both space and time

The space and time randomization makes the both the bit position and the
round number of leaked bits random in each execution, i.e., Zi and Z ′

i randomly
come from any bit of any states in the data processing part {#0, #3, #5, . . .,
#19, #21} and in the key schedule {$0, . . ., $10}. The parameters of the chosen-

plaintext differential bias attacks are estimated as Nall = (256× 11)2, N
(c)
biasp

=

1720 (= 27× 8+ 176× 8+ 12× 8), N
(w)
biasp

= 1600 (= 12× 8+ 176× 8+ 12× 8),

N
(c)
biasn

= 200 (= 21× 8 + 0 + 4× 8) and N
(w)
biasn

= 32 (= 0 + 0 + 4× 8).

The details of our attacks are given in Table 5. We also provide a chosen-
plaintext attack when round 9 and round 1, 2, 8 and 9 are black-boxed. If the
decryption is accessible, our attacks work as long as leaked bits after round 1, 2,
3, 6, 7, 8 or 9 of the data processing part are available. Also, a known-plaintext
attack is applicable if leaked bits from #3 are observable.

6 AES under Noisy Leakage

This section studies the effect of additional noise on top of the time and space
randomization. The noise can be due to the limited knowledge of the platform
by the adversary or due to the implemented countermeasures such as insertion
of dummy operations. In the differential bias attack, this reduces the rate of
positive/negative biased bits by adding noise bits into the space of the actually
leaked bits. To quantify the amount of noise present in the attack, we define
π as the probability that an observed bit is not a noise bit. Suppose that the
values of the noise bits are randomly distributed, the bias of a leaked bit stream
of the correct key with noise bits is estimated as q′ = q × π, and the required
number of sample bits to distinguish a stream for a correct key increases by the
multiple of (π2)−1 to N ′

sample = Nsample × (π2)−1. With Ns = (Nall)
1/2 × π−1,

the time and data complexities of our known/chosen plaintext differential bias
attacks increase by the multiple of (π)−1 as T ≈ 231 × (Nsample × π−2)/Ns ×
π−1 = 231 × (Nsample × π−1)/Ns encryptions and D ≈ 234(235) × (Ns × π−1)
chosen/known-plaintexts with leaked bits. Also, the time and data complexities
of chosen-ciphertext biased state attacks increase by the multiple of (π)−2. The
detailed evaluations for each values of π are shown in Table 6.

7 Towards More Alignment: Bytewise Leakage

Here we deal with the case where each execution leaks one byte of a byte-aligned
state. In other words, now we let aligned bytes of internal states leak. Such leaks

19



Table 3. Differential bias and biased state attacks for space randomization

Chosen-Plaintext(Ciphertext) Differential Bias Attack

Round Nall N
c
biasp Nw

biasp Nc
biasn Nw

biasn q q(e) Nsample T D

1 (8) 2562 248 224 8 0 2−11.42 2−11.38 228.84 251.84 242.00 CP(CC)

2 (7) 2562 224 128 32 0 2−9.42 2−9.42 224.84 247.84 242.00 CP(CC)

3 (6) 2562 128 128 128 0 2−16.99 2−16.84 239.98 262.98 242.00 CP(CC)

Known-Plaintext Differential Bias Attack

1 2562 152 128 8 0 2−11.42 2−11.10 228.84 251.84 243.00 KP

Chosen-Ciphertext Biased State Attack

Round N ′
all N

′c
biasp N ′w

biasp - - q q(e) N ′
sample T D

9 256 8 0 - - 2−5.00 2−5.00 214 226.00 226.00 CC

Table 4. Differential bias and biased state attacks for time randomization

Chosen-Plaintext Differential Bias Attack

BB round Nall N
c
biasp Nw

biasp Nc
biasn Nw

biasn q q(e) Nsample T D

None 112 3 2 1 0 2−6.95 2−6.94 219.90 247.44 237.46 CP

9 102 3 2 1 0 2−6.68 2−6.68 219.36 247.04 237.32 CP

1, 2, 8, 9 72 0 0 1 0 2−13.61 2−13.23 233.22 260.41 236.81 CP

Known-Plaintext Differential Bias Attack

None 112 1 0 0 0 2−6.92 2−7.30 219.84 247.38 238.46 KP

Chosen-Ciphertext Biased State Attack

BB round N ′
all N

′c
biasp N ′w

biasp - - q q(e) N ′
sample T D

None 11 1 0 - - 2−3.46 2−3.45 210.92 222.92 222.92 CC

Table 5. Differential bias and biased state attacks for space and time randomization

