
Reverse-engineering of the cryptanalytic attack
used in the Flame super-malware

Max Fillinger and Marc Stevens

CWI, Amsterdam, The Netherlands
max.fillinger@cwi.nl

marc@marc-stevens.nl

Abstract. In May 2012, a highly advanced malware for espionage dubbed
Flame was found targeting the Middle-East. As it turned out, it used a
forged signature to infect Windows machines by MITM-ing Windows
Update. Using counter-cryptanalysis, Stevens found that the forged sig-
nature was made possible by a chosen-prefix attack on MD5 [25]. He
uncovered some details that prove that this attack differs from collision
attacks in the public literature, yet many questions about techniques and
complexity remained unanswered.
In this paper, we demonstrate that significantly more information can be
deduced from the example collision. Namely, that these details are actu-
ally sufficient to reconstruct the collision attack to a great extent using
some weak logical assumptions. In particular, we contribute an analysis
of the differential path family for each of the four near-collision blocks,
the chaining value differences elimination procedure and a complexity
analysis of the near-collision block attacks and the associated birthday
search for various parameter choices. Furthermore, we were able to prove
a lower-bound for the attack’s complexity.
This reverse-engineering of a non-academic cryptanalytic attack exploited
in the real world seems to be without precedent. As it allegedly was de-
veloped by some nation-state(s) [19,12,11], we discuss potential insights
to their cryptanalytic knowledge and capabilities.

Keywords: MD5, hash function, cryptanalysis, reverse engineering, sig-
nature forgery

1 Introduction

1.1 End-of-life of a cryptographic primitive

The end-of-life of a widely-used cryptographic primitive is an uncommon event,
preferably orchestrated in an organized fashion by replacing it with a next gen-
eration primitive as a precaution as soon as any kind of weakness has been ex-
posed. Occasionally such idealistic precautions are thrown to the wind for various
reasons. Unfortunately, the sudden introduction of practical attacks may then
seriously reduce the security of systems protected by the cryptographic primi-
tive. The ensuing forced mitigation efforts need to overcome important hurdles

in a short amount of time and thus prove to be less successful than precaution-
ary mitigation efforts. The topic of this paper, namely an exposed cryptanalytic
attack on the hash function MD5 exploited in the real-world eight years after
the first practical break of MD5, is a recent example of the above.

1.2 Collisions for MD5

The cryptographic hash function MD5 found widespread use for many years
since its inception in 1991 by Ron Rivest [21]. It became the de facto industry
standard in combination with RSA to generate digital signatures upon which our
Internet’s Public Key Infrastructure (PKI) for TLS/SSL has been build. This
despite early collision attacks on the compression function of MD5 by den Boer
and Bosselaers [2] and Dobbertin [6].

That changed after in 2004 the first real MD5 collision attack, as well as ex-
ample collisions, were presented by Wang et al. in a major breakthrough in hash
function cryptanalysis [28,29]. Improvements to their attack were published in a
series of papers (e.g., see [31,22,13,9,24,10,30,27]). Unfortunately, no convincing
threatening scenarios arose due to the important restriction that colliding mes-
sage pairs M = P ||C||S, M ′ = P ||C ′||S can only differ in the random-looking
C,C ′.

This restriction was lifted with the introduction of the first chosen-prefix
collision attack on MD5 [26] that for any two equal-length prefixes P and P ′

constructs short random-looking C and C ′ such that P ||C||S and P ′||C ′||S col-
lide for any common suffix S. Chosen-prefix collisions make it significantly easier
to construct collisions with meaningful differences, i.e., often it suffices to choose
M and M ′ appropriately and to hide C and C ′ somewhere within the messages.
It enabled the first truly convincing attack scenario using MD5 collisions, namely
the construction of a rogue Certificate Authority (CA) certificate presented in
2009 [27]. As it turned out, many CAs had voluntarily stopped using MD5. Nev-
ertheless, the remaining few MD5-using CAs endangered the entire PKI as any
PKI is only as strong as its weakest link, i.e., CA.

Based on these developments, various authorities explicitly disallowed MD5
in digital signatures (e.g., The CA/Browser Forum adopted Baseline Require-
ments for CAs in 20111, Microsoft updated its Root CA Program in 20092).

1.2.1 Counter-cryptanalysis Due to its widespread and pervasive use, MD5
remains supported to accommodate old signatures even up to the time of this
writing. Any party world-wide still signing with an MD5-based digital signature
scheme – against all advice – may be attacked using a chosen-prefix collision at-
tack. Furthermore, a resulting digital signature forgery can be exploited against
nearly everyone due to the near-ubiquitous support of MD5-based signatures.
Stevens recently proposed to counter these threats using counter-cryptanalysis
[25], specifically a collision detection algorithm, i.e., an algorithm that asserts

1 https://cabforum.org/wp-content/uploads/Baseline_Requirements_V1.pdf
2 http://technet.microsoft.com/en-us/library/cc751157.aspx

2

https://cabforum.org/wp-content/uploads/Baseline_Requirements_V1.pdf
http://technet.microsoft.com/en-us/library/cc751157.aspx

whether any given single message belongs to a colliding message pair that was
constructed using a MD5 and/or SHA-1 collision attack. The main idea is to
guess the colliding part (i.e., the C ′) of the assumed sibling colliding message
and to verify whether an internal collision occurs. Once a collision has been veri-
fied, one knows the near-collision blocks for both messages, however, one cannot
reconstruct earlier parts of the missing message with counter-cryptanalysis.

Collision detection can strengthen digital signatures by invalidating forged
digital signatures, thereby allowing the continued secure use of MD5-based sig-
natures. However, collision detection is clearly not a permanent solution and
cannot replace proper migration to the more secure SHA-2 and SHA-3.

1.3 The super-malware ‘Flame’

1.3.1 Background Flame is a highly advanced malware for espionage and
was discovered in May 2012 by the Iranian CERT, Kaspersky Lab and CrySyS
Lab [12,11]. It seemed to have targeted the Middle-East, with the most infec-
tions in Iran. Among the targets were government-related organizations, private
companies, educational institutions as well as specific individuals. According to
these reports by malware experts Flame was developed by some nation-state(s)
with near-certainty. It seems the best report so far on the origin is a Washington
Post article reporting that – according to unnamed officials and experts – Flame
was a joint U.S.-Israel classified effort [19].

For espionage, Flame collected keyboard inputs, Skype conversations and
local documents of potential interest. It could also record screen contents, mi-
crophone audio, webcam video as well as network traffic, sometimes triggered by
the use of specific applications of interest like Instant Messaging applications.

According to Kaspersky [12], Flame was active since at least 2010. However,
CrySyS Lab reports Flame or a preliminary version thereof may have been active
since 2007 due to an observed file in the security enterprise webroot in 2007. In-
fections seem to have occurred with surgical precision with each target carefully
selected instead of wildly spreading, which may be one of the reasons why it has
evaded discovery for several years.

We refer to the analyses by Kaspersky Lab and CrySyS Lab [12,11] for more
details on the functionality, purpose and origin of Flame. Here we focus on the
variant chosen-prefix collision attack that enabled its propagation.

1.3.2 Propagation As described by Sotirov [23], Flame used WPAD (Web
Proxy Auto-Discovery Protocol) to register itself as a proxy for the domain
update.windows.com to launch Man-In-The-Middle attacks for Windows Up-
date on other computers on the local network. By forcing a fall-back from the
secure HTTPS protocol to the insecure HTTP protocol, Flame was able to push
validly signed Windows Update patches of its choice. This included a properly,
but illegitimately, signed Windows Update patch by which Flame could spread
to other machines. Flame’s code-signing certificate for this security patch was
obtained by fooling a certain part of Microsoft’s PKI into signing a colliding –

3

innocuous-looking – sibling certificate using an MD5-based signature algorithm.
As the to-be-signed parts of both certificates were carefully crafted to result
in the same MD5-hash using a chosen-prefix collision attack, the MD5-based
signature was valid for both certificates.

Even though Microsoft was fully aware of the severe weaknesses of MD5 and
spent great effort on migrating to more secure hash functions for new digital
signatures at least since 2008, their software continued to accept (old) MD5-
based digital signatures. Unfortunately, the use of MD5-based signatures for
licensing purposes in their Terminal Server Licensing Service was overlooked in
their efforts.3 This, together with other unforeseen circumstances, allowed the
creation of Flame’s properly, but illegitimately, signed security patch that was
trusted by all versions of Windows [16].4

1.3.3 Unknown variant chosen-prefix collision attack On the 3rd of
June 2012, Microsoft blogged that in their initial analysis of Flame they “iden-
tified that an older cryptography algorithm could be exploited and then be used
to sign code as if it originated from Microsoft” [17]. An immediate guess was
that this cryptically worded statement refers to the construction of a rogue code-
signing certificate using a chosen-prefix collision attack on MD5 similar to [27].
Only the certificates in the chain leading to the forged signature on Flame’s
executable were circulating on the Internet [20], its sibling colliding certificate
remains lost. Using his collision detection technique, Stevens was able to recon-
struct the collision part of the missing sibling colliding certificate [25].

