
Generic Security of NMAC and HMAC with
Input Whitening

Peter Gaži1, Krzysztof Pietrzak1, and Stefano Tessaro2

1 IST Austria
{peter.gazi,pietrzak}@ist.ac.at

2 UC Santa Barbara
tessaro@cs.ucsb.edu

Abstract. HMAC and its variant NMAC are the most popular ap-
proaches to deriving a MAC (and more generally, a PRF) from a cryp-
tographic hash function. Despite nearly two decades of research, their
exact security still remains far from understood in many different con-
texts. Indeed, recent works have re-surfaced interest for generic attacks,
i.e., attacks that treat the compression function of the underlying hash
function as a black box.
Generic security can be proved in a model where the underlying com-
pression function is modeled as a random function – yet, to date, the
question of proving tight, non-trivial bounds on the generic security of
HMAC/NMAC even as a PRF remains a challenging open question.
In this paper, we ask the question of whether a small modification to
HMAC and NMAC can allow us to exactly characterize the security of
the resulting constructions, while only incurring little penalty with re-
spect to efficiency. To this end, we present simple variants of NMAC and
HMAC, for which we prove tight bounds on the generic PRF security,
expressed in terms of numbers of construction and compression func-
tion queries necessary to break the construction. All of our constructions
are obtained via a (near) black-box modification of NMAC and HMAC,
which can be interpreted as an initial step of key-dependent message
pre-processing.
While our focus is on PRF security, a further attractive feature of our
new constructions is that they clearly defeat all recent generic attacks
against properties such as state recovery and universal forgery. These ex-
ploit properties of the so-called “functional graph” which are not directly
accessible in our new constructions.
Keywords. message authentication codes, HMAC, generic attacks, prov-
able security

1 Introduction

This paper presents new variants of the HMAC/NMAC constructions of message
authentication codes which enjoy provable security as a pseudorandom function
(PRF) against generic distinguishing attacks, i.e., attacks which treat the com-
pression function of the underlying hash function as a black-box. In particular,

we prove concrete tight bounds in terms of the number of queries to the construc-
tion and to the compression function necessary to distinguishing our construction
from a random function. Our constructions are the first HMAC/NMAC variants
to enjoy such a tight analysis, and we see this as an important stepping stone
towards the understanding of the generic security of such constructions.

Hash-Based MACs.HMAC [3] is the most widely used approach to key a hash
function H to obtain a PRF or a MAC. It computes the output on message M
and a key K as

HMAC(K,M) = H(K ⊕ opad ‖H(K ⊕ ipad ‖M)) ,

where opad 6= ipad are constants.3 Usually, H is a hash function like SHA-1,
SHA-256 or MD5, in particular following the Merkle-Damg̊ard paradigm [16,4].
That is, it extends a compression function f : {0, 1}c × {0, 1}b → {0, 1}c into
a hash function MDf

IV by first padding M into b-bit blocks M [1], . . . ,M [`], and
then producing the output H(M) = S`, where

S0 ← IV , Si ← f(Si−1 ‖M [i]) for all i = 1, . . . , ` . (1)

starting with the c-bit initialization value IV. A cleaner yet slightly less practical
variant of HMAC is NMAC, which instead outputs

NMACKin,Kout(M) = MDf
Kout

(MDf
Kin

(M)) ,

where Kin,Kout ∈ {0, 1}c are key values.

Security of HMAC/NMAC.The security of both constructions has been stud-
ied extensively, both by obtaining security proofs and proposing attacks. On the
former side, NMAC and HMAC were proven to be secure pseudorandom func-
tions (PRFs) in the standard model [3], later also using weaker assumptions [2]
and via a tight bound in the uniform setting [7]. However, as argued in [7], this
standard-model bound might be overly pessimistic, covering also very unnatural
constructions of the underlying compression function f (for example the one used
in their tightness proof). The authors hence argue for the need of an analysis
of the PRF security of HMAC in the so-called ideal compression function model
where the compression function is modelled as an ideal random function and the
adversary is allowed to query it. This model was previously used by Dodis et
al. [6] to study indifferentiability of HMAC, which however only holds for certain
key lengths.

This is also the model implicitly underlying many of the recently proposed
attacks on hash-based MACs [19,17,15,20,10,5,22]. These attacks are termed
generic, meaning they can be mounted for any underlying hash function as long
as it follows the Merkle-Damg̊ard (MD) paradigm. The complexity of such a
generic attack is then expressed in the number of key-dependent queries to the
construction (denoted qC) as well as the number of queries to the underlying
compression function (denoted qf). These two classes of queries are also often
referred to as online and offline, respectively.

3 Some details such as padding and arbitrary key length are addressed in Section 2.

All iterated MACs are subject to the long-known Preneel and van Oorschot’s
attack [21] which implies a forgery (and hence also distinguishing) attack against
HMAC/NMAC making qC = 2c/2 construction queries (consisting of constant-
length messages) and no direct compression function queries (i.e, qf = 0). This
immediately raises two questions:

How does the security of HMAC and NMAC degrade (in terms of tolerable
qC) by increasing (1) the length ` of the messages and (2) the number qf
of compression-function evaluations?

The first question has been partially addressed in [7]. Their result4 can be inter-
preted as giving tight bounds on the PRF security of NMAC against an attacker
making qC key-dependent construction queries (of length at most ` < 2c/3 b-
bit blocks) but no queries to the compression function. They show that both
constructions can only be distinguished from random function with advantage
roughly ε(qC, `) ≈ `1+o(1)qC2/2c, improving significantly on the bound ε(qC, `) ≈
`2qC

2/2c provable using standard folklore techniques. From our perspective, this
bound can be read as a smooth trade-off: with increasing maximum allowed
query length ` it tells us how many queries qC can be tolerated for any accept-
able upper bound on advantage.

Still, it is not clear how this trade-off changes when allowing extremely long
messages (` > 2c/3) and/or some queries to the compression function (qf > 0).
Note that while huge ` can be prevented by standards, in practical settings qf
is very likely to be much higher than qC, as it represents cheap local (offline)
computation of the attacker. We therefore focus on capturing the trade-off be-
tween qC and qf for values of qC that do not allow to mount the attack from [21].
However, as we argue below, getting such a tight trade-off for NMAC/HMAC
seems to be out of reach for now, we hence relax the problem by allowing for
slight modifications to the vanilla NMAC/HMAC construction.

Our Contributions. We ask the following question here, and answer it posi-
tively:

Can we devise variants of HMAC/NMAC whose security provably de-
grades gracefully with an increasing number of compression function
queries qf , possibly retaining security for qf being much larger than 2c?

The main contribution of this paper is the introduction and analysis of a
variant of NMAC (which we then adapt to the HMAC setting, as described
below) which uses additional key material to “whiten” message blocks before
being processed by the compression function. Concretely, our construction –
termed WNMAC (for “whitened NMAC”) uses an additional extra b-bit key Kw,
and given a message M padded as M [1], . . . ,M [`], operates as NMAC on input

4 Here we refer to Theorem 2 in [7] that formally considers a related construction
NI in the standard model. However, its proof starts by a transition to the ideal-
model analysis of a construction very closely related to NMAC, while disallowing
compression-function queries.

padded to blocks M ′[i] = M [i]⊕Kb, i.e., every message block is whitened with
the same key (see also Fig. 1).

