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Abstract. Recent advances in block-cipher theory deliver security anal-
yses in models where one or more underlying components (e.g., a function
or a permutation) are ideal (i.e., randomly chosen). This paper addresses
the question of finding new constructions achieving the highest possible
security level under minimal assumptions in such ideal models.
We present a new block-cipher construction, derived from the Swap-
or-Not construction by Hoang et al. (CRYPTO ’12). With n-bit block
length, our construction is a secure pseudorandom permutation (PRP)
against attackers making 2n−O(logn) block-cipher queries, and 2n−O(1)

queries to the underlying component (which has itself domain size roughly
n). This security level is nearly optimal. So far, only key-alternating ci-
phers have been known to achieve comparable security using O(n) inde-
pendent random permutations. In contrast, we only use a single function
or permutation, and still achieve similar efficiency.
Our second contribution is a generic method to enhance a block cipher,
initially only secure as a PRP, to additionally withstand related-key at-
tacks without substantial loss in terms of concrete security.

Keywords: Block-cipher theory, related-key security

1 Introduction

Several recent works provide ideal-model security proofs for key-alternating ci-
phers [25, 23, 14, 2, 50, 16, 15, 19, 26, 31, 17] and for Feistel-like ciphers [29, 20, 34,
42, 38]. In these proofs, the underlying components (wich are either permuta-
tions or functions) are chosen uniformly at random, and are public, i.e., the
attacker can evaluate them. At the very least, these proofs target pseudorandom
permutation (PRP) security: The block cipher, under a secret key, must be indis-
tinguishable from a random permutation, provided the attacker makes at most
q queries to the cipher, and at most qF queries to the underlying component, for
q and qF as large as possible.

? Partially supported by NSF grant CNS-1423566 and by the Glen and Susanne Culler
chair.
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Ideal-model proofs imply that the block cipher is secure against generic at-
tacks (i.e., treating every component as a black box). Heuristically, however,
one hopes for even more: Namely, that under a careful implementation of the
underlying component, the construction retains the promised security level.

Contributions. This paper contributes along two different axes:

- Weaker assumptions. We present a new block-cipher design achieving
near-optimal security, i.e., it remains secure even when q and qF approach
the sizes of the block-cipher and component domains, respectively. Our con-
struction can be instantiated from a function or, alternatively, from a single
permutation. This is the first construction from a function with such security
level, and previous permutation-based constructions all relied on multiple
permutations to achieve such high security.

- Related-key security. We show how to enhance our construction to achieve
related-key security without significantly impacting its efficiency and secu-
rity. This is achieved via a generic transformation of independent interest.

This work should not be seen primarily as suggesting a new practical block-cipher
construction, but rather as understanding the highest achievable security level in
the model block ciphers are typically analyzed. The resulting technical questions
are fairly involved, and resolving them is where we see our contributions.

Still, we hope that our approach may inspire designers. Our instantiation
from a permutation gives a possible path for a first proof-of-concept implemen-
tation, where one simply takes a single-round of AES as the underlying permu-
tation. (And in fact, even a simpler object may be sufficient.)

1.1 First contribution: Full-domain security

We start by explaining our construction from a (random) function. Concretely,
we consider block-cipher constructions BC with block length n and key length
κ using an underlying keyless function F with m-bit inputs. We say that BC is
(q, qF )-secure (as a PRP) if no attacker can distinguish with substantial advan-
tage the real world – where it can query qF times a randomly sampled function
F and overall q times the block cipher BCFK (using the function F and a random
secret key K) – from an ideal world where BCFK is replaced by an independent
random permutation of the n-bit strings. (In fact, we typically also allow inverse
queries to the block cipher and the permutation.)

Our goal. Let us first look at what can we expect for q and qF when a cipher
is (q, qF )-secure. Clearly, qF ≤ 2m and q ≤ 2n, assuming queries are distinct.
However, one can also prove that (roughly) qF < 2κ is necessary, otherwise, the
adversary can mount a brute-force key search attack. Moreover, q ≤ 2m must
also hold (cf. e.g. [28] for a precise statement of these bounds).

Here, we target (near) optimal security, i.e., we would like to achieve security
for q and qF as close as possible to 2n and 2m, respectively, whenever m ≥ n.
That is, the construction should remain secure even if the adversary can query
most of its domain, and of that of the underlying function F . We note that the
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question is meaningful for every value of m ≥ n, but we specifically target the
case where m ≈ n, e.g., m = n, or m = n+O(log n).

Previous constructions from functions fall short of achieving this: Gentry
and Ramzan [29], and the recent generalization of their work by Lampe and
Seurin [38], use a Feistel-based approach with m = n/2, and this hence yields
(at best) (2n/2, 2n/2)-security. (The work of [38] approaches that security level
for increasing number of rounds.) In contrast, key-alternating ciphers (KACs)
have been studied in several works [23, 14, 2, 50, 16, 15, 19, 26, 31], and the tightest
bounds show them to be (2n(1−ε), 2n(1−ε))-secure, when using O(1/ε) rounds
calling each an (independent) n-bit random permutation. However, there is no
way of making direct use of KACs given only a non-invertible function.

The WSN construction. Our construction – which we call Whitened Swap-
or-Not (WSN) – adds simple whitening steps to the Swap-or-Not construction by
Hoang, Morris, and Rogaway [33], which was designed for the (different) setting
where the component functions are secret-key primitives. Concretely, the WSN
construction, on input X = X0, iterates R times a very simple round structure
of the form

Xi+1 ← Xi ⊕ (Fb(i)(Wi ⊕max{Xi, Xi ⊕Ki}) ·Ki) ,

where Wi and Ki are round keys, max of two strings returns the largest with
respect to lexicographic ordering, and Fb(i)(x) returns the first bit of F (x) in
the first half of the rounds, and the second bit in the second half. (Moreover,
· denotes simple scalar multiplication with a bit, i.e., b · X = X if b = 1, and
0n else.) In particular, our construction requires F to only output 2 bits. The
round structure is very weak1, and it differs from the construction of [33] in that
the same round function is invoked over multiple rounds, and as this function is
public, we use a key Wi to whiten the input. We prove the following:

Main Theorem. (Informal) The WSN construction for R = O(n)
rounds is (2n−O(logn), 2n−O(1))-secure.

Note that O(n) rounds are clearly asymptotically optimal.2 For some parameter
cases, techniques from [49, 47] can in fact be used to obtain a (2n, 2n(1−ε))-secure
PRP, at the cost of a higher number of rounds.

Functions vs. permutations. It is beyond the scope of this paper to assess
whether a function is a better starting point than a permutation in practice.
Independently of this, we believe that studying constructions from functions is
a fundamental theoretical problem for at least two reasons.

Foremost, functions are combinatorially simpler than permutations, and thus,
providing constructions from them (and thus enabling a secure permutation

1 A single round can easily be distinguished from a random permutation with a con-
stant number of queries, as every input x is mapped to either x or x⊕Ki.

2 Even for one single query, every internal call to F can supply at most one bit of
randomness, and the output must be (information theoretically) indistinguishable
from a random n-bit string, and thus Ω(n) calls are necessary.
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structure) is an important theoretical question, akin to (and harder than) the
problem of building PRPs from PRFs covered by a multitude of papers. Also,
practical designs from keyless round functions have been considered (cf. e.g. [1]).

In addition, our construction only requires c = 2 output bits, and it is worth
investigating whether such short-output functions are also harder to devise than
permutations. We in fact provide some theoretical evidence that this may not
be the case. We prove that an elegant construction by Hall, Wagner, Kelsey, and
Schneier [32] can be used to transform any permutation from n+ c bits to n+ c
bits into a function from n bits to c bits which is perfectly indifferentiable [44]
from a random function. This property ensures that the concrete security of
every cipher using a function F : {0, 1}n → {0, 1}c is preserved if we replace F
with the construction from π, and allow the adversary access to π and its inverse
π−1. The construction makes 2c permutation calls, and thus makes only sense for
small c. In contrast, it should be noted that the only indifferentiable construction
of a permutation from functions is complex and weakly secure [34], and that no
suitable constant-complexity high-security constructions of large-range functions
from permutations exist, the most secure construction being [41, 46].

A single-permutation instantiation.With c = 2, combining the WSN con-
struction with the HWKS construction yields a secure cipher with n-bit block
length from a single permutation on (n+ 2)-bit strings. In contrast, we are not
aware of any trick to instantiate KACs from a single permutation retaining prov-
able nearly-optimal security, even by enlarging the domain of the permutation.
The only exception is the work of [15], which however only considers two rounds
and hence falls short of achieving full-domain security.

