
A Unified Approach to MPC
with Preprocessing using OT

Tore Kasper Frederiksen1, Marcel Keller2, Emmanuela Orsini2, and Peter
Scholl2

1 Department of Computer Science, Aarhus University
2 Department of Computer Science, University of Bristol

jot2re@cs.au.dk, {m.keller,emmanuela.orsini,peter.scholl}@bristol.ac.uk

Abstract. SPDZ, TinyOT and MiniMAC are a family of MPC proto-
cols based on secret sharing with MACs, where a preprocessing stage
produces multiplication triples in a finite field. This work describes new
protocols for generating multiplication triples in fields of characteristic
two using OT extensions. Before this work, TinyOT, which works on bi-
nary circuits, was the only protocol in this family using OT extensions.
Previous SPDZ protocols for triples in large finite fields require some-
what homomorphic encryption, which leads to very inefficient runtimes in
practice, while no dedicated preprocessing protocol for MiniMAC (which
operates on vectors of small field elements) was previously known. Since
actively secure OT extensions can be performed very efficiently using
only symmetric primitives, it is highly desirable to base MPC protocols
on these rather than expensive public key primitives. We analyze the
practical efficiency of our protocols, showing that they should all per-
form favorably compared with previous works; we estimate our protocol
for SPDZ triples in F240 will perform around 2 orders of magnitude faster
than the best known previous protocol.

Keywords: MPC, SPDZ, TinyOT, MiniMAC, Preprocessing, OT ex-
tension

1 Introduction

Secure multi-party computation (MPC) allows parties to perform computations
on their private inputs, without revealing their inputs to each other. Recently,
there has been much progress in the design of practical MPC protocols that can
be efficiently implemented in the real world. These protocols are based on secret
sharing over a finite field, and they provide security against an active, static
adversary who can corrupt up to n− 1 of n parties (dishonest majority).

In the preprocessing model, an MPC protocol is divided into two phases: a
preprocessing (or offline) phase, which is independent of the parties’ inputs and
hence can be performed in advance, and an online phase. The preprocessing stage
only generates random, correlated data, often in the form of secret shared mul-
tiplication triples [2]. The online phase then uses this correlated randomness to

perform the actual computation; the reason for this separation is that the online
phase can usually be much more efficient than the preprocessing, which results
in a lower latency during execution than if the whole computation was done
together. This paper builds on the so-called ‘MPC with MACs’ family of proto-
cols, which use information-theoretic MACs to authenticate secret-shared data,
efficiently providing active security in the online phase, starting with the work
of Bendlin et al. [4]. We focus on the SPDZ [10], MiniMAC [11] and TinyOT [19]
protocols, which we now describe.

The ‘SPDZ’ protocol of Damg̊ard et al. [10,8] evaluates arithmetic circuits
over a finite field of size at least 2k, where k is a statistical security parameter.
All values in the computation are represented using additive secret sharing and
with an additive secret sharing of a MAC that is the product of the value and a
secret key. The online phase can be essentially performed with only information
theoretic techniques and thus is extremely efficient, with throughputs of almost
1 million multiplications per second as reported by Keller et al. [16]. The prepro-
cessing of the triples uses somewhat homomorphic encryption (SHE) to create
an initial set of triples, which may have errors due to the faulty distributed de-
cryption procedure used. These are then paired up and a ‘sacrificing’ procedure
is done: one triple is wasted to check the correctness of another. Using SHE
requires either expensive zero knowledge proofs or cut-and-choose techniques to
achieve active security, which are much slower than the online phase – produc-
ing a triple in Fp (for 64-bit prime p) takes around 0.03s [8], whilst F240 triples
are even more costly due to the algebra of the homomorphic encryption scheme,
taking roughly 0.27s [7].

TinyOT [19] is a two-party protocol for binary circuits based on OT ex-
tensions. It has similar efficiency to SPDZ in the online phase but has faster
preprocessing, producing around 10000 F2 triples per second. Larraia et al. [17]
extended TinyOT to the multi-party setting and adapted it to fit with the SPDZ
online phase. The multi-party TinyOT protocol also checks correctness of triples
using sacrificing, and two-party TinyOT uses a similar procedure called combin-
ing to remove possible leakage from a triple, but when working in small fields
simple pairwise checks are not enough. Instead an expensive ‘bucketing’ method
is used, which gives an overhead of around 3-8 times for each check, depending
on the number of triples required and the statistical security parameter.

MiniMAC [11] is another protocol in the SPDZ family, which reduces the size
of MACs in the online phase for the case of binary circuits (or arithmetic circuits
over small fields). Using SPDZ or multi-party TinyOT requires the MAC on ev-
ery secret shared value to be at least as big as the statistical security parameter,
whereas MiniMAC can authenticate vectors of bits at once combining them into
a codeword, allowing the MAC size to be constant. Damg̊ard et al. [9] imple-
mented the online phase of MiniMAC and found it to be faster than TinyOT
for performing many operations in parallel, however no dedicated preprocessing
protocol for MiniMAC has been published.

1.1 Our Contributions

In this paper we present new, improved protocols for the preprocessing stages
of the ‘MPC with MACs’ family of protocols based on OT extensions, focusing
on finite fields of characteristic two. Our main contribution is a new method
of creating SPDZ triples in F2k using only symmetric primitives, so it is much
more efficient than previous protocols using SHE. Our protocol is based on a
novel correlated OT extension protocol that increases efficiency by allowing an
adversary to introduce errors of a specific form, which may be of independent
interest. Additionally, we revisit the multi-party TinyOT protocol by Larraia
et al. from CRYPTO 2014 [17], and identify a crucial security flaw that results
in a selective failure attack. A standard fix has an efficiency cost of at least 9x,
which we show how to reduce to just 3x with a modified protocol. Finally, we
give the first dedicated preprocessing protocol for MiniMAC, by building on the
same correlated OT that lies at the heart of our SPDZ triple generation protocol.

Table 1 gives the main costs of our protocols in terms of the number of cor-
related and random OTs required, as well as an estimate of the total time per
triple, based on OT extension implementation figures. We include the SPDZ pro-
tocol timings based on SHE to give a rough comparison with our new protocol
for F240 triples. For a full explanation of the derivation of our time estimates,
see Section 7. Our protocol for F240 triples has the biggest advantage over previ-
ous protocols, with an estimated 200x speed-up over the SPDZ implementation.
For binary circuits, our multi-party protocol is comparable with the two-party
TinyOT protocol and around 3x faster than the fixed protocol of Larraia et
al. [17]. For MiniMAC, we give figures for the amortized cost of a single multi-
plication in F28 . This seems to incur a slight cost penalty compared with using
SPDZ triples and embedding the circuit in F240 , however this is traded off by
the more efficient online phase of MiniMAC when computing highly parallel
circuits [9].

We now highlight our contributions in detail.

F2k Triples. We show how to use a new variant of correlated OT extension
to create multiplication triples in the field F2k , where k is at least the statis-
tical security parameter. Note that this finite field allows much more efficient
evaluation of AES in MPC than using binary circuits [7], and is also more ef-
ficient than Fp for computing ORAM functionalities for secure computation on
RAM programs [15]. Previously, creating big field triples for the SPDZ protocol
required using somewhat homomorphic encryption and therefore was very slow
(particularly for the binary field case, due to limitations of the underlying SHE
plaintext algebra [7]). It seems likely that our OT based protocol can improve
the performance of SPDZ triples by 2 orders of magnitude, since OT extensions
can be performed very efficiently using just symmetric primitives.

The naive approach to achieving this is to create k2 triples in F2, and use these
to evaluate the F2k multiplication circuit. Each of these F2 triples would need
sacrificing and combining, in total requiring many more than k2 OT extensions.
Instead, our protocol in Section 5.1 creates a F2k triple using only O(k) OTs.

Finite field Protocol
Correlated

OTs
Random OTs

Time estimate,
ms (n = 2)

2-party
TinyOT [19,5]

0 54 0.07

F2
n-party
TinyOT [17,5]

81n(n− 1) 27n(n− 1) 0.24

This work §5.2 27n(n− 1) 9n(n− 1) 0.08

F240
SPDZ [7] N/A N/A 272
This work §5.1 240n(n− 1) 240n(n− 1) 1.13

F28 (MiniMAC) This work §6 1020n(n− 1) 175n(n− 1) 2.63

Table 1. Number of OTs and estimates of time required to create a multiplication triple
using our protocols and previous protocols, for n parties. See Section 7 for details.

