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Abstract. Quasi-adaptive non-interactive zero-knowledge (QA-NIZK)
proofs is a recent paradigm, suggested by Jutla and Roy (Asiacrypt ’13),
which is motivated by the Groth-Sahai seminal techniques for efficient
non-interactive zero-knowledge (NIZK) proofs. In this paradigm, the
common reference string may depend on specific language parameters, a
fact that allows much shorter proofs in important cases. It even makes
certain standard model applications competitive with the Fiat-Shamir
heuristic in the Random Oracle idealization. Such QA-NIZK proofs were
recently optimized to constant size by Jutla and Roy (Crypto ’14) and
Libert et al. (Eurocrypt ’14) for the important case of proving that
a vector of group elements belongs to a linear subspace. While the
QA-NIZK arguments of Libert et al. provide unbounded simulation-
soundness and constant proof length, their simulation-soundness is only
loosely related to the underlying assumption (with a gap proportional
to the number of adversarial queries) and it is unknown how to alleviate
this limitation without sacrificing efficiency. In this paper, we deal with
the question of whether we can simultaneously optimize the proof size
and the tightness of security reductions, allowing for important appli-
cations with tight security (which are typically quite lengthy) to be of
shorter size. We resolve this question by designing a novel simulation-
sound QA-NIZK argument showing that a vector v ∈ Gn belongs to a
subspace of rank t < n using a constant number of group elements. Un-
like previous short QA-NIZK proofs of such statements, the unbounded
simulation-soundness of our system is nearly tightly related (i.e., the re-
duction only loses a factor proportional to the security parameter) to
the standard Decision Linear assumption. To show simulation-soundness
in the constrained context of tight reductions, we explicitly point at a
technique —which may be of independent interest— of hiding the linear
span of a vector defined by a signature (which is part of an OR proof).
As an application, we design a public-key cryptosystem with almost tight
CCA2-security in the multi-challenge, multi-user setting with improved
length (asymptotically optimal for long messages). We also adapt our
scheme to provide CCA security in the key-dependent message scenario



(KDM-CCA2) with ciphertext length reduced by 75% when compared
to the best known tightly secure KDM-CCA2 system so far.

Keywords: Security tightness, constant-size QA-NIZK proofs, simula-
tion soundness, CCA2 security.

1 Introduction

In this paper, we consider the problem of achieving (almost) tight security
in short simulation-sound non-interactive zero-knowledge proofs and chosen-
ciphertext-secure encryption. While tight security results are known in both
cases [36,39], they incur quite long proofs and ciphertexts. A natural question is
to develop tools and techniques to make them short and, in the process, develop
deeper understanding of this highly constrained setting. As an answer in this di-
rection, we describe space-efficient methods and constructions with almost tight
security. For the specific problem of proving that a vector of group elements
belongs to a linear subspace, our main result is the first constant-size NIZK ar-
guments whose simulation-soundness tightly relates to a standard assumption.

Tight and Almost Tight Security. Any public-key system must rely on
some hardness assumption. To provide concrete guarantees, the security proof
should preferably give a tight reduction from a well-established assumption.
Namely, a successful adversary should imply a probabilistic polynomial time
(PPT) algorithm breaking the assumption with nearly the same advantage.
Tightness matters because the loss in the reduction may necessitate the use of a
larger (at times prohibitively larger) security parameter to counteract the loss.
The importance of tightness was first advocated by Bellare and Rogaway [10] in
the context of digital signatures 18 years ago. Since then, it received a continu-
ous attention with a flurry of positive and negative results in the random oracle
model [25,26,47,24,11,59,2,45] and in the standard model [59,40,14,6,41].

A highly challenging problem has been to obtain tight security under stan-
dard assumptions in the standard model. For many primitives, satisfactory solu-
tions have remained elusive until very recently. Bellare, Boldyreva and Micali [7]
raised the problem of constructing a chosen-ciphertext-secure public-key cryp-
tosystem based on a standard assumption and whose exact security does not
degrade with the number of users or the number of challenge ciphertexts. The
first answer to this question was only given more than a decade later by Hofheinz
and Jager [39] and it was more a feasibility result than a practical solution. In
the context of identity-based encryption (IBE), Chen and Wee [23] designed the
first “almost tightly” secure system —meaning that the degradation factor only
depends on the security parameter λ, and not on the number q of adversarial
queries— based on a simple assumption in the standard model,5 which resolved
an 8-year-old open problem [61].

5 Using random oracles, Katz and Wang [47] previously gave a tightly secure variant
of the Boneh-Franklin IBE [17].



NIZK Proofs and Simulation-Soundness. Non-interactive zero-knowledge
proofs [15] are crucial tools used in the design of countless cryptographic proto-
cols. In the standard model, truly efficient constructions remained lacking until
the last decade, when Groth and Sahai [37] gave nearly practical non-interactive
witness indistinguishable (NIWI) and zero-knowledge (NIZK) proof systems for
a wide class of languages in groups endowed with a bilinear map. While quite
powerful, their methods remain significantly more costly than the non-interactive
proof heuristics enabled by the Fiat-Shamir paradigm [30] in the idealized ran-
dom oracle model [9]. recently, Jutla and Roy [43] showed that important effi-
ciency improvements are possible for quasi-adaptive NIZK (QA-NIZK) proofs,
i.e., where the common reference string (CRS) may depend on the specific lan-
guage for which proofs are being generated but a single CRS simulator works
for the entire class of languages. For the specific task of proving that a vector of
n group elements belongs to a linear subspace of rank t, Jutla and Roy [43] gave
computationally sound QA-NIZK proofs of length Θ(n − t) where the Groth-
Sahai (GS) techniques entail Θ(n + t) group elements per proof. They subse-
quently refined their techniques, reducing the proof’s length to a constant [44],
regardless of the number of equations or the number of variables. Libert et al. [50]
independently obtained similar improvements using different techniques. Other
constructions were recently given by Abdalla et al. [1] and Kiltz and Wee [48]
who gave a general methodology for building short QA-NIZK arguments.

The design of non-malleable protocols, primarily IND-CCA2-secure encryp-
tion schemes, at times appeals to NIZK proofs endowed with a property named
simulation-soundness by Sahai [58]: informally, an adversary should remain un-
able to prove a false statement by itself, even with the help of an oracle gen-
erating simulated proofs for (possibly false) adversarially-chosen statements.
Groth [36] and Camenisch et al. [19] extended the Groth-Sahai techniques so
as to obtain simulation-sound NIZK proofs. Their techniques incur a substantial
overhead due to the use of quadratic pairing product equations, OR proofs or
IND-CCA2-secure encryption schemes. It was shown [46,52,42] that one-time
simulation-soundness —where the adversary obtains only one simulated proof—
is much cheaper to achieve than unbounded simulation-soundness (USS). When
it comes to proving membership of linear subspaces, Libert, Peters, Joye and
Yung [50] gave very efficient unbounded simulation-sound quasi-adaptive NIZK
proofs which do not require quadratic pairing product equations or IND-CCA2-
secure encryption. As in the improved solution of Kiltz and Wee [48], their USS
QA-NIZK arguments have constant size, regardless of the dimensions of the con-
sidered subspace. Unfortunately, the simulation-soundness of their proof system
does not tightly reduce to the underlying assumption. The multiplicative gap
between the reduction’s probability of success and the adversary’s advantage
depends on the number q of simulated proofs observed by the adversary. As a
consequence, the results of [50,48] do not imply tight chosen-ciphertext secu-
rity [39] in a scenario —first envisioned by Bellare, Boldyreva and Micali [7]—
where the adversary obtains polynomially many challenge ciphertexts. As of
now, USS proof systems based on OR proofs [36,39] are the only ones to enable



tight multi-challenge security and it is unclear how to render them as efficient
as [50] for linear equations.

Tightness and Chosen-Ciphertext Security. Bellare, Boldyreva and Mi-
cali [7] showed that, if a public-key cryptosystem is secure in the sense of the
one-user, one-challenge security definition [57], it remains secure in a more realis-
tic multi-user setting where the adversary obtains polynomially many challenge
ciphertexts. Their reduction involves a loss of exact security which is propor-
tional to the number of users and the number of challenge ciphertexts. They
also showed that, in the Cramer-Shoup encryption scheme [28], the degradation
factor only depends on the number of challenges per user. Hofheinz and Jager [39]
used a tightly secure simulation-sound proof system to build the first encryp-
tion system whose IND-CCA2 security tightly reduces to a standard assumption
in the multi-user, multi-challenge setting. Due to very large ciphertexts, their
scheme was mostly a feasibility result and the same holds for the improved
constructions of Abe et al. [5]. Until recently, the only known CCA2-secure en-
cryption schemes with tight security in the multi-challenge, multi-user setting
either relied on non-standard q-type assumptions [38] —where the number of
input elements depends on the number of adversarial queries— or incurred long
ciphertexts [39,5] comprised of hundreds of group elements (or both). One of
the reasons is that solutions based on standard assumptions [39,5,51] build on
simulation-sound proof systems relying on OR proofs. Libert et al. [51] gave an
almost tightly IND-CCA2 system in the multi-challenge setting where, despite
their use of OR proofs, ciphertexts only require 69 group elements under the
Decision Linear assumption. Unfortunately, their result falls short of implying
constant-size simulation-sound QA-NIZK proofs of linear subspace membership
since each vector coordinate would require its own proof elements. In particular,
the technique of [51] would result in long proofs made of O(λ) group elements in
the setting of key-dependent message CCA2 security, where O(1) group elements
per proof suffices [44, Section 6] if we accept a loose reduction.