The rationale behind WNMAC is two-fold. First, from the security viewpoint,
the justification comes from the rich line of research on generic attacks on hash-
based MACs. Most recent attacks [19,15,20,10] exploit the so-called “functional
graph” of the compression function f, i.e., the graph capturing the structure of
f when repeatedly invoked with its b-bit input fixed to some constant (say 0b).
Since our whitening denies the adversary the knowledge of b-bit inputs on which
f is invoked during construction queries, intuitively it seems to be the right way
to foil such attacks. Moreover, a recent work by Sasaki and Wang [22] suggests
that keying every invocation of f is necessary in order to prevent suboptimal
security against generic state recovery attacks. WNMAC arguably provides the
simplest and most natural such keying. Second, from the practical perspective,
WNMAC can be implemented on top of an existing implementation of NMAC,
using it as a black-box.

PRF-Security of WNMAC. Our main result shows that WNMAC is a secure
PRF; more precisely, no attacker making at most qC construction queries (for
messages padded into at most ` blocks) and qf primitive queries can distinguish
WNMAC from a random function, except with distinguishing advantage

εWNMAC(qC, qf , `) ≤
qfqC
22c

+ 2 · `qCqf
2b+c

+
`qC

2

2c
·
(
d′(`) +

64`3

2c
+ 1

)
.

Here, d′(`) is the maximum, over all positive integers `′ ≤ `, of the number of
positive divisors of `′, and grows very slowly, i.e., d′(`) ≈ `1/ ln ln `. We also prove
that this bound is essentially tight. Namely, we give an attack that achieves
advantage roughly qCqf/2

2c, showing the first term above to be necessary. Ad-
ditionally, we know from [7] that the third term is tight for ` ≤ 2c/3.

Note that in the case of qf = 0, the bound matches exactly the bound from [7].
Moreover, observe that under the realistic assumption that ` < min{2c/3, 2b−c},
the bound simplifies to

εWNMAC(qC, qf , `) ≤ 3
qfqC
22c

+ (d′(`) + 2) · `qC
2

2c
.

Ignoring d′(`) for simplicity, we see that we can tolerate up to qC ≈ 2c/2/
√
`

construction queries and up to qf ≈ 21.5c primitive queries. This corresponds to
the security threshold ranging from 2192 f-queries for MD5 up to 2768 f-queries for
SHA-512. The first term also clearly characterizes the complete trade-off curve
between qC < 2c/2/

√
` and qf for any reasonable upper bound on the message

length and acceptable distinguishing advantage.

Other security properties. Additionally, we also analyze the security level
WNMAC achieves with respect to other security notions frequently considered in
the attacks literature. By a series of reductions, we show that, roughly speaking,
εWNMAC also upper-bounds the adversary’s advantage for distinguishing-H and
state recovery. We believe that addressing these cryptanalytic notions also using
the traditional toolbox of provable security is important and see this paper as
taking the first step on that path.

Lifting to HMAC. We then move our attention from NMAC to HMAC and
propose two analogous modifications to it. The first one, called WHMAC, is
obtained from HMAC in the same way WNMAC is obtained from NMAC: by
whitening the padded message blocks with an independent key, The second one,
termed WHMAC+, additionally processes a fresh key K+ instead of the first
block of the message. Both variants can be implemented given only black-box
access to HMAC, and we prove that they maintain the same security level as
WNMAC as long as the parameters b, c of f satisfy b� 2c (for WHMAC) or b� c
(for WHMAC+). Note that for existing hash functions, the former condition is
satisfied for both MD5 and SHA-1, while the latter holds also for SHA-256 and
SHA-512.

The Dual Construction. Motivated by the most restrictive term qCqf/2
2c

in εWNMAC, the final construction we propose in this paper is a “dual” version
of WNMAC denoted DWNMAC, that differs in the final, outer f-call. Instead of
f(K2, s ‖ 0b−c) for a c-bit key K2 and a c-bit state s padded with zeroes, the
outer call in DWNMAC computes f(s,K2) for a longer, b-bit key. As expected,
we prove that this tweak removes the need for the qCqf/2

2c term and replaces it
by the strictly favourable term qCqf/2

b+c, proving that the zero-padding in the
outer call of WNMAC was actually responsible for the “bottle-neck” term in its
security bound.

Our Techniques. In our information-theoretic analysis of WNMAC we employ
the H-coefficient technique by Patarin [18], partially inheriting the notational
framework from the recent analysis of keyed sponges by Gaži, Pietrzak, and
Tessaro [8]. On a high level, the heart of our proof is a careful analysis of the
probability that two sets intersect in the ideal experiment: (1) the set of adversar-
ial queries to f, and (2) the set of inputs on which f is invoked when answering
the adversary’s queries to WNMAC. Obtaining a bound on the probability of
this event then allows us to exclude it and use the result from [7] that considers
qf = 0, properly adapted to the WNMAC setting.

Related Work. As mentioned above, the motivation for our work partially
stems from the recent line of work on generic attacks against iterated hash-based
MACs [19,17,15,20,10,5,22]. While our security bound for WNMAC does not
exclude attacks of the complexity (in terms of numbers of queries and message
lengths) considered in these papers, the design of WNMAC was partially guided
by the structure of these attacks and seems to prevent them. We find in particular
the work [22] to be a good justification for investigating the security of WNMAC
and related constructions. Iterated MAC that uses keying in every f-invocation
was already considered by An and Bellare [1], their construction NI was later
subject to analysis [7] that we adapt and reuse. One can see WNMAC as a
conceptual simplification of NI where the key is simply used to whiten the b-bit
input to the compression function. Finally, our dual construction considered in
Section 5 bears resemblance to the Sandwich MAC analyzed by Yasuda [23], we
believe that our methods could be easily adapted to cover this construction as
well.

Perspective and open problems. We stress that the reader should not con-
clude from this work that NMAC and HMAC are necessarily less secure than
the constructions proposed in this paper, specifically with respect to PRF se-
curity. In fact, we are not aware of any attacks showing a separation between
the PRF security of our constructions and that of the original NMAC/HMAC
constructions, finding one is an interesting open problem.

While obtaining a non-tight birthday-type bound for NMAC/HMAC is feasi-
ble (for most key-length values, a bound follow directly from the indifferentia-
bility analysis of [6]), proving tight bounds in terms of compression function and
construction queries on the generic PRF security of NMAC/HMAC is a challeng-
ing open problem, on which little progress has been made. The main challenge
is to understand how partial information in form of f-queries can help the at-
tacker to break security (i.e., distinguish) in settings with qC � 2c/2/

√
`, when

the attack from [7] does not apply. This will require in particular developing a
better understanding of the functional graph defined by queries to the function
f. Some of its properties have been indeed exploited in existing generic attacks,
but proving security appears to require a much deeper understanding: Most of
the recent attacks, which are probably still not tight, do not come with rigorous
proofs but instead rely on conjectures on the structure of these graphs [10]. The
difficulty of this question for NMAC/HMAC is also well documented by the fact
that even proving security of the whitened constructions presented in this paper
required some novel tricks and considerable effort.

Similarly, it remains equally challenging to prove that for the properties con-
sidered by the recent HMAC/NMAC attacks (such as distinguishing-H, state
recovery or various types of forgeries), the security of WNMAC/WHMAC is prov-
ably superior. Yet, we note that our construction invalidates direct application
of all existing attacks, and hence we feel confident conjecturing that its security
is much higher.