The key insight into our technique lies in the way we look at OT: instead of
taking the traditional view of a sender and a receiver, we use a linear algebra
approach with matrices, vectors and tensor products, which pinpoints the precise
role of OT in secure computation. A correlated OT is a set of OTs where the
sender’s messages are all (x, x+∆) for some fixed string ∆. We represent a set
of k correlated OTs between two parties, with inputs x,y ∈ Fk2 , as:

Q+ T = x⊗ y

where Q,T ∈ Fk×k2 are the respective outputs to each party. Thus, correlated
OT gives precisely a secret sharing of the tensor product of two vectors. From
the tensor product it is then straightforward to obtain a F2k multiplication of
the corresponding field elements by taking the appropriate linear combination
of the components.

An actively secure protocol for correlated OT was presented by Nielsen et
al. [19], with an overhead of ≈ 7.3 calls to the base OT protocol due to the
need for consistency checks and privacy amplification, to avoid any leakage on
the secret correlation. In our protocol, we choose to miss out the consistency
check, allowing the party creating correlation to input different correlations to
each OT. We show that if this party attempts to cheat then the error introduced
will be amplified by the privacy amplification step so much that it can always
be detected in the pairwise sacrificing check we later perform on the triples.
Allowing these errors significantly complicates the analysis and security proofs,
but reduces the overhead of the correlated OT protocol down to just 3 times
that of a basic OT extension.

F2 Triples. The triple production protocol by Larraia et al. [17] has two main
stages: first, unauthenticated shares of triples are created (using the aBit protocol
by Nielsen et al. [19] as a black box) and secondly the shares are authenticated,
again using aBit, and checked for correctness with a sacrificing procedure. The

main problem with this approach is that given shares of an unauthenticated triple
for a, b, c ∈ F2 where c = a · b, the parties may not input their correct shares of
this triple into the authentication step. A corrupt party can change their share
such that a+1 is authenticated instead of a; if b = 0 (with probability 1/2) then
(a+ 1) · b = a · b, the sacrificing check still passes, and the corrupt party hence
learns the value of b.3

To combat this problem, an additional combining procedure can be done:
similarly to sacrificing, a batch of triples are randomly grouped together into
buckets and combined, such that as long as one of them is secure, the resulting
triple remains secure, as was done by Nielsen et al. [19]. However, combining only
removes leakage on either a or b. To remove leakage on both a and b, combining
must be done twice, which results in an overhead of at least 9x, depending on
the batch size. Note that this fix is described in full in a recent preprint [5],
which is a merged and extended version of the two TinyOT papers [19,17]

In Section 5.2 we modify the triple generation procedure so that combin-
ing only needs to be done once, reducing the overhead on top of the original
(insecure) protocol to just 3x (for a large enough batch of triples). Our tech-
nique exploits the structure of the OT extension protocol to allow a triple to be
created, whilst simultaneously authenticating one of the values a or b, prevent-
ing the selective failure attack on the other value. Combining still needs to be
performed once to prevent leakage, however.

MiniMAC Triples. The MiniMAC protocol [11] uses multiplication triples of
the form C∗(c) = C(a) ∗ C(b), where a,b ∈ Fk2u and C is a systematic, lin-
ear code over F2u , for ‘small’ u (e.g. F2 or F28), ∗ denotes the component-wise
vector product and C∗ is the product code given by the span of all products
of codewords in C. Based on the protocol for correlated OT used for the F2k

multiplication triples, we present the first dedicated construction of MiniMAC
multiplication triples. The major obstacles to overcome are that we must some-
how guarantee that the triples produced form valid codewords. This must be
ensured both during the triple generation stage and the authentication stage,
otherwise another subtle selective failure attack can arise. To do this, we see a
and b as vectors over Fu·k2 and input these to the same secure correlated OT pro-
cedure as used for the F2k multiplication triples. From the resulting shared tensor
product, we can compute shares of all of the required products in C(a) ∗ C(b),
due to the linearity of the code. For authentication we use the same correlated
OT as used for authentication of the F2k triples. However, this only allows us to
authenticate components in F2u one at a time, so we also add a “compression”
step to combine individual authentications of each component in C(x) into a
single MAC. Finally, the construction is ended with a pairwise sacrificing step.

Furthermore, since the result of multiplication of two codewords results in
an element in the Schur transform, we need some more preprocessed material,
in order to move such an element back down to an “ordinary” codeword. This
3 We stress that this attack only applies to the multi-party protocol from CRYPTO

2014 [17], and not the original two-party protocol of Nielsen et al. [19].

is done using an authenticated pair of equal elements; one being an ordinary
codeword and one in the Schur transform of the code. We also construct these
pairs by authenticating the k components in F2u and then, using the linearity of
the code, computing authenticated shares of the entire codeword. Since this again
results in a MAC for each component of the codeword we execute a compression
step to combine the MAC’s into a single MAC.

Efficient Authentication from Passively Secure OT. All of our protocols
are unified by a common method of authenticating shared values using corre-
lated OT extension. Instead of using an actively secure correlated OT extension
protocol as was previously done [19,17], we use just a passively secure protocol,
which is simply the passive OT extension of Ishai et al. [13], without the hashing
at the end of the protocol (which removes the correlation).

Overview of our Protocols

ΠMiniMult

ΠMACCheck

ΠBitTriples

ΠReOrg ΠSchur

ΠCodeAuth

ΠUncheckedMiniMult

ΠJ·K

ΠCOTe

FOT

ΠACOT

ΠGFMult

ΠUncheckedTriples

ΠReOrg ΠSchur ΠUncheckedMiniMult ΠTripleCheck

ΠBatchCheck

ΠMiniMult

ΠMACCheck

ΠBitTriples

ΠReOrg ΠSchur

ΠCodeAuth

ΠUncheckedMiniMult

ΠJ·K

ΠCOTe

FOT

ΠACOT

ΠGFMult

ΠUncheckedTriples

ΠReOrg ΠSchur ΠUncheckedMiniMult ΠTripleCheck

ΠBatchCheck

TinyOT MiniMAC SPDZ

Fig. 1. Illustration of the relationship between our
protocols. Protocols in boxes indicate final elements
for use in online execution.

This allows corrupt par-
ties to introduce errors on
MACs that depend on the
secret MAC key, which could
result in a few bits of the
MAC key being leaked if
the MAC check protocol
still passes. Essentially, this
means that corrupt parties
can try to guess subsets of
the field in which the MAC
key shares lie, but if their
guess is incorrect the pro-
tocol aborts. We model this
ability in all the relevant
functionalities, showing that
the resulting protocols are
actively secure, even when
this leakage is present.

Security. The security of our protocols is proven in the standard UC framework
of Canetti [6] (see the full version for details). We consider security against mali-
cious, static adversaries, i.e. corruption may only take place before the protocols
start, corrupting up to n− 1 of n parties.

Setup Assumption. The security of our protocols is in the FOT-hybrid model,
i.e. all parties have access to an ideal 1-out-of-2 OT functionality. Moreover we
assume authenticated communication between parties, in the form of a func-
tionality FAT which, on input (m, i, j) from Pi, gives m to Pj and also leaks m
to the adversary. Our security proof for F2 triples also uses the random oracle
(RO) model [3] to model the hash function used in an OT extension protocol.
This means that the parties and the adversaries have access to a uniformly ran-
dom H : {0, 1}∗ → {0, 1}κ, such that if it is queried on the same input twice,

it returns the same output. We also use a standard coin flipping functionality,
FRand, which can be efficiently implemented using hash-based commitments in
the random oracle model as done previously [8].

Overview. The rest of this paper is organized as follows: In Section 2 we go
through our general notation, variable naming and how we represent shared
values. We continue in Section 3 with a description of the passively secure OT
extensions we use as building block for our triple generation and authentication.
We then go into more details on our authentication procedure in Section 4.
This is followed by a description of how we generate TinyOT (F2) and SPDZ
(F2k) triples in Section 5 and MiniMAC triples in Section 6. We end with a
complexity analysis in Section 7. Many protocols and proofs are omitted due to
space reasons; we refer the reader to the full version for details [12].

We illustrate the relationship between all of our protocols in Fig. 1. In the
top we have the protocol producing final triples used in online execution and on
the bottom the protocols for correlated OT extension and authentication.

2 Notation

We denote by κ the computational security parameter and s the statistical secu-
rity parameter. We let negl(κ) denote some unspecified function f(κ), such that
f = o(κ−c) for every fixed constant c, saying that such a function is negligible in
κ. We say that a probability is overwhelming in κ if it is 1− negl(κ). We denote

by a $← A the random sampling of a from a distribution A, and by [d] the set of
integers {1, . . . d}.