Very recently, Hofheinz et al. [41] put forth an almost tightly secure IBE
scheme in the multi-challenge, multi-instance scenario. While their result implies
an almost tightly CCA2 secure public-key encryption scheme via the Canetti-
Halevi-Katz paradigm [21], it relies on composite order groups. In [41], it was left
as an open problem to apply the same technique under standard assumptions in
the (notoriously much more efficient) prime order setting.

Our Contributions. As a core technical innovation, this paper presents short
QA-NIZK proofs of linear subspace membership (motivated by those in [50,44])
where the unbounded simulation-soundness property can be almost tightly —in
the terminology of Chen and Wee [23]— related to the standard Decision Linear
(DLIN) assumption [16]. As in [23], the loss of concrete security only depends on
the security parameter, and not on the number of simulated proofs obtained by
the adversary, which solves a problem left open in [50]. Our construction only
lengthens the QA-NIZK proofs of Libert et al. [50] by a factor of 2 and thus
retains the constant proof length of [50], independently of the dimensions of



the subspace. In particular, it does not rely on an IND-CCA2-secure encryption
scheme —which, in this context, would require a tightly secure CCA2 cryptosys-
tem to begin with— and it does not even require quadratic equations.

Building on our QA-NIZK proofs and the Naor-Yung paradigm [56], we ob-
tain a new public-key encryption scheme which is proved IND-CCA2-secure in
the multi-challenge, multi-user setting under the Decision Linear assumption
via an almost tight reduction. While the reduction is slightly looser than those
of [39,5], our security bound does not depend on the number of users or the
number of challenges, so that our scheme is as secure in the multi-challenge,
multi-user scenario as in the single-challenge, single-user setting. Like [39,5], our
construction features publicly recognizable well-formed ciphertexts, which makes
it suitable for non-interactive threshold decryption. Moreover, our ciphertexts
are much shorter than those of [39,5] as they only consist of 48 group elements
under the DLIN assumption, whereas the most efficient construction based on
the same assumption [51] entails 69 group elements per ciphertext.

Our constant-size proofs offer more dramatic savings when it comes to en-
crypting long messages without affecting the compatibility with zero-knowledge
proofs. We can encrypt N group elements at once while retaining short proofs,
which only takes 2N+46 group elements per ciphertext. The asymptotic expan-
sion ratio of 2 —which is inherent to the Naor-Yung technique— is thus optimal.
To our knowledge, all prior results on tight CCA2 security would incur Θ(N) el-
ements per proof and thus a higher expansion rate in this situation. In turn, our
encryption schemes imply tightly secure non-interactive universally composable
(UC) commitments [27,20] with adaptive security in the erasure model. In par-
ticular, using the same design principle as previous UC commitments [53,31,43]
based on CCA2-secure cryptosystems, our scheme for long messages allows com-
mitting to N group elements at once with a two-fold expansion rate.

Using our QA-NIZK proof system, we also construct an almost tightly se-
cure encryption scheme with key-dependent message chosen-ciphertext security
(KDM-CCA2) [12,18] —in the sense of [19]— with shorter ciphertexts. Analo-
gously to the Jutla-Roy construction [44, Section 6], our system offers substantial
savings w.r.t. [19] as it allows for constant-size proofs even though, due to the use
of the Boneh et al. approach [18] to KDM security, the dimension of underlying
vectors of group elements depends on the security parameter. Like the Jutla-
Roy construction [44], our KDM-CCA2 system only lengthens the ciphertexts of
its underlying KDM-CPA counterpart by a constant number of group elements.
Unlike [44], however, the KDM-CCA2 security of our scheme is almost tightly
related to the DLIN assumption. So far, the most efficient tightly KDM-CCA2
system was implied by the results of Hofheinz-Jager [39] and Abe et al. [5], which
incur rather long proofs. Our QA-NIZK proofs yield ciphertexts that are about
75% shorter, as we show in the full version of the paper.

Our Techniques. Our QA-NIZK arguments (as the construction in [50]) build
on linearly homomorphic structure-preserving signatures (LHSPS) [49]. In [50],
each proof of subspace membership is a Groth-Sahai NIWI proof of knowledge
of a homomorphic signature on the vector v whose membership is being proved.



The security analysis relies on the fact that, with some probability, all simulated
proofs take place on a perfectly NIWI Groth-Sahai CRS while the adversary’s
fake proof pertains to a perfectly binding CRS. Here, in order to do this without
applying Waters’ partitioning method [61] to the CRS space as in [54], we let
the prover generate a Groth-Sahai CRS F = (f1,f2,F ) of its choice (a similar
technique was used by Escala and Groth [29] in a different context), for vectors of
group elements f1,f2,F ∈ G3, and first prove that this CRS is perfectly binding
(i.e., F lives in span〈f1,f2〉). This seemingly additional “freedom” that we give
the prover ends up allowing a stronger simulator (tight simulation-soundness).

Simulation-soundness is, in fact, obtained by having the prover demonstrate
that either: (i) The prover’s CRS F is perfectly binding; or (ii) The prover knows
a signature which only the NIZK simulator would be able to compute using some
simulation trapdoor. One key idea is that, since the latter OR proof involves a
relatively short statement (namely, the membership of a two-dimensional sub-
space) which the adversary has no control on, it can be generated using a con-
stant number of group elements and using only linear pairing product equations.

In order to efficiently prove the above OR statement, we leverage the alge-
braic properties of a variant of the Chen-Wee signature scheme [23], which was
proved almost tightly secure under the DLIN assumption, recently proposed by
Libert et al. [51]. In short, the real prover computes a pseudo-signature σ (with-
out knowing the signing key) on the verification key of a one-time signature and
uses the real witnesses to prove that F is a perfectly binding CRS. In contrast,
the simulator computes a real signature σ using the private key instead of the real
witnesses. In order to make sure that simulated proofs will be indistinguishable
from real proofs, we apply a technique —implicitly used in [51]— consisting of
hiding the linear subspace from where a partially committed vector of group el-
ements defined by the signature σ is chosen: while a pseudo-signature fits within
a proper subspace of a linear space specified by the public key, real signatures
live in the full linear space. A difference between our approach and the one of
[51] is our non-modular and more involved use of the signature scheme, yet the
technique we point at above may be useful elsewhere. Our QA-NIZK CRS ac-
tually contains the description of a linear subspace which mixes the public key
components of the signature and vectors used to build the prover’s Groth-Sahai
CRS F. In order to implement the OR proof, our idea is to make sure that the
only way to prove a non-perfectly-binding CRS F is to compute the commit-
ted σ as a real signature for a legally modified public key. By “legally modified
key,” we mean that some of its underlying private components may be scaled
by an adversarially-chosen factor x ∈ Zp as long as the adversary also outputs
gx. While we rely on an unusual security property of the signature which allows
the adversary to tamper with the public key, this property can be proved under
the standard DLIN assumption in the scheme of [51]. This unusual property is
a crucial technique allowing us to prove the OR statement about the ephemeral
CRS F without using quadratic equations.

In turn, the simulation-soundness relies on the fact that, unless some security
property of the signature of [51] is broken, the adversary still has to generate



its fake proof on a perfectly binding CRS. If this condition is satisfied, we can
employ the arguments as in [50] to show that the reduction is able to extract a
non-trivial homomorphic signature, thus breaking the DLIN assumption.

Full Version. The full version of this paper is available as Cryptology ePrint
Archive, Report 2015/242 at URL http://eprint.iacr.org/2015/242.

2 Background and Definitions

2.1 Hardness Assumptions

We consider groups (G,GT ) of prime-order p endowed with a bilinear map e :
G×G→ GT . In this setting, we rely on the standard Decision Linear assumption.

Definition 1 ([16]). The Decision Linear Problem (DLIN) in G, is to distin-
guish the distributions (ga, gb, gac, gbd, gc+d) and (ga, gb, gac, gbd, gz), with a, b, c,

d
R← Zp, z

R← Zp. The DLIN assumption asserts the intractability of DLIN for
any PPT distinguisher.

We also use the following problem, which is at least as hard as DLIN [22].

Definition 2. The Simultaneous Double Pairing problem (SDP) in (G,GT ) is,
given group elements (gz, gr, hz, hu) ∈ G4, to find a non-trivial triple (z, r, u) ∈
G3\{(1G, 1G, 1G)} such that e(z, gz) · e(r, gr) = 1GT and e(z, hz) · e(u, hu) = 1GT .