Chosen-Plaintext Differential Bias Attack

BB Nall Nc
biasp Nw

biasp Nc
biasn Nw

biasn q q(e) Nsample T D

round

None (256 · 11)2 1720 1600 200 32 2−16.02 2−15.92 238.04 257.58 245.46 CP

9 (256 · 10)2 1592 1472 200 32 2−15.75 2−15.70 237.49 257.17 245.32 CP

1, 2 (256 · 7)2 896 896 128 0 2−22.61 2−23.07 251.22 271.41 244.81 CP
8, 9

Known-Plaintext Differential Bias Attack

None (256 · 11)2 1440 1408 40 32 2−17.92 2−17.69 241.84 261.38 246.46 KP

Chosen-Ciphertext Biased State Attack

BB N ′
all N ′c

biasp N ′w
biasp - - q q(e) N ′

sample T D

round

None (256 · 11) 8 0 - - 2−8.46 2−8.44 220.92 232.92 232.92 CC

20



Table 6. Differential bias and biased state attacks for leakage with noise

BB Time Data Time Data Time Data Time Data
round π = 1 π = 2−10 π = 2−20 π = 2−30

Chosen-Plaintext Differential Bias Attack

None 257.58 245.46 CP 267.58 255.46 CP 277.58 265.46 CP 287.58 275.46 CP

1, 2, 8, 9 271.41 244.81 CP 281.41 254.81 CP 291.41 264.81 CP 2101.41 274.81 CP

Known-Plaintext Differential Bias Attack

None 261.38 246.46 KP 271.38 256.46 KP 281.38 266.46 KP 291.38 276.46 KP

Chosen-Ciphertext Biased State Attack

None 232.92 232.92 CC 252.92 252.92 CC 272.92 272.92 CC 292.92 292.92 CC

reflect the realities of a byte-oriented software implementation better. 5 In both
settings – leakage with fixed and uncertain time/space – our techniques still
apply. However, some adjustments are needed, see below.

7.1 Fixed time/space: Bytewise multiset attack

Our bitwise multiset attacks naturally extend to bytewise multiset attacks, be-
cause the multiset characteristics are based on the bytewise XOR-sum property.
The success probability for detecting wrong keys increases from (1 − 2−1) to
(1− 2−8) by using the bytewise zero-sum property. Then the time complexities
of 2, 3, 4, 6 and 7-round attacks are estimated as {(232 × 28 × N) × 4} + (1 +
2−8N × (232 − 1))4 encryptions. With N = 4, it is about 244. The time com-
plexities of 1 and 8-round attacks and the 9-round attack also improve to 242

(≈ 232 × 28 × 4 × 4/3) and 212 (= 28 × 16) encryptions, respectively. The time
complexity of the combined attack is 245 (≈ 212+242+242+244+244) encryptions
and the required data is 235 chosen plaintexts and 234 chosen ciphertexts.

7.2 Uncertain time/space: Differential bias attack

Our differential bias attacks also extend to bytewise attacks using bytewise dif-
ferential biases of truncated differential characteristics of Fig. 4, 7 and 8.

Chosen/known-plaintext differential bias attack. Let a leaked byte from
the i-th execution be Z∗

i , and N∗
all, N

∗
biasp

, N∗
biasn

, N∗
random be the number of

bytewise pairs in the entire space, positive biased space, negative biased space
and randomly-distributed space, respectively. The probabilities that a difference
of a bytewise pair of randomly chosen leaked bytes is zero (∆[Z∗

i , Z
′∗
j ] = 0) for

a correct key and a wrong key are estimated as follows.

Prc(∆[Z∗
i , Z

′∗
j ] = 0) = 1/28 · (N∗c

random/N∗
all) +N∗c

biasp/N
∗
all,

5 The stream cipher LEX can be regarded as a bytewise leakage model at the fixed
space [3] but the locations of leaked bytes are known for the attacker. Thus, the
attack against LEX [10] is not directly applicable to our unknown location model.