We consider the sets {0, 1} and Fκ2 endowed with the structure of the fields
F2 and F2κ , respectively. We denote by F any finite field of characteristic two,
and use roman lower case letters to denote elements in F, and bold lower case
letters for vectors. We will use the notation v[i] to denote the i-th entry of v.
Sometimes we will use v[i; j] to denote the range of bits from i to j when viewing
v as a bit vector. Given matrix A, we denote its rows by subindices ai and its
columns by superindices aj . If we need to denote a particular entry we use the
notation A[i, j]. We will use O to denote the matrix full of ones and Dx for some
vector x to denote the square matrix whose diagonal is x and where every other
positions is 0.

We use · to denote multiplication of elements in a finite field; note that
in this case we often switch between elements in the field F2κ , vectors in Fκ2
and vectors in Fκ/u2u (where u|κ), but when multiplication is involved we always
imply multiplication over the field, or and entry-wise multiplication if the first
operand is a scalar. If a,b are vectors over F then a ∗b denotes the component-
wise product of the vectors, and a⊗b to denote the matrix containing the tensor
(or outer) product of the two vectors.

We consider a systematic linear error correcting code C over finite field F2u

of length m, dimension k and distance d. So if a ∈ Fk2u , we denote by C(a) ∈ Fm2u
the encoding of a in C, which contains a in its first k positions, due to the

systematic property of the code. We let C∗ denote the product code (or Schur
transform) of C, which consists of the linear span of C(a) ∗C(b), for all vectors
a,b ∈ Fk2u . If C is a [m, k, d] linear error correcting code then C∗ is a [m, k∗, d∗]
linear error correcting code for which it holds that k∗ ≥ k and d∗ ≤ d.

2.1 Authenticating Secret-shared Values

Let F be a finite field, we additively secret share bits and elements in F among
a set of parties P = {P1, . . . , Pn}, and sometimes abuse notation identifying
subsets I ⊆ {1, . . . , n} with the subset of parties indexed by i ∈ I. We write 〈a〉
if a is additively secret shared amongst the set of parties, with party Pi holding
a value a(i), such that

∑
i∈P a

(i) = a. We adopt the convention that, if a ∈ F
then the shares also lie in the same field, i.e. a(i) ∈ F.

Our main technique for authentication of secret shared values is similar to
the one by Larraia et al. [17] and Damg̊ard et al. [10], i.e. we authenticate a
secret globally held by a system of parties, by placing an information theoretic
tag (MAC) on the secret shared value. We will use a fixed global key ∆ ∈ F2M ,
M ≥ κ, which is additively secret shared amongst parties, and we represent an
authenticated value x ∈ F, where F = F2u and u|M , as follows:

JxK = (〈x〉, 〈mx〉, 〈∆〉),
where mx = x·∆ is the MAC authenticating x under ∆. We drop the dependence
on x in mx when it is clear from the context. In particular this notation indicates
that each party Pi has a share x(i) of x ∈ F, a share m(i) ∈ FM2 of the MAC,
and a uniform share ∆(i) of ∆; hence a J·K-representation of x implies that x is
both authenticated with the global key ∆ and 〈·〉-shared, i.e. its value is actually
unknown to the parties. Looking ahead, we say that JxK is partially open if 〈x〉
is opened, i.e. the parties reveal x, but not the shares of the MAC value m. It
is straightforward to see that all the linear operations on J·K can be performed
locally on the J·K-sharings. We describe the ideal functionality for generating
elements in the J·K-representation in Fig. 4.

In Section 6 we will see a generalization of this representation for codewords,
i.e. we denote an authenticated codeword C(x) by JC(x)K∗ = (〈C(x)〉, 〈m〉, 〈∆〉),
where the ∗ is used to denote that the MAC will be “component-wise” on the
codeword C(x), i.e. that m = C(x) ∗∆.

3 OT Extension Protocols

In this section we describe the OT extensions that we use as building blocks
for our triple generation protocols. Two of these are standard – a 1-out-of-2
OT functionality and a passively secure correlated OT functionality – whilst
the third protocol is our variant on passively secure correlated OT with privacy
amplification, which may be of independent interest for other uses.

We denote by FOT the standard
(
2
1

)
OT functionality, where the sender PS

inputs two messages v0,v1 ∈ Fκ2 and the receiver inputs a choice bit b, and at

Functionality Fκ,`COTe

The Initialize step is independent of inputs and only needs to be called once. After
this, Extend can be called multiple times. The functionality is parametrized by
the number ` of resulting OTs and by the bit length κ.
Running with parties PS , PR and an ideal adversary denoted by S, it operates as
follows.

Initialize: Upon receiving ∆ ∈ Fκ2 from PS , the functionality stores ∆.
Extend(R,S): Upon receiving (PR, (x1, . . . ,x`)) from PR, where xh ∈ Fκ2 , it does

the following:
- It samples th ∈ Fκ2 , h = 1, . . . , `, for PR. If PR is corrupted then it waits

for S to input th.
- It computes qh = th + xh ∗∆, h = 1, . . . , `, and sends them to PS . If PS is

corrupted, the functionality waits for S to input qh , and then it outputs
to PR values of th consistent with the adversarial inputs.

Fig. 2. IKNP extension functionality Fκ,`COTe

the end of the protocol the receiver PR learns only the selected message vb. We
use the notation Fκ,`OT to denote the functionality that provides `

(
2
1

)
OTs in Fκ2 .

Note that Fκ,`OT can be implemented very efficiently for any ` = poly(κ) using
just one call to Fκ,κOT and symmetric primitives, for example with actively secure
OT extensions [19,1,14].

A slightly different variant of FOT is correlated OT, which is a batch of OTs
where the sender’s messages are correlated, i.e. vi0 + vi1 = ∆ for some constant
∆, for every pair of messages. We do not use an actively secure correlated OT
protocol but a passively secure protocol, which is essentially the OT extension
of Ishai et al. [13] without the hashing that removes correlation at the end of
the protocol. We model this protocol with a functionality that accounts for the
deviations an active adversary could make, introducing errors into the output,
and call this correlated OT with errors (Fig. 2). The implementation of this is
exactly the same as the first stage of the IKNP protocol, but for completeness
we include the description in the full version. The security was proven e.g. by
Nielsen [18], where it was referred to as the ABM box.

3.1 Amplified Correlated OT with Errors

Our main new OT extension protocol is a variant of correlated OT that we call
amplified correlated OT with errors. To best illustrate our use of the protocol,
we find it useful to use the concept of a tensor product to describe it. We observe
that performing k correlated OTs on k-bit strings between two parties PR and
PS gives a symmetric protocol: if the input strings of the two parties are x and
y then the output is given by

Q+ T = x⊗ y

Protocol Πk,s
ACOT

Let x ∈ Fk2 and y ∈ Fk2 denote the inputs of PR and PS , respectively. Let `′ := 2k+s.

1. Parties run Fk,`
′

OT :

(a) PS samples Q′
$← F`

′×k
2 , sets Y = ODy where O ∈ F`

′×k
2 is the matrix full

of ones and inputs (Q′, Q′ + Y).

(b) PR samples and inputs x′
$← F`

′
2 .

(c) PR receives T ′ = Q′ +Dx′Y .

2. Parties sample a random matrix M ∈ Fk×`
′

2 using FRand (see full version).
3. PR sends δ = Mx′ + x to PS and outputs T = MT ′.
4. PS outputs Q = MQ′ + δ ⊗ y.

Fig. 3. Amplified correlated OT

where Q and T are the k × k matrices over F2 output to each respective party.
Thus we view correlated OT as producing a secret sharing of the tensor product
of two input vectors. The matrix x ⊗ y consists of every possible bit product
between bits in x held by PR and bits in y held by PS . We will later use this to
compute a secret sharing of the product in an extension field of F2.

The main difficulty in implementing this with active security is ensuring
that a corrupt PR inputs the same correlation into each OT: if they cheat in just
one OT, for example, they can guess PS ’s corresponding input bit, resulting in a
selective failure attack in a wider protocol. The previous construction used in the
TinyOT protocol [19] first employed a consistency check to ensure that PR used
the same correlation on most of the inputs. Since the consistency check cannot
completely eliminate cheating, a privacy amplification step is then used, which
multiplies all of the OTs by a random binary matrix to remove any potential
leakage on the sender’s input from the few, possibly incorrect OTs.