2.2 Quasi-Adaptive NIZK Proofs and Simulation-Soundness

Quasi-Adaptive NIZK (QA-NIZK) proofs are NIZK proofs where the CRS is
allowed to depend on the specific language for which proofs have to be generated.
The CRS is divided into a fixed part Γ , produced by an algorithm K0, and a
language-dependent part ψ. However, there should be a single simulator for the
entire class of languages.

Let λ be a security parameter. For public parameters Γ ← K0(λ), let DΓ be
a probability distribution over a collection of relations R = {Rρ} parametrized
by a string ρ with an associated language Lρ = {x | ∃w : Rρ(x,w) = 1}.

We consider proof systems where the prover and the verifier both take a label
lbl as additional input. For example, this label can be the message-carrying part
of an ElGamal-like encryption. Formally, a tuple of algorithms (K0,K1,P,V) is a
QA-NIZK proof system for R if there exists a PPT simulator (S1,S2) such that,
for any PPT adversaries A1,A2 and A3, we have the following properties:

Quasi-Adaptive Completeness:

Pr[Γ ← K0(λ); ρ← DΓ ; ψ ← K1(Γ, ρ);

(x,w, lbl)← A1(Γ, ψ, ρ); π ← P(ψ, x,w, lbl) :

V(ψ, x, π, lbl) = 1 if Rρ(x,w) = 1] = 1 .

http://eprint.iacr.org/2015/242


Quasi-Adaptive Soundness:

Pr[Γ ← K0(λ); ρ← DΓ ; ψ ← K1(Γ, ρ); (x, π, lbl)← A2(Γ, ψ, ρ) :

V(ψ, x, π, lbl) = 1 ∧ ¬(∃w : Rρ(x,w) = 1)] ∈ negl(λ) .

Quasi-Adaptive Zero-Knowledge:

Pr[Γ ← K0(λ); ρ← DΓ ; ψ ← K1(Γ, ρ) : AP(ψ,.,.)
3 (Γ, ψ, ρ) = 1]

≈ Pr[Γ ← K0(λ); ρ← DΓ ; (ψ, τsim)← S1(Γ, ρ) :

AS(ψ,τsim,.,.,.)
3 (Γ, ψ, ρ) = 1] ,

where
– P(ψ, ., ., .) emulates the actual prover. It takes as input (x,w) and lbl and

outputs a proof π if (x,w) ∈ Rρ. Otherwise, it outputs ⊥.
– S(ψ, τsim, ., ., .) is an oracle that takes as input (x,w) and lbl. It outputs

a simulated proof S2(ψ, τsim, x, lbl) if (x,w) ∈ Rρ and ⊥ if (x,w) 6∈ Rρ.

We assume that the CRS ψ contains an encoding of ρ, which is thus available
to V. The definition of Quasi-Adaptive Zero-Knowledge requires a single simu-
lator for the entire family of relations R.

The property called simulation-soundness [58] requires that the adversary
remain unable to prove false statements even after having seen simulated proofs
for potentially false statements. We consider the strongest form, called unbounded
simulation-soundness (USS) as opposed to one-time simulation-soundness, where
the adversary is allowed to see polynomially many simulated proofs.

In order to use QA-NIZK proofs in a modular manner without degrading the
exact security of our constructions, we will require simulation-soundness to hold
even if the adversary A4 has a trapdoor τm that allows deciding membership
in the language Lρ. We thus assume that the algorithm DΓ outputs a language
parameter ρ and a trapdoor τm that allows recognizing elements of Lρ. This
trapdoor τm is revealed to A4 and should not help prove false statements.

Enhanced Unbounded Simulation-Soundness: For any PPT adversaryA4,

Pr[Γ ← K0(λ); (ρ, τm)← DΓ ; (ψ, τsim)← S1(Γ, ρ);

(x, π, lbl)← AS2(ψ,τsim,.,.)
4 (Γ, ψ, ρ, τm) :

V(ψ, x, π, lbl) = 1 ∧ ¬(∃w : Rρ(x,w) = 1) ∧ (x, π, lbl) 6∈ Q] ∈ negl(λ) ,

where the adversary is allowed unbounded access to an oracle S2(ψ, τ, ., .)
that takes as input statement-label pairs (x, lbl) (where x may be outside
Lρ) and outputs simulated proofs π ← S2(ψ, τsim, x, lbl) before updating the
set Q = Q ∪ {(x, π, lbl)}, which is initially empty.

The standard notion of soundness can be enhanced in a similar way, by handing
the membership testing trapdoor τm to A2. In the weaker notion of one-time
simulation-soundness, only one query to the S2 oracle is allowed.

In order to achieve tight security in the multi-user setting, we also consider
a notion of unbounded simulation-soundness in the multi-CRS setting. Namely,



the adversary is given a set of µ reference strings {ψκ}µκ=1 for language param-
eters {ρκ}µκ=1 and should remain unable to break the soundness of one these
after having seen multiple simulated proofs for each CRS ψκ. A standard ar-
gument shows that (enhanced) unbounded simulation-soundness in the multi
CRS setting is implied by the same notion in the single CRS setting. However,
the reduction is far from being tight as it loses a factor µ. In our construction,
the random self-reducibility of the underlying hard problems fortunately allows
avoiding this security loss in a simple and natural way.

Enhanced Unbounded Simulation-Soundness in the multi-CRS set-
ting: For any PPT adversary A4, we have

Pr[Γ ← K0(λ); {ρκ, τm,κ}µκ=1 ← DΓ ; ({ψκ, τsim,κ}µκ=1)← S1(Γ, {ρκ}µκ=1);

(κ?, x, π, lbl)← AS2({ψκ}µκ=1,{τsim,κ}
µ
κ=1,.,.,.)

4 (Γ, {ψκ, ρκ, τm,κ}µκ=1) :

V(ψκ? , x, π, lbl) = 1 ∧ ¬(∃w : Rρκ? (x,w) = 1) ∧ (κ?, x, π, lbl) 6∈ Q] ∈ negl(λ) .

Here, A4 has access to an oracle S2({ψκ}µκ=1, {τsim,κ}
µ
κ=1, ., ., .) that takes as

input tuples (j, x, lbl) (where x may be outside Lρj ) and outputs simulated
proofs π ← S2({ψκ}µκ=1, {τsim,κ}

µ
κ=1, j, x, lbl) for Lρj before updating the set

Q = Q ∪ {(j, x, π, lbl)}, which is initially empty.

The standard notion of soundness extends to the multi-CRS setting in a similar
way and it can be enhanced by giving {ψκ}µκ=1 and the membership trapdoors
{τm,κ}µκ=1 to the adversary. The definition of quasi-adaptive zero-knowledge
readily extends as well, by having S1 output {ψκ, τsim,κ}µκ=1 while the oracle
S and the simulator S2 both take an additional index j ∈ {1, . . . , µ} as input.

2.3 Linearly Homomorphic Structure-Preserving Signatures

Structure-preserving signatures [4,3] are signature schemes where messages and
public keys consist of elements in the group G of a bilinear configuration (G,GT ).

Libert et al. [49] considered structure-preserving with linear homomorphic
properties (see the full version of the paper for formal definitions). This sec-
tion reviews the one-time linearly homomorphic structure-preserving signature
(LHSPS) of [49].

Keygen(λ, n): given a security parameter λ and the subspace dimension n ∈
N, choose bilinear group (G,GT ) of prime order p > 2λ. Then, choose

gz, gr, hz, hu
R← G. For i = 1 to n, choose χi, γi, δi

R← Zp and compute

gi = gz
χigr

γi , hi = hz
χihu

δi . The private key is sk = {(χi, γi, δi)}ni=1 and
the public key is pk =

(
gz, gr, hz, hu, {(gi, hi)}ni=1

)
∈ G2n+4.

Sign(sk, (M1, . . . ,Mn)): to sign a vector (M1, . . . ,Mn) ∈ Gn using sk =
{(χi, γi, δi)}ni=1, output σ = (z, r, u) =

(∏n
i=1M

−χi
i ,

∏n
i=1,M

−γi
i ,

∏n
i=1M

−δi
i

)
.

SignDerive(pk, {(ωi, σ
(i))}`i=1): given pk as well as ` tuples (ωi, σ

(i)), parse
σ(i) as σ(i) =

(
zi, ri, ui

)
for i = 1 to `. Return the triple σ = (z, r, u) ∈ G3,

where z =
∏`
i=1 z

ωi
i , r =

∏`
i=1 r

ωi
i , u =

∏`
i=1 u

ωi
i .