21



Table 7. Evaluation for byte-aligned space randomization (Ns = (Nall)
1/2)

Chosen-Plaintext(Ciphertext) Differential Bias Attack

Round Nall N
c
biasp Nw

biasp Nc
biasn Nw

biasn q q(e) Nsample T D

1 (8) 322 31 28 1 1 2−3.41 2−3.42 219.84 245.84 239.00 CP(CC)

2 (7) 322 28 16 4 4 2−0.74 2−0.74 214.48 240.48 239.00 CP(CC)

3 (6) 322 16 16 16 0 2−8.32 2−8.38 229.64 255.64 242.00 CP

Known-Plaintext Differential Bias Attack

1 322 19 16 1 0 2−2.74 2−2.74 218.48 244.48 240.00 KP

Chosen-Ciphertext Biased State Attack

Round N ′
all N

′c
biasp N ′w

biasp - - q q(e) Nsample T D

9 32 1 0 - - 22.99 22.99 211.00 223.00 223.00 CC

Prw(∆[Z∗
i , Z

′∗
j ] = 0) = 1/28 · (N∗w

random/N∗
all) +N∗w

biasp/N
∗
all.

Assuming that the target event E is ∆[Z∗
i , Z

∗
j ] = 0 , X is a distribution for

a wrong key, and Y is a distribution for a correct key, p and q are estimated

as p = Prw(∆[Z∗
i , Z

′∗
j ] = 0) and q =

−Nc
biasn

+Nw
biasn

+255(Nc
biasp

−Nw
biasp

)

Nall−Nw
biasn

+255Nw
biasp

. For

the success probability of 1 − 2−32, the required sample size is estimated as
N∗

sample ≈ 32·256·q2 = 213 ·q2. Time complexity is estimated as 231×Nsample/Ns

encryptions and the required data is 234(235)×Ns chosen/known plaintexts with
leaked bits.

Chosen-ciphertext biased-state attack. Assuming that the target event E
is Zi = 0, p and q are estimated as p = 1/28 and q = (255 ×N c

biasp
)/Nall. The

number of required samples is estimated as Nsample ≈ 8 · 28 · (q)−2. We repeat
the procedure for all 16 byte of $10. Therefore, time complexity is estimated as
212 × Nsample (= 16 × 28 × Nsample) encryptions and the number of required
data is 212 ×Nsample (= 16× 28 ×Nsample) chosen ciphertexts.

Security under time and space randomization and with leakage noise.
The results of security evaluations under time and space randomization with
noisy leakage are provided in Tables 7 to 10. 6 In all cases, time complexity and
data requirements are improved compared to the bit-aligned attacks.

8 Some Extensions

8.1 AES-192 and 256

Bitwise multiset attacks and differential bias attacks on AES-128 are directly
applicable to AES-192 and AES-256 in both fixed and random settings. In the

6 If q is not small, Lemmata 1 and 2 are not applicable [16]. In this case we estimate
Nsample = 211 and 213 for known-plaintext differential bias attacks and chosen-
ciphertext biased state attacks, respectively. We confirmed experimentally that these
numbers of samples were enough for successful attacks.

22



Table 8. Evaluation for byte-aligned time randomization (Ns = (Nall)
1/2)

Chosen-Plaintext Differential Bias Attack

BB round Nall Nc
biasp Nw

biasp Nc
biasn Nw

biasn q q(e) Nsample T D

None 112 3 2 1 0 2−1.31 2−1.31 215.62 243.16 237.46 CP

9 102 3 2 1 0 2−1.26 2−1.26 215.52 243.19 237.32 CP

1, 2, 8, 9 72 0 0 1 0 2−5.61 2−5.50 224.22 252.41 236.81 CP

Known-Plaintext Differential Bias Attack

None (11)2 1 0 0 0 21.08 21.08 213.00 240.54 238.46 KP

Chosen-Ciphertext Biased state Attack

BB round N ′
all N ′c

biasp N ′w
biasp - - q q(e) Nsample T D

None 11 1 0 - - 24.50 24.50 211.00 223.00 223.00 CP

Table 9. Evaluation for byte-aligned space and time randomization (Ns = (Nall)
1/2)