The complexity of the resulting construction matches (asymptotically) that
of KACs when targeting (2n−O(logn), 2n−O(1))-security. Nonetheless, a clear ad-
vantage of KACs is that their security degrades smoothly when reducing the
amount of rounds, whereas here O(n) rounds remain necessary even for (1, 0)-
security. We note that in the setting of functions constructions with such smooth
security degradations are not known, even in the simpler setting of [33].

Reducing the key length. Arguably, an obvious drawback of our construc-
tion is that the key length grows with the number of rounds. We note that this
is also true for key-alternating ciphers, and it is not unique to our construction.

It is worth noting that the key length can be reduced via standard techniques
without affecting security, by deriving the round keys from a single (n − d)-bit
master key K as Ki ← H(K ‖ 〈i−1〉) and Wi ← H(K ‖ 〈R+i−1〉) for all i ∈ [R]
and a function H : {0, 1}n → {0, 1}n (to be modeled as random in the proof),
where 〈·〉 denotes the (d = dlog(2R) + 1e)-bit binary encoding of an integer in
[2R]. (Note that d = O(log n).) The security proof is fairly straightforward, and
omitted – it essentially accounts to excluding the event that H is queried on one
of the values related to the key, and the reducing the analysis to the one with
large keys. This adds an additional qH ·R/2n−d term to the bound, where qH is
the number of queries to H. H can in fact be built from the very same function
F , but this requires a slightly more involved analysis.
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1.2 Second contribution: Related-key security

In the second part, we show how to generically make any block-cipher construc-
tion secure against related-key attacks (or RKA secure, for short) while preserving
full-domain security and small input length of the underlying function.

On RKA security. Several attacks over the last two decades (cf. e.g. [8, 35,
9, 10, 13, 12, 11]) have motivated RKA security as the new golden standard for
block-cipher security. As formalized by Bellare and Kohno [5], RKA security
is parameterized by a class of key transformations Φ. Then, pseudorandomness
security defined above is extended to allow the attacker for block-cipher queries
of the form (φ,+, X) or (φ,−, Y ) for φ ∈ Φ and X,Y ∈ {0, 1}n, resulting in
BCφ(K)(X) and BC−1φ(K)(Y ).

It is easy to see that WSN is not RKA secure if the class Φ allows for XORing
chosen offsets to individual keys. Querying an input X (with the original key),
and querying X ⊕ ∆ while adding ∆ to K1 results in the same output with
probability 1/2. In the random permutation model, two recent works [26, 19]
have shown that KACs are RKA secure (for appropriate key scheduling), yet
the resulting construction is only (2n/2, 2n/2)-secure. Here, in contrast, we target
full-domain security of the cipher.

Related-key secure key-derivation. We consider a generic approach to
shield ciphers from related-key attacks using related-key secure key-derivation
functions (or RKA-KDF, for short). These are functions KDF : {0, 1}κ → {0, 1}`
with the property that under a random secret key K, the outputs of KDF(φ(K)),
for different φ ∈ Φ, look random and independent. A similar concept was pro-
posed by Lucks [40], and further formalized by Barbosa and Farshim [3]. For any
secure block cipher BC, the new block cipher computes, for key K and input X,
the value BCKDF(K)(X), and is easily proved to be RKA-secure. Note that this
approach is very different from the one used for standard-model RKA-secure
PRF and PRP constructions (as in [4]), which leverage algebraic properties of
PRF constructions.3

Building RKA-KDFs in ideal models may appear too easy: A hash function
H : {0, 1}κ → {0, 1}`, when modeled as a random oracle [6], is a secure RKA-
KDF. However, such construction can be broken in 2κ/2 queries by a simple
collision argument.4 If our goal is to achieve security almost 2n to preserve
security of e.g. WSN above, then we need to set κ ≥ 2n. But what if we are
building our block cipher from a primitive with n-bit inputs, like the very same
primitive used to build the block cipher, as in the WSN setting above?

One approach is to use a domain extender in the sense of indifferentiabil-
ity [44]. The only known construction with (near) optimal security is due to

3 Also, our requirements are stronger than those for non-malleable codes and non-
malleable key-derivation [24, 27].

4 For example, for Q := 2κ/2, and an additive RKA attack asking for random
∆1, . . . ,∆Q, one of the values H(K ⊕ ∆i) is going to collide with constant prob-
ability with one of the values H(Xi), for independent κ-bit strings X1, . . . , XQ,
allowing to distinguish.



6 Stefano Tessaro

Maurer and Tessaro [45] (MT), and further abstracted by Dodis and Stein-
berger [22]. Unfortunately, instantiations of the MT construction are very inef-
ficient, and make O(nc) calls to the underlying function for some undetermined
(and fairly large) c.

MT-based RKA-KDFs.As our second contribution, we provide a highly paral-
lelizable construction of a RKA-KDF from a keyless function with nearly optimal
security, i.e., its outputs are pseudorandom even when evaluated on q = 2n(1−ε)

related keys, and the underlying function can be evaluated qF = 2n(1−ε) times,
where ε > 0. Our construction is a variant of the MT construction. However,
while the latter is inefficient as it relies on a complex combinatorial object, called
an input-restricting function family, here, we show that to achieve RKA-KDF
security it is sufficient to use a much simpler hitter [30], which can for instance
be built from suitable constant-degree expander graphs.

Overall, our construction needs O(n) calls to independent n-to-n-bit func-
tions. (It can also be reformulated to call a single n-to-n-bit function.) We see
it as a challenging open problem to improve the complexity, but we note that
this already yields the most efficient known approach to ensure high related-key
security for block ciphers built from ideal primitives.

Indifferentiability. The question of building a block cipher from a random
function which is as secure as an ideal cipher (with respect to indifferentiability)
was studied and solved by [20, 34]. In the same vein, indifferentiable KAC-like
cipher constructions from permutations have been given [2, 37, 31]. While these
constructions are related-key secure, their concrete security is fairly weak.

2 Preliminaries

2.1 Notation

Throughout this paper, we let [n] := {1, . . . , n}. Further, we denote by Fcs(m,n)
the set of functions mapping m-bit strings to n-bit strings, and by Fcs(∗, n) the
set of functions {0, 1}∗ → {0, 1}n. Similarly, we let Perms(n) ⊂ Fcs(n, n) be
the set of permutations on {0, 1}n. Given a string X ∈ {0, 1}m, we denote by
X[i . . . j] (for i < j) the sub-string consisting of bits i, i+1, . . . , j−1, j of X. We
also write X≤i instead of X[1 . . . i]. Further, given another string X ′ ∈ {0, 1}n,
we denote by X ‖X ′ the (m+ n)-bit concatenation of X and X ′.

Algorithms, constructions, and adversaries in this paper are with respect to
some (not further specified) RAM model of computation. We explicitly denote by
C[F ] the fact that a construction C (implementing a function) makes queries to
another function F , and we denote by AO the fact that an adversary A accesses

an oracle O. We denote by x
$← S the process of sampling x from the set S

uniformly at random, and by y
$← AO the process of running the randomized

algorithm A with access to a randomized oracle O, and sampling its output y.
Also, we denote by AO ⇒ y the event that the concrete value y is output in the
same experiment. In general, we use a notation close to the one of Bellare and
Rogaway’s Game Playing framework [7], which we hope to be self evident.
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Additionally, we denote by Pr [X = x] the probability that the random vari-
able takes the value x, and by E[X] its expected value. Also, the statistical dis-
tance between two random variablesX andX ′ is SD(X,X ′) = 1

2

∑
x |Pr [X = x]−

Pr [X ′ = x] |, where the sum is over all values which can be taken by X or X ′.

2.2 Ideal models

Our analyses are in the random function model, where algorithms and adversaries

are relative to a randomly chosen function F
$← Fcs(m, `) for parameters m and

`. A variant of the model grants access to multiple independent random functions

F1, . . . , Ft
$← Fcs(m, `), but these can equivalently be implemented in the single

random function model form′ = m+dlog te, where the individual functions Fi are
obtained as Fi(X) = F (〈i〉 ‖X), with 〈i〉 representing a dlog te-bit encoding of
i. We often denote F = (F1, . . . , Ft) to stress this dual representation explicitly.
Therefore, all upcoming definitions are in the single random function model
without loss of generality.

We also recall that we can build a function F from m bits to ` bits by
making ` calls to a function from m + dlog `e bits to a single bit, i.e., F (X) =
F ′(〈0〉 ‖X) ‖ · · · ‖F ′(〈` − 1〉 ‖X). The statement can be made precise via the
notion of perfect indifferentiability [44], which we review in Appendix A.