In our protocol, we choose to omit the consistency check, since the correctness
of SPDZ multiplication triples is later checked in the sacrificing procedure. This
means that an adversary is able to break the correlation, but the output will be
distorted in a way such that sacrificing will fail for all but one possible x input
by PR. Without amplification, the adversary could craft a situation where the
latter check succeeds if, for example, first bit is zero, allowing the selective failure
attack. On the other hand, if the success of the adversary depends on guessing
k random bits, the probability of a privacy breach is 2−k, which is negligible in
k. In the functionality Fk,sACOT (see the full version), the amplification manifests
itself in the fact that the environment does not learn x′ which amplifies the error
Y ′.

The protocol Πk,s
ACOT (Fig. 3) requires parties to create the initial correlated

OTs on strings of length `′ = 2k+s, where s is the statistical security parameter.
The sender PS is then allowed to input a `′ × k matrix Y instead of a vector y,
whilst the receiver chooses a random string x′ ∈ F`′2 . FOT then produces a sharing
of Dx′Y , instead of x′ ⊗ y in the honest case. For the privacy amplification, a

random k × `′ binary matrix M is chosen, and everything is multiplied by this
to give outputs of length k as required. Finally, PR sends Mx′ + x to switch to
their real input x. Multiplying by M ensures that even if PS learns a few bits
of x′, all of x remains secure as every bit of x′ is combined into every bit of the
output.

Lemma 1. The protocol Πk,s
ACOT (Fig. 3) implements the functionality Fk,sACOT

(see the full version) in the Fk,`′OT -hybrid model with statistical security s.

Proof. The proof essentially involves checking that Q + T = x ⊗ y for honest
parties, that at most k deviations by PS are canceled by M with overwhelming
probability, and that more than k deviations cause the desired entropy in the
output. The two cases are modeled by two different possible adversarial inputs
to the functionality. See the full version for further details.

4 Authentication Protocol

In this section we describe our protocol to authenticate secret shared values
over characteristic two finite fields, using correlated OT extension. The resulting
MACs, and the relative MAC keys, are always elements of a finite field F :=
F2M , where M ≥ κ and κ is a computational security parameter, whilst the
secret values may lie in F2u for any u|M . We then view the global MAC key
as an element of FM/u

2u and the MAC multiplicative relation as componentwise
multiplication in this ring. Our authentication method is similar to that by
Larraia et al. [17] (with modifications to avoid the selective failure attack) but
here we only use a passively secure correlated OT functionality (FCOTe), allowing
an adversary to introduce errors in the MACs that depend on arbitrary bits of
other parties’ MAC key shares. When combined with the MAC check protocol
by Damg̊ard et al. [8] (see full version), this turns out to be sufficient for our
purposes, avoiding the need for additional consistency checks in the OTs.

Our authentication protocol ΠJ·K (see the full version) begins with an Initialize
stage, which initializes a FCOTe instance between every pair of parties (Pi, Pj),
where Pj inputs their MAC key share ∆(j). This introduces the subtle issue that
a corrupt Pj may initialize FCOTe with two different MAC shares for Pi1 and Pi2 ,
say ∆(j) and ∆̂(j), which allows for the selective failure attack mentioned earlier
– if Pi2 authenticates a bit b, the MAC check will still pass if b = 0, despite being
authenticated under the wrong key. However, since FCOTe.Initialize is only called
once, the MAC key shares are fixed for the entire protocol, so it is clear that
Pj could not remain undetected if enough random values are authenticated and
checked. To ensure this in our protocol we add a consistency check to the Initialize
stage, where κ dummy values are authenticated, then opened and checked. If the
check passes then every party’s MAC key has been initialized correctly, except
with probability 2−κ. Although in practice this overhead is not needed when
authenticating ` ≥ κ values, modeling this would introduce additional errors
into the functionality and make the analysis of the triple generation protocols
more complex.

Functionality FF
J·K

Let F = F2M , with M ≥ κ. Let A be the indices of corrupt parties. Running with
parties P1, . . . , Pn and an ideal adversary S, the functionality authenticates values
in F2u for u|M .

Initialize: On input (Init) the functionality activates and waits for the adversary
to input a set of shares {∆(j)}j∈A in F. It samples random {∆(i)}i/∈A in F for
the honest parties, defining ∆ :=

P
i∈[n]∆

(i). If any j ∈ A outputs Abort then
the functionality aborts.

n-Share: On input (Authenticate,x
(i)
1 , . . . ,x

(i)
`) from the honest parties and the

adversary where x
(i)
h ∈ F2u , the functionality proceeds as follows.

Honest parties: ∀h ∈ [`], it computes xh =
P
i∈P x

(i)
h and mh = xh ·∆. a Then

it creates a sharing 〈mh〉 = {m(1)
h , . . . ,m

(n)
h } and outputs m

(i)
h to Pi for

each i ∈ P, h ∈ [`].
Corrupted parties: The functionality waits for the adversary S to input the set

A of corrupted parties. Then it proceeds as follows:
- ∀h ∈ [`], the functionality waits for S to input shares {m(j)

h }j∈A and

it generates 〈mh〉, with honest shares {m(i)
h }i 6∈A,h∈[`], consistent with

adversarial shares but otherwise random.
- If the adversary inputs (Error, {e(k)h,j}k 6∈A,h∈[`],j∈[M]) with elements in

F2M , the functionality sets m
(k)
h = m

(k)
h +

PM
j=1 e

(k)
h,j · ∆

(k)
j · Xj−1

where ∆
(k)
j denotes the j-th bit of ∆(k).

- For each k 6∈ A, the functionality outputs {m(k)
h } to Pk.

Key queries: On input of a description of an affine subspace S ⊂ (FM2)n, return
Success if (∆(1), . . . ,∆(n)) ∈ S. Otherwise return Abort.

a If u 6= M we view ∆ as an element of FM/u2u and perform the multiplication by
xh componentwise.

Fig. 4. Ideal Generation of J·K-representations

Now we present the protocol ΠJ·K, realizing the ideal functionality of Fig. 4,
more in detail. We describe the authentication procedure for bits first and then
the extension to F2u .

Suppose parties need to authenticate an additively secret shared random bit
x = x(1) + · · · + x(n). Once the global key ∆ is initialized, the parties call the
subprotocol Π[·] (see the full version) n times. Output of each of these calls is a
value u(i) for Pi and values q(j,i) for each Pj , j 6= i, such that

u(i) + q(j,i) =
∑
j 6=i

t(i,j) + x(i) ·∆(i) +
∑
j 6=i

q(j,i) = x(i) ·∆. (1)

To create a complete authentication JxK, each party sets m(i) = u(i)+
∑
j 6=i q

(i,j).
Notice that if we add up all the MAC shares, we obtain:

m =
∑
i∈P

m(i) =
∑
i∈P

(
u(i)+

∑
j 6=i

q(i,j)
)

=
∑
i∈P

(
u(i)+

∑
j 6=i

q(j,i)
)

=
∑
i∈P

x(i) ·∆ = x·∆,

where the second equality holds for the symmetry of the notation q(i,j) and the
third follows from (1).

Finally, if Pi wants to authenticate a bit x(i), it is enough, from Equation
(1), setting m(i) = u(i) and m(j) = q(j,i), ∀j 6= i. Clearly, from (1), we have∑
i∈Pm(i) = x(i) ·∆.
Consider now the case where parties need to authenticate elements in F2u .

We can represent any element x ∈ F2u as a binary vector (x1, . . . , xu) ∈ Fu2 .
In order to obtain a representation JxK it is sufficient to repeat the previous
procedure u times to get JxiK and then compute JxK as

∑u
k=1JxkK · Xk−1 (see

the full version for details). Here we let X denote the variable in polynomial
representation of F2u and JxkK the k’th coefficient.

We now describe what happens to the MAC representation in presence of
corrupted parties. As we have already pointed out before, a corrupt party could
input different MAC key shares when initializing FCOTe with different parties.
Moreover a corrupt Pi could input vectors x(i)

1 , . . .x(i)
` instead of bits to n-

Share(i) (i.e. to FCOTe). This will produce an error in the authentication de-
pending on the MAC key. Putting things together we obtain the following faulty
representation:

m = x ·∆+
∑
k 6∈A

x(k) · δ(i) +
∑
k 6∈A

e(i,k) ∗∆(k), for some i ∈ A

where A is the set of corrupt parties, δ(i) is an offset vector known to the ad-
versary which represents the possibility that corrupted parties input different
MAC key shares, whilst e(i,k) depends on the adversary inputting vectors and
not just bits to FCOTe. More precisely, if Pi inputs a vector x(i) to n-Share(i),
we can rewrite it as x(i) = x(i) · 1 + e(i,k), where e(i,k) ∈ FM2 is an error vector
known to the adversary. While we prevent the first type of errors by adding a
MACCheck step in the Initialize phase, we allow the second type of corruption.
This faulty authentication suffices for our purposes due to the MAC checking
procedure used later on.