Black-box instantiations. Throughout the paper we implicitly assume we
can add a key to each b-bit input block, even though we aim for a black-box
instantiation. For many MD-based hash functions, such fine-grained control of
the input to the compression function is generally not possible via a black-box
message pre-processing. Concretely, the functions from the SHA-family with 512-
bit blocks only allow to effectively control (via alterations of the message) the
first 447 bits of the last block, since the remaining 65 bits are reserved for the
64-bit length, and an additional 1-bit. Our analysis can be easily modified to take
this into account. The resulting bound will change very little, and will result in
the term `qCqf/2

b+c being replaced by the term (`−1+2d)·qC ·qf/2b+c, where d is
the length of the non-controllable part of the input (for SHA-functions, d = 65).
Note that since d � b − c, this will not affect the tightness of the bounds for
concrete parameters.

2 Preliminaries

Basic notation. We denote [n] := {1, . . . , n}. Moreover, for a finite set S
(e.g., S = {0, 1}), we let Sn, S+ and S∗ be the sets of sequences of elements
of S of length n, of arbitrary (but non-zero) length, and of arbitrary length,
respectively (with ε denoting the empty sequence, as opposed to ε which is a
small quantity). As a shorthand, let {0, 1}b∗ denote

(
{0, 1}b

)∗
. We denote by

S[i] the i-th element of S ∈ Sn for all i ∈ [n]. Similarly, we denote by S[i . . . j],
for every 1 ≤ i ≤ j ≤ n, the sub-sequence consisting of S[i], S[i + 1], . . . , S[j],
with the convention that S[i . . . i] = S[i]. Moreover, we denote by S ‖S′ the
concatenation of two sequences in S∗, and also, we let S | T be the usual prefix-
of relation: S | T :⇔ (∃S′ ∈ S∗ : S ‖S′ = T).

For an integer n, d(n) = |{i ∈ N : i | n}| is the number of its positive divisors
and

d′(n) := max
n′∈{1,...,n}

|{d ∈ N : d | n′}| ≈ n1/ ln lnn

is the maximum, over all positive integers n′ ≤ n, of the number of positive divi-
sors of n′. More precisely, we have ∀ε > 0 ∃n0 ∀n > n0 : d(n) < n(1+ε)/ ln lnn [11].

We also let F(D,R) be the set of all functions from D to R; and with a
slight abuse of notation we sometimes write F(m,n) (resp. F(∗, n)) to denote
the set of functions mapping m-bit strings to n-bit strings (resp. from {0, 1}∗ to

{0, 1}n). We denote by x
$← X the act of sampling x uniformly at random from

X . Finally, we denote the event that an adversary A, given access to an oracle O,
outputs a value y, as AO ⇒ y. To emphasize the random experiment considered,
we sometimes denote the probability of an event A in a random experiment E
by PE[A]. Finally, the min-entropy H∞(X) of a random variable X with range
X is defined as − log (maxx∈X PX(x)).

Pseudorandom functions.We consider keyed functions F : K×D → R taking
a κ-bit key (i.e., K = {0, 1}κ), a message M ∈ D as input, and returning an
output from R. For a keyed function F under a key k ∈ K we often write
Fk(·) instead of F(k, ·). One often considers the security of F as a pseudorandom
function (or PRF, for short) [9]. This is defined via the following advantage
measure, involving an adversary A:

AdvprfF (A) :=
∣∣∣P [K $← {0, 1}κ : AFK ⇒ 1

]
− P

[
f

$← F(D,R) : Af ⇒ 1
]∣∣∣ .

Informally, we say that F is a PRF if this advantage is “negligible” for all “effi-
cient” adversaries A.

PRFs in the ideal compression function model. For our analysis below,
we are going to consider keyed constructions C[f] : {0, 1}κ×D → R which make

queries to a randomly chosen compression function f
$← F(c + b, c) which can

also be evaluated by the adversary (we sometimes write Cf instead of C[f]). For

this case, we use the following notation to express the PRF advantage of A:

AdvprfC[f](A) :=
∣∣∣P [K $← {0, 1}κ, f $← F(c+ b, c) : ACf

K ,f ⇒ 1
]

− P
[
R

$← F(D,R), f
$← F(c+ b, c) : AR,f ⇒ 1

] ∣∣∣ .
We call A’s queries to its first oracle construction queries (or C-queries) and its
queries to the second oracle as primitive queries (or f-queries).

Note that the notion of PRF-security is identical to the notion of distinguishing-
R, first defined in [13] and often used in the cryptanalytic literature on hash-
based MACs.

Distinguishing-H. A further security notion defined in [13] is the so-called
distinguishing-H security. Here, the goal of the adversary is to distinguish the
hash-based MAC construction CK [f] using its underlying compression function f
(say SHA-1) and a random key K, from the same construction CK [g] built on top
of an independent random compression function g. In the ideal compression func-
tion model, where we model already the initial compression function f as ideal,
this corresponds to distinguishing a pair of oracles (CK [f], f) from (CK [f], g).
Formally,

Advdist-HC (A) :=
∣∣∣P [K $← {0, 1}κ, f $← F(c+ b, c) : ACf

K ,f ⇒ 1
]

− P
[
K

$← {0, 1}κ, f, g $← F(c+ b, c) : ACf
K ,g ⇒ 1

] ∣∣∣ .
State recovery. An additional notion considered in the literature is security
against state recovery. Since the definition of this notion needs to be tailored for
the concrete construction it is applied to, we postpone the formal definition of
security against state recovery to Section 3.10.

MACs and unpredictability. It is well known that a good PRF also yields
a good message-authentication code (MAC). A concrete security bound for un-
forgeability can be obtained from the PRF bound via a standard argument.

Iterated MACs.For a keyed function f : {0, 1}c×{0, 1}b → {0, 1}c we denote
with Cascf : {0, 1}c×{0, 1}b∗ → {0, 1}c the cascade construction (also known as
Merkle-Damg̊ard) built from f as

Cascf(K,m1‖ . . . ‖m`) := y` where y0 := K and for i ≥ 1 : yi := f(yi−1,mi) ,

in particular Cascf(K, ε) := K.
The construction NMACf : ({0, 1}c)2×{0, 1}b∗ → {0, 1}c is derived from Cascf

by adding an additional, independently keyed application of f at the end. It
assumes that the domain sizes of f satisfy b ≥ c and the output of the cascade
is padded with zeroes before the last f-call. Formally,

NMACf((K1,K2),M) := f(K2,Casc
f(K1,M)‖0b−c) .

Note that practical MD-based hash functions take as input arbitrary-length bit-
strings and then pad them to a multiple of the block length, often including

the message length in the so-called MD-strengthening. This padding then also
appears in NMAC (and HMAC) but here we take the customary shortcut and
our definition of NMAC above (resp. HMAC below) actually corresponds to the
generalized constructions denoted as GNMAC (resp. GHMAC) in [2] where this
step is also justified in detail.

HMACf is a practice-oriented version of NMACf , where the two keys (K1,K2)
are derived from a single key K ∈ {0, 1}b by xor-ing it with two fixed b-bit strings
ipad and opad. In addition, the keys are not given through the key-input of the
compression function f, but are prepended to the message instead. This allows
for the usage of existing implementations of hash functions that contain a hard-
coded initialization vector IV. Formally:

HMACf(K,m) := Cascf(IV,K2‖Cascf(IV,K1‖m)‖fpad)

where (K1,K2) := (K ⊕ ipad,K ⊕ opad)

and fpad is a fixed (b− c)-bit padding not affecting the security analysis. (Tech-
nically, [14] allows for arbitrary length of the key K: a key shorter than b bits
is padded with zeroes before applying the xor transformations, a longer key is
first hashed.)