The definitions of this section also naturally extend to the random permu-
tation model, where adversaries and algorithms can query one or more random
permutations sampled uniformly from Perms(n). In particular, adversaries are
also allowed query the inverses of these permutations.

2.3 Block ciphers and (related-key) pseudorandomness

Let BC[F ] : {0, 1}κ × {0, 1}n → {0, 1}n be an efficient construction making
calls to a function F ∈ Fcs(m, `). (We generally omit F whenever clear from
the context.) We say that BC = BC[F ] is a (κ, n)-block cipher if BC(K, ·) is a
permutation for all κ-bit K and all F ∈ Fcs(m, `), and use the notation BCK
to refer to this permutation. Typically, we assume that BCK and BC−1K are
very efficient to compute given K, where efficiency in particular implies a small
number of calls to F .

(Multi-user) PRPs.We require block ciphers to be secure pseudorandom per-
mutations (PRPs) [39]. In particular, we consider a multi-user version of PRP
security, which captures joint indistinguishability of an (a-priori unbounded)
number of block-cipher instantiations under different independent keys. The tra-
ditional (single-user) PRP notion is recovered by considering adversaries making
queries for one single key. While the single- and multi-user versions are related by
a hybrid argument, sticking with the latter will allow potentially tighter bounds
in the second part of this paper, as the standard hybrid argument cannot be
made very tight given only an overall bound on the number of queries.

To this end, we consider two security games PRP-bABC,F for b ∈ {0, 1}. In both,

F
$← Fcs(m, `) is initially sampled, as well as independent keys K1,K2, . . .

$←
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{0, 1}κ, and permutations P1, P2, . . .
$← Perms(n).5 Then, the adversary A is

executed, and is allowed to issue two types of queries:

- Function queries x, returning F (x)
- Construction queries (i, σ, z), where i ∈ N, σ ∈ {−,+}, z ∈ {0, 1}n. For
b = 1, the query returns BCKi(z) (if σ = +, this is a forward query) or

BC−1Ki (z) (if σ = −, and this is a backward query). For b = 0, the query

returns Pi(z) or P−1i (z), respectively.

Finally, A outputs a bit, which is also the game’s output. Then, PRP-security of
BC is defined via the following advantage metric

AdvPRP
BC,F (A) := Pr

[
PRP-1ABC,F ⇒ 1

]
− Pr

[
PRP-0ABC,F ⇒ 1

]
.

We also denote by AdvPRP
BC,F (q, qF ) the maximal advantage of an adversary A

making at most q construction queries and qF function queries. Informally, we
say that BC is (q, qF )-secure if AdvPRP

BC,F (q, qF ) is “small”, i.e., negligible in κ.

Related-key secure PRPs.We target the traditional notion of a related-key
secure (or RKA-secure) PRP introduced by Bellare and Kohno [5]. In particular,
for a key length κ, we consider a family Φ ⊆ Fcs(κ, κ) of key transformations.
Given a (κ, n)-block cipher BC = BC[F ] as above, we define the following two
games RKA-PRP-1 and RKA-PRP-0. The game RKA-PRP-bABC,F,Φ proceeds as

follows: It first samples F
$← Fcs(m, `), a key K

$← {0, 1}κ, and 2κ independent

permutations Pk′
$← Perms(n) for all κ-bit k′. Then,A issues two types of queries:

- Function queries x, returning F (x)
- Construction queries (σ, φ,X), where σ ∈ {−,+}, φ ∈ Φ, z ∈ {0, 1}n.

For b = 1, the query returns BCφ(K)(z) (if σ = +, this is a forward query)

or BC−1φ(K)(z) (if σ = −, and this is a backward query). For b = 0, the query

returns Pφ(K)(z) or P−1φ(K)(z), respectively.

Finally,A outputs a bit, which is also the game’s output. We define the RKA-PRP
advantage as

AdvRKA-PRP
BC,F,Φ (A) = Pr

[
RKA-PRP-1ABC,F,Φ ⇒ 1

]
− Pr

[
RKA-PRP-0ABC,F,Φ ⇒ 1

]
.

The advantage measure AdvRKA-PRP
BC,F,Φ (q, qF ) is defined by taking the maximum.

3 The Whitened Swap-or-Not Construction

3.1 The construction

We present a construction of a block cipher using a function F : {0, 1}n →
{0, 1}2, which we refer to as the Whitened Swap-or-Not construction, or WSN

5 As we are sampling infinitely many objects, once can think of sampling these lazily
the first time they are needed.
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for short. This construction naturally extends the Shuffle-or-Not construction by
Hoang, Morris, and Rogaway [33] to the keyless-function setting.

For any even round number R = 2r, the construction WSN = WSN(R) ex-
pects round keys K1, . . . ,KR and whitening keys W1, . . . ,WR, which are all n-bit
strings. Its computation proceeds as follows, where j(i) = 1 if i ≤ r, and j(i) = 2
else, and we interpret F as two functions F1 and F2 such that Fj(x) returns the
j-th bit of F (x) for j ∈ {1, 2}.

Construction WSN
(R)
K1,...,KR,W1,...,WR

(X): // X ∈ {0, 1}n

X0 ← X
For i = 1, . . . , R do
X ′i−1 ← max{Xi−1, Xi−1 ⊕Ki}
Bi ← Fj(i)(Wi ⊕X ′i−1)
If Bi = 1 then Xi ← Xi−1 ⊕Ki else Xi ← Xi−1
Return XR

In the description, the max of two strings is with respect to the lexicographic
order, and note that its purpose is to elect a unique representant for every pair
{X,X ⊕ Ki}. As in [33], the construction extends naturally to domains which
are arbitrary abelian groups. However, we will stick with the special case of bit
strings in the following.

It is easy to see that the construction can efficiently be inverted given the
keys, simply by reversing the order of the rounds.

3.2 Security of the WSN construction

Compared with the original Swap-or-Not construction, WSN adds at each round
a whitening key Wi to the input of a (publicly evaluable) round function Fj(i), as
opposed to using a secret independent random function Fi (which in particular
cannot be queried directly by the adversary). It is a well-known folklore fact
that for a function F : {0, 1}n → {0, 1}, the construction mapping a key W and
an input X to F (W ⊕X) is indistinguishable from a random function under a
random secret key W when F is random and publicly evaluable.

However, the high security of WSN does not follow by simply composing
this folklore fact with the original analysis [33]. This is because the folklore
construction can easily be distinguished from a random function via Θ(2n/2)

queries to F (W⊕·) (or a random function f
$← Fcs(n, 1)), and Θ(2n/2) queries to

F .6 To overcome this, a valid black-box instantiation would use a more complex
construction mapping X to F (W1⊕X)⊕· · ·⊕F (Wk⊕X) (analyzed in [28]) for
the round functions within Swap-or-Not. This would however result in roughly
Θ(n2) calls to F , as opposed to Θ(n) achieved by WSN.

6 Roughly, pick X1, . . . , XQ, X
′
1, . . . , X

′
Q to be independent uniform n-bit strings of

length n−k, for some k = dlogne and Q ≈ 2n/2. Then one just queries Yz,i ← F (W⊕
(Xi ‖ z)) and Y ′z,j ← F (X ′j ‖ z) for all i, j ∈ [Q] and z ∈ {0, 1}k. The distinguisher
finally outputs one if and only if there exist i and j such that Yi,z = Y ′j,z for all
z ∈ {0, 1}k.



10 Stefano Tessaro

Security of WSN. The following theorem establishes the concrete security of
the WSN construction with R = 2r rounds.

Theorem 1 (Security of WSN). For all q, qF > 0 and for all r ∈ N, we have

AdvPRP
WSN(2r),F (q, qF ) ≤ 2

√
2
√
q2n/4

(
1

2
+
q · r + qF

2 · 2n

)r/4
.

The proof of Theorem 1 is given in Section 3.3 below. Note that if r · q + qF =
(1 − α)2n, then the above term can be made to be 2−n for r = O(n/α). For
example, this allows to infer security for q = 2n−logn−O(1) and qF = 2n−2.

We also have no reason to believe that the construction would be insecure if
we used a function with a single output bit throughout the evaluation, but we
could not find a suitable proof and leave this analysis as an open problem.

Single-permutation instantiation. The WSN construction can be instanti-
ated from a single permutation if we are ready to enlarge the domain of the
permutation to n + 2 bits. This follows from a result of independent interest,
proved in Appendix B. Namely, we prove that a 2c-call construction of a function
Fπ ∈ Fcs(n, c) from any permutation π ∈ Perms(n + c) due to Hall, Wagner,
Kelsey, and Schneier [32] is perfectly indifferentiable [44] from a random func-
tion. This in particular implies (by the composition theorem in Appendix A)
that we can replace the function F by our construction and still achieve the
same security bound in the random permutation model.