Having both colliding parts one can observe the differential paths used for this
attack which Stevens uses to provide a preliminary analysis of Flame’s attack:

Flame’s differential paths clearly show a chosen-prefix collision attack that
starts with a chaining-value difference containing many bit differences that is
gradually reduced to zero by the four sequential “near-collision” block pairs.
However, these differential paths do not match any family of published chosen-
prefix collision attacks [27], but instead were variants based on the first differen-
tial paths for MD5 by Wang et al.[29]. Also, they show characteristics that do not
match those from known differential path construction methods for MD5. The
author provides arguments indicating an unnecessary costly differential path
construction method was used. Furthermore, experimental results were given
constructing replacement paths with significantly fewer bitconditions in only
about 15 seconds on average on a single Intel i7-2600 CPU (equivalent to about
229 MD5 compressions).

Based on the differential paths and the observation that the best known
message modification technique was used, for each block a lower bound for the
average complexity to find the near-collision blocks is given. Note the implicit
assumption that the differential path including the target output chaining value
difference is fixed before the near-collision block search.

3 Microsoft invalidated this part of their PKI after the discovery of Flame in 2012.
4 Any license certificate produced by the Terminal Server Licensing Service could

directly be used to attack Windows Vista and earlier versions, but not later versions.

4

Based on the weight of the observed chaining value difference after the birth-
day search that need to be eliminated by the four near-collision attacks, an in-
dicative complexity estimate of about 242 MD5 compressions is given. Although
further constraints make it more likely to be even higher instead of lower. Lack-
ing a more detailed analysis of the chaining value difference elimination strategy,
no more accurate prediction could be given.

Although Stevens was able to show a yet unknown variant attack was used, so
far, no reconstruction of Flame’s attack has been presented and many questions
regarding techniques and complexities remained unanswered. Specifically there
is no analysis so far for the possible differential path family for each block, and
therefore for the chaining value reduction procedure that selects which chaining
value differences (the tail of the differential path) to eliminate in each block.
This in turn makes it hard to provide accurate complexity estimates for each
of the four near-collision attacks as well as for the associated birthday attack.
Furthermore, the work in this paper makes it clear that Stevens’ assumption that
each near-collision block targets a specific chaining value difference is inaccurate,
making his preliminary comments on the attack complexity incorrect.

2 Our contributions

In [25] Stevens presented proof that Flame uses a yet unknown chosen-prefix
collision attack and made indications of the complexity to find solutions for the
recovered differential paths. No attack reconstruction or more accurate complex-
ity estimates were given.

Our paper is entirely based on the four near-collision block pairs shown
in Append. B that can be recovered from the single available certificate in
Flame’s attack using counter-cryptanalysis. This paper significantly improves
upon Stevens’ preliminary reconstruction and we demonstrate for the first time
that a single example of a collision pair is actually sufficient to reconstruct the
used collision attack to a great extent under some weak logical assumptions.
Furthermore, the high level of detail of our reconstruction even admits concrete
conclusions under a complexity analysis, specifically we prove a lower-bound for
the estimated attack complexity and provide a cost figure for the closest fit of at-
tack parameters. Our work shows that Stevens’ indications of the near-collision
costs are not the real expected costs. In particular the attack does not use fixed
differential paths, but allows some random chaining value differences to occur
in the first two blocks that can be efficiently negated in the last two blocks.
Lacking more information about the near-collision attack procedures, Stevens
was also unable to give real indications of the birthday search complexity of
Flame’s chosen-prefix collision attack. However, our reconstruction as well as our
complexity analysis includes the birthday search and shows there is a trade-off
between the birthday search cost and the total cost of the near-collision attacks.

At a high level we can draw some insights from our analysis into the cryptan-
alytic capabilities and the available resources of Flame’s creators. In particular,
the complexity for the closest fit of attack parameters is equivalent to 249.3 MD5

5

compressions which takes roughly 40,000 CPUcore hours. That means for say
3-day attempts to succeed in reasonable time given the large number of required
attempts, one needs about 560 CPUcores, which is large but not unreasonable
even for academic research groups. With an estimated complexity of 244.55 MD5
compressions from [27], this seems to be suboptimal. Not only the overall com-
plexity seems to be suboptimal, also the differential path construction method
and the near-collision speed-up techniques seem to be suboptimal. Overall we
can report that it is clear that significant expertize in cryptanalysis was required,
yet there are no indications at all of superior techniques, but instead that vari-
ous parts are sub-optimal. It seems a working attack that succeeds in reasonable
time was more important than optimizing the overall attack using all of the state
of the art techniques5.

Noteworthy is the following thought by an anonymous reviewer: developing
a new variant attack required significant human effort which would have been
unnecessary if its creators had enough computational power to do a general
birthday search of complexity 264.85 MD5 compressions in reasonable time. This
may indicate a reasonable upper bound on available resources. Although, given
the public availability of the Hashclash tools [8] since mid 2009, it might have
been unnecessary in the first place which would imply they explicitly chose to
build their attack or use their already built attack for Flame for some reasons.

At a more detailed level, our analysis revealed that a central idea behind the
attack seems to be that the near-collision blocks operate in pairs: The first two
blocks together eliminate one part of the intermediate hash value differential,
allowing mostly random changes to other parts. The remaining differences (in-
cluding the random changes from the first pair) are eliminated by the second
two blocks. This idea allows a significant reduction in the expected complexity
compared to the previous estimate by Stevens [25], where each near-collision
pair was assumed to target specific intermediate hash value differences.

We have deduced the most likely parametrized family of differential paths
for each near-collision block from which one is selected to eliminate specific
intermediate hash value differences, as well as the complementary parametrized
birthday search procedure that results in an intermediate hash value difference
that can be eliminated using the 4 families of differential paths. We provide
a complexity analysis for plausible parameter choices. Furthermore, we prove
Thm. 6 stating a lower-bound complexity independent of parameter choices to
be 246.6 calls to the compression function in Sect. 4.3.3, and provide parameter
choices that achieve this cost. Sotirov estimated that obtaining their forgery
was significantly more difficult than the original Rogue CA construction, thus
requiring many collisions in order to succeed [23]. This indicates that significant
computational resources need to have been brought to bear to execute each

5 At the time there seems to have been no reason to hold back more advanced tech-
niques, given that counter-cryptanalysis was not publicly known then. Also, if there
was a concern about revealing their knowledge then they could have easily used the
publicly available Hashclash tools [8] instead.

6

chosen-prefix collision attack in a relatively short amount of time in order to
succeed in their overall aim to obtain a forgery.

Lacking more examples or other hints about the actual attack procedure, it
seems to be very hard to determine more specifics of Flame’s chosen-prefix col-
lision attack with any significant level of certainty. This includes the differential
path construction algorithm and the collision search algorithm. For more details
and analysis of less important aspects to our complexity analysis we refer to the
full version of this paper.

The remainder of this paper is as follows. We start in Sect. 3 with an exposi-
tion of the main known techniques for chosen-prefix collision attacks. In Sect. 4.1,
we break down the data from the recovered near-collision block pairs. We present
our reconstruction in Sect. 4.2 and its complexity analysis in Sect. 4.3.

3 MD5 chosen-prefix collision attacks

3.1 MD5

The hash function MD5 maps an arbitrarily long input message M to a 128-bit
output string. Its design follows the Merkle-Damg̊ard construction [5,15], using
a compression function which we call MD5Compress and a chaining value denoted
IHV .

1. Unambiguously pad M to a length that is a multiple of 512.
2. For i = 0, . . . , N − 1, let Mi denote the ith 512-bit block of M . Let

IHV0 = IV = (6745230116, efcdab8916, 98badcfe16, 1032547616)

3. For i = 1, . . . , N , let IHVi = MD5Compress(IHVi−1,Mi−1).
4. Output IHVN converted back from little-endian representation.