Lemma 2. In the Fκ,`COTe-hybrid model, the protocol ΠJ·K implements FJ·K against
any static adversary corrupting up to n− 1 parties.

Proof. See the full version.

5 Triple Generation in F2 and F2k

In this section we describe our protocols generating triples in finite fields. First
we describe the protocols for multiplication triples in F2κ (Fig. 7 and 8), and then

Functionality FF
Triples

Let A be the indices of corrupt parties. Running with parties P1, . . . , Pn and an
adversary S, the functionality operates as follows.

Initialize: On input (Init) the functionality activates and waits for S to input a set
of shares {∆(j)}j∈A. It samples random {∆(i)}i/∈A in Fκ2 for the honest parties,
defining ∆ :=

P
i∈[n]∆

(i). If any j ∈ A outputs Abort then the functionality
aborts.

Honest Parties: On input (Triples), the functionality outputs random
JxhK∆, JyhK∆, JzhK∆, such that
〈zh〉 = 〈xh〉 · 〈yh〉 and zh, yh, xh ∈ F.

Corrupted Parties: The functionality samples xh, yh
$← F and computes zh =

xh · yh. To produce JaK∆ = (〈a〉, 〈m〉, 〈∆〉), where a ∈ {xh, yh, zh}h∈[`] it does
the following:

- It waits the adversary to input shares {a(i)}i∈A and {m(i)}i∈A.
- It waits for the adversary to input (ValueError, e) and (MacError, e).
- It selects the shares of honest parties at random, but consistent with adver-

sarial shares and with a+e and a·∆+e, that is, such that
Pn
i=1 a

(i) = a+e

and
Pn
i=1 m(i) = a ·∆+ e.

Key queries: On input of a description of an affine subspace S ⊂ (Fκ2)n, return
Success if (∆(1), . . . ,∆(n)) ∈ S. Otherwise return Abort.

Fig. 5. Ideal functionality for triples generation

the protocol for bit triples (Fig. 9). Both approaches implement the functionality
FF

Triples, given in Fig. 5. Note that the functionality allows an adversary to try
and guess an affine subspace containing the parties’ MAC key shares, which is
required because of our faulty authentication procedure described in the previous
section.

5.1 F2k Triples

In this section, we show how to generate F2k authenticated triples using two
functionalities Fk,sGFMult and FF2kJ·K (see the full version). We realize the functional-

ity Fk,sGFMult with protocol Πk,s
GFMult (see the full version). This protocol is a simple

extension of FACOT that converts the sharing of a tensor product matrix in Fk×k2

to the sharing of a product in F2k . Taking this modular approach simplifies
the proof for triple generation, as we can deal with the complex errors from
FACOT separately. Our first triple generation protocol (ΠUncheckedTriples) will not
reveal any information about the values or the authentication key, but an active
adversary can distort the output in various ways. We then present a protocol
(ΠTripleCheck) to check the generated triples from ΠUncheckedTriples, similarly to the
sacrificing step of the SPDZ protocol [8], to ensure that an adversary has not
distorted them.

Protocol Πk,s
GFMult

Let x and y denote the inputs of PR and PS respectively, in F2k , and let s be
a statistical security parameter. Furthermore, let e = (1, X, . . . ,Xk−1) and `′ =
2k + s.

1. The parties run Fk,sACOT:
(a) PR inputs x and PS inputs y.
(b) PR receives T and PS receives Q such that T +Q = x⊗ y.

2. PR outputs t = eTe> and PS outputs q = eQe>.

Fig. 6. F2k multiplication

Protocol ΠUncheckedTriples

Initialize: The parties initialize FF2k
J·K , which outputs ∆(i) to party i.

Triple generation:

1. Every party i samples random a(i) $← F2k and b(i) $← F2k .
2. Every tuple of parties (i, j) ∈ [n]2, i 6= j call Fk,sGFMult with Pi inputting a(i)

and Pj inputting b(j) to generate a random secret sharing c
(i,j)
i,j + c

(j,i)
i,j =

a(i) · b(j).
3. Every party i computes c(i) = a(i) · b(i) +

P
j 6=i(c

(i,j)
i,j + c

(i,j)
j,i).

4. Party i calls FF2k
J·K with inputs a(i), b(i), and c(i), and receives m

(i)
a , m

(i)
b ,

and m
(i)
c .

Fig. 7. Protocol for generation of unchecked F2k triples.

The protocol is somewhat similar to the one in the previous section. Instead
of using n(n− 1) instances of FCOTe, it uses n(n− 1) instances of Fk,sGFMult, which
is necessary to compute a secret sharing of x · y, where x and y are known to
different parties.

Lemma 3. The protocol ΠUncheckedTriples (see the full version) implements the
functionality FUncheckedTriples in the (Fk,sGFMult,F

F2kJ·K)-hybrid model with perfect se-
curity.

Proof. The proof is straightforward using an appropriate simulator. See the full
version for further details.

The protocol ΠTripleCheck produces N triples using 2N unchecked triples sim-
ilar to the sacrificing step of the SPDZ protocol. However, corrupted parties
have more options to deviate here, which we counter by using more random
coefficients for checking. Recall that, in the SPDZ protocol, parties input their
random shares by broadcasting a homomorphic encryption thereof. Here, the
parties have to input such a share by using an instance of Fk,sGFMult and FF2kJ·K

Protocol ΠTripleCheck

Initialize: Each party receives ∆(i) from FUncheckedTriples.
Triple Generation:

1. Generate 2N {JajK, JbjK, JcjK}j∈[2N] unchecked triples using FUncheckedTriples.

2. Sample t, t′, t′′
$← F2k using FRand.

3. For all j ∈ [N], open t · 〈bj〉+ t′ · 〈bj+N 〉 as rj and t′ · 〈aj〉+ t′′ · 〈aj+N 〉
as sj .

4. Use FBatchCheck with {rj · 〈∆〉+t · 〈mbj 〉+t′ · 〈mbj+N)〉}j∈[N] and {sj · 〈∆〉+
t′ · 〈maj 〉+ t′′ · 〈maj+N 〉}j∈[N], and abort if it returns ⊥.

5. Use FBatchCheck with {t·〈mcj 〉+t′′ ·〈mcj+N 〉+rj ·〈maj 〉+sj ·〈mbj+N 〉}j∈[N],
and abort if returns ⊥.

6. Output {JajK, JbjK, JcjK}j∈[N].

Fig. 8. Triple checking protocol.

with every other party, which opens up the possibility of using a different value
in every instance. We will prove that, if the check passes, the parties have used
consistent inputs to Fk,sGFMult. On the other hand, FF2kJ·K provides less security guar-

antees. However, we will also prove that the more deviation there is with FF2kJ·K ,
the more likely the check is to fail. This is modeled using the key query access
of FTriples. Note that, while this reveals some information about the MAC key
∆, this does not contradict the security of the resulting MPC protocol because
∆ does not protect any private information. Furthermore, breaking correctness
corresponds to guessing ∆, which will only succeed with probability negligible
in k because incorrect guesses lead to an abort.

We use a supplemental functionality FBatchCheck, which checks that a batch of
shared values are equal to zero, and can be easily implemented using commitment
and FRand (see the full version for details). The first use of FBatchCheck corresponds
to using the SPDZ MAC check protocol for rj and sj for all j ∈ [N], and the
second use corresponds to the sacrificing step, which checks whether t · cj + t′′ ·
cj+N + rjaj + sj · bj+N = 0 for all j ∈ [N].

Theorem 1. The protocol ΠTripleCheck, described in Fig. 8, implements FTriples

in the (FUncheckedTriples,FRand)-hybrid model with statistical security (k − 4).

Proof. The proof mainly consists of proving that, if cj 6= aj · bj or the MAC
values are incorrect for some j, and the check passes, then the adversary can
compute the offset of cj or the MAC values. See the full version.