Verify(pk, σ, (M1, . . . ,Mn)): given σ = (z, r, u) ∈ G3 and (M1, . . . ,Mn), re-
turn 1 if and only if (M1, . . . ,Mn) 6= (1G, . . . , 1G) and (z, r, u) satisfy

1GT = e(gz, z) ·e(gr, r) ·
n∏
i=1

e(gi,Mi) = e(hz, z) ·e(hu, u) ·
n∏
i=1

e(hi,Mi) . (1)

Our simulation-sound proof system will rely on the fact that the above scheme
provides tight security under the DLIN assumption, as implicitly shown in [49].

3 Constant-Size QA-NIZK Proofs of Linear Subspace
Membership with Tight Simulation-Soundness

At a high level, our proof system can be seen as a variant of the construction
of Libert et al. [50] with several modifications allowing to tightly relate the
simulation-soundness property to the DLIN assumption. The construction also
uses the tightly signature scheme of [51].

3.1 Intuition

Like [50], we combine linearly homomorphic signatures and Groth-Sahai proofs
for pairing product equations. Each QA-NIZK proof consists of a Groth-Sahai
NIWI proof of knowledge of a homomorphic signature on the candidate vec-
tor6 v. By making sure that all simulated proofs take place on a perfectly WI
CRS, the simulator is guaranteed to leak little information about its simulation
trapdoor, which is the private key of the homomorphic signature. At the same
time, if the adversary’s proof involves a perfectly binding CRS, the reduction
can extract a homomorphic signature that it would have been unable to compute
and solve a DLIN instance. To implement this approach, the system of [50] uses
Waters’ partitioning technique [61] in the fashion of [54], which inevitably [40]
affects the concrete security by a factor proportional to the number q of queries.

Our first main modification is that we let the prover compute the Groth-
Sahai NIWI proof on a CRS F of his own and append a proof πF that the
chosen CRS is perfectly binding, which amounts to proving the membership of
a two-dimensional linear subspace span〈f1,f2〉. At first, it appears that πF has
to be simulation-sound itself since, in all simulated proofs, the reduction must
trick the adversary into believing that the ephemeral CRS F is perfectly sound.
Fortunately, the reduction only needs to do this for vectors of its choice —rather
than adversarially chosen vectors— and this scenario can be accommodated by
appropriately mixing the subspace of Groth-Sahai vectors f1,f2 ∈ G3 with the

6 At first, tight simulation-soundness may seem achievable via an OR proof showing
the knowledge of either a homomorphic signature on v or a digital signature on
the verification key of a one-time signature. However, proving that a disjunction of
pairing product equations [36] is satisfiable requires a proof length proportional to
the number of pairings (which is linear in the dimension n here) in pairing product
equations.



one in the public key of the signature scheme of [51].
The NIWI proof of knowledge is thus generated for a Groth-Sahai CRS

F = (f1,f2,F ) where f1 and f2 are part of the global CRS but F ∈ G3 is chosen
by the prover and included in the proof. To prove that F is a perfectly sound CRS,
honest provers derive a homomorphic signature (Z,R,U) from the first 4L + 2
rows of a matrix M ∈ G(4L+5)×(4L+6) defined by the public key of the signature
scheme and fixed vectors f1,f2,f0 ∈ G3. The first two rows allow deriving a
signature on the honestly generated F = fµ1

1 ·f
µ2

2 from publicly available homo-
morphic signatures on f1 and f2. The next 4L rows are used to demonstrate the
validity of a pseudo-signature (σ1, σ2, σ3) = (H(V ,VK)r · H(W ,VK)s, fr, hs)
on the verification key VK of a one-time signature. This allows the prover to
derive a homomorphic signature (Z,R,U) that authenticates a specific vector
σ ∈ G(4L+6) determined by F and the pseudo-signature (σ1, σ2, σ3).

The proof of simulation-soundness uses a strategy where, with high probabil-
ity, all simulated proofs will take place on a perfectly NIWI CRS F = (f1,f2,F )
—where F ∈ G3 is linearly independent of (f1,f2)— whereas the adversary’s
fake proof π? will contain a vector F ? ∈ G3 such that F = (f1,f2,F

?) is an
extractable CRS (namely, F ? ∈ span〈f1,f2〉). In order to satisfy the above con-
ditions, the key idea is to have each QA-NIZK proof demonstrate that either:
(i) The vector F contained in π satisfies F ∈ span〈f1,f2〉; (ii) (σ1, σ2, σ3) is a
real signature rather than a pseudo-signature. Since F ∈ G3 is chosen by the
simulator, we can prove this compound statement without resorting to quadratic
equations, by appropriately mixing linear subspaces. In more details, using a per-
fectly NIWI CRS in all simulated proofs requires the reduction to introduce a
dependency on the fixed f0 ∈ G3 in the vector F which is included in the
proof π. In turn, in order to obtain a valid homomorphic signature on the vec-
tor σ ∈ G(4L+6) determined by F and (σ1, σ2, σ3), this forces the simulator to
use the last row of the matrix M which contains the vector f0 ∈ G3 and the
public key components Ω1, Ω2 of the signature scheme in [51]. To satisfy the
verification algorithm, the vector σ must contain 1G in the coordinates where
Ω1, Ω2 are located in the last row of M. In order to retain these 1G’s at these
places, the simulator must use two other rows of M to cancel out the intro-
duction of Ω1, Ω2 in σ. Applying such a “correction” implies the capability of
replacing the pseudo-signature (σ1, σ2, σ3, Z,R, U) by a pair (σ,X = gx), where
σ = (σ1, σ2, σ3, Z,R, U) is a real signature for a possibly modified key.

In order to obtain a perfectly NIZK proof system, we need to uncondition-
ally hide the actual subspace where σ ∈ G(4L+6) lives as well as the fact that
(σ1, σ2, σ3) is a real signature in simulated proofs. To this end, we refrain from let-
ting (σ1, Z,R, U) appear in the clear and replace them by perfectly hiding com-
mitments Cσ1

,CZ ,CR,CU to the same values and a NIWI proof that (Z,R,U)
is a valid homomorphic signature on the partially committed vector σ. Using
our technique, we only need to prove linear pairing product equations.

In a construction of nearly tightly CCA2-secure cryptosystem, Libert et
al. [51] used a somewhat similar approach based on pseudo-signatures and con-
sisting of hiding the subspace where a partially committed vector is chosen.



However, besides falling short of providing constant-size QA-NIZK proofs of
subspace membership, the approach of [51] requires quadratic equations. In con-
trast, while we also relying on pseudo-signatures, our technique for compactly
hiding the underlying linear span completely avoids quadratic equations. It fur-
ther yields simulation-sound QA-NIZK arguments that is constant size fitting
within 42 group elements, regardless of the dimensions of the subspace.

3.2 Construction

For simplicity, the description below assumes symmetric pairings e : G×G→ GT
but instantiations in asymmetric pairings e : G × Ĝ → GT , with G 6= Ĝ, are
possible, as explained in the full version of the paper.

As in [43], we assume that the language parameter ρ is a matrix in Gt×n, for
some integers t, n ∈ poly(λ) such that t < n, with an underlying witness relation
Rpar such that, for any A ∈ Zt×np and ρ ∈ Gt×n, Rpar(A,ρ) = 1 if and only

if ρ = gA. We consider distributions DΓ ⊂ Gt×n that are efficiently witness-
samplable: namely, there is a PPT algorithm which outputs a pair (ρ,A) such
that Rpar(A,ρ) = 1 and describing a relation Rρ with its associated language
Lρ according to DΓ . For example, the sampling algorithm could pick a random

matrix A
R← Zt×np and define ρ = gA.

K0(λ): choose symmetric bilinear groups (G,GT ) of prime order p > 2λ with

f, g, h
R← G. Choose a strongly unforgeable one-time signature Σ = (G,S,V)

with verification keys consisting of L-bit strings, for a suitable L ∈ poly(λ).
Then, output Γ = (G,GT , f, g, h,Σ).

The dimensions (t, n) of the matrix A ∈ Zt×np such that ρ = gA can be part of
the language, so that t, n can be given as input to algorithm K1.

K1(Γ, ρ): parse Γ as (G,GT , f, g, h,Σ) and ρ as ρ =
(
Gi,j

)
1≤i≤t, 1≤j≤n ∈

Gt×n.

1. Generate key pairs {(skb, pkb)}1b=0 for the one-time homomorphic signa-
ture of Section 2.3 in order to sign vectors of Gn and G4L+6, respec-

tively. Namely, choose gz, gr, hz, hu
R← G, Gz, Gr, Hz, Hu

R← G. Then,

for i = 1 to n, pick χi, γi, δi
R← Zp and compute gi = gz

χigr
γi and

hi = hz
χihu

δi . Let sk0 = {χi, γi, δi}ni=1 be the private key and let
pk0 =

(
gz, gr, hz, hu, {gi, hi}ni=1

)
be the public key. The second LHSPS

key pair (sk1, pk1) is generated analogously as sk1 = {ϕi, φi, ϑi}4L+6
i=1 and

pk1 =
(
Gz, Gr, Hz, Hu, {Gi = Gϕiz G

φi
r , Hi = Hϕi

z Hϑi
u }4L+6

i=1

)
.