Full-domain security. Two recently published works [49, 47] enhance swap-
or-not to full-domain security (i.e., security against q = 2n queries) at the cost
of making O(n2) calls to the construction in the worst-case. (The later work [47]
shows how to reduce the complexity to O(n) in the average case.) One could hope
to use their results generically to obtain (2n, 2n(1−ε))-security in our setting.

Unfortunately, these results require security for q = 2n−1, which is unattain-
able by the above bound. By inspecting the proof of Theorem 1, it is however
not hard to verify that a version of the WSN construction with independent
round functions F1, . . . , FR can be made to achieve (2n−1, 2n(1−ε))-security (in
essence, this is because one can easily reduce the exponential term in the bound

to
(
1
2 + qF+q

2·2n
)r/4

) and the results from [49, 47] can be used in a black-box way.
Nevertheless, we point out that in contrast to the small-domain setting of [49,

47], here we are mostly targeting a large n (e.g., n = 128), for which 2n(1−ε)

security can be largely sufficient. The additional cost may thus not be necessary.

3.3 Proof of Theorem 1

Our proof shares similarities with the original analysis of Swap-or-Not [33], but
dealing with the setting where the function F is public requires a careful exten-
sion and different techniques. To this end, we follow an approach used in previous
works by Lampe, Patarin, and Seurin [36], and by Lampe and Seurin [38] to re-
duce security analyses for PRP constructions in ideal models to a non-adaptive
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analysis. (With some extra care due to the fact that we deal with the multi-user
PRP security notion.) In particular, we are first going to prove that the WSN
construction, restricted to half of its rounds, satisfies a weaker non-adaptive
security requirement, which we introduce in the following paragraph.

Non-adaptive security. Let BC = BC[F ] be a (κ, n)-block cipher construc-
tion based on some function F : {0, 1}m → {0, 1}`. Now, let us fix a set of tuples
TF = {(xi, yi)}i∈[qF ] with xi ∈ {0, 1}m and yi ∈ {0, 1}` for all i ∈ [qF ], and such
that every xi appears only in one pair in TF . Moreover, let us fix a sequence X
of q distinct inputs such that X[j] = (ij , Xj) for all j ∈ [q], where ij ∈ N and
Xj ∈ {0, 1}n.

Then we consider two processes – sampling two sequences Y and Y′ of q
n-bit strings – defined as follows:

- Y (the real world distribution) is obtained by sampling random κ-bit strings

K1,K2, . . .
$← {0, 1}κ, sampling a random F

$← Fcs(m, `) conditioned on
satisfying F (xi) = yi for all i ∈ [qF ], and finally letting Y[j]← BC[F ]Kij (Xj)

for all j ∈ [q].
- Y′ (the ideal world distribution) is obtained by sampling random permuta-

tions P1, P2, . . .
$← Perms(n), and letting Y[j]← Pij (Xj) for all i ∈ [q].

Then, we define the advantage metric

AdvNCPAPRP
BC,F (X, TF ) := SD(Y,Y′) ,

where SD denotes statistical distance. Moreover, let AdvNCPAPRP
BC,F (q, qF ) be the

maximum of AdvNCPAPRP
BC,F (X, TF ) taken over all q-sequences X and all sets TF of

size qF .

From non-adaptive to adaptive security. We make use of the following
lemma. The proof is very similar to previous works [36, 38] and makes crucial
use of Patarin’s H-coefficient method [48]. The main difference is that our version
deals with the multi-user PRP security notion. (A self-contained version of the
proof is found in the full version.)

Given a (κ, n)-block cipher BC[F ] relying on a function F : {0, 1}m → {0, 1}`,
then let BC[F1] ◦ BC−1[F2] be the (2κ, n)-block cipher which relies on two func-
tions F1, F2 : {0, 1}m → {0, 1}`, and which on input X ∈ {0, 1}n and given key
K1 ‖K2 ∈ {0, 1}2κ, returns BC[F2]−1K2

(BC[F1]K1
(X)). The following lemma tells

us that if BC is non-adaptively secure (as in the above notion), then BC ◦ BC−1
is adaptively secure in the sense of being a secure PRP for attackers making both
forward and backward queries.

Lemma 1 (Non-adaptive ⇒ Adaptive Security). For all q, qF , we have

AdvPRP
BC[F1]◦BC−1[F2],(F1,F2)

(q, qF ) ≤ 4 ·
√
AdvNCPAPRP

BC[F ],F (q, qF ) .

Note that a stronger version of this statement (essentially without the square
root) can be proved [43, 18] in the setting where qF = 0.
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Non-adaptive analysis of WSN.We first adopt a slightly different represen-

tation of the WSN construction. In particular, let WSN
(r)

= WSN
(r)

[F ] be the
construction relying on a function F : {0, 1}n → {0, 1} which operates as the
original WSN construction for r rounds, but always uses the the function F
(instead of using one function F1 for the first half, and the function F2 for the
second half of the evaluation). Then, it is easy to see that

WSN(2r)[F1, F2] = WSN
(r)

[F1] ◦
(
WSN

(r)
[F2]

)−1
, (1)

where in particular we have used the fact that the inverse of WSN is just the
WSN itself, with round and whitening keys scheduled in the opposite order.

The key element of our proof is the following lemma, which, combined with
Lemma 1 and Equation (1) immediately yields Theorem 1.

Lemma 2 (Non-adaptive security of WSN). For all q and qF , and N = 2n,

AdvNCPAPRP

WSN
(r)

[F ],F
(q, qF ) ≤ 1

2
q
√
N

(
1

2
+
q · r + qF

2N

)r/2
.

Proof (Of Lemma 2). We fix a sequence of q distinct queries X, as well as a set
TF of qF input-output pairs. For now, we only consider the single-key setting, i.e.,
all queries X[j] are of the same index ij = 1, and thus we omit these indices ij .
(We argue below how the multi-user case follows easily from our proof.) Denote
the randomly chosen round keys as K = (K[1], . . . ,K[r]) and the corresponding
whitening keys as W = (W[1], . . . ,W[r]).

We are going to consider the evolution of the evaluation of WSN on these
inputs simultaneously, and denote the joint state after t ∈ {0} ∪ [r] rounds as
Xt = (Xt[1], . . . ,Xt[q]), with X0 = X. With U uniformly distributed on the set
of q distinct n-bit strings, we are going to upper bound

AdvNCPAPRP

WSN
(r)

[F ],F
(X, TF ) = SD(Xr,U) .

For any i ∈ [q], denote by Qt[i] the set of input-output pairs corresponding to
the t F queries made to compute Xt[i] from X0[i]. Let now Ut,i be a uniformly
distributed value on the set St,i := {0, 1}n \{Xt[1], . . . ,Xt[i−1]}, and let Ut,i to
be a uniform (q−i)-tuple of distinct strings from St,i+1. Then, for all t ∈ {0}∪[r],

SD(Xt,U) ≤
q∑
i=1

SD((X≤i−1t ,Ut,i−1), ((X≤it ,Ut,i))

≤
q∑
i=1

SD((Q≤i−1t ,X≤i−1t , Ut,i,Ut,i), (Q
≤i−1
t ,X≤it ,Ut,i))

=

q∑
i=1

SD((Q≤i−1t ,X≤it ), (Q≤i−1t ,X≤i−1t , Ut,i)) =

q∑
i=1

E [SD(Xt[i], Ut,i)] . (2)
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since SD(f(X), f(Y )) ≤ SD(X,Y ) for all f,X, Y , and the i-th expectation in

the sum is over Q≤i−1t , X≤i−1t ,W≤t, and K≤t.

For all a ∈ St,i, we now we define the random variable pt,i(a) as the prob-
ability that Xt[i] = a conditioned on the actual values taken by the random

variables Q≤i−1t , X≤i−1t ,W≤t,K≤t. (In particular, pt,i(a) is a random variable
itself, as it is a function of these random variables.) Also, let Ni := N − i + 1.
Then, by Cauchy-Schwarz and Jensen’s inequalities, we obtain

E [SD(Xt[i], Ut,i)] =
1

2
· E

 ∑
a∈St,i

∣∣∣∣pt,i(a)− 1

Ni

∣∣∣∣


≤ 1

2
·
√
N

√√√√√E

 ∑
a∈St,i

(
pt,i(a)− 1

Ni

)2
 .

(3)

We are going to give a recursive formula for E[∆t,i], where

∆t,i :=
∑
a∈St,i

(
pt,i(a)− 1

Ni

)2

.