3 The Whitened NMAC Construction

We now present our main construction called Whitened NMAC (or WNMAC
for short). To that end, let us first consider a modification of the cascade con-
struction Casc called whitened cascade and denoted WCasc. For a keyed function
f : {0, 1}c × {0, 1}b → {0, 1}c we denote with WCascf : ({0, 1}c × {0, 1}b) ×
{0, 1}b∗ → {0, 1}c the whitened cascade construction built from f as

WCascf((K1,Kw),m1‖ . . . ‖m`) := y`

where y0 := K1 and for i ≥ 1 : yi := f(yi−1,mi ⊕Kw) ,

in particular WCascf((K1,Kw), ε) := K1.
The construction WNMAC is derived from NMAC, the only difference being

that the inner cascade Casc is replaced by the whitened cascade WCasc. More
precisely,

WNMACf((K1,K2,Kw),M) := f(K2,WCascf((K1,Kw),M)‖0b−c) .

For a graphical depiction of WNMAC, see Figure 1. We devote most of this
section to the proof of the following theorem that quantifies the PRF-security
of WNMAC.

Theorem 1 (PRF-Security of WNMAC). Let A be an adversary making at
most qf queries to the compression function f and at most qC construction
queries, each of length at most ` b-bit blocks. Let K = (K1,K2,Kw) ∈ {0, 1}c ×
{0, 1}c × {0, 1}b be a tuple of random keys. Then we have

Advprf
WNMACf

K

(A) ≤ qfqC
22c

+ 2 · `qCqf
2b+c

+
`qC

2

2c
·
(
d′(`) +

64`3

2c
+ 1

)
. (2)

f f fK1 f

⊕

m1

Kw ⊕

m2

Kw ⊕

m3

Kw ⊕

m`

Kw

fK2
WNMAC[f]K1,K2,Kw (m1‖ · · · ‖m`)

Fig. 1. The construction WNMAC[f]K1,K2,Kw .

Note that as observed in Section 2, this also covers the so-called distinguishing-
R security of WNMAC. Moreover, our analysis also implies security bounds for
distinguishing-H and state recovery, as we discuss later.

3.1 Basic Notation, Message Trees and Repetition Patterns

Let us fix an adversary A. We assume that A is deterministic, it makes exactly
qf queries to f and qC construction queries, and it never repeats the same query
twice. All these assumptions are without loss of generality for an information-
theoretic indistinguishability analysis, since an arbitrary (possibly randomized)
adversary making at most this many queries can be transformed into one satis-
fying the above constraints and achieving advantage which is at least as large.

Let QC ⊆
(
{0, 1}b

)∗
be any non-empty set of messages (later this will rep-

resent the set of A’s C-queries). Based on it, we now introduce the message tree
and its labeled version, which capture the inherent combinatorial structure of
the messages QC , as well as the internal values computed while these messages
are processed by WCascf inside of WNMACf . The message tree T (QC) = (V,E)
for QC is defined as follows:

– The vertex set is V :=
{
M ′ ∈

(
{0, 1}b

)∗
: ∃M ∈ QC : M ′ |M

}
, where | is

the prefix-of partial ordering of strings. In particular, note that the empty
string ε is a vertex and that QC ⊆ V .

– The set E ⊆ V × V of (directed) edges is

E :=
{

(M,M ′) : ∃m ∈ {0, 1}b : M ′ = M ‖m
}
.

To simplify our exposition, we also define the following two mappings based on
T (QC).

– The mapping π(v) : V \ {ε} → V returns the unique parent node of v ∈
V \ {ε}; i.e., the unique node u such that (u, v) ∈ E.

– The mapping µ(v) : V \ {ε} → {0, 1}b returns the unique message block
m ∈ {0, 1}b such that π(v) ‖µ(v) = v (intuitively, this will be the message
block that is processed when “arriving” in vertex v).

ε

K1

0f(K1,0⊕Kw)

0 ‖0

f(λ(0),0⊕Kw)

0

0 ‖1 f(λ(0),1⊕Kw)

0 ‖1 ‖1

f(λ(0 ‖1),1⊕Kw)

1

1

0

1

f(K1,1⊕Kw)

1

Fig. 2. Labeled message tree. Example of a labeled message tree T f
K(QC) for four

messages QC = {0,0 ‖0,0 ‖1 ‖1,1}, where r = rb for r ∈ {0, 1}. The gray vertices
correspond to these four messages. Next to each vertex v and edge (u, v), we give the
label λ(v) and the value µ(v), respectively.

Alternatively, with a slight abuse of notation we will also refer to the vertices
in V as v1, . . . , v|V | which is an arbitrary ordering of them such that for all
1 ≤ i, j ≤ |V | it satisfies vi | vj ⇒ i ≤ j. Note that one obtains such an ordering
for example if one, intuitively speaking, processes the messages in QC block-wise
and labels the vertices by their “first appearance”: in particular v1 = ε is the
tree root.

Additionally, for a mapping f : {0, 1}c × {0, 1}b → {0, 1}c and a key tuple
K = (K1,K2,Kw) ∈ {0, 1}c × {0, 1}c × {0, 1}b we also consider an extended
version of T (QC) which we call the labeled message tree and denote T f

K(QC) =
(V,E, λ), and which is defined as follows:

– The set of vertices V and edges E are defined exactly as for T (QC) above.
– The vertex-labeling function λ : V → {0, 1}c is defined iteratively: λ(ε) :=
K1 and for each non-root vertex v ∈ V \{ε} we put λ(v) := f(λ(π(v)), µ(v)⊕
Kw).

An example of a labeled message tree is given in Figure 2. Note that each ver-
tex label λ(v) is exactly the output of the inner, whitened cascade WCascfK1,Kw

(v)

in WNMACf
K (recall that v is actually a message from {0, 1}b∗).

For any message tree T (QC) = (V,E), a repetition pattern is any equivalence
relation ρ on V . For a labeled message tree T f

K(QC) = (V,E, λ) we say that a
repetition pattern ρ is induced by it if it satisfies

∀u, v ∈ V : λ(u) = λ(v)⇔ ρ(u, v) .

3.2 Interactions and Transcripts

Let QRC denote the set of qC pairs (x, r) such that x ∈ {0, 1}b∗ is a construction
query and r ∈ {0, 1}c is a potential response to it (what we mean by “potential”

will be clear from below). Similarly let QRf denote the set of qf pairs (x, r)
such that x ∈ {0, 1}c × {0, 1}b is an f-query and r ∈ {0, 1}c is a potential
response to it. Let QC ⊆ {0, 1}b∗ and Qf ⊆ {0, 1}c × {0, 1}b denote the sets
of first coordinates (i.e., the queries) in QRC and QRf , respectively; we have
|QC | = qC and |Qf | = qf .

We call the pair of sets (QRC ,QRf) valid if the adversary A would indeed
ask these queries throughout the experiment, assuming that each of her queries
would be replied by the respective response in QRC or QRf (note that once
a deterministic A is fixed, this determines whether a given pair (QRC ,QRf) is
valid).

We then define a valid transcript to be of the form

τ =
(
QRC ,QRf ,K = (K1,K2,Kw), T f

K(QC)
)
,

where (QRC ,QRf) is valid, f : {0, 1}c × {0, 1}b → {0, 1}c is a function and
K = (K1,K2,Kw) ∈ {0, 1}c × {0, 1}c × {0, 1}b is a key tuple.