2. Choose y1, y2, ξ1, ξ2, ξ3
R← Zp and compute f1 = gy1 , f2 = gy2 . Define

vectors f1 = (f1, 1G, g), f2 = (1G, f2, g) and f3 = f1
ξ1 · f2ξ2 · ι(g)ξ3 ,

where ι(g) = (1G, 1G, g). Define the Groth-Sahai CRS f = (f1,f2,f3).

Then, define yet another vector f0 = f1
ν1 · f2ν2 , with ν1, ν2

R← Zp.



3. For ` = 1 to L, choose V`,0, V`,1,W`,0,W`,1
R← G and define row vectors

V = (V1,0, V1,1, . . . , VL,0, VL,1), W = (W1,0,W1,1, . . . ,WL,0,WL,1).

4. Choose random exponents ω1, ω2
R← Zp and group elements u1, u2

R← G,
and compute Ω1 = uω1

1 ∈ G, Ω2 = uω2
2 ∈ G.

5. Define the matrix M =
(
Mi,j

)
i,j
∈ G(4L+5)×(4L+6) as

(
Mi,j

)
i,j

=



1 11×2L 11×2L 1 1 f1

1 11×2L 11×2L 1 1 f2

V > Idf,2L 12L×2L 12L×1 12L×1 12L×3

W> 12L×2L Idh,2L 12L×1 12L×1 12L×3

g 11×2L 11×2L u1 1 11×3

g 11×2L 11×2L 1 u2 11×3

1 11×2L 11×2L Ω−11 Ω−12 f0


(2)

with Idf,2L = f I2L ∈ G2L×2L, Idh,2L = hI2L ∈ G2L×2L, and where
I2L ∈ Z2L×2L

p stands for the identity matrix. Note that the last row
allows linking f0 and Ω1, Ω2.

6. Use sk0 to generate one-time homomorphic signatures {(zi, ri, ui)}ti=1 on
the vectors (Gi1, . . . , Gin) ∈ Gn that form the rows of ρ ∈ Gt×n. These

are given by (zi, ri, ui) =
(∏n

j=1G
−χj
i,j ,

∏n
j=1G

−γj
i,j ,

∏n
j=1G

−δj
i,j

)
for each

i ∈ {1, . . . , t}. Likewise, use sk1 to sign the rows Mj = (Mj,1, . . . ,Mj,4L+6)
of the matrix (2) and obtain signatures

(Zj , Rj , Uj) =
( 4L+6∏
k=1

M−ϕkj,k ,

4L+6∏
k=1

M−φkj,k ,

4L+6∏
k=1

M−ϑkj,k

)
for each j ∈ {1, . . . , 4L+ 5}.

7. The CRS ψ = (CRS1,CRS2) consists of two parts which are defined as

CRS1 =
(
ρ, f , f0, u1, u2, Ω1, Ω2, V , W , pk0, pk1,

{(zi, ri, ui)}ti=1, {(Zj , Rj , Uj)}4L+5
j=1

)
,

CRS2 =
(
f , f0, pk0, pk1, Ω1, Ω2, V , W

)
,

while the simulation trapdoor is τsim =
(
ω1, ω2, {χi, γi, δi}ni=1

)
.

P(Γ, ψ, v, x, lbl): given v ∈ Gn and a witness x = (x1, . . . , xt) ∈ Ztp such that

v = gx·A, generate a one-time signature key pair (VK,SK)← G(λ).

1. Using {(zj , rj , uj)}tj=1, derive a one-time linearly homomorphic signa-
ture (z, r, u) on the vector v with respect to pk0. Namely, compute
z =

∏t
i=1 z

xi
i , r =

∏t
i=1 r

xi
i and u =

∏t
i=1 u

xi
i .

2. Choose a vector F = (F1, F2, F3) = fµ1

1 · f
µ2

2 , for random µ1, µ2
R← Zp.

3. Pick r, s
R← Zp and compute a pseudo-signature on VK = VK[1] . . .VK[L],

which is obtained as (σ1, σ2, σ3) = (H(V ,VK)r · H(W ,VK)s, fr, hs),

where H(V ,VK) =
∏L
`=1 V`,VK[`] and H(W ,VK) =

∏L
`=1W`,VK[`].



4. Derive a one-time linearly homomorphic signature (Z,R,U) ∈ G3 for
pk1 on the vector

σ = (σ1, σ
1−VK[1]
2 , σ

VK[1]
2 , . . . , σ

1−VK[L]
2 , σ

VK[L]
2 , σ

1−VK[1]
3 ,

σ
VK[1]
3 , . . . , σ

1−VK[L]
3 , σ

VK[L]
3 , 1G, 1G, F1, F2, F3) ∈ G4L+6 (3)

which belongs to subspace spanned by the first 4L + 2 rows of the ma-
trix M ∈ G(4L+5)×(4L+6). Hence, the coefficients r, s, µ1, µ2 ∈ Zp allow
deriving a homomorphic signature (Z,R,U) on σ in (3). Note that the
(4L+ 2)-th and the (4L+ 3)-th coordinates of σ must both equal 1G.

5. Using the CRS f = (f1,f2,f3), generate Groth-Sahai commitments
Cσ1 ,CZ ,CR,CU ∈ G3. Then, compute NIWI proofs πσ,1,πσ,2 ∈ G3

that committed variables (σ1, Z,R, U) satisfy

e(Z,Gz) · e(R,Gr) · e(σ1, G1) = tG,

e(Z,Hz) · e(U,Hu) · e(σ1, H1) = tH ,
(4)

where

tG = e(σ2,
L∏
i=1

G2i+VK[i])
−1·e(σ3,

L∏
i=1

G2L+2i+VK[i])
−1·

3∏
i=1

e(Fi, G4L+3+i)
−1

and

tH = e(σ2,
L∏
i=1

H2i+VK[i])
−1 · e(σ3,

L∏
i=1

H2L+2i+VK[i])
−1 ·

3∏
i=1

e(Fi, H4L+3+i)
−1 .

6. Using the vector F = (F1, F2, F3) of Step 2, define a new Groth-Sahai
CRS F = (f1,f2,F ) and use it to compute commitments

Cz = ι(z) · fθz,11 · fθz,22 · F θz,3 , Cr = ι(r) · fθr,11 · fθr,22 · F θr,3 ,

Cu = ι(u) · fθu,11 · fθu,22 · F θu,3

to the components of (z, r, u) along with NIWI proofs (π1,π2) ∈ G6

that v and (z, r, u) satisfy (1). Let (Cz,Cr,Cu,π1,π2) ∈ G15 be the
resulting commitments and proofs.

7. Set σ = S(SK, (v,F ,Cσ1
, σ2, σ3,CZ ,CR,CU ,Cz,Cr,Cu,πσ,1,πσ,2,π1,

π2, lbl)) and output

π =
(
VK,F ,Cσ1

, σ2, σ3,CZ ,CR,CU ,Cz,Cr,Cu,

πσ,1,πσ,2,π1,π2, σ
)
. (5)

V(Γ, ψ, v, π, lbl): parse π as in (5) and v as (v1, . . . , vn) ∈ Gn. Return 1 if the
conditions hereunder all hold. Otherwise, return 0.

(i) V(VK, (v,F ,Cσ1 , σ2, σ3,CZ ,CR,CU ,Cz,Cr,Cu,πσ,1,πσ,2,π1,π2, lbl),
σ) = 1;

(ii) πσ,1,πσ,2 are valid proofs that the variables (σ1, Z,R, U), which are con-
tained in commitments Cσ1 ,CZ ,CR,CU , satisfy equations (4).



(iii) The tuple (Cz,Cr,Cu,π1,π2) forms a valid a valid NIWI proof for the
Groth-Sahai CRS F = (f1,f2,F ). Namely, π1 = (π1,1, π1,2, π1,3) and
π2 = (π2,1, π2,2, π2,3) satisfy

n∏
i=1

E
(
gi, ι(vi)

)−1
= E

(
gz,Cz

)
· E
(
gr,Cr

)
· E(π1,1,f1) ·

E(π1,2,f2) · E(π1,3,F )
n∏
i=1

E
(
hi, ι(vi)

)−1
= E

(
hz,Cz

)
· E
(
hu,Cu

)
· E(π2,1,f1) ·

E(π2,2,f2) · E(π2,3,F ) .

(6)

The proof only requires 38 elements of G and a pair (VK, σ). In instantiations
using the one-time signature of [39], its total size amounts to 42 group elements,
which only lengthens the QA-NIZK proofs of [50] by a factor of 2.

4 Security

To avoid unnecessarily overloading notations, we will prove our results in the
single CRS setting. At the main steps, we will explain how the proof can be
adapted to the multi-CRS setting without affecting the tightness of reductions.

Theorem 1. The above proof system is perfectly quasi-adaptive zero-knowledge.