5.2 F2 Triples

This section shows how to produce a large number ` of random, authenticated bit
triples using the correlated OT with errors functionality FCOTe from Section 3.
We describe the main steps of the protocol in Fig. 9. The main difference with

Protocol ΠBitTriples

The goal of the protocol is to generate ` F2 triples 〈xh〉, 〈yh〉, 〈zh〉, h = 1, . . . , `,
such that zh = xh · yh, together with JxhK, JyhK, JzhK. The protocol is parametrized
by the number ` of authenticated triples, and it assumes access to a random oracle
H : {0, 1}∗ → {0, 1}.

Initialize:
1. Each party Pi samples a random MAC key share ∆(i), a second value

∆̃(i) ∈ Fκ2 and sets ∆̂(i) = (∆̃(i)‖∆(i)) ∈ F2κ
2 .

2. Each pair of parties (Pi, Pj) (for i 6= j) calls FCOTe.Initialize, where Pj inputs
∆̂(j), and FJ·K.Init, where Pj inputs ∆(j).

3. Parties check consistency of the FCOTe inputs ∆̂ = ∆̂(1) + · · ·+ ∆̂(n) as in
the Initialize step of ΠJ·K, using κ random values. If ΠMACCheck fails, output
Abort.

COTe.Extend: Each Pi, i ∈ P, runs FCOTe.Extend with Pj , ∀j 6= i: Pi inputs

x(i) = (x
(i)
1 , . . . , x

(i)
`) ∈ F`2, and then it receives {t̂(i,j)

h }h∈[`] and Pj receives

q̂
(j,i)
h = t̂

(i,j)
h + x

(i)
h · ∆̂

(j), h ∈ [`].
Triple generation: Each party Pi uses only the first κ components of its shares.

We denote them by q̃
(i,j)
h , ∆̃(i) and t̃

(i,j)
h .

1. Each party Pi generates ` random y
(i)
h ∈ F2.

2. For each i ∈ P do:
(a) Using a random oracle H : {0, 1}∗ → {0, 1}, break the correlation from

the previous step. Pi locally computes H(t̃
(i,j)
h) = w

(i,j)
h , and Pj locally

computes H(q̃
(j,i)
h) = v

(j,i)
0,h , H(q̃

(j,i)
h + ∆̃(j)) = v

(j,i)
1,h , ∀j 6= i,∀h ∈ [`].

(b) Parties need to create new correlations corresponding to yh:
- Each Pj , j 6= i, sends a vector s(j,i) ∈ F`2 to Pi such that each

component is s
(j,i)
h = v

(j,i)
0,h + v

(j,i)
1,h + y

(j)
h .

- ∀j 6= i, Pi computes n
(i,j)
h = w

(i,j)
h + x

(i)
h · s

(j,i)
h = v

(j,i)
0,h + x

(i)
h · y

(j)
h .

3. Each Pi computes

z
(i)
h =

X
j 6=i

n
(i,j)
h + x

(i)
h · y

(i)
h +

X
j 6=i

v
(i,j)
0,h .

Authentication: 1. Authenticate xh by summing up the last κ components of
the outputs from the COTe step to obtain JxhK, for h = 1, . . . , `.

2. Call FFκ2
J·K with input Authenticate to authenticate y

(j)
h , z

(j)
h for j = 1, . . . , n

and h = 1, . . . , `, obtaining JyhK, JzhK
Check triples: This step performs sacrificing and combining, to check that the

triples are correctly generated and to prevent any leakage on xh in case yh was
authenticated incorrectly. The parties call the subprotocol ΠCheckTriples (see the
full version).

Fig. 9. F2-triples generation

respect to the protocol by Larraia et al. [17] is that here we use the outputs of
FCOTe to simultaneously generate triples, 〈zh〉 = 〈xh〉 ·〈yh〉, and authenticate the

random bits xh, for h = 1, . . . , `, under the fixed global key ∆, giving JxhK =
(〈xh〉, 〈mh〉, 〈∆〉). To do this, we need to double the length of the correlation
used in FCOTe, so that half of the output is used to authenticate xh, and the
other half is hashed to produce shares of the random triple.4

The shares 〈yh〉, 〈zh〉 are then authenticated with additional calls to FCOTe

to obtain JyhK, JzhK. We then use a random bucketing technique to combine the
xh values in several triples, removing any potential leakage due to incorrect
authentication of yh (avoiding the selective failure attack present in the previous
protocol [17]) and then sacrifice to check for correctness (as in the previous
protocol).

The Initialize stage consists of initializing the functionality F2κ,`
COTe with ∆̂ ∈

F2κ
2 . Note that ∆̂ is the concatenation of a random ∆̃ ∈ Fκ2 and the MAC key
∆. We add a consistency check to ensure that each party initialize ∆̂ correctly,
as we did in ΠJ·K.

Then, in COTe.Extend, each party Pi runs a COTe2κ,` with all other parties
on input x(i) = (x(i)

1 , . . . , x
(i)
`) ∈ F`2. For each i ∈ P, we obtain q̂(j,i)

h = t̂(i,j)
h +

x
(i)
h · ∆̂(j), h ∈ [`], where

q̂(j,i)
h = (q̃(j,i)

h ‖q(j,i)
h) ∈ F2κ

2 and t̂(j,i)
h = (t̃(j,i)

h ‖t(j,i)
h) ∈ F2κ

2 .

Note that we allow corrupt parties to input vectors x(i)
h instead of bits.

Parties use the first κ components of their shares during the Triple Gener-
ation phase. More precisely, each party Pi samples ` random bits y(i)

h and then
uses the first κ components of the output of COTe2κ,` to generate shares z(i)

h .
The idea (as previously [17]) is that of using OT-relations to produce multiplica-
tive triples. In step 2, in order to generate ` random and independent triples,
we need to break the correlation generated by COTe. For this purpose we use
a hash function H, but after that, as we need to “bootstrap” to an n-parties
representation, we must create new correlations for each h ∈ [`]. Pi sums all the
values n(i,j)

h , j 6= i, and x
(i)
h · y(i)

h to get u(i,j)
h =

∑
j 6=i n

(j,i)
h + x

(i)
h · y(i)

h . Notice

that adding up the share u(i,j)
h held by Pi and all the shares of other parties,

after step 2 we have:

u
(i,j)
h +

∑
j 6=i

v
(j,i)
0,h = x

(i)
h · yh.

Repeating this procedure for each i ∈ P and adding up, we get zh = xh · yh.
Once the multiplication triples are generated the parties Authenticate zh

and yh using FJ·K, while to authenticate xh they use the remaining κ components
of the outputs of the COTe.Extend step.

4 If the correlation length is not doubled, and the same output is used both for au-
thentication and as input to the hash function, we cannot prove UC security as the
values and MACs of a triple are no longer independent.

Checking Triples. In the last step we want to check that the authenticated
triples are correctly generated. For this we use the bucket-based cut-and-choose
technique by Larraia et al. [17]. In the full version we generalize and optimize
the parameters for this method.

The bucket-cut-and-choose step ensures that the generated triples are correct.
Privacy on x is then guaranteed by the combine step, whereas privacy on y follows
from the use of the original COTe for both creating triples and authenticating
x. Note also that if a corrupt party inputs an inconsistent bit x(i)

h in n
(i,k)
h , for

some k 6∈ A in step 2.b, then the resulting triples zh = xh · yh + s
(k,i)
h · yh will

pass the checks if and only if s(k,i)h = 0, revealing nothing about yh.
We conclude by stating the main result of this section.

Theorem 2. For every static adversary A corrupting up to n − 1 parties, the
protocol ΠBitTriples κ-securely implements FTriples (Fig. 5) in the (Fκ,`COTe,FJ·K)-
hybrid model.

Proof. Correctness easily follows from the above discussion. For more details see
the full version.

6 Triple Generation for MiniMACs

In this section we describe how to construct the preprocessing data needed for
the online execution of the MiniMAC protocol [11,9]. The complete protocols
and security proofs are in the full version. Here we briefly outline the protocols
and give some intuition of security.