We differentiate between the ways in which such valid transcripts are gener-
ated in the real and in the ideal worlds (or experiments), respectively, by defining
corresponding distributions Treal and Tideal over the set of valid transcripts:

Real world. The transcript Treal for the adversary A is obtained by sampling

f
$← F(c + b, c) and K = (K1,K2,Kw) ← {0, 1}c × {0, 1}c × {0, 1}b, and

letting Treal denote(
QRC = {(Mi, Yi)}qCi=1 ,QRf = {(Xi, Ri)}qfi=1 ,K = (K1,K2,Kw), T f

K(QC)
)
,

where we execute A, which asks construction queries M1, . . . ,MqC answered
with Yi := WNMAC[f]K(Mi) for all i ∈ [qC]; and f-queries X1, . . . , Xqf an-
swered with Ri := f(Xi) for all i ∈ [qf] (note that the C-queries and f-queries
may in general be interleaved adaptively, depending on A). Finally, we let
T f
K(QC) be the labeled message tree corresponding to QC , f and K.

Ideal world. The transcript Tideal for the adversary A is obtained similarly to

the above, but here, together with the random function f
$← F(c + b, c)

and the key tuple K = (K1,K2,Kw) ← {0, 1}c × {0, 1}c × {0, 1}b, we also
sample qC independent random values Y1, . . . , YqC ∈ {0, 1}r. Then we let
Tideal denote(
QRC = {(Mi, Yi)}qCi=1 ,QRf = {(Xi, Ri)}qfi=1 ,K = (K1,K2,Kw), T f

K(QC)
)
,

where we execute A, answer each its C-query Mi with Yi for all i ∈ [qC] and
each its f-query Xi with Ri := f(Xi) for all i ∈ [qf]. Then we let T f

K(QC) be
the labeled message tree corresponding to QC , f and K.

Later we refer to the above two random experiments as real and ideal, respec-
tively. Note that the range of Treal is included in the range of Tideal by definition,
and that the range of Tideal is easily seen to contain all valid transcripts.

3.3 The H-Coefficient Method

We upper-bound the advantage A in distinguishing WNMAC[f]K for f
$← F(c+

b, c) from a random function in terms of the statistical distance of the transcripts,
i.e.,

AdvprfWNMAC(A) ≤ SD(Treal,Tideal) =
1

2

∑
τ

|P [Treal = τ]− P [Tideal = τ]| , (3)

where the sum is over all valid transcripts. This is because an adversary for
Treal and Tideal, whose optimal advantage is exactly SD(Treal,Tideal), can always
output the same decision bit as A, ignoring any extra information provided by
the transcript.

We are going to use Patarin’s H-coefficient method [18]. This means that we
need to partition the set of valid transcripts into good transcripts GT and bad
transcripts BT and then apply the following lemma.

Lemma 1 (The H-Coefficient Method [18]). Let δ, ε ∈ [0, 1] be such that:

(a) P [Tideal ∈ BT] ≤ δ.
(b) For all τ ∈ GT,

P [Treal = τ]

P [Tideal = τ]
≥ 1− ε .

Then,
AdvprfWNMAC(A) ≤ SD(Treal,Tideal) ≤ ε+ δ .

More verbally, we want a set of good transcripts GT such that with very high
probability (i.e., 1 − δ) a generated transcript in the ideal world is going to be
in this set, and moreover, for each such good transcript, the probabilities that
it occurs in the real and in the ideal worlds are roughly the same, i.e., at most a
multiplicative factor 1− ε apart.

3.4 Good and Bad Transcripts

Given a valid transcript τ we define the sets Lin,Lout ⊆ {0, 1}c × {0, 1}b as

Lin := {(λ(π(v)), µ(v)⊕Kw) : v ∈ V \ {ε}}
Lout :=

{(
K2, λ(v) ‖ 0b−c

)
: v ∈ QC

}
,

and let L = Lin ∪ Lout. Intuitively, L represents the set of inputs on which f is
evaluated while processing A’s construction queries in the real experiment. This
set is also well-defined in the ideal experiment by the above equations, and in
both experiments it is determined by the transcript. We refer to Lin as the set
of inner f-invocations, i.e., those invocations of f that were required to evaluate
the inner, whitened cascade WCascf in WNMAC; and similarly, Lout denotes the
outer invocations.

If there is an intersection between the adversary’s f-queries and the inputs
in Lin (resp. Lout), we call this an inner (resp., outer) C-f-collision. We then
denote by C-f-collin (resp., C-f-collout) the event that any inner (resp., outer)
C-f-collision occurs. Formally,

C-f-collin :⇔ (Qf ∩ Lin 6= ∅) and C-f-collout :⇔ (Qf ∩ Lout 6= ∅)

and let C-f-coll := C-f-collin ∪ C-f-collout. Furthermore, if the vertex labels λ(M)
collide for two messages M,M ′ ∈ QC , we call this a C-collision and denote such
an event by

C-coll :⇔ (∃M,M ′ ∈ QC : λ(M) = λ(M ′)) .

Definition 1 (Good Transcripts). Let

τ =
(
QRC ,QRf ,K = (K1,K2,Kw), T f

K(QC) = (V,E, λ)
)

be a valid transcript. We say that the transcript is good (and thus τ ∈ GT) if
the following properties are true:

(1) The event C-f-collout has not occurred.
(2) The event C-coll has not occurred.
(3) For any v ∈ V we have λ(v) 6= K2.

We denote as GT the set of all good transcripts, and BT the set of all bad
transcripts, i.e., transcripts which can possibly occur (i.e., they are in the range
of Tideal) and are not good. More specifically, we denote by BTi the set of all
bad transcripts that do not satisfy the i-th property in the definition of a good
transcript above, hence we have BT =

⋃3
i=1 BTi.

3.5 Probability of a C-f-collision

In this section we upper-bound the probability of C-f-coll by considering inner
and outer C-f-collisions separately.

Lemma 2. We have Pideal[C-f-collin] ≤ `qCqf/2b+c.

Proof. We start by modifying the ideal experiment to obtain an experiment de-
noted ideal′ and the corresponding transcript distribution Tideal′ . The experiment
ideal′ is given in Figure 3. Clearly, ideal′ differs from the ideal experiment only
in the way the vertex labeling function λ(·) is determined.

We now argue that Pideal[C-f-collin] = Pideal′ [C-f-collin]. To see this, consider
an intermediate experiment ideal′′ that is defined exactly as ideal except that it
uses a separate ideal compression function g to generate the vertex labels of the
tree contained in the transcript, where g is completely independent of f queried
by the adversary (i.e., the adversary queries f and the transcript contains QRf

and T g
K(QC)). It is now clear that Pideal[C-f-collin] = Pideal′′ [C-f-collin] since as

long as no inner C-f-collision happens, the experiments are identical.

1. The adversary asks its C-queries and f-queries and these are
answered by independent random values. Once the qC queries in
QC are fixed, they also determine the message tree T (QC) and mappings
µ and π as defined in Section 3.1 (the labeling λ is so far undefined).