Proof (sketch). We describe the QA-NIZK simulator here but we refer to the full
paper for a detailed proof that the simulation is perfect. This simulator (S1,S2)
is defined by having S1 generate the CRS ψ as in the real K0 algorithm but retain
the simulation trapdoor τsim =

(
ω1, ω2, {χi, γi, δi}ni=1

)
for later use. As for S2, it

generates a simulated proof for v = (v1, . . . , vn) ∈ Gn by using {(χi, γi, δi)}ni=1

to compute (z, r, u) =
(∏n

j=1 v
−χj
j ,

∏n
j=1 v

−γj
j ,

∏n
j=1 v

−δj
j ) at step 1 of the simu-

lation instead of using the witness x ∈ Ztp as in the real proving algorithm P. At

step 2, it defines (F1, F2, F3) = f0 ·fµ1

1 ·f
µ2

2 with µ1, µ2
R← Zp. At step 3, it picks

r, s
R← Zp to compute (σ1, σ2, σ3) =

(
gω1+ω2 ·H(V ,VK)r ·H(W ,VK)s, fr, hs

)
before using the coefficients µ1, µ2, r, s, ω1, ω2, 1 ∈ Zp to derive a homomorphic
signature (Z,R,U) from {(Zj , Rj , Uj)}4L+5

j=1 at step 4. Steps 5 to 7 are conducted
as in the real P.

In the full paper, we prove that the simulation is perfect in that the simulated
CRS ψ is distributed as a real CRS and, for all v ∈ Gn such that v = gx·A for
some x ∈ Ztp, simulated proofs are distributed as real proofs. ut

We now prove that the system remains computationally sound and simulation-
sound, even when the adversary is given the matrix A = logg(ρ) ∈ Zt×np , which
allows recognizing elements of Lρ. Although the enhanced soundness property
is implied by that of enhanced simulation-soundness, we prove it separately (see
the full paper for the proof) in Theorem 2 since the reduction is optimal.



Theorem 2. The system provides quasi-adaptive soundness under the DLIN
assumption. Any enhanced soundness adversary A with running time tA implies
a DLIN distinguisher B with running time tB ≤ tA + q · poly(λ, L, t, n) and such
that Adve-sound

A (λ) ≤ 2 ·AdvDLIN
B (λ) + 2/p.

Theorem 3. The above system provides quasi-adaptive unbounded simulation-
soundness if: (i) Σ is a strongly unforgeable one-time signature; (ii) The DLIN
assumption holds. For any enhanced unbounded simulation-soundness adversary
A, there exist a one-time signature forger B′ in the multi-key setting and a DLIN
distinguisher B with running times tB, tB′ ≤ tA + q · poly(λ, L, t, n) such that

Adve-uss
A (λ) ≤ Advq-suf-otsB′ (λ) + 3 · (L+ 2) ·AdvDLIN

B (λ) + 4/p, (7)

where L is the verification key length of Σ and q is the number of simulations.

Proof. To prove the result, we consider a sequence of games. In Gamei, we denote
by Si the event that the challenger outputs 1.

Game1: This game is the actual attack. Namely, the adversary A receives as
input the description of the language Lρ and has access to a simulated CRS
ψ and the simulated prover S2(ψ, τsim, ., .) which is described in the proof
of Theorem 1. At each invocation, S2(ψ, τsim, ., .) inputs a vector-label pair
(v, lbl) and outputs a simulated proof π that v ∈ Lρ. In order a generate
the matrix ρ ∈ Gt×n with the appropriate distribution DΓ , the challenger
chooses a matrix A ∈ Zt×np with the suitable distribution (which is possible

since DΓ is efficiently witness-samplable) and computes ρ = gA. Also, the

challenger B computes a basis W ∈ Zn×(n−t)p of the nullspace of A. The
adversary receives as input the simulated CRS ψ and the matrix A ∈ Zt×np ,
which serves as a membership testing trapdoor τm, and queries the simulator
S2(ψ, τsim, ., .) on a polynomial number of occasions. When the adversary A
halts, it outputs an element v?, a proof π? and a label lbl?. The adversary
is declared successful and the challenger outputs 1 if and only if (π?, lbl?) is
a verifying proof but v? 6∈ Lρ (i.e., v? is linearly independent of the rows
of ρ ∈ Gt×n) and (π?, lbl?) was not trivially obtained from the simulator.
We call S1 the latter event, which is easily recognizable by the challenger

B since the latter knows a basis W ∈ Zn×(n−t)p of the right kernel of A.
Indeed, W allows testing if v = (v1, . . . , vn) ∈ Gn satisfies

∏n
j=1 v

wji
j = 1G

for each column w>i = (w1i, . . . , wni)
> of W. By definition, the adversary’s

advantage is Adv(A) := Pr[S1].
Game2: We modify the generation of the CRS ψ = (CRS1,CRS2). Instead of

choosing f3 ∈R G3 as a uniformly random vector, S1 sets f3 = f ξ11 ·f
ξ2
2 , for

random ξ1, ξ2
R← Zp. Hence, f1,f2 and f3 now underlie a subspace of dimen-

sion 2 and f = (f1,f2,f3) thus becomes a perfectly binding CRS. Under
the DLIN assumption, this modification should have no noticeable impact
on A’s probability of success. We have |Pr[S2]− Pr[S1]| ≤ AdvDLIN(B).

Game3: We modify again the generation of ψ. Now, instead of choosing f0 in

span〈f1,f2〉, S1 sets f0 = fν11 ·f
ν2
2 · ι(g), for random ν1, ν2

R← Z∗p. The vector



f0 is now linearly independent of (f1,f2). Under the DLIN assumption,
this modification will remain unnoticed to the adversary. In particular, A’s
winning probability should only change by a negligible amount. A two-step
reduction from DLIN shows that |Pr[S3]− Pr[S2]| ≤ 2 ·AdvDLIN(B).

Game4: This game is like Game3 but B halts and outputs a random bit if A out-
puts a proof π? containing a one-time verification key VK? that is recycled
from an output of the S2(ψ, τsim, ., .) oracle. Game4 and Game3 proceed iden-
tically until the latter event occurs. This event further contradicts the strong
unforgeability of Σ. If Σ has tight multi-key security7 (in the sense of [39]),
the probability of this event can be bounded independently of the number q
of queries to S2(ψ, τsim, ., .). We have |Pr[S4]− Pr[S3]| ≤ Advq-suf-otsB (λ).

Game5: This game is identical to Game4 but we raise a failure event E5. When A
outputs its fake proof π? =

(
VK?,F ?,C?

σ1
, σ?2 , σ

?
3 ,C

?
Z ,C

?
R,C

?
U ,C

?
z,C

?
r ,C

?
u,

π?σ,1,π
?
σ,2,π

?
1,π

?
2, σ

?
)
, B parses the vector F ? as (F ?1 , F

?
2 , F

?
3 ) ∈ G3 and

uses the extraction trapdoor (y1, y2) = (logg(f1), logg(f2)) of the Groth-

Sahai CRS f = (f1,f2,f3) to test if F ?3 6= F ?1
1/y1 · F ?2

1/y2 , meaning that
F? = (f1,f2,F

?) is not a perfectly binding Groth-Sahai CRS. We denote
by E5 the latter event, which causes B to abort and output a random bit
if it occurs. Clearly, Game5 is identical to Game4 unless E5 occurs, so that
|Pr[S5] − Pr[S4]| ≤ Pr[E5]. Lemma 1 demonstrates that event E5 occurs
with negligible probability if the DLIN assumption holds. More precisely, the
probability Pr[E5] is at most Pr[E5] ≤ (2·L+1)·AdvDLIN

B (λ)+2/p, where B
is a DLIN distinguisher whose computational complexity only exceeds that
of A by the cost of a polynomial number of exponentiations in G and a
constant number of pairing evaluations.

In Game5, we have Pr[S5] = Pr[S5∧E5]+Pr[S5∧¬E5] = 1
2 ·Pr[E5]+Pr[S5∧¬E5],

so that Pr[S5] ≤ (L+ 1) ·AdvDLIN
B (λ) + 1

p + Pr[S5 ∧ ¬E5].
In Game5, we show that event S5∧¬E5 implies an algorithm B solving a given

SDP instance (gz, gr, hz, hu), which also contradicts the DLIN assumption.
Assuming that event S5 ∧¬E5 indeed occurs, we know that the adversary A

manages to output a correct proof π? =
(
VK?,F ?,C?