The description of MD5Compress we give here is not the standard one but an
equivalent “unrolled” formulation [7] that is better suited for cryptanalysis. The
compression function has 64 steps and computes a sequence of working states
Qt for inputs IHVin ∈ {0, 1}128, M ∈ {0, 1}512:

1. Split IHVin and M into 32-bit words; IHVin = a‖b‖c‖d, M = m0‖ . . . ‖m15

2. Let Q−3 = a, Q−2 = d, Q−1 = c and Q0 = b.
3. For t = 0, . . . , 63, compute

Ft = ft(Qt, Qt−1, Qt−2); Tt = Ft +Qt−3 +ACt +Wt;

Rt = RL(Tt, RCt); Qt+1 = Qt +Rt;

4. Output IHVout = (Q61 + a,Q64 + b,Q63 + c,Q62 + d).

where ACt = b232 · | sin(t+ 1)|c and Wt, ft(X,Y, Z) and RCt are given by:

Step Wt ft(X,Y, Z) RCt
0 ≤ t < 16 mt (X ∧ Y)⊕ (X ∧ Z) (7, 12, 17, 22)[t mod 4]

16 ≤ t < 32 m(1+5t) mod 16 (Z ∧X)⊕ (Z ∧ Y) (5, 9, 14, 20)[t mod 4]

32 ≤ t < 48 m(5+3t) mod 16 X ⊕ Y ⊕ Z (4, 11, 16, 23)[t mod 4]

48 ≤ t < 64 m(7t) mod 16 Y ⊕ (X ∨ Z) (6, 10, 15, 21)[t mod 4]

7

3.2 General approach

When constructing a chosen-prefix collision pair P ||C||Sany and P ′||C ′||Sany for
given prefixes P and P ′ and arbitrary suffix Sany, we may assume without loss of
generality that P and P ′ are of equal length and that their length is a multiple of
the MD5 message block size. (Otherwise, one can just add padding.) A chosen-
prefix collision attack consists of two stages. The first is the Birthday Search
where one searches for equal-length suffixes Sb and S′b such that the difference
in the intermediate hash value after processing P‖Sb and P ′‖S′b has a particular
form necessary for the second stage. In the second stage, one constructs near-
collision block pairs (S1, S

′
1), (S2, S

′
2), . . . , (Sn, S

′
n) such that after processing

P‖Sb‖S1‖ . . . ‖Sn and P ′‖S′b‖S′1‖ . . . ‖S′n the intermediate hash values are equal.
Thus one has found the desired C = Sb‖S1‖ . . . ‖Sn and C ′ = S′b‖S′1‖ . . . ‖S′n for
which the pair P ||C||Sany and P ′||C ′||Sany form a collision for any suffix Sany.
We explain the construction of the near-collision block pairs below.

3.3 Differential cryptanalysis

Differential cryptanalysis is based on the analysis of the propagation of input
differences throughout a cryptosystem. This technique was publicly introduced
in 1993 by Eli Biham and Adi Shamir who first applied it to block ciphers [1].
Differential cryptanalysis of hash functions has been very successful. One of the
key techniques introduced by Wang et al. against MD5 was the simultaneous
use of the difference modulo 232 and the bitwise XOR difference resulting in a
bitwise signed difference.

Let I and I ′ be two different inputs, for any variable X involved in the
computation for input I, we denote the respective variable for input I ′ as X ′.
For X,X ′ ∈ Z232 , we denote by δX = X ′ − X mod 232 the arithmetic differ-
ential. When it is necessary to keep track of the bitwise differences as well, we
use the Binary Signed Digit Representation (BSDR). The BSDR differential is
(∆X[i])i=0,...,31 where ∆X[i] = X ′[i]−X[i] ∈ {−1, 0, 1}. We can easily calculate
the arithmetic difference from the BSDR: δX =

∑
i∆X[i] · 2i mod 232.

For a BSDR ∆X, we define the weight w(∆X) as the number of indices
i where ∆X[i] 6= 0. For δX 6= 0, there are multiple BSDRs ∆X such that

δX =
∑31
i=0∆X[i] · 2i. However, there is a normal form, called the non-adjacent

form (NAF). The non-adjacent form of δX is the unique BSDR ∆X such that∑31
i=0∆X[i] · 2i = δX, ∆X[31] ≥ 0 and ∆X has no adjacent non-zero entries.

The NAF is a minimal-weight BSDR of δX. We define the NAF-weight w(δX)
as the weight of the NAF of δX.

3.4 Differential paths

A differential path is an exact description of how differences propage through two
related evaluations of MD5Compress. In particular, a differential path describes
for every step t the differences δQt−3, ∆Qt−2, ∆Qt−1, ∆Ft, δWt, δTt, δRt and
δQt+1 such that:

8

– δTt = δQt−3 + σ(∆Ft) + δWt;
– δQt+1 = σ(∆Qt) + δRt;
– Pr[∆Ft|∆Qt−2, ∆Qt−1, ∆Qt] > 0;
– Pr[δRt|δTt] > 0.

We say that an input pair (IHV,m0‖ . . . ‖m15), (IHV ′,m′0‖ . . . ‖m′15) for
MD5Compress solves the differential path up to step t if differences for the message
block and the intermediate variables are as specified in the differential path up
to step t.

Although the first differential paths for MD5 were constructed entirely by
hand [29], two quite different ways to construct differential paths have since
been introduced: Stevens’ meet-in-the-middle approach [26] and De Cannière
and Rechberger’s coding-theory based technique [4,14].

Suppose a pair of inputs solves a differential path up to some step. This pair
of inputs might fail to solve the next step because of the Boolean function or
because of the bit rotation. To handle the Boolean functions, bit conditions are
used that allow efficient checks whether our inputs have the correct values for
∆Ft.The rotations are taken care of probabilistically.

3.5 Tunnels

Message modification, specifically Tunneling [10], is an important technique that
can drastically speed up collision attacks. Under some preconditions, a tunnel
allows us to change a certain working state bit Qt[i] and corresponding message
bits without affecting Qt+1, . . . , Qt′ for some t′ > t. As an example, consider the
most important known tunnel T8 with the following requirements:

– Q9[i] is free, i.e., no difference and no boolean function bitcondition
– Q′10[i] = Q10[i] = 0, and Q′11[i] = Q11[i] = 1

Under these conditions, we can flip bits Q9[i] = Q′9[i] and adjust m8, m9 and
m12 without affecting Q10, . . . , Q24 and Q′10, . . . , Q

′
24.

To see why T8 is useful, suppose that we have a differential path and a
partial solution thereof up to and including Q24. We say that a bit-position
i ∈ {0, . . . , 31} is active for T8 if it satisfies the requirements. We call the number
k of active bit-positions the strength of T8. The tunnel allows us to generate 2k

different partial solution up to Q24 — one for each possible value of the active
bit-positions. Since the probability that a partial solution can be extended to a
full solution is rather small, cheaply generating many partial solutions reduces
the cost of the collision attack significantly. In Tbl. 3-1, we describe the three
tunnels that are the most relevant for the Flame collision attack. In Sect. 4.1.3,
we discuss how these tunnels might have been used in the collision attack.

Table 3-1. Most important tunnels for MD5Compress

Tunnel Flip bit Aux. bitconditions Affected states Affected message words

T4 Q9[b] Q10[b] = Q11[b] = 1 Q22, . . . , Q64 m8,m9,m10,m12

T5 Q10[b] Q11[b] = 0 Q22, . . . , Q64 m9,m10,m12,m13

T8 Q9[b] Q10[b] = 0, Q11[b] = 1 Q25, . . . , Q64 m8,m9,m12

9

4 Reverse-engineering Flame’s attack

4.1 Breakdown of data

In Append. B we list the chaining values and near-collision blocks from the
available Flame certificate and the ones for the associated ’legitimate’ certifi-
cate that can be recovered using counter-cryptanalysis. The differential path for
each near-collision block pair can directly be observed by comparing the two
compression function computations. In this section we first list several specific
observations about these (reconstructed) Flame near-collision blocks and the
observed differential paths that are relevant to our reconstruction.

4.1.1 Some features of the near-collision blocks

Observation 1 ([23]) Due the constrained space where the near-collision blocks
were to be hidden in the certificate, the collision attack could only use four near-
collision blocks.

Observation 2 Blocks 1 and 3 of the Flame collision attack use the message
block differences from the first differential path of Wang et al.’s identical-prefix
attack, δm4 = δm14 = 231, δm11 = 215 and δmi = 0 for i 6= 4, 11, 14. Blocks 2
and 4 use the differences from the second differential path of the identical prefix
attack, δm4 = δm14 = 231, δm11 = −215 and δmi = 0 for i 6= 4, 11, 14.

Observation 3 The working state differences ∆Q6 are maximal in all four
near-collision blocks, i.e., for every i = 0, . . . , 31, we have ∆Q6[i] 6= 0. The
∆Q6 of Blocks 1 and 3 are equal, likewise for Blocks 2 and 4.