2. Sample a repetition pattern ρ. The equivalence relation ρ is deter-
mined indirectly by first iteratively defining a mapping ρ̂ : V → [|V |].
Recall the vertex ordering v1, . . . , v|V | defined in Section 3.1. First, set
ρ̂(v1) := 1. Then, for i taking values 2, . . . , |V |, determine ρ̂(vi) as fol-
lows. If there exists j ∈ [i− 1] such that µ(vj) = µ(vi) and ρ̂(π(vj)) =
ρ̂(π(vi)) then let ρ̂(vi) := ρ̂(vj) for the minimal such j. Otherwise let
z := maxj∈[i−1]{ρ̂(vj)} and sample ρ̂(vi) as

ρ̂(vi) :=

1 with probability 2−c

...
...

z with probability 2−c

z + 1 with probability 1− z · 2−c.

Finally, for all i, j ∈ [|V |] let ρ(vi, vj) :⇔ (ρ̂(vi) = ρ̂(vj)).
3. Sample a vertex labeling λ(·) according to ρ. Namely, sample |ρ|

distinct uniformly random values s1, . . . , s|ρ| ∈ {0, 1}c where |ρ| is the
number of equivalence classes of ρ, and let λ(vi) := sρ̂(vi) for all i ∈ [|V |].
Also let K1 := λ(ε).

4. Sample random keys (K2,Kw) ∈ {0, 1}c × {0, 1}b.

Fig. 3. The random experiment ideal′ for the proofs of Lemmas 2 and 3.

The remaining equality Pideal′′ [C-f-collin] = Pideal′ [C-f-collin] follows from the
definition of ideal′. It is easy to see that the distribution of vertex labels sampled
in steps 2 and 3 of ideal′ and by labeling the tree T g

K(QC) in ideal′′ are the same.
In both cases, repeated inputs to the compression function lead to consistent
outputs, while fresh inputs lead to independent random outputs. The two ex-
periments only differ in the order of sampling: ideal′′ first samples g and then
performs the labeling, while ideal′ starts by sampling the repetition pattern, and
then chooses the actual labels correspondingly. The same distribution of vertex
labels in these two experiments then implies the same probability of C-f-collin
occurring.

Finally, we upper-bound the probability Pideal′ [C-f-collin]. Conditioned on the
repetition pattern ρ taking some fixed value rp, in step 2, we have

Pideal′ [C-f-collin | ρ = rp] ≤
∑

v∈V \{ε}

Pideal′ [(λ(π(v)), µ(v)⊕Kw) ∈ Qf | ρ = rp]

=
∑

v∈V \{ε}

Pideal′
[
(sρ̂(π(v)), µ(v)⊕Kw) ∈ Qf | ρ = rp

]
=

∑
v∈V \{ε}

qf/2
b+c ≤ `qCqf/2b+c

because the random variables si and Kw sampled in steps 3 and 4 are uniformly
distributed and independent of Qf . Since this bound holds conditioned on ρ
being any fixed repetition pattern rp, it remains valid also without conditioning
on it, hence concluding the proof. ut

We proceed by upper-bounding the probability of an outer C-f-collision.

Lemma 3. We have

Pideal[C-f-collout] ≤
`qCqf
2b+c

+
qCqf
22c

.

Proof. Let us again consider the experiments ideal′ and ideal′′ defined in the
proof of Lemma 2. We start by the simple observation that for any event A we
have

Pideal [A] = Pideal [A ∧ C-f-collin] + Pideal [A ∧ ¬C-f-collin]

≤ `qCqf
2b+c

+ Pideal′′ [A ∧ ¬C-f-collin] ≤
`qCqf
2b+c

+ Pideal′′ [A] , (4)

which follows from Lemma 2 and the observation that ideal and ideal′′ only differ
if C-f-collin occurs.

Applying (4) to the event C-f-collout as A, it remains to bound the probability
Pideal′′ [C-f-collout]; for this we observe that Pideal′′ [C-f-collout] = Pideal′ [C-f-collout]
similarly as before: the repetition pattern ρ sampled in step 2 of ideal′ has the
same distribution as the repetition pattern induced by the tree T g

K(QC) in ideal′′,
and this together with the sampling performed in step 3 results in the same
distribution of vertex labels in ideal′′ and ideal′ and hence also in the same
probability of C-f-collout in both experiments.

Finally, to upper-bound the probability Pideal′ [C-f-collout], again conditioned
on the repetition pattern ρ sampled in step 2 taking some fixed value rp, we
have

Pideal′ [C-f-collout | ρ = rp] ≤
∑
v∈QC

Pideal′
[
(K2, λ(v) ‖ 0b−c) ∈ Qf | ρ = rp

]
≤
∑
v∈QC

Pideal′
[
(K2, sρ̂(v) ‖ 0b−c) ∈ Qf | ρ = rp

]
=
∑
v∈QC

qf/2
2c ≤ qCqf/22c

because the random variables si and K2 sampled in steps 3 and 4 are uniformly
distributed and independent of Qf . Since this bound holds conditioned on ρ
being any fixed repetition pattern rp, it remains valid also without conditioning
on it. ut

3.6 Probability of Repeated Outer Invocations

In this section we analyze the probability that any of the outer f -invocations
in the ideal experiment will not be fresh, in particular we upper-bound both
P[Tideal ∈ BT2] and P[Tideal ∈ BT3].

Lemma 4. We have

Pideal [C-coll] ≤ `qCqf
2b+c

+
`qC

2

2c
·
(
d′(`) +

64`3

2c

)
.

Proof. Applying (4) to the event C-coll, we have Pideal [C-coll] ≤ `qCqf/2
b+c +

Pideal′′ [C-coll]. Since the queries QC in the experiment ideal′′ are chosen non-
adaptively (with respect to the keys K1, Kw and the function g used to later
compute the tree labeling), we can obtain via a union bound that

Pideal′′ [C-coll] ≤ qC2· max
M1 6=M2

|M1|,|M2|≤`b

Pg,K1,Kw

[
WCascgK1,Kw

(M1) = WCascgK1,Kw
(M2)

]
.

Moreover, we have

max
M1 6=M2

|M1|,|M2|≤`b

Pg,K1,Kw

[
WCascgK1,Kw

(M1) = WCascgK1,Kw
(M2)

]
= max

M1 6=M2

|M1|,|M2|≤`b

∑
K1∈{0,1}c

Kw∈{0,1}b

1

2c+b
· Pg

[
WCascgK1,Kw

(M1) = WCascgK1,Kw
(M2)

]

≤
∑

K1∈{0,1}c

Kw∈{0,1}b

1

2c+b
· max

M1 6=M2

|M1,|M2|≤`b

Pg
[
WCascgK1,Kw

(M1) = WCascgK1,Kw
(M2)

]

=
∑

K1∈{0,1}c

Kw∈{0,1}b

1

2c+b
· max

M1 6=M2

|M1,|M2|≤`b

Pg
[
CascgK1

(M1⊕Kw) = CascgK1
(M2⊕Kw)

]

=
∑

K1∈{0,1}c

Kw∈{0,1}b

1

2c+b
· max

M1 6=M2

|M1,|M2|≤`b

Pg
[
CascgK1

(M1) = CascgK1
(M2)

]
︸ ︷︷ ︸

CascColl(`)

,

where the notation Mi⊕Kw denotes XOR-ing the key Kw to each of the blocks
of Mi.

The last maximization term above was already studied in the context of the
construction NI2 in [7], where it was denoted as CColl(`), but we will refer to it
as CascColl(`) to avoid confusion with the event C-coll considered here. It was
shown in [7] that

CascColl(`) ≤ ` · d′(`)
2c

+
64`4

22c
. (5)

Putting all the above bounds together concludes the proof of Lemma 4. ut

Lemma 5. We have

Pideal [∃v ∈ V : λ(v) = K2] ≤ `qC
2c

.