σ1
, σ?2 , σ

?
3 ,C

?
Z ,C

?
R,C

?
U ,C

?
z,

C?
r ,C

?
u,π

?
σ,1,π

?
σ,2,π

?
1,π

?
2, σ

?
)

for a vector v? = (v?1 , . . . , v
?
n) outside the row

space of ρ = gA and such that F ? = (F ?1 , F
?
2 , F

?
3 ) is a BBS encryption of 1G

(namely, F ?3 = F ?1
1/y1 ·F ?2

1/y1). This means that, although the simulated proofs
produced by S2(ψ, τsim, ., .) were all generated for a perfectly NIWI Groth-Sahai
CRS F = (f1,f2,F ), the last part (C?

z,C
?
r ,C

?
u,π

?
1,π

?
2) of A’s proof π? takes

place on a perfectly binding CRS F? = (f1,f2,F
?). Moreover, although B does

not know µ?1, µ
?
2 ∈ Zp such that F ? = f1

µ?1 · f2µ
?
2 , B can still use the extraction

7 This notion (see Definition 4 in [39]) is defined via a game where the adversary is
given q verification keys {VKi}qi=1 and an oracle that returns exactly one signature
for each key. The adversary’s tasks is to output a triple (i?,M?, σ?), where i? ∈
{1, . . . , q} and (M?, σ?) was not produced by the signing oracle for VKi? . Hofheinz
and Jager [39, Section 4.2] gave a discrete-log-based one-time signature with tight
security in the multi-key setting.



trapdoor (y1, y2) = (logg(f1), logg(f2)) to recover (z?, r?, u?) from (C?
z,C

?
r ,C

?
u)

by performing BBS decryptions. Indeed, C?
z = ι(z?) · f1θz,1 · f2θz,2 · F ?θz,3 is of

the form C?
z = ι(z?) · f1θz,1+µ

?
1 ·θz,3 · f2θz,2+µ

?
2 ·θz,3 , which decrypts to z?.

The perfect soundness of the Groth-Sahai CRS F? = (f1,f2,F
?) ensures

that extracted group elements (z?, r?, u?) satisfy the pairing product equations

e(gz, z
?) · e(gr, r?) ·

∏
i=1

e(gi, v
?
i ) = e(hz, z

?) · e(hu, u?) ·
∏
i=1

e(hi, v
?
i ) = 1GT . (8)

In addition, B computes (z†, r†, u†) =
(∏n

i=1 v
?
i
−χi ,

∏n
i=1 v

?
i
−γi ,

∏n
i=1 v

?
i
−δi),

which also satisfies the equations (8). Since (z†, r†, u†) and (z?, r?, u?) both sat-
isfy (8), the triple (z‡, r‡, u‡) =

(
z?

z†
, r

?

r†
, u

?

u†

)
necessarily satisfies the equalities

e(gz, z
‡) · e(gr, r‡) = e(hz, z

‡) · e(hu, u‡) = 1GT . We argue that z‡ 6= 1G with
probability 1− 1/p, so that (z‡, r‡, u‡) breaks the SDP assumption.

To see this, we remark that, if event S5 ∧ ¬E5 actually happens, B never
reveals any information about (χ1, . . . , χn) when it emulates S2(ψ, τsim, ., .). In-
deed, in simulated proofs, the only components that depend on (χ1, . . . , χn) are
(Cz,Cr,Cu,π1,π2), which are generated for a perfectly NIWI Groth-Sahai CRS
(f1,f2,F ). Consequently, the same arguments as in [49, Theorem 1] show that
z† 6= z? with probability 1 − 1/p. In the CRS, {(gi, hi)}ni=1 and {(zi, ri, ui)}ti=1

provide A with a linear system of 2n + t < 3n equations in 3n unknowns
{(χi, γi, δi)}ni=1, which leaves z† completely undetermined in A’s view if v? is
linearly independent of the rows of ρ =

(
Gi,j

)
i,j

. We thus find Pr[S5 ∧ ¬E5] ≤
AdvSDP

B (λ)+1/p, which yields the bound (7) since AdvSDP
B (λ) ≤ 1

2 ·AdvDLIN
B (λ)

if we translate the SDP solver B into a DLIN distinguisher. ut

The result easily extends to the multi-CRS setting via the following changes.
In the transitions from Game1 to Game2 and Game2 to Game3, we can simultane-
ously modify all CRSes {ψ(κ)}µκ=1 by using the random self-reducibility of DLIN
to build µ instances of the DLIN assumption from a given instance. In Game5,
the probability Pr[E5] can be bounded by implicitly relying on the multi-user
security (in the sense of [33]) of the signature scheme of [51], which remains
almost tight in the multi-key setting. In the proof of the following lemma, we
will explain at each step how the proof can be adapted to the multi-CRS setting.
Finally, the probability of event S5 ∧ ¬E5 in Game5 can be proved by applying
the same arguments as in the proof (see [51, Appendix G]) that the signature
of [51] provides tight security in the multi-user setting.

Lemma 1. In Game5, there is a DLIN distinguisher B such that the probability
Pr[E5] is at most Pr[E5] ≤ (2·L+1)·AdvDLIN

B (λ)+2/p. Moreover, B’s complexity
only exceeds that of A by a polynomial number of exponentiations and a constant
number of pairing computations. (The proof is given in the full version).

5 Applications to Tightly Secure Primitives

As an application of our QA-NIZK proof system, we present a new encryp-
tion scheme whose IND-CCA2 security in the multi-challenge-multi-user setting



(almost) tightly relates to the DLIN assumption. We show that the resulting
construction allows improving the expansion rate of non-interactive universally
composable commitments based on IND-CCA2-secure public-key encryption.

5.1 CCA2-Secure (Threshold) Encryption with Shorter Ciphertexts

Like [39,51], our scheme builds on the Naor-Yung paradigm [56] and the encryp-
tion scheme of Boneh, Boyen and Shacham (BBS) [16].

The encryption phase computes (C0, C1, C2) = (M · gθ1+θ2 , Xθ1
1 , Y

θ2
1 ) and

(D0, D1, D3) = (M · gθ3+θ4 , Xθ3
2 , Y

θ4
2 ), where (X1, Y1, X2, Y2) are part of the

public key, and generates a QA-NIZK proof π that the vector

v =
(
C1/D1, C2/D2, C0/D0, C1 · C2, D

−1
1 ·D

−1
2

)
∈ G5

=
(
Xθ1

1 ·X
−θ3
2 , Y θ21 · Y

−θ4
2 , g(θ1+θ2)−(θ3+θ4), Xθ1

1 · Y
θ2
1 , X−θ32 · Y −θ42

)
is in the subspace spanned by X1 = (X1, 1, g,X1, 1), Y 1 = (1, Y1, g, Y1, 1),
X2 = (X2, 1, g, 1, X2) and Y 2 = (1, X2, g, 1, X2). As in [51], our reduction is
not quite as tight as in [39,5] since a factor Θ(λ) is lost. On the other hand, our
scheme becomes nearly practical as the ciphertext overhead now decreases to 48
group elements. In comparison, the solution of Libert et al. [51] incurs 69 group
elements per ciphertext. Our technique thus improves upon [51] by 30% and also
outperforms the most efficient perfectly tight solution [5], which entails over 300
group elements per ciphertext.

The CRS of the proof system is included in the user’s public key rather than
in the common public parameters since, in the QA-NIZK setting, it depends on
the considered language which is defined by certain public key components.

Par-Gen(λ): Run the K0 algorithm of Section 3 in order to obtain common
public parameters Γ =

(
(G,GT ), f, g, h,Σ

)
.

Keygen(Γ ): Parse Γ as
(
(G,GT ), f, g, h,Σ

)
and conduct the following steps.

1. Choose random exponents x1, x2, y1, y2
R← Zp and define X1 = gx1 ,

X2 = gx2 , Y1 = gy1 , Y2 = gy2 . Then, define the independent vectors
X1 = (X1, 1, g,X1, 1), Y 1 = (1, Y1, g, Y1, 1), X2 = (X2, 1, g, 1, X2) and
Y 2 = (1, X2, g, 1, X2).

2. Run algorithm K1(Γ,ρ) of Section 3 to generate the language-dependent
part of the CRS for the proof system, where the rows of the matrix
ρ ∈ G4×5 consist of X1, Y 1, X2 and Y 2. Let ψ = (CRS1,CRS2) be
the obtained CRS, where

CRS1 =
(
ρ, f ,f0, {ui}2i=1, {Ωi}2i=1,V ,W ,

{pki}2i=1, {(zi, ri, ui)}4i=1, {(Zj , Rj , Uj)}4L+5
j=1

)
,

CRS2 =
(
f , f0, {pki}2i=1, {Ωi}2i=1, V , W

)
.

3. Define the private key as the pair SK = (x1, y1) ∈ Z4
p. The public key is

PK =
(
g, X1, Y 1, X2, Y 2, ψ = (CRS1,CRS2)

)
.



Encrypt(M,PK): to encrypt M ∈ G, conduct the following steps.

1. Pick random exponents θ1, θ2, θ3, θ4
R← Zp and compute

(C0, C1, C2) = (M · gθ1+θ2 , Xθ1
1 , Y

θ2
1 )

(D0, D1, D3) = (M · gθ3+θ4 , Xθ3
2 , Y

θ4
2 ) .