6.1 Raw Material

The raw material used for MiniMAC is very similar to the raw material in both
TinyOT and SPDZ. In particular this includes random multiplication triples.
These are used in the same manner as F2 and F2k triples to allow for multipli-
cation during an online phase. However, remember that we work on elements
which are codewords of some systematic linear error correcting code, C. Thus
an authenticated element is defined as JC (x)K∗ = {〈C(x)〉, 〈m〉, 〈∆〉} where
m = C(x) ∗ ∆ with C(x), m and ∆ elements of Fm2u and x ∈ Fk2u . Similarly
a triple is a set of three authenticated elements, {JC (a)K∗, JC (b)K∗, JC∗ (c)K∗}
under the constraint that C∗(c) = C(a)∗C(b), where ∗ denotes component-wise
multiplication. We notice that the multiplication of two codewords results in an
element in the Schur transform. Since we might often be doing multiplication
involving the result of another multiplication, that thus lives in C∗, we need
some way of bringing elements from C∗ back down to C. To do this we need
another piece of raw material: the Schur pair. Such a pair is simply two authen-
ticated elements of the same message, one in the codespace and one in the Schur
transform. That is, the pair {JC (r)K∗, JC∗ (s)K∗} with r = s. After doing a mul-
tiplication using a preprocessed random triple in the online phase, we use the

JC∗ (s)K∗ element to onetime pad the result, which can then be partially opened.
This opened value is re-encoded using C and then added to JC (r)K∗. This gives
a shared codeword element in C, that is the correct output of the multiplication.

Finally, to avoid being restricted to just parallel computation within each
codeword vector, we also need a way to reorganize these components within a
codeword. To do so we need to construct “reorganization pairs”. Like the Schur
pairs, these will simply be two elements with a certain relation on the values
they authenticate. Specifically, one will encode a random element and the other
a linear function applied to the random element encoded by the first. Thus the
pair will be {JC (r)K∗, JC (f(r))K∗} for some linear function f : Fk2u → Fk2u . We
use these by subtracting JC (r)K∗ from the shared element we will be working
on. We then partially open and decode the result. This is then re-encoded and
added to JC (f(r))K∗, resulting in the linear computation defined by f(·) on each
of the components.

6.2 Authentication

For the MiniMAC protocol to be secure, we need a way of ensuring that authenti-
cated vectors always form valid codewords. We do this based on the functionality
FCodeAuth in two steps, first a ‘BigMAC’ authentication, which is then compressed
to give a ‘MiniMAC’ authentication. For the BigMAC authentication, we simply
use the FJ·K functionality to authenticate each component of x (living in F2u)
separately under the whole of ∆ ∈ Fm2u . Because every component of x is then
under the same MAC key, we can compute MACs for the rest of the codeword
C(x) by simply linearly combining the MACs on x, due to the linearity of C. We
use the notation JC (x)K =

{
〈C(x)〉, {〈mxi〉}i∈[m] , 〈∆〉

}
to denote the BigMAC

share. To go from BigMAC to MiniMAC authentication, we just extract the rel-
evant F2u element from each MAC. We then use JC (x)K = {〈C(x)〉, 〈mx〉, 〈∆〉}
to denote a MiniMAC element, where mx is made up of one component of each
of the m BigMACs. The steps are described in detail in the full version.

6.3 Multiplication Triples

To generate a raw, unauthenticated MiniMAC triple, we need to be able to
create vectors of shares 〈C(a)〉, 〈C(b)〉, 〈C∗(c)〉 where C∗(c) = C(a)∗C(b) and
a,b ∈ Fk2u . These can then be authenticated using the FCodeAuth functionality
described above.

Since the authentication procedure only allows shares of valid codewords to
be authenticated, it might be tempting to directly use the SPDZ triple generation
protocol from Section 5.1 in F2u for each component of the codewords C(a) and
C(b). In this case, it is possible that parties do not input valid codewords,
but this would be detected in the authentication stage. However, it turns out
this approach is vulnerable to a subtle selective failure attack – a party could
input to the triple protocol a share for C(a) that differs from a codeword in
just one component, and then change their share to the correct codeword before

submitting it for authentication. If the corresponding component of C(b) is zero
then this would go undetected, leaking that fact to the adversary.

To counter this, we must ensure that shares output by the triple genera-
tion procedure are guaranteed to be codewords. To do this, we only generate
shares of the Fk2u vectors a and b – since C is a linear [m, k, d] code, the shares
for the parity components of C(a) and C(b) can be computed locally. For the
product C∗(c), we need to ensure that the first k∗ ≥ k components can be
computed, since C∗ is a [m, k∗, d∗] code. Note that the first k components are
just (a1, . . . ,ak) ∗ (b1, . . . ,bk), which could be computed similarly to the SPDZ
triples. However, for the next k∗ − k components, we also need the cross terms
ai ·bj , for every i, j ∈ [k]. To ensure that these are computed correctly, we input
vectors containing all the bits of a,b to FACOT, which outputs the tensor prod-
uct a⊗b, from which all the required codeword shares can be computed locally.
Similarly to the BigMAC authentication technique, this results in an overhead
of O(k ·u) = O(κ log κ) for every multiplication triple when using Reed-Solomon
codes.

Taking our departure in the above description we generate the multiplication
triples in two steps: First unauthenticated multiplication triples are generated
by using the CodeOT subprotocol, which calls FACOT and takes the diagonal of
the resulting shared matrices. The codewords of these diagonals are then used
as inputs to FCodeAuth, which authenticates them. This is described by protocol
ΠUncheckedMiniTriples in (see the full version). Then a random pairwise sacrificing is
done to ensure that it was in fact shares of multiplication being authenticated.
This is done using protocol ΠMiniTriples (see the full version). One minor issue
that arises during this stage is that we also need to use a Schur pair to perform
the sacrifice, to change one of the multiplication triple outputs back down to the
code C, before it is multiplied by a challenge codeword and checked.

Security intuition. Since the CodeOT procedure is guaranteed to produces shares
of valid codewords, and the authentication procedure can only be used to authen-
ticate valid codewords, if an adversary changes their share before authenticating
it, they must change it in at least d positions, where d is the minimum distance
of the code. For the pairwise sacrifice check to pass, the adversary then has to
essentially guess d components of the random challenge codeword to win, which
only happens with probability 2−u·d.

6.4 Schur and Reorganization Pairs

The protocols ΠSchur and ΠReorg (see the full version for more details) describe
how to create the Schur and reorganization pairs. We now give a brief intuition
of how these work.

Schur Pairs. We require random authenticated codewords JC(r)K∗, JC∗(s)K∗
such that the first k components of r and s are equal. Note that since C ⊂ C∗,
it might be tempting to use the same codeword (in C) for both elements. How-
ever, this will be insecure – during the online phase, parties reveal elements of

the form JC∗(x ∗ y)K∗ − JC∗(s)K∗. If C∗(s) is actually in the code C then it is
uniquely determined by its first k components, which means C∗(x ∗ y) will not
be masked properly and could leak information on x,y.

Instead, we have parties authenticate a random codeword in C∗ that is zero
in the first k positions, reveal the MACs at these positions to check that this
was honestly generated, and then add this to JC(r)K∗ to obtain JC∗(s)K∗. This
results in a pair where the parties’ shares are identical in the first k positions,
however we prove in the full version that this does not introduce any security
issues for the online phase.

Reorganizing Pairs. To produce the pairs JC(r)K∗, JC(f(r))K∗, we take advantage
of the fact that during BigMAC authentication, every component of a codeword
vector has the same MAC key. This means linear functions can be applied across
the components, which makes creating the required data very straightforward.
Note that with MiniMAC shares, this would not be possible, since you cannot
add two elements with different MAC keys.

7 Complexity Analysis

We now turn to analyzing the complexity of our triple generation protocols, in
terms of the required number of correlated and random OTs (on κ-bit strings)
and the number of parties n.

Two-party TinyOT. The appendix of TinyOT [19] states that 54 aBits are
required to compute an AND gate, when using a bucket size of 4. An aBit is
essentially a passive correlated OT combined with a consistency check and some
hashes, so we choose to model this as roughly the cost of an actively secure
random OT.

Multi-party TinyOT. Note that although the original protocol of Larraia et
al. [17] and the fixed protocol of Burra et al. [5] construct secret-shared OT
quadruples, these are locally equivalent to multiplication triples, which turn out
to be simpler to produce as one less authentication is required. Producing a
triple requires one random OT per pair of parties, and the 3 correlated OTs
per pair of parties to authenticate the 3 components of each triple. Combining
twice, and sacrificing gives an additional overhead of B3, where B is the bucket
size. When creating a batch of at least 1 million triples with statistical security
parameter 40, the proofs in the full version show that we can use bucket size 3,
giving 81n(n− 1) calls to FCOTe and 27n(n− 1) to FOT.

Authentication. To authenticate a single bit, the ΠJ·K protocol requires n(n−
1) calls to FCOTe. For full field elements in F2k this is simply performed k times,
taking kn(n− 1) calls.