Proof. As is clear from the description of the ideal experiment, the key K2 is
chosen uniformly at random and independently of the rest of the experiment, in
particular of the labels λ(v). The lemma hence follows by a simple union bound
over all `qC vertices v ∈ V . ut

3.7 Good Transcripts and Putting Pieces Together

Let us consider a good transcript τ . First, since τ 6∈ BT1, there is no overlap
between the outer f-invocations and the f-queries issued by the adversary. Sec-
ond, since τ 6∈ BT2, there is also no repetition between the outer f -invocations
themselves. Finally, since τ 6∈ BT3, there is also no overlap between the outer
f-invocations and the inner f-invocations (all the outer invocations contain K2

as their first component). Altogether, this means that each outer f-invocation
in real is fresh and hence its outcome can be seen as freshly uniformly sampled
(since f is an ideal random function). Therefore, the distribution of these out-
comes will be the same as in ideal, where they correspond to the independent
random values Yi. Hence, for all τ ∈ GT, we have

P [Treal = τ]

P [Tideal = τ]
= 1 .

Plugging this into Lemma 1, together with the bounds from Lemmas 3, 4
and 5, we obtain

AdvprfWNMAC(A) ≤
3∑
i=1

P [Tideal ∈ BTi]

≤ qfqC
22c

+ 2 · `qCqf
2b+c

+
`qC

2

2c
·
(
d′(`) +

64`3

2c

)
+
`qC
2c

≤ qfqC
22c

+ 2 · `qCqf
2b+c

+
`qC

2

2c
·
(
d′(`) +

64`3

2c
+ 1

)
,

which concludes the proof of Theorem 1. ut

3.8 Tightness

We now argue that the qCqf/2
2c term in our bound on the security of WNMAC

as given in (2) is tight, by giving a matching attack (up to a linear factor O(c)).
For most practical parameters, this will be the dominating term in (2), and thus
for those parameters Theorem 1 gives a tight bound. Here we only describe an
attack for the case where qC = Θ(c) is very small, and defer the general case to
the full version.

The qC = Θ(c) case. We must define an adversary AO,f who can distinguish
the case where the first oracle O implements a random function R from the case
where it implements WNMACf((K1,K2,Kw), ·) with random keys K1,K2,Kw

using the random function f : {0, 1}b+c → {0, 1}c which is given as the second
oracle.

AO,f first picks t := qf/2
c keys K̃1, . . . , K̃t arbitrarily, and then uses its qf

function queries to learn the outputs

Zi = {f(K̃i, x‖0b−c) : x ∈ {0, 1}c}

for all the keys. When throwing 2c balls randomly into 2c bins, we expect a
1 − 1/e ≈ 0.63 fraction of the bins to be non-empty (and the value is strongly
concentrated around this expectation). We can think of evaluating the ran-

dom function f(K̃i, ·‖0b−c) : {0, 1}c → {0, 1}c as throwing 2c balls (the in-
puts) to random bins (the outputs), and thus have |Zi| ≈ 0.63 · 2c. Then
AO,f queries O on Θ(c) random inputs, let Qc denote the corresponding out-
puts. Now AO,f outputs 1 if and only if for some i we have Qc ⊂ Zi. If
O(·) = WNMACf((K1,K2,Kw), ·) = f(K2,WCascf((K1,Kw), ·)‖0b−c) and more-

over K2 = K̃i for some i – which happens with probability t/2c – then all the

outputs of O(·) are in the range of f(K̃i, .‖0b−c) and thus AO,f outputs 1.
On the other hand, if O(·) is a random function, then every single query will

miss the set Zi with constant probability 0.37. Using this, we get by a Chernoff
bound (and the union bound over all t keys) that

P[∃i : Qc ⊂ Zi] ≤
t

2Θ(qC)
.

Summing up we get for qC = Θ(c) and t = qf/2
c

AdvprfWNMAC(AqC,t) ≥
∣∣∣∣ t2c − t

2Θ(qC)

∣∣∣∣ ≥ t

2c−1
≥ qf

22c−1
=

qfqC
22c ·Θ(c)

which matches our term qfqC/2
2c from the lower bound up to a Θ(c) factor.

3.9 Distinguishing-H Security of WNMAC

The above results also imply a bound on the distinguishing-H security of WNMAC.
To capture this, we first introduce the notion of distinguishing-C, which corre-
sponds to PRF-security with the restriction that the distinguisher only uses
construction queries.

Definition 2 (Distinguishing-C). Let C[f] : {0, 1}κ × D → R be a keyed

construction making queries to a randomly chosen compression function f
$←

F(c+ b, c). The distinguishing-C advantage of an adversary A is defined as

Advdist-CC[f] (A) :=
∣∣∣P [K $← {0, 1}κ, f $← F(c+ b, c) : ACf

K ⇒ 1
]

− P
[
R

$← F(D,R) : AR ⇒ 1
] ∣∣∣ .

The notion of distinguishing-C is useful for bridging distinguishing-H and
PRF-security, as the following lemma shows (we omit its simple proof).

Lemma 6. For every adversary A asking qC and qf construction and primitive
queries, respectively, there exists an adversary A′ asking qC queries to its single
oracle such that

Advdist-HC (A) ≤ AdvprfC[f](A) + Advdist-CC[f] (A′)

and

AdvprfC[f](A) ≤ Advdist-HC (A) + Advdist-CC[f] (A′) .

One can readily obtain a bound on the distinguishing-C security of WNMAC
using Theorem 1 with qf = 0.

Lemma 7 (Distinguishing-C Security of WNMAC). Let A be an adversary
making at most qC construction queries, each of length at most ` b-bit blocks.
Let K = (K1,K2,Kw) ∈ {0, 1}c × {0, 1}c × {0, 1}b be a tuple of random keys.
Then we have

Advdist-CWNMACK
(A) ≤ `qC

2

2c
·
(
d′(`) +

64`3

2c
+ 1

)
.

By combining Theorem 1 and Lemmas 6 and 7, we get the following theorem.

Theorem 2 (Distinguishing-H Security of WNMAC). Let A be an adver-
sary making at most qf queries to the compression function and at most qC con-
struction queries, each of length at most ` b-bit blocks. Let K = (K1,K2,Kw) ∈
{0, 1}c × {0, 1}c × {0, 1}b be a tuple of random keys. Then we have

Advdist-HWNMACK
(A) ≤ qfqC

22c
+ 2 · `qCqf

2b+c
+ 2 · `qC

2

2c
·
(
d′(`) +

64`3

2c
+ 1

)
.

3.10 State Recovery for WNMAC

We now formally define the notion of security against state recovery for WNMAC.
We consider the strong notion where the goal of the adversary is to output a
pair (M, s) such that the state s occurs at any point during the evaluation of
WCasc on M . Formally, we define AdvsrWNMAC[f](A) to be

P
[
K

$← K, f $← F ,AWNMACf
K ,f ⇒ (M, s) :

∃M ′ ∈ {0, 1}b∗ s.t. M ′ |M ∧WCascfK1,Kw
(M ′) = s

]
where K = {0, 1}c × {0, 1}c × {0, 1}b, K = (K1,K2,Kw) and F := F(c+ b, c).