Observation 4 The four blocks all have a common structure: Up to and in-
cluding step 5, the differences δQt vary among all four blocks. Then, there is a
maximal difference in step 6. After that, the values for ∆Qt and ∆Ft are mostly
identical in the first and third and in Blocks 2 and 4, leading up to long sequences
of trivial steps. The final five steps again differ greatly among all four blocks.

4.1.2 Notes on differential path construction From this last observa-
tion, we conclude that a differential path beginning based on the input IHV s
and a differential path ending were generated separately and then combined.
Such differential path construction can be done for MD5 using Stevens’ meet-in-
the-middle approach [26] or De Cannière and Rechberger’s coding-theory based
technique [4,14]. The latter technique is less likely to have been used, since all
observed differential paths don’t show its characteristic very long carry chains
over the non-predetermined part Q1, . . . , Q5. Stevens already showed that suit-
able differential paths can be constructed in about 15 seconds on an Intel i7-2600
CPU, so in time equivalent to approximately 229 MD5 compressions [25]. As this
shows that differential path construction can be done very fast and does not have
to cost a significant fraction of the overall attack complexity and lacking more
example collisions for analysis, our paper will focus on the complexity-wise more
costly parts of the attack.

10

4.1.3 Tunnel strengths in the near-collision blocks In order to estimate
the complexity of the Flame collision attack, it is important to know whether
and to what extent the attackers used tunnels. The tunnels T4, T5 and T8 are
the most important in speeding up the attack. See Tbl. 3-1 for a description of
the three relevant tunnels.

Observation 5 ([25, Section 3.3]) The table below lists per near-collision block
the observed strength of tunnel T8, the maximal strength possible given the re-
spective differential path and the average strength that would have been observed
if the tunnel was not used.

Near-collision Block Observed strength Maximal strength Average strength

1 7 17 4.25
2 13 18 4.5
3 10 17 4.25
4 9 18 4.5

It is clear that the tunnel T8 has been used, since the observed tunnel
strengths are much larger than one expects to see if T8 was not used. Although
not presented here, we’d like to note that the tunnel strengths for T4 and T5 are
smaller than average, but one cannot conclude that T4 and T5 were not used
since for each bit only one of T4, T5 and T8 can be active due to conflicting
preconditions.

For our complexity estimates, we will assume the strengths of these three
tunnels to be the average over all four blocks. That is, we assume that tunnel T4

has strength 3, T5 has strength 7.5 and T8 has strength 9.75. Reconstructing the
exact tunnel-exploitation method would be interesting and could lead to more
precise complexity estimates. We discuss some possible methods in Sect. 4.2.3.

4.2 Our reconstruction of the chosen-prefix collision attack

In this section, we describe our reconstruction of the collision attack, in particular
the differential path construction, the families of differential paths endings that
were used, the cost of the Birthday Search and of the message block construction.

Central to our reconstruction attempt is the idea that the first two blocks
eliminate δc from δIHV = (δa, δb, δc, δd) up to a constant term while allowing
random changes in parts of δb. The second two blocks then eliminate δb and the
constant term in δc. This allows for the first two blocks to be constructed faster
than estimated in the preliminary analysis in [25].

It seems that the four near-collision attacks can be grouped into two pairs:
Blocks 1 and 2 form a pair, and, likewise, Blocks 3 and 4. In each of the pairs, the
first block uses the message block differences of the first near-collision block in
the identical-prefix attack by Wang et al. and the second block uses the difference
of the second near-collision block in that attack. That is, in Blocks 1 and 3, the
only differences in the message block are δm4 = δm14 = 231 and δm11 = 215. In
Blocks 2 and 4, the differences are negated, i.e., δm11 = −215.

11

Table 4-1. Chaining value difference corrections (δIHVout − δIHVin) for each block

Block 1 Block 2

δa [31] [31, 5]
δd [31, 25] [31,−25,−9, 5]
δc [31, 25,−14,−12, 9] [31, 26, 24, 20,−9, 5]
δb [31, 25,−18,−15,−12, 9, 1] [−26, 24, 21,−14,−9, 5, 0]

Block 3 Block 4

δa [31] [31]
δd [31, 25, 9] [31,−25,−9]
δc [31, 26,−24,−14, 9] [31,−25, 14,−9]
δb [30, 26,−24, 20,−17, 15, 9,−3] [−25, 14,−9,−5, 3, 0]

Note that we list the bit positions of bit differences together with their sign.

To determine the complexity of the Birthday Search and of the message block
construction algorithm, we describe a family of end-segments of the differential
path for each of the four near-collision blocks. We compute the complexity of
the Birthday Search and the complexity of the algorithm for generating near-
collision blocks on the basis of our reconstruction of the end-segments.

4.2.1 Differential path family Four near-collision blocks are used to elimi-
nate the chaining value differences after the birthday search of the chosen-prefix
collision attack. In this section we reconstruct the family of differential paths used
for each of the four near-collision blocks based on the observed chaining value
differences, the observed differential paths and the possible variations thereof
that are compatible with the overall attack.

In particular, each of the four near-collision attacks uses a carry expansion
of a particular bit difference in the last few steps of Wang’s original differen-
tial paths for MD5 to allow for some controlled additional differences to affect
the chaining value differences. This can be seen in the recovered paths shown
in Append. A: for each block there is a primary carry chain either in δQ62 or
δQ63 starting at bit position either 5 or 25 used for controlled differences, other
small carry chains are random artifacts and not actively used. Our reconstruc-
tion is based on these primary carry chains and we will parametrize the amount
of allowed carries. Using other carry chains significantly complicates the overall
attack strategy, does not lead to significant benefits and does not fit the ob-
served paths, hence we apply Ockham’s razor principle and keep to the most
straightforward explanation.

The differences that are added to δIHV = (δa, δb, δc, δd) using each near-
collision block are summarized in Tbl. 4-1. We begin with an outline of what we
assume to be the elimination strategy. The differences in δc are eliminated by
the first two blocks using carry chains in δQ62 starting at bit positions 25 and 5
respectively, but a difference of −224 is introduced which is then eliminated in
the final two blocks. For δb, matters are more complicated. Given the following
observations:

– deliberate changes to δb possible in blocks 1,2 can be deferred to blocks 3,4;

12

Table 4-2. End segment of Block 1.

Steps Bitconditions

60 +BBBB1B.

61 +BBBB1B.

62 X+-----.

63 X.....+.DDDDD+D

64 ***...+. ...***** ***AAA+A****

δQ63 = 231 + 225 + 29 + C14214 +
∑8+w1

i=8 Ci2
i, 1 ≤ w1 ≤ 5

δQ64 = δQ63 +
∑31

i=29Xi2
i +

∑20
i=14Xi2

i +
∑v1

i=0Xi2
i,−1 ≤ v1 ≤ 3

Table 4-3. End segment of Block 2.

Steps Bitconditions

60 +....... BBBBBB1B BBB.....

61 -....... 0000.... BBBBBB1B BB+.....

62 +.....-. -+++++++ ---.....

63 XDDDD-D+ DDDD....-B B+-.....

64 **DDD-A+ AAAD**** ***...-. ..+*****

δQ63 = 231 − 226 + 224 − 29 + 25 +
∑24+w2

i=20 Ci2
i,

δQ64 = δQ63 +
∑29

i=27Bi2
i +B20220 +

∑v2
i=0Xi2

i +
∑19

i=13Xi2
i +

∑31
i=30Xi2

i

0 ≤ w2 ≤ 6, −1 ≤ v2 ≤ 4

– random changes to δb possible in blocks 1,2 can be handled in blocks 3,4;
– blocks 1 and 2 actually increase the NAF-weight of δb;

we found that the best explanation is that the changes to δb in the first two
blocks are mostly random and that the elimination of differences in δb is done
in Block 3 and Block 4 using carry chains in δQ63 starting at bit positions 25
and 5 respectively. This explanation in fact reduces the complexity for Blocks 1
and 2 as they only need to control δQ64 (that affects δb) to a very small extent.

We have generalized the observed differential path endings to a reasonable
extent, i.e., making our reconstructed path families more general would make
matters significantly more complex, while similar benefits might also be obtained
by simply choosing larger parameters for our families below. The four differential
path families are described as follows. For Block i we use a parameter wi that
specifies the length of the carry chain and thus over how many bits one can fully
control the differences. Block 4 uses an additional carry chain whose length is
determined by u4. For Blocks 1 and 2 we use an additional parameter v1 and v2

that control an amount of bit positions in which random differences are allowed
as they can be handled in Blocks 3 and 4, these parameters v1 and v2 depend
on the value of u4.