Note that ∆0,i = E[∆0,i] = 1− 1
Ni

. It is now convenient to assume that Q≤i−1t ,

X≤i−1t , K≤t, W≤t are fixed to some values (and thus so are ∆t,i and pt,i(a)),

and we are going to study E[∆t+1,i], where the expectation is now over X≤i−1t+1 ,

K[t+ 1], W[t+ 1] and Q≤i−1t+1 . In particular, define Qb (for b ∈ {0, 1}) to be the
set of all inputs of queries to F for which we know the corresponding output,
i.e., x ∈ Qb if (x, b) ∈ TF or (x, b) ∈ Qt[j] for some j ∈ [i − 1]. Moreover let
Q := Q0 ∪Q1 and Q := |Q|, and note that Q ≤ t · (i− 1) + qF .

With the above being fixed, we are now considering the random experiment
where we sample K[t + 1] and W[t + 1], and we are going to compute the
expectation of ∆t+1,i in this experiment. More concretely, we define a function
ϕ : St,i → St+1,i (which is also a random variable, as it depends on St+1,i,
K[t+ 1] and W[t+ 1]) as follows:

ϕ(a) =



a if (1) max{a⊕K[t+ 1], a} ⊕W[t+ 1] ∈ Q0, or
(2) a⊕K[t+ 1] /∈ St+1,i

and max{a⊕K[t+ 1], a} ⊕W[t+ 1] /∈ Q, or
(3) a ⊕K[t+ 1] ∈ St,i and max{a ⊕K[t + 1], a} ⊕
W[t+ 1] /∈ Q,

a⊕K[t+ 1] if (4) max{a⊕K[t+ 1], a} ⊕W[t+ 1] ∈ Q1, or
(5) a /∈ St+1,i and max{a⊕K[t+1], a}⊕W[t+1] /∈ Q.

Note that ϕ is a bijection. Indeed, if Xt[i] = a implies Xt+1[i] = a′ (where
a′ ∈ {a, a ⊕K[t + 1]}), then ϕ(a) = a′ (this corresponds to exactly one of the
first four cases), and otherwise we let ϕ(a) = a. Also note that ϕ does not depend
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(directly) on Q≤i−1t+1 , only on St+1,i, K[t+ 1], W[t+ 1], and Q≤i−1t . Using both
the bijectivity of ϕ as well as the linearity of expectation,

E [∆t+1,i] =
∑
a∈St,i

E

[(
pt+1,i(ϕ(a))− 1

Ni

)2
]
.

Recall that the expectation here is over the choice of Q≤i−1t+1 , K[t+ 1] and
W[t+ 1]. We prove the following lemma in Appendix C.

Lemma 3. For all a ∈ St,i,

E

[(
pt+1,i(ϕ(a))− 1

Ni

)2]
=
(

1− 3
4
Ni(N−Q)

4·N2

)(
pt,i(a)− 1

Ni

)2
+ 1

4
N−Q
N2 ∆t,i .

We can thus replace E

[(
pt+1,i(ϕ(a))− 1

Ni

)2]
in the above, and using the fact

that ∆t,i =
∑
a∈St,i(pt,i(a)− 1

Ni
)2, this simplifies to

E [∆t+1,i] =
∑
a∈St,i

E

[(
pt+1,i(ϕ(a))− 1

Ni

)2
]
≤
(

1− Ni · (N −Qt)
2 ·N2

)
∆t,i ,

where Qt = t(i−1)+qF . Now, we come back to thinking of X≤i−1t , K≤t and W≤t

as being randomly chosen (rather than fixed), and evaluate E[∆t,i] recursively.

The above in particular implies that E[∆t,i] ≤
(

1− Ni·(N−Q)
2·N2

)
E[∆t−1,i], and

thus

E[∆r,i] ≤
(

1− Ni · (N −Qr−1)

2 ·N2

)r
≤
(

1

2
+
r · q + qF

2N

)r
.

Now, we can put this together with (2) and (3), and see that

SD(Xr,Uq) ≤
1

2
q ·
√
N ·

(
1

2
+
r · q + qF

2N

)r/2
.

Note that for the multi-user case, the proof is essentially the same, with slightly
more complex notation. The only difference is that we define St,i and all related
quantities only with respect to the previous queries for the same key / user. The
upper bounds are the same however, as they only depend on N , q and qF . This
concludes the proof of Lemma 2. ut

4 Related-Key Security

4.1 Related-key secure key derivation

We consider the general notion of a related-key secure key-derivation function,
or RKA-KDF for short. Informally, for a class of key-transformation functions
Φ ⊆ Fcs(κ, κ), this is a function KDF : {0, 1}κ → {0, 1}` such that KDF(φ(K))
gives independent, pseudorandom values for every φ ∈ Φ. A similar notion was
considered by Lucks [40] and by Barbosa and Farshim [3].
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Procedure MAIN:

// Game RKA-KDF-b, b ∈ {0, 1}
F

$← Fcs(m,n), G
$← Fcs(∗, `)

K
$← {0, 1}κ

b′
$← AF,Eval

Return b′

Procedure Eval(φ):

// Game RKA-KDF-b, b ∈ {0, 1}
If b = 0 then
Return KDF[F ](φ(K))

Else return G(φ)

Procedure F(x):

Return F (x)

Fig. 1. RKA-KDF security. The procedure Eval, in both games, takes as input a
function φ ∈ Φ. Also, the notation G(φ) denotes G applied to some unique bit-encoding
of the function φ.

Formal definition. Let KDF[F ] : {0, 1}κ → {0, 1}` be a construction that
calls a function F : {0, 1}m → {0, 1}n. In Figure 1, we define the security
games RKA-KDF-0 and RKA-KDF-1 involving an adversary A and a class of
key transformations Φ ⊆ Fcs(κ, κ). In the real world (Game RKA-KDF-0), the
adversary A makes queries to a random function F via the F oracle and can
obtain evaluations of KDF[F ](φ(K)) for multiple φ ∈ Φ of its choice via the Eval
oracle, and these values should be indistinguishable from random values, which
are returned by the Eval oracle in the ideal world (i.e., in Game RKA-KDF-1).
The RKA-KDF-advantage is then defined as

AdvRKA-KDF
KDF,F,Φ (A) = Pr

[
RKA-KDF-0AKDF,F,Φ ⇒ 1

]
− Pr

[
RKA-KDF-1AKDF,F,Φ ⇒ 1

]
,

and AdvRKA-KDF
KDF,F,Φ (q, qF ) is obtained by maximizing the above over all adversaries

making q queries to Eval and making qF queries to F via the F oracle.

Remark 1. An alternative definition has the Eval oracle return G(φ(K)) for a

random function G
$← Fcs(κ, `). Our choice is better suited to the composition

theorem below, and shifts the burden of dealing with the combinatorics of Φ to
the RKA-KDF security proof.

The composition theorem. We can compose an arbitrary (`, n)-block cipher
construction BC[F ] and a key-derivation function KDF : {0, 1}κ → {0, 1}` using
the same function F , into a new (κ, n) block cipher BC = BC[F,KDF] such that

BCK(X) = BCKDF(K)(X) . (4)

for every K ∈ {0, 1}κ and X ∈ {0, 1}n. The following theorem shows that if
BC is a secure PRP and KDF is RKA-KDF secure, then the composition BC is
a related-key secure PRP. Note that the fact that we consider multi-user PRP
security is central in allowing us a tight reduction.

Theorem 2 (The Composition Theorem). Let BC = BC[F,KDF] be the
(κ, n)-block cipher defined above, and assume that BC makes at most t calls to F



16 Stefano Tessaro

upon each invocation. Let Φ ⊂ Fcs(κ, κ) be a class of key transformations. Then,
for all q, qF ,

AdvRKA-PRP
BC,F,Φ

(q, qF ) ≤ 2 · AdvRKA-KDF
KDF,F,Φ (q, qF + q · t) + AdvPRP

BC,F (q, qF ) .

Proof (Sketch). One uses RKA-KDF security to transition from RKA-PRP-1 to a
setting where each query (φ, x) to the block cipher is replied with an independent
key Kφ as BCKφ(x), i.e., we map every φ with an independent κ-bit key Kφ.
This is exactly PRP-1 (except that users are now identified by elements of Φ)
and results in the additive term AdvRKA-KDF

KDF (q, qF + q · t) in the bound by a
standard reduction. Similarly, one uses RKA-KDF security to transition from
RKA-PRP-0 to a setting where each query (φ, x) to the block cipher is replied
with an independent permutation Pφ, and this exactly maps to PRP-0, and

results in another additive term AdvRKA-KDF
KDF (q, qF +q ·t). The final bound follows

by the triangle inequality. ut

Note that in a similar way, if KDF and BC use different functions F and F ′, then
we can reduce AdvRKA-KDF

KDF,F,Φ (q, qF + q · t) to AdvRKA-KDF
KDF,F,Φ (q, qF ).