2. Define lbl = (C0, C1, C2, D0, D1, D2). Using the witness x = (θ1, θ2,−θ3,
−θ4) ∈ Z4

p and the label lbl, run Steps 1-7 of Algorithm P in Section 3
to generate a proof π that the vector

v =
(
C1/D1, C2/D2, C0/D0, C1 · C2, D

−1
1 ·D

−1
2

)
∈ G5

=
(
Xθ1

1 ·X
−θ3
2 , Y θ21 · Y

−θ4
2 , g(θ1+θ2)−(θ3+θ4), Xθ1

1 · Y
θ2
1 , X−θ32 · Y −θ42

)
belongs to span〈X1,Y 1,X2,Y 2〉. The QA-NIZK proof is

π =
(
VK,F ,Cσ1

, σ2, σ3,CZ ,CR,CU ,Cz,Cr,Cu,πσ,1,πσ,2,π1,π2, σ
)
.

3. Output the ciphertext C = (C0, C1, C2, D0, D1, D2, π).

Decrypt(SK,C): given C = (C0, C1, C2, D0, D1, D2, π), do the following.

1. Run the verification algorithm V of Section 3 on input of lbl = (C0, C1, C2,
D0, D1, D2), the vector v =

(
C1/D1, C2/D2, C0/D0, C1 ·C2, D

−1
1 ·D

−1
2

)
and π. Return ⊥ if π is not a valid proof for the label lbl that v is in
span〈X1,Y 1,X2,Y 2〉.

2. Using SK = (x1, y1) ∈ Z2
p, compute and return M = C0 ·C−1/x1

1 ·C−1/y12 .

Using our proof system of Section 3 and the one-time signature of [39], the
ciphertext size amounts to that of 48 group elements, instead of 69 in [51].

While our construction is described in terms of symmetric pairings in order to
lighten notations as much as possible, it readily extends to asymmetric pairings.

Theorem 4. The scheme is (1, qe)-IND-CCA secure provided: (i) Σ is a strongly
unforgeable one-time signature; (ii) The DLIN assumption holds in G. For any
adversary A, there exist a one-time signature forger B′ and a DLIN distinguisher
B with running times tB, tB′ ≤ tA + qe · poly(λ, L) such that

Adv
(1,qe)-cca
A (λ) ≤ Advqe-suf-otsB′ (λ) + (3L+ 10) ·AdvDLIN

B (λ) + 8/p ,

where L is the length of one-time verification keys and qe is the number of en-
cryption queries. (The proof is given in the full version of the paper.)

The result of Theorem 4 carries over to a scenario involving µ > 1 public
keys modulo an additional negligible term µ/p in the bound which is inherited
from [39, Theorem 6]. This is achieved by relying on the enhanced USS property
of the QA-NIZK proof system in the multi-CRS setting.

Similarly to previous IND-CCA2-secure encryption schemes based on the
Naor-Yung paradigm (e.g., [32]), the public verifiability of ciphertexts makes our
scheme amenable for non-interactive threshold decryption in a static corruption
model.

By instantiating the construction of Camenisch et al. [19] with our QA-NIZK
proofs, we similarly obtain more efficient KDM-CCA2-secure systems with tight
security, as explained in the full version of the paper.



5.2 Encrypting Long Messages

In some applications, it is useful to encrypt long messages while preserving the
feasibility of efficiently proving statements about encrypted values using Groth-
Sahai proofs. In this case, the amortized efficiency of our system can be signif-
icantly improved. Suppose that we want to encrypt messages (M1, . . . ,MN ) ∈
GN . The technique of Bellare et al. [8] allows doing so while making opti-
mal use of encryption exponents. In more details, the public key consists of
group elements

(
g, h, {(Xi,1, Yi,1, Xi,2, Yi,2)}Ni=1

)
, with (Xi,1, Yi,1, Xi,2, Yi,2) =

(gxi,1 , hyi,1 , gxi,2 , hyi,2) and the secret key is {(xi,1, yi,1)}Ni=1. The vector is en-

crypted by choosing θ1, θ2, θ3, θ4
R← Zp and computing

C0 = fθ1 , C ′0 = hθ2 ,
{
Ci = Mi ·Xθ1

i,1 · Y
θ2
i,1

}N
i=1

,

D0 = fθ3 , D′0 = hθ4 ,
{
Di = Mi ·Xθ3

i,2 · Y
θ4
i,2

}N
i=1

,

while appending a simulation-sound QA-NIZK argument that the vector

(
C1/D1, . . . , CN/DN ,

N times︷ ︸︸ ︷
C0, . . . , C0,

N times︷ ︸︸ ︷
D−10 , . . . , D−10 ,

N times︷ ︸︸ ︷
C ′0, . . . , C

′
0,

N times︷ ︸︸ ︷
D′0
−1
, . . . , D′0

−1 ) ∈ G5N

lives in the 4N -dimensional linear subspace span〈Xi,1,Xi,2,Y i,1,Y i,2〉Ni=1, with

Xi,1 = (1i−1, Xi,1,1
N−i,1i−1, f,1N−i,13N ) ,

Xi,2 = (1i−1, Xi,2,1
N−i,1N ,1i−1, f,1N−i,12N ) ,

Y i,1 = (1i−1, Yi,1,1
N−i,12N ,1i−1, h,1N−i,1N ) ,

Y i,2 = (1i−1, Yi,2,1
N−i,13N ,1i−1, h,1N−i) ,

where, for each i ∈ N, 1i stands for the i-dimensional vector (1G, . . . , 1G) ∈ Gi.
The entire ciphertext fits within 2N + 46 group elements, of which only 42
elements are consumed by the QA-NIZK proof.

The tight IND-CCA2 security can be proved in the same way as in Theorem 4.
In particular, we rely on the tight IND-CPA security in the multi-challenge set-
ting of a variant of the BBS encryption scheme where messages M are encrypted8

as (fθ1 , hθ2 ,M ·Xθ1 · Y θ2).
In Section 5.3, we explain how the compatibility of this construction with

zero-knowledge proofs comes in handy to build non-interactive and adaptively
secure universally composable commitments based on CCA2-secure encryption.

5.3 Application to UC Commitments

Universally composable commitments [27,20] are commitment schemes that prov-
ably remain secure when composed with arbitrary other protocols. They are

8 The reduction from the DLIN assumption is straightforward and sets up X = fα ·gγ ,
Y = hβ ·gγ . From a given DLIN instance (f, g, h, fa, hb, η), where η = ga+b or η ∈R G,
the challenge ciphertext is computed as (C1, C2, C3) = (fa, hb,Mβ ·(fa)α ·(hb)β ·ηγ).



known [20] to require some setup assumption like a common reference string. In
some constructions, the CRS can only be used in a single commitment. Back in
2001, Canetti and Fischlin [20] gave re-usable bit commitments based on chosen-
ciphertext-secure public-key encryption. In [53], Lindell described a simple and
practical re-usable construction which allows committing to strings rather than
individual bits. In short, each commitment consists of an IND-CCA2-secure en-
cryption. In order to open a commitment later on, the sender generates an inter-
active zero-knowledge proof that the ciphertext encrypts the underlying plain-
text. In its basic variant, Lindell’s commitment only provides security against
static adversaries that have to choose whom to corrupt upfront9. Subsequently,
Fischlin et al. [31] showed that Lindell’s commitment can be made adaptively
secure in the erasure model by the simple expedient of opening commitments
via a NIZK proof (rather than an interactive one) which the sender generates at
commitment time before erasing his encryption coins. Jutla and Roy [43] gave
an optimization of the latter approach where the use of QA-NIZK proofs allows
reducing the size of commitments and openings.

Using our CCA2-secure encryption scheme for long messages, we can build a
tightly secure non-interactive universally composable commitment [27,20] that
allows committing to long messages with expansion rate 2. In constructions of
UC commitments from IND-CCA2-secure encryption (e.g., [20,31,43]), a multi-
challenge definition of IND-CCA2 security is usually considered in proofs of UC
security. In the erasure model, the non-interactive and adaptively secure variants
of Lindell’s commitment [31,43] can be optimized using the techniques of [50,44]
to achieve a two-fold expansion rate. However, these solutions are not known to
provide tight security. At the cost of a CRS of size Θ(N), the labeled version of
our encryption scheme for long messages (where the label L of the ciphertext is
simply included in lbl) allows eliminating this limitation. As in [43], the sender
can encrypt the message (M1, . . . ,MN ) he wants to commit to and open the
commitment via a QA-NIZK proof that

(
C1/M1, . . . , CN/MN ,

N times︷ ︸︸ ︷
C0, . . . , C0,

N times︷ ︸︸ ︷
1, . . . , 1,

N times︷ ︸︸ ︷
C ′0, . . . , C

′
0,

N times︷ ︸︸ ︷
1, . . . , 1

)
∈ G5N

is in span〈Xi,1,Xi,2,Y i,1,Y i,2〉Ni=1. For long messages, this construction thus
achieves a two-fold expansion rate. While not as efficient as the recent rate-1
commitments of Garay et al. [35], it retains adaptive security assuming reliable
erasures while [35] is only known to be secure against static adversaries.
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