1. Block 1 uses a carry chain starting in δQ62 at bit position 25 up to 25 +w1

to control differences in δQ63 over bit positions 8 up to 8 + w1. Given the
differences that can be covered in Blocks 3 and 4, we can allow arbitrary
differences in δQ64 at bit position ranges [0, v1], [14, 20], and [29, 31].

13

Table 4-4. End segment of Block 3.

Steps Bitconditions

61 +BBBBBBB1....0.

62 +BBBBB+B0....+.

63 X+----B--....+.

64 .+...+.-DDDD D-D...+.-...

δQ64 = 230 + 226 − 224 + 29 − 23 +
∑15+w3

i=13 Bi2
i, 0 ≤ w3 ≤ 4

Table 4-5. End segment of Block 4.

Steps Bitconditions

61 +.....1. ...BBBBB 11BBBBB.

62 -.....-. ...BBBBB 00BBBB-.

63 X.....-. ...+---- ---++++.

64 DD....-.+....-D DD-D+DDD

δQ64 = −225 + 214 − 29 − 25 + 23 +
∑min(u4,1)

i=30 Bi2
i +

∑u4−2
i=0 Bi2

i +
∑3+w4

i=3 Bi2
i

1 ≤ w4 ≤ 6, 0 ≤ u4 ≤ 4

2. Block 2 uses a carry chain starting in δQ62 at bit position 5 up to bit position
9+w2 to control differences in δQ63 over bit positions 20 up to 24+w2. Given
the differences that can be covered in Blocks 3 and 4, we can allow arbitrary
differences in δQ64 at bit position ranges [0, v2], [13, 19], and [30, 31].

3. Block 3 uses a carry chain starting in δQ63 at bit position 24 up to 26 +w3

to control differences in δQ64 over bit positions 13 up to 15 + w3.
4. Block 4 uses a carry chain starting in δQ63 at bit position 14 up to bit

position 14 + w4 to control differences in δQ64 over bit positions 13 up to
15 + w3, and a second carry chain at bit positions 9 up to 9 + u4 to control
differences over bit positions 30 up to (30 +u4 mod 32) that wrap around to
the lower bit positions.

Note that in Block 4, the parameter u4 must be large enough to eliminate the
random changes to δb that are made in Blocks 1 and 2. That is, if max(v1, v2) ≤ 2,
we need u4 ≥ max(v1, v2) + 2 and otherwise, we need u4 = 4. Also, in Sect. 4.3.2
we will estimate the complexity of solving these differential paths.

We now describe each differential path family more fully in Tbl. 4-2, Tbl. 4-
3, Tbl. 4-4 and Tbl. 4-5 by giving a template and specifying equations that the
values of δQ61, . . . , δQ64 must satisfy. In the templates, a symbol qt[i] at step
(row) i and bit position (column) i can be any of the following:

– ‘.‘: represents Qt[i] = Q′t[i];
– ‘+‘: represents Qt[i] = 0, Q′t[i] = 1;
– ‘-‘: represents Qt[i] = 1, Q′t[i] = 0;
– ‘0‘: represents Qt[i] = Q′t[i] = 0;
– ‘1‘: represents Qt[i] = Q′t[i] = 1;
– ‘^‘: represents Qt[i] = Q′t[i] = Qt−1[i];
– ‘?‘: represents (Qt[i] = Q′t[i]) ∧ (Qt[i] = 1 ∨Qt−2[i] = 0);

14

– ‘D’: a variable differential bitcondition, i.e., qt[i] ∈ {., +, -};
– ‘B’: a variable Boolean function bitcondition, i.e., qt[i] ∈ {., 0, 1, ?};
– ‘X’: a non-constant bitcondition, i.e., qt[i] ∈ {+, -};
– ‘*’: a (for now) irrelevant differential bitcondition;
– ‘A’: the same differential as above, qt[i] = qt−1[i].

The equations may contain the following terms:

– wi, vi, ui: Parameters of the differential path family. Higher values for the
wi mean that the differential path family can cancel more differences but is,
on average, harder to solve.

– Ci, Bi: These terms can take on values in {−1, 0, 1} and correspond to the
variable differential bitconditions (‘D’s) in step 63 or 64, respectively. A mem-
ber of the differential path family is determined by the Ci and Bi.

– Xi: These terms take on values in {−1, 0, 1} and correspond to the irrelevant
bitconditions (‘*’s). While the Bi and Ci fix a differential path in the family,
the Xi are determined only after a successful near-collision block search.

We say that a pair of inputs (IHV,B), (IHV ′, B′) to MD5Compress solves the
last four steps of the differential path if there is some setting for the Xi such
that δQ61, . . . , δQ64 satisfy the given equations. This is a more lax definition
than what we use elsewhere, i.e., we do not require a solution to solve the exact
bitconditions but use bitconditions as a tool to show which δQi are possible.

4.2.2 Birthday Search We calculate the Birthday Search complexity for the
maximal parameter values. It is easy to compute the Birthday Search complexity
for lower values, namely for each carry that is dropped, the complexity increases
by a factor of 20.5.

Given the elimination strategy, we can now specify the Birthday Search tar-
get. We require that there are fixed differences in δa and δd and that for those
bit positions i that we can not manipulate in our four near-collision blocks, we
need c[i] = c′[i] or b[i] = b′[i] (after subtracting the constant bit differences).
Given these constraints, the Birthday Search looks for a collision of the function

f(x) = (a, b̃10, . . . , b̃13, b̃21, . . . , b̃26, c0, . . . , c7, c15, . . . , c19, c31, d)

where (a, b, c, d) =

{
MD5Compress(IHV,B‖x) +

(
−25, 0,−25, 29 − 25

)
x even

MD5Compress (IHV ′, B′‖x) x odd

and b̃ = b− c

with IHV and IHV ′ the intermediate hash values after processing the two chosen
prefixes. Not every collision of f is useful. The probability p that a collision is
useful is at most 1/2 since we require that the two parts use different prefixes.
Therefore the expected number of compression function calls required to find a
useful collision is

√
π · 288/(2 · p) ≈

√
π · 244 ≈ 244.8 [18].

As we already mentioned, we use parameters to make trade-offs between
message block construction and Birthday Search cost. For every carry we do not

15

rely on, we introduce another bit position where b and b′ or c and c′ may not
differ, increasing the Birthday Search complexity by a factor of 20.5. This allows
us to trade off Birthday Search complexity against complexity in the message
block construction.

4.2.3 Tunnel exploitation analysis As explained in Sect. 4.1.3, the tunnel
strength in the Flame differential paths was neither average nor maximized. We
now derive a formula for the expected tunnel strength when each tunnel bit is
active with probability α. Let m be the number of bits that could be active for
T8. For a random solution up to step 24, let S be the random variable measuring
the strength of T8 and solve the event that the partial solution can be extended
to a full solution using T8. Assuming Pr[solve | S = k] ≈ 2k · p for some p
independent of k, we can calculate

E[S | solve] ≈
m∑
k=0

k ·
(
m
k

)∑m
i=0

(
m
i

)
· (2α)i−k · (1− α)k−i

An explanation for the observed tunnel strengths (Obs. 5) proposed in [25]
is that the Flame authors did not try to maximize the tunnel strength but used
tunnels in their message block construction algorithm to the extent that they
were available. This corresponds to setting α = 1/4. On the other hand, we
consider the alternative hypothesis that many bits in working state Q10 were
fixed to ‘0’ to bring the probability closer to α = 1/2. In Tbl. 4-6, we list the
expectation and variance of the tunnel strength for both values of α. These
results show that the initial explanation by Stevens with α = 1/4 is rather
unlikely, while the explanation with α = 1/2 is more probable.

Table 4-6. Summary of the observed (s), maximal (m) and expected (µ) tunnel
strength, and the standard deviation (σ).

α = 1/4 α = 1/2
Block s m µ σ µ σ

1 7 17 6.80 2.02 8.67 1.70
2 13 18 7.20 2.08 10.00 1.83
3 10 17 6.80 2.02 9.33 1.76
4 9 18 7.20 2.08 10.67 1.89

4.3 Cost estimation

4.3.1 A formula for the expected cost We now estimate the cost of gen-
erating a near-collision block. Since the bitconditions are concentrated on the
first 16 working states and the tunnel T8 is used, we assume that the algorithm
can be broken down into the following steps:

1. Generate a full differential path/generate a set of initial working states that
connects to the lower differential path.

16

2. Select Q1, . . . , Q16 according to the path and tunnel requirements.
3. Try to obtain a solution6 up to step 24 with the help of tunnels T4 and T5.