4.2 Efficient RKA-KDF-secure construction

This section presents an RKA-KDF-secure construction from a (small number of)
random functions with n-bit domain approaching (2n(1−ε), 2n(1−ε))-security. (As
we argue below, this can be turned into a construction from a single function
F : {0, 1}n → {0, 1} with standard tricks.) Our construction will guarantee Φ-
RKA-KDF-security for every class Φ ⊆ Fcs(κ, κ) with the following two properties
for (small) parameters γ, λ ∈ [0, 1]:

γ-collision resistance. Pr
[
K

$← {0, 1}κ : φ(K) = φ′(K)
]
≤ γ for any two dis-

tinct φ, φ′ ∈ Φ.

λ-uniformity. For any φ ∈ Φ, we have that SD(K,φ(K)) ≤ λ for K
$← {0, 1}κ,

i.e., φ(K) is λ-close to uniform for a random key K.

For example, Φ⊕ = {K 7→ K ⊕∆ : ∆ ∈ {0, 1}κ} is both 0-collision-resistant and
0-uniform.

Combinatorial hitters. Our construction makes use of the standard com-
binatorial notion of a hitter [30], which we introduce with a slightly different
parameterization than what used in the literature. Consider a family of func-
tions E = (E1, . . . ,Et) such that Ei : {0, 1}κ → {0, 1}n.

Definition 1 (Hitters). The functions E = (E1, . . . ,Et) with Ei : {0, 1}κ →
{0, 1}n are an (α, β)-hitter if for all subsets Q ⊆ {0, 1}n with |Q| ≤ β · 2n,
Pr [K ← {0, 1}κ : ∀i ∈ [t] : Ei(K) ∈ Q] ≤ α.

In our setting, we are going to have β = 2−nε (for some (small) ε > 0,
and in particular 1− β ≥ 1

2 ) and α = 2−n. There are polynomially-computable
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explicit constructions of hitters (cf. e.g. [30] for an overview) with sufficiently
good parameters for our purposes, where

κ = 2n+O(log(1/α)) = O(n) , t = O(log(1/α)) = O(n) . (5)

The full version gives further details about a concrete example of a “reasonably”
cheap construction relying on random walks on constant-degree expander graphs.
We will require our hitters to be injective, i.e., for any two inputs X and X ′,
there must exist i such that Ei(X) 6= Ei(X

′). It is easy to enforce injectivity for
any hitter by just adding O(κ/n) functions to the family.

The MT Construction. We now present our construction of an RKA-KDF-
secure function, which follows the framework of Maurer and Tessaro [45]. Let E =
(E1, . . . ,Et) be such that Ei : {0, 1}κ → {0, 1}n. Moreover, let Fi,j : {0, 1}n →
{0, 1}2κ+n for i ∈ [t] and j ∈ [r], Gj : {0, 1}n → {0, 1}` for j ∈ [r]. For simplicity,
denote F = (Fi,j)i∈[t],j∈[r] and G = (Gi)i∈[t].

The MT[E, F,G] construction operates as follow. (Here, � denotes multiplica-
tion of (2κ+n)-bit-strings interpreted as elements of the corresponding extension
field F22κ+n .)

Construction MT[F,G](K): // K ∈ {0, 1}κ

(1) For all j ∈ [r], compute

S[j]←

(
t⊙
i=1

Fi,j(Ei(K))

)
[1 . . . n] .

(2) Compute K ′ ←
⊕r

j=1Gi(S[i]) .
(3) Return K ′.

RKA-KDF security. The above construction is indifferentiable from a ran-
dom oracle [45, 22] whenever E is a so-called input-restricting function family.
While this combinatorial property would also imply RKA-KDF security, explicit
constructions of such function families require a very large t = O(nc) for a large
constant c, as discussed in [22].

Here, in contrast, we show that for RKA-KDF security it is sufficient if E
is a good hitter. The following theorem summarizes the concrete parameters of
our result. The complete proof is deferred to the full version for lack of space.
We give some intuition further below.

Theorem 3 (RKA-KDF-Security of MT). Let E be an (α, β = qF /2
n)-injective

hitter. Moreover, let Φ ⊆ Fcs(κ, κ) be a (γ, λ)-well behaved set of key transfor-
mations. Then, for all adversaries A making q queries to Eval, qF queries to the
F -functions, and qG queries to the G-functions,

AdvRKA-KDF
MT,(F,G),Φ(A) ≤ 4rt

2n
+ q(α+ λ) + q2γ + q ·

(
qG + q

2n

)r
.
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Instantiations. Let us target security for qF = q = 2n(1−ε) (e.g., ε = O(1/n)),
` = n, and additive attacks Φ = Φ⊕ with γ = λ = 0. First note that because we
want α ≈ 2−n and β = 2−εn, then we can use E with κ = O(n) and t = O(n) by
(5). Moreover, we need to ensure that 2r(1−n) · 2n(1−ε)(r+1) < 1 or alternatively
r(nε − 1) > n(1 − ε), which is true for r = r(ε) = Ω( 1−ε

ε ), and r = O(n) for
ε = O(1/n).

Therefore, the construction evaluates a linear number of functions with linear
output O(n), or alternatively, O(n2) single-bit functions {0, 1}n → {0, 1}. This
can be turned into evaluating O(n2) one single function {0, 1}n+2 logn+O(1) →
{0, 1}.7 Improving upon this appears to be a significant barrier.

The MT construction can be combined with the WSN construction above
to obtain an RKA-secure block cipher with (2n(1−ε), 2n(1−ε))-security via Theo-
rem 2 for any class Φ with small λ, γ.

Overview of the proof of Theorem 3.We explain here the basic ideas be-
hind the proof of Theorem 3.

To start with, it is convenient to first consider a toy construction, using
only t functions F = (Fi)i∈[t] with Fi ∈ Fcs(n, `), in conjunction with a hitter

E = (E1, . . . ,Et) as above. On input K ∈ {0, 1}κ, it outputs
⊕t

i=1 Fi(Ei(K)).
Also, let us only consider RKA-KDF attackers which make all qF of their F
queries beforehand, and only then query Eval on inputs φ1, . . . , φq, where the φi
functions are such that φi(K) is uniform for a uniform K.

Assume without loss of generality the uniform key K is sampled after the
F -queries have been made. Since E is an (α, β = qF /2

n)-hitter, then by the
union bound, for every k ∈ [q] there exists some i∗(k) such that Ei∗(k)(φk(K))
was not queried to Fi∗(k) in the first phase, except with probability q ·α. There-

fore, for all k ∈ [q], the value
⊕t

i=1 Fi(Ei(φk(K))) is individually uniform, even
given the transcript of the F queries, but unfortunately, this does not guar-
antee independence of these outputs. Indeed, for two k and k′, we may well
have i∗(k) = i∗(k′), and we cannot exclude that for all i 6= i∗(k) both values
Fi(Ei(φk(K))) and Fi(Ei(φk′(K))) are known as part of the F -queries made in
the first phase. Then, the output values for k and k′ are clearly correlated.

Instead, by using two rounds with functions (Fi,j)i∈[t],j∈[r] and (Gj)j∈[r]
(where Fi,j ∈ Fcs(n, n) and Gj ∈ Fcs(n, `)), we would generate values Sk[j] ←⊕t

i=1 Fi,j(Ei(φk(K))) hoping that, in addition to being individually uniform as
above, Sk[j] and Sk′ [j] are unlikely to collide for any k 6= k′.

If the final output of the construction is
⊕r

j=1Gj(Sk[j]), the above would
imply security: Indeed, with very high probability, we can show that for every
k, there is going to always exist some j∗ such that Sk[j∗] was never queried to
Gj∗ previously directly by the attacker (because of the individual uniformity of
the value) and that no other k′ 6= k is such that Sk′ [j

∗] = Sk[j∗]. (Exploiting

7 Note that we can play a bit with parameters, and given a function F : {0, 1}n →
{0, 1}, interpret it as a function {0, 1}n

′+2 log(n′) → {0, 1} for a suitable n′ only
marginally smaller than n, and obtain an instantiation of our construction with
respect to n′ still making roughly O(n2) calls to F .
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independence of the Sk[j]’s, the probability that such j∗ does not exist can be
made very small, of the order

(
qG+q
2n

)r
.)