Chosen-Plaintext Differential Bias Attack

BB round Nall Nc
biasp Nw

biasp Nc
biasn Nw

biasn q q(e) Nsample T D

None (32 · 11)2 215 200 25 4 2−5.52 2−5.53 224.04 246.58 242.45 CP

9 (32 · 10)2 199 184 25 4 2−5.29 2−5.29 223.58 246.26 242.32 CP

1, 2, 8, 9 (32 · 8)2 112 112 16 0 2−12.52 2−12.58 238.04 261.23 241.80 CP

Known-Plaintext Differential Bias Attack

None (32 · 11)2 179 176 5 4 2−7.79 2−7.74 228.58 252.12 243.45 KP

Chosen-Ciphertext Biased state Attack

BB round N ′
all N ′c

biasp N ′w
biasp - - q q(e) Nsample T D

None (32 · 11) 1 0 - - 2−0.46 2−0.46 211.92 223.92 223.92 CC

Table 10. Evaluation for byte-aligned leakage with noise (Ns = (Nall)
1/2 × π−1)

BB Time Data Time Data Time Data Time Data
round π = 1 π = 2−10 π = 2−20 π = 2−30

Chosen-Plaintext Differential Bias Attack

None 246.58 242.45 CP 256.58 252.45 CP 266.58 262.45 CP 276.58 272.45 CP

1, 2, 8, 9 261.23 241.80 CP 271.23 251.80 CP 281.23 261.80 CP 291.23 271.80 CP

Known-Plaintext Differential Bias Attack

None 250.28 243.45 KP 260.28 253.45 KP 270.28 263.45 KP 280.28 273.45 KP

Chosen-Ciphertext Biased state Attack

None 223.92 223.92 CC 243.92 243.92 CC 263.92 263.92 CC 283.92 283.92 CC

23



backward direction, 6- to 9- round attacks on AES-128 are corresponded to 8- to
11-round ones on AES-192 and 10- to 13- round ones on AES-256, respectively.

8.2 Multiple-bit leakage

Here we consider the case where M bits of the bit-aligned state information leak
in each execution for a small M . Let Zi

1, Z
i
2, . . . , Z

i
M be M leaked bits of the i-th

execution.
Bitwise Multiset Attack: Assume that Zi

0, Z
i
1, . . . , Z

i
M−1 come from different

but fixed locations of the state. If the XOR sum of 28 multiset of each location
is zero, the XOR-sum of all set of 28×M bits is also zero. Thus, bitwise multiset
attacks are feasible as long as leaked bits come from space where each XOR sum
is zero only in a correct key. Time and date complexities are almost the same.
Differential Bias Attack: Assume that Zi

1, Z
i
2, . . . , Z

i
M come from randomly-

chosen different locations of the state. Since the attacker is able to obtain M
bits in each execution, the required data reduces by a factor of M .

8.3 Other Granularities

So far, we have assumed that a leak can only occur after a full round. However,
in other granularities such as leaks after SubBytes or MixColumns, our bitwise
multiset attacks and differential bias attack still work.
Bitwise Multiset Attack: According to Proposition 1, any bit of the states
between #3 and #10 has the zero-sum property if the key is correctly guessed.
Using the difference of zero-sum properties between correct and wrong key cases,
bitwise multiset attacks are applicable to other states in the same manner.
Differential Bias Attack: By properly choosing attack parameters, our differ-
ential bias attacks are also made feasible. For instance, if bits of the states after
SubBytes are additionally leaked, the parameters of chosen-plaintext differential
attacks on AES-128 with the space and time randomization are estimated as

Nall = (256 × 11 + 128 × 10)2, N
(c)
biasp

= 2032 (= 216 + 216 + 1408 + 96 + 96),

N
(w)
biasp

= 1792 (= 96+96+1408+96+96),N
(c)
biasn

= 400 (= 168+168+0+32+32),

N
(w)
biasn

= 64 (= 0 + 0 + 32 + 32), and q = 2−16.10. The number of required sam-

ples is estimated as Nsample = 238.02(= 26×216.01·2). With Ns = (Nall)
1/2, time

complexity is 257.02 (= (231 × 238.02)/(256× 11+128× 10)) encryptions and the
required data is 246 (= 234 × (256× 11 + 128× 10)) chosen plaintexts.

References

1. D. Boneh, R. A. DeMillo, and R. J. Lipton. On the Importance of Eliminating
Errors in Cryptographic Computations. J. Cryptology, vol. 14 (2), pages, 101–119,
2001.