F2 Triples. The protocol starts with n(n−1) calls to FCOTe to create the initial
triple and authenticate x; however, these are on strings of length 2κ rather than
κ and also require a call to H, so we choose to count this as n(n−1) calls to both
FOT and FCOTe to give a conservative estimate. Next, y and z are authenticated
using FJ·K, needing a further 2n(n− 1)×FCOTe.

We need to sacrifice once and combine once, and if we again use buckets of
size 3 this gives a total overhead of 9x. So the total cost of an F2 triple with our
protocol is 27n(n− 1) FCOTe calls and 9n(n− 1) FOT calls.

F2k Triples. We start with n(n− 1) calls to Fk,sACOT, each of which requires 3k
FOT calls, assuming that k is equal to the statistical security parameter. We
then need to authenticate the resulting triple (three field elements) for a cost
of 3kn(n− 1) calls to FCOTe. The sacrificing step in the checked triple protocol
wastes one triple to check one, so doubling these numbers gives 6kn(n − 1) for
each of FOT and FCOTe.

MiniMAC Triples. Each MiniMAC triple also requires one Schur pair for the
sacrificing step and one Schur pair for the online phase multiplication protocol.

Codeword Authentication. Authenticating a codeword with ΠCodeAuth takes k
calls to FJ·K on u-bit field elements, giving kun(n − 1) COTe’s on a u · m-bit
MAC key. Since COTe is usually performed with a κ-bit MAC key and scales
linearly, we choose to scale by u ·m/κ and model this as ku2mn(n− 1)/κ calls
to FCOTe.

Schur and Reorganization Pairs. These both just perform 1 call to FCodeAuth, so
have the same cost as above.

Multiplication Triples. Creating an unchecked triple first uses n(n − 1) calls to
CodeOT on k·u-bit strings, each of which calls FACOT, for a total of (2ku+s)n(n−
1) FOT’s. The resulting shares are then authenticated with 3 calls to FCodeAuth.
Pairwise sacrificing doubles all of these costs, to give 2kun(n − 1)(2ku + s)/κ
FOT’s and 6 calls to FCodeAuth, which becomes 8ku2mn(n − 1)/κ FCOTe’s when
adding on the requirement for two Schur pairs.

Parameters. [9] implemented the online phase using Reed-Solomon codes over
F28 , with (m, k) = (256, 120) and (255, 85), for a 128-bit statistical security level.
The choice (255, 85) allowed for efficient FFT encoding, resulting in a much faster
implementation, so we choose to follow this and use u = 8, k = 85. This means
the cost of a single (vector) multiplication triple is 86700n(n− 1) calls to FCOTe

and 14875(n − 1) calls to FOT. Scaling this down by k, the amortized cost of a
single F2u multiplication becomes 1020(n−1) and 175(n−1) calls. Note that this
is around twice the cost of F240 triples, which were used to embed the AES circuit
by Damg̊ard et al. [7], so it seems that although the MiniMAC online phase was
reported by Damg̊ard et al. [9] to be more efficient than other protocols for

certain applications, there is some extra cost when it comes to the preprocessing
using our protocol.

7.1 Estimating Runtimes

To provide rough estimates of the runtimes for generating triples, we use the OT
extension implementation of Asharov et al. [1] to provide estimates for FCOTe and
FOT. For FCOTe, we simply use the time required for a passively secure extended
OT (1.07µs), and for FOT the time for an actively secure extended OT (1.29µs)
(both running over a LAN). Note that these estimates will be too high, since
FCOTe does not require hashing, unlike a passively secure random OT. However,
there will be additional overheads due to communication etc, so the figures given
in Table 1 are only supposed to be a rough guide.

8 Acknowledgements

We would like to thank Nigel Smart, Rasmus Zakarias and the anonymous re-
viewers, whose comments helped to improve the paper. The first author has
been supported by the Danish National Research Foundation and The National
Science Foundation of China (under the grant 61361136003) for the Sino-Danish
Center for the Theory of Interactive Computation and from the Center for Re-
search in Foundations of Electronic Markets (CFEM), supported by the Danish
Strategic Research Council. Furthermore, partially supported by Danish Council
for Independent Research via DFF Starting Grant 10-081612 and the European
Research Commission Starting Grant 279447. The second, third and fourth au-
thors have been supported in part by EPSRC via grant EP/I03126X.

References

1. G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More efficient oblivious
transfer extensions with security for malicious adversaries. In Advances in Cryp-
tology – EUROCRYPT 2015, pages 673–701, 2015.

2. D. Beaver. Efficient multiparty protocols using circuit randomization. Advances
in Cryptology - CRYPTO 1991, 1992.

3. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for de-
signing efficient protocols. In CCS ’93, Proceedings of the 1st ACM Conference on
Computer and Communications Security, Fairfax, Virginia, USA, November 3-5,
1993., pages 62–73, 1993.

4. R. Bendlin, I. Damg̊ard, C. Orlandi, and S. Zakarias. Semi-homomorphic encryp-
tion and multiparty computation. Advances in Cryptology – EUROCRYPT 2011,
pages 169–188, 2011.

5. S. S. Burra, E. Larraia, J. B. Nielsen, P. S. Nordholt, C. Orlandi, E. Orsini,
P. Scholl, and N. P. Smart. High performance multi-party computation for binary
circuits based on oblivious transfer. Cryptology ePrint Archive, Report 2015/472,
2015. http://eprint.iacr.org/.

http://eprint.iacr.org/

6. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd Annual Symposium on Foundations of Computer Science, FOCS
2001, 14-17 October 2001, Las Vegas, Nevada, USA, pages 136–145, 2001.

7. I. Damg̊ard, M. Keller, E. Larraia, C. Miles, and N. P. Smart. Implementing AES
via an actively/covertly secure dishonest-majority MPC protocol. In I. Visconti
and R. D. Prisco, editors, SCN, volume 7485 of Lecture Notes in Computer Science,
pages 241–263. Springer, 2012.

8. I. Damg̊ard, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart. Practical
covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits. In
J. Crampton, S. Jajodia, and K. Mayes, editors, ESORICS, volume 8134 of Lecture
Notes in Computer Science, pages 1–18. Springer, 2013.

9. I. Damg̊ard, R. Lauritsen, and T. Toft. An empirical study and some improvements
of the minimac protocol for secure computation. In Security and Cryptography for
Networks - 9th International Conference, SCN 2014, Amalfi, Italy, September 3-5,
2014. Proceedings, pages 398–415, 2014.

10. I. Damg̊ard, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation
from somewhat homomorphic encryption. In R. Safavi-Naini and R. Canetti, ed-
itors, Advances in Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in
Computer Science, pages 643–662. Springer, 2012.

11. I. Damg̊ard and S. Zakarias. Constant-overhead secure computation of boolean
circuits using preprocessing. In TCC, pages 621–641, 2013.

12. T. K. Frederiksen, M. Keller, E. Orsini, and P. Scholl. A unified approach to
MPC with preprocessing using OT. Cryptology ePrint Archive (to appear), 2015.
http://eprint.iacr.org/.

13. Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers ef-
ficiently. In Advances in Cryptology - CRYPTO 2003, 23rd Annual International
Cryptology Conference, Santa Barbara, California, USA, August 17-21, 2003, Pro-
ceedings, pages 145–161, 2003.

14. M. Keller, E. Orsini, and P. Scholl. Actively secure OT extension with optimal
overhead. In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I,
pages 724–741, 2015.

15. M. Keller and P. Scholl. Efficient, oblivious data structures for MPC. In Advances
in Cryptology - ASIACRYPT 2014 - 20th International Conference on the The-
ory and Application of Cryptology and Information Security, Kaoshiung, Taiwan,
R.O.C., December 7-11, 2014, Proceedings, Part II, pages 506–525, 2014.

16. M. Keller, P. Scholl, and N. P. Smart. An architecture for practical actively secure
MPC with dishonest majority. In ACM Conference on Computer and Communi-
cations Security, pages 549–560, 2013.

17. E. Larraia, E. Orsini, and N. P. Smart. Dishonest majority multi-party computa-
tion for binary circuits. In Advances in Cryptology - CRYPTO 2014 - 34th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceed-
ings, Part II, pages 495–512, 2014.

18. J. B. Nielsen. Extending oblivious transfers efficiently - how to get robustness
almost for free. IACR Cryptology ePrint Archive, 2007:215, 2007.

19. J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra. A new approach to prac-
tical active-secure two-party computation. In Advances in Cryptology–CRYPTO
2012, pages 681–700. Springer, 2012.

http://eprint.iacr.org/

	A Unified Approach to MPC with Preprocessing using OT