There is a final catch. Imagine we are in the above “unfortunate” setting,
i.e., for two k and k′ and j ∈ [r], we have i∗(k) = i∗(k′), and for all i 6=
i∗(k), Fi,j(Ei(φk(K))) and Fi,j(Ei(φk′(K))) are known. Then, the fact that Sk[j]
and Sk′ [j] collided is already determined by the transcript of the F queries,
independent of Fi∗(k),j(Ei∗(k)(φk(K))). Our approach to address this problem
is to make the output of the F -values larger (roughly 2κ + n bits) and to use
multiplication. This will make sure that given that any two partial product
defined by the F queries as above will not collide (over 2κ + n bits), and thus
(by the fact that multiplication with truncation gives a universal hash function),
the final products, truncated at n bits, will also be unlikely to collide.

A Indifferentiability

We briefly review the notion of indifferentiability by Maurer et al [44] as needed
in this paper.

Let C[G] : {0, 1}m → {0, 1}` be a construction from a function G : {0, 1}a →
{0, 1}b. We say that C is indifferentiable from a random function if C[G], for G

$←
Fcs(a, b), is “as good as” a randomly chosen function F

$← Fcs(m, `) in a setting
where an adversary is given access to both C[G] and the underlying function
G. This is formalized by requiring the existence of a simulator S, accessing F ,
which mimics the behavior of G in a way that makes real and ideal worlds
indistinguishable.

Formal definition. For an adversary A and a simulator S, the indifferentia-
bility advantage is

Advindiff
C[G],G,S(A) = Pr

[
G

$← Fcs(a, b) : AC[G],G ⇒ 1
]
−

− Pr
[
F

$← Fcs(m, `) : AF,S
F

⇒ 1
]
.

Similarly, for a construction C[π] from a permutation π ∈ Perms(a), we define

Advindiff
C[π],π,S(A) = Pr

[
π

$← Perms(a) : AC[π],π,π−1

⇒ 1
]
−

− Pr
[
F

$← Fcs(m, `) : AF,S
F

⇒ 1
]
.

Note that in the latter case, the simulator S simulates both the behavior of
π and π−1 queries. We are going to call queries to the first oracle (i.e., either
C[G], C[π] or F ) construction queries, and queries to the second oracle (either
G, π, π−1, or SF ) primitive queries.

In this paper, we are going to only consider an information-theoretic version
of indifferentiability.
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Definition 2 (Indifferentiability). A construction C[Σ] (where Σ is either a
permutation or a function) is (ε, s)-indifferentiable from a random function if
there exists a simulator S such that for all adversary A making q construction
queries, and qΣ primitive queries, Advindiff

C[Σ],Σ,S(A) ≤ ε(q, qΣ), and where addi-
tionally, upon each invocation via a primitive queries, the simulator Σ makes at
most s queries. Moreover, the simulator answers each query in time polynomial
in qΣ.

We say that C[Σ] is perfectly indifferentiable if it is (0, 1)-indifferentiable.

Composition theorem. We use the following fact below, which follows from
general composition theorems [44, 21] adapted to the specific case of block ciphers
considered in this paper.

Theorem 4 (Composition theorem for block ciphers). Let BC = BC[F ] be
a (κ, n)-block cipher making at most t calls to a function F : {0, 1}m → {0, 1}`,
and let C[Σ] be a construction using a primitive Σ which is (ε, s)-indifferentiable
from a random function. Consider the (κ, n)-block cipher BC′ = BC′[Σ] =
BC[C[Σ]], i.e., calls to F are replaced by calls to C[Σ]. Then,

AdvPRP
BC′[Σ],Σ(q, qΣ) ≤ AdvPRP

BC[F ],F (q, s · qΣ) + 2 · ε(t · q, qΣ) .

B From Permutations to Functions

In this section, we revisit the security of a construction by Hall, Wagner, Kelsey,
and Schneier [32] to build a random function F : {0, 1}n → {0, 1}c from a
permutation π : {0, 1}n+c → {0, 1}n+c. In particular, here we show that their
construction achieves the stronger notion of perfect indifferentiability defined
above in Appendix A, and thus can be used to replace (in a black-box way) the
function F in the WSN construction. Note that in [32], only indistinguishability
was shown. We believe that this result is of interest beyond the scope of this
paper.

The construction. Let π : {0, 1}n+c → {0, 1}n+c be a permutation. The 2c-
query construction FC [π] : {0, 1}n → {0, 1}c proceeds as follows, on input X ∈
{0, 1}n: It outputs the c-bit value Z∗ such that π(X ‖Z∗) is the smallest element
in {π(X ‖Z) : Z ∈ {0, 1}c}, where smallest is according to lexicographic order.
(Or any other total order on strings.)

Security. The following theorem establishes security of F in terms of indiffer-
entiability.8

Theorem 5 (Indifferentiability of F). The construction Fc = Fc[π] is per-
fectly indifferentiable from a random function.

8 A previous version of this paper provided a somewhat more cumbersome yet equiva-
lent description of the simulator. The far more elegant description using π[τ, f ] was
suggested by an anonymous reviewer we wish to thank.
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Proof. We need to prove that there exists a simulator S such that Advindiff
F,π,S(A) =

0 for all adversaries A, and moreover, S simulates a permutation from Perms(n+
c), together with its inverse, and makes at most one single query to a given

function F
$← Fcs(n, c) upon each invocation.

To help with the definition of the simulator, for a function f ∈ Fcs(n, c)
and a permutation τ ∈ Perms(n + c), we define a new permutation π[τ, f ] ∈
Perms(n+ c). To this end, for every x ∈ {0, 1}n, we define

y∗x = min {τ(x ‖ z) : z ∈ {0, 1}c}

and yx = τ(x ‖ f(x)). Note that y∗x is the output of τ on input x ‖Fc[τ ](x) and
thus if f = Fc[τ ], yx = y∗x. The permutation π[τ, f ] is such that

π[τ, f ](x ‖ z) =

y∗x if τ(x ‖ z) = yx, i.e., f(x) = z
yx if τ(x ‖ z) = y∗x
τ(x ‖ z) else.

In other words, π[τ, f ] re-arranges τ to assign π[τ, f ](x ‖ f(x)) the smallest value
among τ(x ‖ z′) for z′ ∈ {0, 1}c. Clearly, given τ , π[τ, f ](x ‖ z) can be computed
with a single query to f and 2c queries to τ . Moreover, note that the inverse
π−1[τ, f ] is

π−1[τ, f ](y) =

 τ−1(yx) if y = y∗x
τ−1(y∗x) if y = yx
τ−1(y) else.

Note that the check y = y∗x and y = yx can be implemented by first computing
τ−1(y), which returns x ‖ z, and then querying τ(x ‖ z′) for all z′ 6= z, as well as
f(x). In particular, π−1[τ, f ] can also be evaluated with one query to f , given τ .

The simulator S now simply does the following when given oracle access to

f : It maintains a random permutation τ
$← Perms(n+ c) (implemented via lazy

sampling), and on a forward query x ‖ z, replies as π[τ, f ](x ‖ z), and on inverse
query y it replies as π−1[τ, f ](y). By the above, this requires one f query per
evaluation.

Therefore, to prove perfect indifferentiability, it is enough to prove that

(Fc[π], π) (for π
$← Perms(n + c)) and (f, π[τ, f ]) (for f

$← Fcs(n, c) and τ
$←

Perms(n+ c)) are identically distributed. This can be done in two steps:

1. First, note that Fc[π[τ, f ]] = f . This is because on input x, Fc outputs z
such that π[τ, f ](x ‖ z) is smallest. This must be z = f(x), because π[τ, f ] is
such that π[τ, f ](x ‖ f(x)) = y∗x, which is the smallest value among τ(x ‖ z′),
and thus also among π[τ, f ](x ‖ z′).

2. Therefore, it suffices to show that the permutation π[τ, f ] is uniformly dis-
tributed. This is because π[τ, f ] is obtained by sampling a random permuta-
tion τ , and then for all x, swapping y∗x with the output of x ‖ z for a randomly
chosen z = f(x). This gives a uniform random permutation.