Go back to step 2 and choose different Qi if it is not possible to obtain a
solution and use early abort to reduce the cost of this step.

4. Attempt to generate a solution for the whole path from our solution up to
step 24 using tunnel T8. We use early abort to some extent.

5. Check if the values for δQ61, . . . , δQ64 are correct. If yes, we have a solution.

The expected cost of this algorithm is as follows: Cpath is the differential path
construction cost; let the random variable Z be the number of input pairs with
δQ57 = · · · = δQ60 = 231 that we need to evaluate until we find an input pair
where δQ61, . . . , δQ64 are as specified by the differential path. The expected cost
of finding a solution with the correct values for δQ61, . . . , δQ64 is then

Cblock = Cpath + E[Z] · 213.6.

The factor 213.6 represents the measured average complexity of finding input
pairs with δQ57 = · · · = δQ60 = 231 for Flame’s differential paths. This com-
plexity is very stable for all near-collision blocks as the differential paths are
only varied in the first 16 steps which don’t affect complexity and the last few
steps which are instead covered by Z. Hence, the expected complexity of finding
a near-collision block is E[Z] · 213.6.

We give estimates for E[Z] in the next section. As discussed in Sect. 4.1.2,
Cpath can be as low as 229 MD5 compressions, which will be negligible compared
to the other parts of the attack.

4.3.2 Estimating the expected number of attempts In this section, we
want to estimate the expected number of input pairs with δQ57 = · · · = δQ60 =
231 we have to generate until a solution for the differential path is found. We
call input pairs with δQ57 = · · · = δQ60 = 231 admissible input pairs and we call
the values for δQ61, . . . , δQ64 that we want the target.

Let Ti,ui,vi,wi be the random variable that gives the target for Block i with
parameters ui, vi and wi. Selecting a target is done by selecting the values
for Bk, Ck ∈ {−1, 0, 1} as in Sect. 4.2.1. Let Zτ be the random variable that
counts the admissible inputs we have to try until τ is solved and let Zi,ui,vi,wi

be the random variable obtained by first sampling τ ← Ti,ui,vi,wi
and then

sampling Zτ . To compute the total expected cost, we need E [Zi,ui,vi,wi
]. To

obtain an empirical estimate λi,ui,vi,wi , we repeat the following process until
a fixed number of targets is solved: We first sample τ ← Ti,ui,vi,wi and then
select random admissible inputs and message blocks until we find one that solves
the target.7 When the chosen number of targets is solved, we let the average
number of attempts to solve a target be our estimate λi,ui,vi,wi

. We then obtain

6 We say that a pair of inputs solves a path up to step t if it agrees with the bitcon-
ditions q−3, . . . , qt and with the δQt+1 from the differential path.

7 Recall that we say that an input solves a differential path if there exists a setting
for the Xk such that δQ61, . . . , δQ64 are as described by the path.

17

Ci,ui,vi,wi
= λi,ui,vi,wi

· 213.6 as an estimate for the cost of solving the differential
path for Block i with parameters ui, vi and wi. The simulation outcomes for the
four blocks are given in Tbl. 4-7, Tbl. 4-8, Tbl. 4-9 and Tbl. 4-10.

To save time, we do not generate admissible inputs as in Sect. 4.3.1. Instead,
we select working states Q57, . . . , Q60 and message words m0, . . . ,m15 at random
and compute Q′57, . . . , Q

′
60 and m′0, . . . ,m

′
15 by applying the appropriate arith-

metic differentials. This procedure requires the assumption that the probability
for hitting the target does not change when we select Q57, . . . , Q60 and message
words at random, which is justified by the pseudo-randomness of MD5.

Our estimate of the Birthday Search cost in Sect. 4.2.2 assumes that the
parameters wi and u4 are maximal. For smaller parameter values, the cost must
be multiplied by a “Birthday Factor” µi which we give in Tbl. 4-11.

Table 4-7. Estimated complexities for the first near-collision block.

log2 C1,v1,w1 v1 = −1 v1 = 0 v1 = 1 v1 = 2 v1 = 3

w1 = 1 24.1 23.7 23.6 23.4 22.9

w1 = 2 25.8 25.2 25.0 24.8 24.3

w1 = 3 27.9 27.2 26.8 26.5 26.1

w1 = 4 29.8 29.1 28.6 28.2 27.8

w1 = 5 30.4 29.7 29.2 28.7 28.3

Table 4-8. Estimated complexities for the second near-collision block.

log2 C2,v2,w2 v2 = −1 v2 = 0 v2 = 1 v2 = 2 v2 = 3 v2 = 4

w2 = 0 35.4 34.8 34.7 34.6 34.6 34.6

w2 = 1 37.0 36.2 36.1 36.0 36.0 36.0

w2 = 2 39.2 38.2 37.9 37.8 37.8 37.8

w2 = 3 41.6 40.5 40.0 39.8 39.7 39.7

w2 = 4 44.0 42.9 42.4 42.0 41.8 41.8

w2 = 5 46.7 45.5 45.0 44.6 44.2 44.0

w2 = 6 49.3 48.1 47.6 47.2 46.8 46.4

Table 4-9. Estimated complexities for the third near-collision block.

log2 C3,w3

w3 = 0 32.3

w3 = 1 34.3

w3 = 2 36.4

w3 = 3 38.1

w3 = 4 38.3

4.3.3 Total cost Let us now combine our estimates for the cost of solving
the paths for different parameter setting with the Birthday Search complexity.
We will calculate the following costs:

18

Table 4-10. Estimated complexities for the fourth near-collision block.

log2 C4,u4,w4 u4 = 0 u4 = 1 u4 = 2 u4 = 3 u4 = 4

w4 = 1 34.1 33.8 35.6 38.2 38.7

w4 = 2 35.2 35.0 36.7 39.4 39.8

w4 = 3 37.0 36.5 38.4 41.0 41.4

w4 = 4 38.8 38.4 40.2 42.7 43.8

w4 = 5 40.8 40.6 42.3 44.6 44.8

w4 = 6 43.0 42.4 43.6 46.9 47.8

Table 4-11. “Birthday Factors” for the four near-collision blocks.

Block i 1 2 3 4

log2µi (5− w1)/2 (6− w2)/2 (4− w3)/2 (10− w4 − u4)/2

– Cmsg: expected cost when minimizing the message block construction cost.
– Cflame: expected cost when minimizing the message block construction cost

while keeping the parameters consistent with the observed paths.
– Csearch: expected cost when minimizing the Birthday Search cost.
– Cmin: minimal expected cost.

Firstly, for Cmsg, we choose w1, . . . , w4 to be as small as possible. We have to
balance the parameters v1 and v2 against u4. Increasing v1 and v2 does not speed
up the message block construction by much, so we pick v1, v2 = −1 which allows
us to pick u4 = 1. The combined Birthday Factor for these parameters is 211.0.
We therefore have

Cmsg = 4 · Cpath + 211.0 · 244.3 · p−1/2 + 224.1 + 235.4 + 232.3 + 234.1 ≈ 255.8

where Cpath is the cost of constructing a full differential path and p is the prob-
ability that a collision is useful. We assume that p ≈ 1/2 and use the fact that
4 · Cpath can be negligible compared to the other costs (see Sect. 4.1.2).

For Cflame, we must choose minimal values for the wi that are compatible
with the differential paths. That is, we must take w1 = 4, w2 = 3, w3 = 4 and
w4 = 1. We have v1 ≥ 1 and v2 ≥ 0, therefore, we must have u4 ≥ 3. We can
minimize the cost by choosing v1 = v2 = u4 = 4. Then, we have a Birthday
Factor of 24.5. With the same assumptions as before, this gives us

Cflame = 4 · Cpath + 248.8 · p−1/2 + 227.8 + 239.7 + 238.3 + 238.7 ≈ 249.3.

For Csearch, we have a Birthday Factor of 1 and

Csearch = 4 · Cpath + 244.3 · p−1/2 + 228.3 + 246.4 + 238.3 + 247.8 ≈ 248.4

To minimize the total expected cost, we take w1 = 5, v1 = 3, w2 = 5, v2 = 4,
w3 = 4, w4 = 5 and u4 = 4. Then, we have a Birthday Factor of 21.0 and

Cmin = 4 · Cpath + 245.8 · p−1/2 + 228.3 + 244.0 + 238.3 + 244.8 ≈ 246.6

We now show that this cost is indeed minimal:

19

Theorem 6 Given the values for E[Z] from Sect. 4.3.2 and assuming that the
probability p for a useful collision in the Birthday Search is 1/2, the expected
cost of the collision attack is equivalent to at least Cmin = 246.6 executions of
MD5Compress . For suitably chosen parameters, this cost can be achieved.