2. E. Biham. New Types of Cryptanalytic Attacks Using Related Keys. J. Cryptology,
vol. 7 (4), pages, 229–246, 1994.

24



3. A. Biryukov. The Design of a Stream Cipher LEX. In SAC 2006, LNCS, vol. 4356,
pages 67–75, 2007.

4. A. Biryukov and A. Shamir. Structural Cryptanalysis of SASAS. J. Cryptology,
vol. 23 (4), pages, 505–518, 2010.

5. A. Bogdanov, I. Kizhvatov and A. Pyshkin. Algebraic Methods in Side-Channel
Collision Attacks and Practical Collision Detection. In INDOCRYPT 2008, LNCS,
vol. 5365, pages 251–265, 2008.

6. J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M. Knezevic, L. R. Knudsen,
G. Leander, V. Nikov, C. Paar, C. Rechberger, P. Rombouts, S. S. Thomsen,
and T. Yalçin. PRINCE - A Low-Latency Block Cipher for Pervasive Computing
Applications - Extended Abstract. In ASIACRYPT 2012, LNCS, vol. 7658, pages
208–225, 2012.

7. S. Chow, P. A. Eisen, H. Johnson, and P. C. van Oorschot. White-Box Cryptogra-
phy and an AES Implementation. In SAC 2002, LNCS, vol. 2595, pages 250–270,
2002.

8. J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced Encryp-
tion Standard. Information Security and Cryptography. Springer, 2002.

9. I. Dinur and A. Shamir. Side Channel Cube Attacks on Block Ciphers. Cryptology
ePrint Archive, Report 2009/127, 2009. http://eprint.iacr.org/.

10. O. Dunkelman and N. Keller A New Attack on the LEX Stream Cipher. In
ASIACRYPT 2008, LNCS, vol. 5350, pages 539–556, 2008.

11. FIPS PUB 197, Advanced Encryption Standard (AES), 2001. U.S.Department of
Commerce/National Institute of Standards and Technology.

12. T. Kleinjung, A. K. Lenstra and D. Page and N. P. Smart. Using the Cloud to
Determine Key Strengths. In INDOCRYPT 2012, LNCS, vol. 7668, pages 17–39,
2012.

13. P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In CRYPTO ’96, LNCS, vol. 1109, pages 104–113, 1996.

14. P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In CRYPTO ’99,
LNCS, vol. 1666, pages 388–397, 1999.

15. I. Mantin. Predicting and Distinguishing Attacks on RC4 Keystream Generator.
In EUROCRYPT 2005, LNCS, vol. 3494, pages 491–506, 2005.

16. I. Mantin and A. Shamir. A Practical Attack on Broadcast RC4. In FSE 2001,
LNCS, vol. 2355, pages 152–164, 2001.

17. S. Micali and L. Reyzin. Physically Observable Cryptography (Extended Abstract).
In TCC 2004, LNCS, vol. 2951, pages 278–296, 2004.

18. Y. De Mulder. White-Box Cryptography: Analysis of White-Box AES Implemen-
tations. PhD thesis, KU Leuven, 2014.

19. Y. Oren, M. Renauld, F.-X. Standaert, and Avishai Wool. Algebraic Side-Channel
Attacks Beyond the Hamming Weight Leakage Model. In CHES 2012, LNCS, vol.
7428, pages 140–154, 2012.

20. M. Renauld and F.-X. Standaert. Representation-, Leakage- and Cipher-
dependencies in Algebraic side-channel attacks. in the proceedings of the ACNS
2010 Industrial Track, 2010.

21. M. Renauld, F.-X. Standaert, and N. Veyrat-Charvillon. Algebraic Side-Channel
Attacks on the AES: Why Time also Matters in DPA. In CHES 2009, LNCS, vol.
5747, pages 97–111, 2009.

22. K. Schramm, T. J. Wollinger, and C. Paar. A New Class of Collision Attacks and
Its Application to DES. In FSE 2003, LNCS, vol. 2887, pages 206–222, 2003.

23. P. Sepehrdad, S. Vaudenay, and M. Vuagnoux. Statistical Attack on RC4 - Dis-
tinguishing WPA. In EUROCRYPT 2011, LNCS, vol. 6632, pages 343–363, 2011.

25