This concludes the proof. ut
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C Proof of Lemma 3

For every a ∈ St,i, we now define now two subsets partitioning {0, 1}n×{0, 1}n,
i.e., the key space for round t+ 1:

WK+
a := {(w, k) : a⊕ k ∈ St,i ∧ max{a⊕ k, a} ⊕ w /∈ Q}

WK−a := {(w, k) : a⊕ k /∈ St,i ∨ max{a⊕ k, a} ⊕ w ∈ Q}

It is easy to see that∣∣WK+
a

∣∣ = Ni · (N −Q) ,
∣∣WK−a ∣∣ = N2 −Ni · (N −Q)

because for every a we have exactly |St,i| = Ni values of k such that a⊕k ∈ St,i,
and moreover, we have (for each such value k) exactly N −Q possible values of
w with max{a, a⊕ k} ⊕ w /∈ Q. Also, note that for (w, k) ∈ WK−a ,

E
[
(pt+1,i(ϕ(a))− 1/Ni)

2
∣∣∣K[t+ 1] = k,W[t+ 1] = w

]
= pt,i(a)2 ,

whereas for (w, k) ∈ WK+
a ,

E

[(
pt+1,i(ϕ(a))− 1

Ni

)2 ∣∣∣K[t+ 1] = k,W[t+ 1] = w

]
=

=

(
pt,i(a) + pt,i(a⊕ k)

2
− 1

Ni

)2

.

Putting all of this together, we obtain

E

[(
pt+1,i(ϕ(a))− 1

Ni

)2]
=

= 1
N2

∑
k,w

E

[(
pt+1,i(ϕ(a))− 1

Ni

)2 ∣∣∣K[t+ 1] = k,W[t+ 1] = w

]

=
1

N2

 ∑
(w,k)∈WK−a

(
pt,i(a)− 1

Ni

)2
+

∑
(w,k)∈WK+

a

(
pt,i(a)+pt,i(a⊕k)

2 − 1
Ni

)2
=
(

1− Ni(N−Q)
N2

)(
pt,i(a)− 1

Ni

)2
+ N−Q

N2

∑
y∈St,i

(
pt,i(a)+pt,i(y)

2 − 1
Ni

)2
,

where we have used the structure of WK+
a , and the fact that for every y ∈ St,i

there exists k such that a ⊕ k = y, and corresponding N − Q values of w. In
particular, we can expand∑

y∈St,i

(
pt,i(a)+pt,i(y)

2 − 1
Ni

)2
= 1

4

∑
y∈St,i

((
pt,i(a)− 1

Ni

)
+
(
pt,i(y)− 1

Ni

))2
= Ni

4 ·
(
pt,i(a)− 1

Ni

)2
+ 1

4∆t,i ,
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where we have used in passing the fact that
∑
y∈St,i(pt,i(a)− 1

Ni
) = 0. When we

plug this back into the above, we then get

E

[(
pt+1,i(ϕ(a))− 1

Ni

)2]
=
(

1− 3
4
Ni(N−Q)

4·N2

)(
pt,i(a)− 1

Ni

)2

+ 1
4
N−Q
N2 ∆t,i .

This concludes the proof of Lemma 3.

References

1. C. Adams, RFC 2144 - The CAST-128 Encryption Algorithm. Internet Activities
Board, May 1997.

2. E. Andreeva, A. Bogdanov, Y. Dodis, B. Mennink, and J. P. Steinberger, “On the
indifferentiability of key-alternating ciphers,” in CRYPTO 2013, Part I, vol. 8042
of LNCS, pp. 531–550, Aug. 2013.

3. M. Barbosa and P. Farshim, “The related-key analysis of Feistel constructions,” in
FSE 2014, vol. 8540 of LNCS, pp. 265–284, Mar. 2015.

4. M. Bellare and D. Cash, “Pseudorandom functions and permutations provably
secure against related-key attacks,” in CRYPTO 2010, vol. 6223 of LNCS, pp. 666–
684, Aug. 2010.

5. M. Bellare and T. Kohno, “A theoretical treatment of related-key attacks: RKA-
PRPs, RKA-PRFs, and applications,” in EUROCRYPT 2003, vol. 2656 of LNCS,
pp. 491–506, May 2003.

6. M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm for de-
signing efficient protocols,” in ACM CCS 93, pp. 62–73, Nov. 1993.

7. M. Bellare and P. Rogaway, “The security of triple encryption and a framework
for code-based game-playing proofs,” in EUROCRYPT 2006, vol. 4004 of LNCS,
pp. 409–426, May / June 2006.

8. E. Biham, “New types of cryptanalytic attacks using related keys,” Journal of
Cryptology, vol. 7, no. 4, pp. 229–246, 1994.

9. E. Biham, O. Dunkelman, and N. Keller, “A related-key rectangle attack on the
full KASUMI,” in ASIACRYPT 2005, vol. 3788 of LNCS, pp. 443–461, Dec. 2005.

10. E. Biham, O. Dunkelman, and N. Keller, “Related-key impossible differential at-
tacks on 8-round AES-192,” in CT-RSA 2006, vol. 3860 of LNCS, pp. 21–33, Feb.
2006.

11. A. Biryukov, O. Dunkelman, N. Keller, D. Khovratovich, and A. Shamir, “Key re-
covery attacks of practical complexity on AES-256 variants with up to 10 rounds,”
in EUROCRYPT 2010, vol. 6110 of LNCS, pp. 299–319, May 2010.

12. A. Biryukov and D. Khovratovich, “Related-key cryptanalysis of the full AES-192
and AES-256,” in ASIACRYPT 2009, vol. 5912 of LNCS, pp. 1–18, Dec. 2009.

13. A. Biryukov, D. Khovratovich, and I. Nikolic, “Distinguisher and related-key attack
on the full AES-256,” in CRYPTO 2009, vol. 5677 of LNCS, pp. 231–249, Aug.
2009.

14. A. Bogdanov, L. R. Knudsen, G. Leander, F.-X. Standaert, J. P. Steinberger,
and E. Tischhauser, “Key-alternating ciphers in a provable setting: Encryption
using a small number of public permutations - (extended abstract),” in EURO-
CRYPT 2012, vol. 7237 of LNCS, pp. 45–62, Apr. 2012.

15. S. Chen, R. Lampe, J. Lee, Y. Seurin, and J. P. Steinberger, “Minimizing the
two-round Even-Mansour cipher,” in CRYPTO 2014, Part I, vol. 8616 of LNCS,
pp. 39–56, Aug. 2014.



24 Stefano Tessaro

16. S. Chen and J. P. Steinberger, “Tight security bounds for key-alternating ciphers,”
in EUROCRYPT 2014, vol. 8441 of LNCS, pp. 327–350, May 2014.

17. B. Cogliati, R. Lampe, and Y. Seurin, “Tweaking Even-Mansour ciphers,” in
CRYPTO 2015, Part I, LNCS, pp. 189–208, Aug. 2015.

18. B. Cogliati, J. Patarin, and Y. Seurin, “Security amplification for the composition
of block ciphers: Simpler proofs and new results,” in SAC 2014, vol. 8781 of LNCS,
pp. 129–146, Aug. 2014.

19. B. Cogliati and Y. Seurin, “On the provable security of the iterated Even-Mansour
cipher against related-key and chosen-key attacks,” in EUROCRYPT 2015, Part
I, vol. 9056 of LNCS, pp. 584–613, Apr. 2015.

20. J.-S. Coron, J. Patarin, and Y. Seurin, “The random oracle model and the ideal
cipher model are equivalent,” in CRYPTO 2008, vol. 5157 of LNCS, pp. 1–20, Aug.
2008.

21. Y. Dodis, T. Ristenpart, and T. Shrimpton, “Salvaging Merkle-Damg̊ard for prac-
tical applications,” in EUROCRYPT 2009, vol. 5479 of LNCS, pp. 371–388, Apr.
2009.

22. Y. Dodis and J. P. Steinberger, “Domain extension for MACs beyond the birthday
barrier,” in EUROCRYPT 2011, vol. 6632 of LNCS, pp. 323–342, May 2011.

23. O. Dunkelman, N. Keller, and A. Shamir, “Minimalism in cryptography: The Even-
Mansour scheme revisited,” in EUROCRYPT 2012, vol. 7237 of LNCS, pp. 336–
354, Apr. 2012.

24. S. Dziembowski, K. Pietrzak, and D. Wichs, “Non-malleable codes,” in ICS 2010,
pp. 434–452, Jan. 2010.

25. S. Even and Y. Mansour, “A construction of a cipher from a single pseudorandom
permutation,” Journal of Cryptology, vol. 10, no. 3, pp. 151–162, 1997.

26. P. Farshim and G. Procter, “The related-key security of iterated even-mansour
ciphers,” in FSE 2015, LNCS, 2015.

27. S. Faust, P. Mukherjee, D. Venturi, and D. Wichs, “Efficient non-malleable
codes and key-derivation for poly-size tampering circuits,” in EUROCRYPT 2014,
vol. 8441 of LNCS, pp. 111–128, May 2014.
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