Proof. We have already given parameters which show that the second part of
the theorem holds. To see that this parameter choice indeed gives us the minimal
cost, let us try to improve upon it: It is easy to see that the Birthday Factor µ
must satisfy 1 < µ ≤ 21.5 for if µ = 1, the attack complexity is Csearch > Cmin and
if µ = 22.0, the Birthday Search cost is already larger than Cmin. If µ = 20.5·k, we
can reduce the wi or ui parameters by k. Since Blocks 2 and 4 have the highest
complexity, this is where these reductions should be spent.

For µ = 20.5, in order to improve upon Cmin, we need to construct the near-
collision blocks with a cost ≤ 245.8, for µ = 21.0, the cost needs to be ≤ 245.4

and for µ = 21.5 it needs to be ≤ 244.2. It turns out that the only way these
constraints can be satisfied is by setting µ = 21.0 and reducing the parameters
w2 and w4. But these are precisely the parameters that give us Cmin. ut

The parameters for Cmin are consistent with the observed differential paths.
Assuming that our reconstruction is correct, we can conclude that the expected
cost of the collision attack used by the Flame authors is lower-bounded by 246.6

calls to MD5Compress. However, it seems likely that the cost of the actual attack
was higher than Cmin since the observed number of carries is always lower than
the Cmin-parameters. Nevertheless, the actual collision attack might have been
faster in practice: Since Birthday Search can be executed very cost-effectively on
massively parallel architecture (e.g., GPUs), it might be advantageous to shift a
larger part of the workload to the Birthday Search step.

The expected cost of the [27]-attack with four near-collision blocks is roughly
1/4 of the lower bound of the Flame attack; its expected cost is equivalent to
244.55 calls to MD5Compress (see [25, Section 3.7]). The cost of the Birthday
Search dominates the total cost.

5 Conclusion

In this paper we have demonstrated for the first time that a cryptanalytic attack
can be reconstructed from a single output example, specifically, a single example
half of a collision pair. We have provided a complexity analysis proving a lower-
bound for its cost. Furthermore, we showed that in terms of theoretical cost,
the Flame attack is less efficient than the [27]-attack, although it might achieve
a better real-world performance when the Birthday Search is performed on a
massively parallel architecture.

Our reverse-engineering of a yet unknown cryptanalytic attack seems to be
without precedent. As allegedly Flame was developed by some nation-state(s),
the example collision and its analysis in this work provide some insights to their
cryptanalytic knowledge and capabilities. With respect to the complexity, the
closest fit of attack parameters is equivalent to 249.3 MD5 compressions which

20

takes roughly 40,000 CPUcore hours. That means for say 3-day attempts to suc-
ceed in reasonable time given the large number of required attempts, one needs
about 560 CPUcores, which is large but not unreasonable even for academic
research groups. With the respect to cryptanalytic knowledge there are no indi-
cations at all of superior techniques, rather various parts seem to be sub-optimal
compared to the state-of-the-art in the literature. In particular it is clear that
one could do better using the state-of-the-art in the literature, i.e., lower the-
oretical complexity to craft a 4-block chosen-prefix collision (see Thm. 6), and
generate differential paths with significantly lower density of bitconditions in
negligible time (as previously observed [25]). Nevertheless, the apparent signifi-
cant resources more than make up for that and it seems a working attack that
succeeds in reasonable time was more important than optimizing the overall
attack using all state of the art techniques.

A Flame Differential Paths

Here, we show the differential paths for all four Flame near-collision blocks,
see also Sect. 4.2.1. The column ‘Probability’ lists the theoretical unconditional
rotation probabilities from δTt to δRt. If this rotation probability for this δTt
is not maximal, we list the maximal possible rotation probability for this δTt
albeit for a different δRt between braces. In the next column ‘Cond. Est.’, we
give empirical estimates for the probabilities of the rotations conditioned on that
the Qi satisfy their bitconditions.

Table A-1. Differential path sections of the 1st near-collision block of Flame’s attack

t Bitconditions qt[31] . . . qt[0] Probability Cond. est.

2 +0-0-.00 .-++00+- 0-1-+.1+ 1+-0++^. 0.247 (0.628) 0.166
3 +010-000 .-+++0+1 +--.+^1+ -+-+++-. 0.911 1
4 -00-10+. .11-+-0+ +++11--0 -101-+0. 0.381 (0.561) 1
5 0-+-++-^ ^0110+1- -110+0-0 -0001+1^ 0.229 (0.435) 1
6 ++----+- ---+---- -----+++ ++++++++ 0.425 (0.514) 1
7 111.-111 1101011. 110-1001 +0100.00 0.838 1
8 00+0.111 10111101 -1101100 .1110011 0.063 (0.444) 0.171
9 ..0.1...-.. 0.10+... 0-....0. 0.516 0.563

59 +....... 1 1
60 +.11110. 1 1
61 +.11000.001.00. 0.992 1
62 -.+----.0.... 0.391 (0.609) 0.427
63 +.?0??+.--+.+-. 0.867 0.855
64 +......+ ++++++.. -..-.+-.+-.

21

Table A-2. Differential path sections of the 2nd near-collision block of Flame’s attack

t Bitconditions qt[31] . . . qt[0] Probability Cond. est.

2 .01.-011 00+-++0+ 0--+.--0 ++10+0+0 0.849 0.492
3 ..1.-+11 +001++^+ 01-+0110 0+1++0++ 0.623 0.833
4 ..-.1-11 ++1-++-+ -1111--+ ++0+-+-1 0.100 (0.547) 1
5 ^^1^+1-- 10-01011 0+10-1-+ 0-+++000 0.399 (0.431) 0.499
6 +-++++++ ++++---- ------+- --+----- 0.458 (0.518) 1
7 0010-000 01111011 1011-111 10.10010 0.961 1
8 00000100 1111111+ -1001111 1-010111 0.468 0.673
9 ...-1... .-.....1 0..1+... .1....^. 0.468 (0.469) 0.495

58 +....... 1 1
59 +.......0..... 1 1
60 +.....0.1001. 110..... 0.5 0.507
61 -....100 ...0.... ...1..1. 00+..... 0.496 0.749
62 +....1-.-+++. +--..... 0.972 0.948
63 +....++- ...+.... ...???-. ?+-..... 0.238 (0.270) 0.262
64-- ..+..... .-....-. .+-....+

Table A-3. Differential path sections of the 3rd near-collision block of Flame’s attack

t Bitconditions qt[31] . . . qt[0] Probability Cond. est.

2 10-01110 +++1---+ +10+.... 0-0++++1 0.404(0.408) 0.374
3 -0-01^1+ +0+1--10 0-++^^.0 01+0+00. 0.941 1
4 --0++-00 0-0+11++ ++-1-+10 -+00+-1. 0.085(0.593) 1
5 -1++-0-1 +1-00+1- +0++110- -1--1+^^ 0.776 1
6 ++----+- ---+---- -----+++ ++++++++ 0.514 1
7 1000-010 00.1010. 101-0101 +0001.00 0.838 1
8 11+1.101 01011100 -1000101 .1000011 0.437 0.0566
9 ..0.1...-.. 0.10+... 0-....0. 0.516 0.573

58 +....... 1 1
59 +....... 1 1
60 -.....0.1. 1 1
61 -.0110.01....0. 0.496 0.515
62 +..01.+.0....+. 0.498 0.492
63 +.+---?--....+. 0.404 0.396
64 .+...+.-++++ -.....+.-...

22

Table A-4. Differential path sections of the 4th near-collision block of Flame’s attack

t Bitconditions qt[31] . . . qt[0] Probability Cond. est.

2 +--.-0-. -+1+0--0 1+1-1-++ -1-00+-- 0.691 0.757
3 +--1-^1. .+100--+ 10---1+0 ---0++-1 0.309 1
4 -010+-1. 10-1-01+ 0-000-1- 0+-10-1- 0.574 1
5 +00-+00^ 0++-11-0 +++0-111 01-+-100 0.749 1
6 +-++++++ ++++---- ------+- --+----- 0.518 0.507
7 .111-110 01.010.0 0101-110 1101.011 0.961 0.735
8 11110110 0101000+ -0101111 0-100111 0.032(0.476) 0.0508
9 ...-1... .-.....1 0..1+... .1....^. 0.468(0.469) 0.522

58 -....... 1 1
59 -....... 1 1
60 +.....0.00. 1 1
61 +.....1. 11....1. 0.496 0.525
62 -.....-. 10...-+. 0.5 0.493
63 +.....-. +-...?-. 0.500 0.503
64-++. +-....-. ..-.+..+

B Message blocks and IHV s

Flame certificate Legitimate certificate

IHV7 a262d0136907c960bb84d9d73b74732e 8262d01365179fa09bd4c9cf1b76732e

B8 7f7b4b7bc6beeb3f9f983da38487547e 7f7b4b7bc6beeb3f9f983da38487547e

728771254b6835ae65bd6c8fdc8dacc4 728771a54b6835ae65bd6c8fdc8dacc4

e89892dedc5362f5726a2527a31246eb e89892dedc5362f5726a2527a39246eb

7f6d58cd3083d77a85b848e60e011168 7f6d58cd3083d77a85b848660e011168

IHV8 63fc3d453bdacbc8826faa39cc7df2cc 43fc3dc5395c9d8a62719ab3ac7ff24e

B9 657d53380b40f43b684359c13c05c340 657d53380b40f43b684359c13c05c340

269d5197e2eb2eb8c2196e4e94463bd8 269d5117e2eb2eb8c2196e4e94463bd8

d4fd0d00d168fadff3fa188a7c659bda d4fd0d00d168fadff3fa188a7ce59ada

23119f16a68b23248887226919c211ea 23119f16a68b2324888722e919c211ea

IHV9 7aeea241ddd49e30b9ce4dab4b8e0ff4 7aeea241fc1490efb9ce4daa4b8e0ff4

B10 9d3681adfbe88bd2d0eb06f21a868dc6 9d3681adfbe88bd2d0eb06f21a868dc6

84f388c5e0d964c64895d4bed3544891 84f38845e0d964c64895d4bed3544891

e66ce91e33971542eeb46d1f150b27dd e66ce91e33971542eeb46d1f158b27dd

08bb81deb6961639d926446a5fd16b3f 08bb81deb6961639d92644ea5fd16b3f

IHV10 ac3aa31bd79e7f3a9b34ec0a850e3940 ac3aa39bee607f3c9bf6eb8c851039c2

B11 1271dcf09962d2431458f86ef82235d2 1271dcf09962d2431458f86ef82235d2

90f7fd936ac449b8cb0ce965a8f722b5 90f7fd136ac449b8cb0ce965a8f722b5

f2051920ef2563c7b3974a823eb2e3ee f2051920ef2563c7b3974a823e32e3ee

b45ecb1db3598f8df47901b1b6688914 b45ecb1db3598f8df4790131b6688914

23

References

1. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.
Springer-Verlag, London, UK, UK (1993)

2. den Boer, B., Bosselaers, A.: Collisions for the compressin function of md5. In:
Helleseth, T. (ed.) EUROCRYPT. Lecture Notes in Computer Science, vol. 765,
pp. 293–304. Springer (1993)

3. Brassard, G. (ed.): Advances in Cryptology - CRYPTO ’89, 9th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 20-24,
1989, Proceedings, Lecture Notes in Computer Science, vol. 435. Springer (1990)

4. Cannière, C.D., Rechberger, C.: Finding sha-1 characteristics: General results and
applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT. Lecture Notes in Computer
Science, vol. 4284, pp. 1–20. Springer (2006)

5. Damg̊ard, I.: A design principle for hash functions. In: Brassard [3], pp. 416–427
6. Dobbertin, H.: The status of md5 after a recent attack. RSA CryptoBytes, Vol. 2,

Nr. 2 (1996)
7. Hawkes, P., Paddon, M., Rose, G.G.: Musings on the wang et al. md5 collision.

Cryptology ePrint Archive, Report 2004/264 (2004)
8. Hashclash project webpage, http://code.google.com/p/hashclash
9. Klima, V.: Finding md5 collisions on a notebook pc using multi-message modifi-

cations. Cryptology ePrint Archive, Report 2005/102 (2005)
10. Klima, V.: Tunnels in hash functions: Md5 collisions within a minute. Cryptology

ePrint Archive, Report 2006/105 (2006)
11. Lab, C.: skywiper (a.k.a. flame a.k.a. flamer): A complex malware for targeted

attacks. Laboratory of Cryptography and System Security, Budapest University of
Technology and Economics (May 31, 2012)

12. Lab, K.: The flame: Questions and answers. Securelist blog (May 28, 2012)
13. Liang, J., Lai, X.: Improved collision attack on hash function md5. Cryptology

ePrint Archive, Report 2005/425 (2005)
14. Mendel, F., Rechberger, C., Schläffer, M.: Md5 is weaker than weak: Attacks on

concatenated combiners. In: Matsui, M. (ed.) ASIACRYPT. Lecture Notes in Com-
puter Science, vol. 5912, pp. 144–161. Springer (2009)

15. Merkle, R.C.: One way hash functions and DES. In: Brassard [3], pp. 428–446
16. Microsoft: Flame malware collision attack explained. Security Research & Defense,

Microsoft TechNet Blog (June 6, 2012)
17. Microsoft: Microsoft certification authority signing certificates added to the un-

trusted certificate store. Security Research & Defense, Microsoft TechNet Blog
(June 3, 2012)

18. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic ap-
plications. J. Cryptology 12(1), 1–28 (1999)

19. Post, T.W.: U.s., israel developed flame computer virus to slow iranian nuclear
efforts, officials say. Ellen Nakashima, Greg Miller and Julie Tate (June 2012)

20. Ray, M.: Flame’s windows update certificate chain. Randombit cryptography mail-
ing list (June 2012), http://lists.randombit.net/pipermail/cryptography/

2012-June/002969.html

21. Rivest, R.L.: The MD5 Message-Digest algorithm. Internet Request for Comments
(April 1992), rFC 1321

22. Sasaki, Y., Naito, Y., Kunihiro, N., Ohta, K.: Improved collision attack on md5.
Cryptology ePrint Archive, Report 2005/400 (2005)

23. Sotirov, A.: Analyzing the md5 collision in flame (June 2012)

24

http://code.google.com/p/hashclash
http://lists.randombit.net/pipermail/cryptography/2012-June/002969.html
http://lists.randombit.net/pipermail/cryptography/2012-June/002969.html

24. Stevens, M.: Fast collision attack on md5. Cryptology ePrint Archive, Report
2006/104 (2006)

25. Stevens, M.: Counter-cryptanalysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO.
Lecture Notes in Computer Science, vol. 8042-I, pp. 129–146. Springer (2013)

26. Stevens, M., Lenstra, A.K., de Weger, B.: Chosen-prefix collisions for md5 and
colliding x.509 certificates for different identities. In: Naor, M. (ed.) EUROCRYPT.
Lecture Notes in Computer Science, vol. 4515, pp. 1–22. Springer (2007)

27. Stevens, M., Sotirov, A., Appelbaum, J., Lenstra, A.K., Molnar, D., Osvik, D.A.,
de Weger, B.: Short chosen-prefix collisions for md5 and the creation of a rogue ca
certificate. In: Halevi, S. (ed.) CRYPTO. Lecture Notes in Computer Science, vol.
5677, pp. 55–69. Springer (2009)

28. Wang, X., Feng, D., Lai, X., Yu, H.: Collisions for hash functions md4, md5, haval-
128 and ripemd. Cryptology ePrint Archive, Report 2004/199 (2004)

29. Wang, X., Yu, H.: How to break md5 and other hash functions. In: Cramer, R.
(ed.) EUROCRYPT. Lecture Notes in Computer Science, vol. 3494, pp. 19–35.
Springer (2005)

30. Xie, T., Feng, D.: How to find weak input differences for md5 collision attacks.
Cryptology ePrint Archive, Report 2009/223 (2009)

31. Yajima, J., Shimoyama, T.: Wang’s sufficient conditions of md5 are not sufficient.
Cryptology ePrint Archive, Report 2005/263 (2005)

25

	Reverse-engineering of the cryptanalytic attack used in the Flame super-malware
	Introduction
	End-of-life of a cryptographic primitive
	Collisions for MD5
	Counter-cryptanalysis

	The super-malware `Flame'
	Background
	Propagation
	Unknown variant chosen-prefix collision attack

	Our contributions
	MD5 chosen-prefix collision attacks
	MD5
	General approach
	Differential cryptanalysis
	Differential paths
	Tunnels

	Reverse-engineering Flame's attack
	Breakdown of data
	Some features of the near-collision blocks
	Notes on differential path construction
	Tunnel strengths in the near-collision blocks

	Our reconstruction of the chosen-prefix collision attack
	Differential path family
	Birthday Search
	Tunnel exploitation analysis

	Cost estimation
	A formula for the expected cost
	Estimating the expected number of attempts
	Total cost

	Conclusion
	Flame Differential Paths
	Message blocks and IH Vs
	References