Theorem 3 (State-Recovery Security of WNMAC). Let A be an adversary
making at most qf queries to the compression function and at most qC construc-
tion queries, each of length at most ` b-bit blocks. Let K = (K1,K2,Kw) ∈
{0, 1}c × {0, 1}c × {0, 1}b be a tuple of random keys. Then we have

AdvsrWNMACf
K

(A) ≤ qfqC
22c

+ 2 · `qCqf
2b+c

+ 2 · `qC
2

2c
·
(
d′(`) +

64`3

2c
+ 2

)
.

1. The adversary asks its C-queries. For each of them, only the repe-
tition pattern for the state values belonging to this query is sampled (as
in the experiment ideal′ in Figure 3) and the query is answered with a
fresh random value, unless the outer f-invocation happens on a repeated
value, in which case the query is answered consistently. After answering
all queries, we have a complete repetition pattern ρ for all state values.

2. Let A output its guess (M, s).
3. Sample a vertex labeling λ(·) according to ρ, let K1 := λ(ε).
4. Sample random keys (K2,Kw) ∈ {0, 1}c × {0, 1}b.

Fig. 4. The random experiment E ′ for the proof of Theorem 3.

Proof (sketch). First, we replace the compression function oracle f by an indepen-
dent random function g completely unrelated to WNMACf . The error introduced
by this is upper-bounded by Theorem 2 and now, compression-function queries
are useless to the adversary, hence we can disregard them.

Let us denote by E the experiment where A interacts with WNMACf (without
direct access to f). Consider an alternative experiment E ′ given in Figure 4. As
long as the key K2 chosen in step 4 does not hit any of the internal states
that occurred during the query evaluation, the experiment E ′ is identical to E .
Moreover, since K2 is chosen independently at random, such a hit can only occur
with probability at most `qC/2

c. Since the vertex labels are only sampled after
the adversary makes its guess for the state, the probability that the guess will
be correct is at most `/2c. ut

4 Whitening HMAC

HMAC is a “practice-oriented” variant of NMAC, see Section 2 for its definition.
In this section we consider a “whitened” variant WHMAC of HMAC which is
derived from HMAC in the same way as WNMAC was derived from NMAC,
i.e., by XORing a random key Kw to every message block. We also consider a
variant WHMAC+ where the first message block is a fresh key K+ ∈ {0, 1}b.
More precisely,

WHMACK,Kw
[f](m) := f

(
K ′2,WCascfK′1,Kw

(m)‖fpad
)

where
K ′1 := f(IV,K ⊕ ipad) and K ′2 := f(IV,K ⊕ opad) (6)

and fpad is some fixed padding; and

WHMAC+
K,Kw,K+ [f](m) := f

(
K ′2,WCascfK′1,Kw

(m)‖fpad
)
,

where this time

Z := f(IV,K ⊕ ipad) and K ′1 := f(Z,K+) and K ′2 := f(IV,K ⊕ opad)

and fpad is again some padding. Note that both variants, WHMAC and WHMAC+,
can be implemented given just black-box access to an implementation of HMAC.

The theorem below relates the security of WHMAC and WHMAC+ to the
security of WNMAC.

Theorem 4 (Relating Security of WHMAC to WNMAC). Consider any
xxx ∈ {prf, dist-H, sr}. Assume that for every adversary A making at most qf
queries to the compression function f and at most qC construction queries, each
of length at most ` b-bit blocks, we have

AdvxxxWNMACK1,K2,Kw [f](A) ≤ ε ,

where here and below, K1,K2 ∈ {0, 1}c and K,Kw,K
+ ∈ {0, 1}b are uniformly

random keys. Then for every such adversary A we have

AdvxxxWHMACK,Kw [f](A) ≤ ε+ 2−
b−2c

2 (7)

and
AdvxxxWHMAC+

K,Kw,K+ [f](A) ≤ ε+ 2 · 2−
b−c
2 + 2−c . (8)

Proof. Intuitively, for WHMAC one can think of f as an extractor which extracts
keys K ′1,K

′
2 from K, and the bound then readily follows by the leftover hash

lemma. For WNMAC+ one can roughly think of K ′1 and K ′2 as being extracted
from independent keys K+ and K, respectively. For the latter it is thus sufficient
that b (which is the length, and thus also the entropy of the uniform K and K+)
is sufficiently larger than c (the length of K ′1,K

′
2), whereas for the former we

need b to be sufficiently larger than 2c. We now give the details of the proof for
WHMAC and postpone the treatment of WNMAC+ to the full version.

In order to prove the bound (7) it is sufficient to show that the statistical
distance between the transcripts (as seen by the adversary) when interacting

with WNMAC or WHMAC is at most 2−
b−2c

2 . As the only difference between
WNMAC and WHMAC is that we replace the uniform keys K1,K2 with keys
K ′1,K

′
2 derived according to (6), to bound the distance between the transcripts,

it is sufficient to bound the distance between the random and derived keys. As
K ′1,K

′
2 are not independent of f, it is important to bound the distance when

given f, concretely, we must show that

SD ((K ′1,K
′
2, f) , (K1,K2, f)) ≤ 2−

b−2c
2 .

We will use the leftover hash lemma [12] which states that for any random vari-
able X ∈ {0, 1}m with min-entropy at least H∞(X) ≥ k and a hash function
h : {0, 1}m → {0, 1}` chosen from a family of pairwise independent hash func-
tions we have (with U` being uniform over {0, 1}`)

SD ((h(X), h) , (U`, h)) ≤ 2
`−H∞(X)

2 ≤ 2
`−k
2 .

Since f : {0, 1}b+c → {0, 1}c is uniformly random, also the function

f ′(K) = (f(IV,K ⊕ ipad), f(IV,K ⊕ opad))

is uniformly random, and thus also pairwise independent. Using H∞(K) =
H∞(K ⊕ ipad) = b and (K ′1,K

′
2) = f ′(K) we thus get

SD ((K ′1,K
′
2, f
′) , (K1,K2, f

′)) = SD ((K ′1,K
′
2, f) , (K1,K2, f)) ≤ 2−

b−2c
2

as required. The first equality above holds as f defines all of f ′ and vice versa. ut

5 The Dual WNMAC Construction

Looking at the security bounds for WNMAC given in Section 3 from a distance,
it seems that under reasonable assumptions the most restrictive term in the
bounds is qfqC/2

2c. Intuitively speaking, the reason for this term is the outer
f-call in WNMAC that only takes 2c bits of actual inputs and adds b− c padding
zeroes.

In an attempt to overcome this limitation, we propose a variant of the
WNMAC construction that we call Dual WNMAC (DWNMAC). We prove the
PRF-security of DWNMAC that goes beyond the restrictive term qfqC/2

2c and
our proof again extends also to distinguishing-H and state-recovery security.
The price we pay for this improvement is a slight increase in the key length and
the fact that DWNMAC cannot be implemented using only black-box access to
NMAC. Similarly, if we apply the same modification to WHMAC, the resulting
construction can no longer be implemented using black-box access to HMAC.

The construction DWNMAC is derived from WNMAC, the only difference
being that the outer f-call is performed on the c-bit state and a b-bit key K2.
More precisely, for a key tuple (K1,K2,Kw) ∈ {0, 1}c × {0, 1}b × {0, 1}b and a
message M ∈ {0, 1}b∗, we define

DWNMACf((K1,K2,Kw),M) := f(WCascfK1,Kw
(M),K2) .

Note that DWNMAC is slightly similar to what we would obtain by whitening
from the Sandwich MAC construction [23].

We now summarize the security of DWNMAC.

Theorem 5 (Security of DWNMAC). Let A be an adversary making at most qf
queries to the compression function f and at most qC construction queries, each
of length at most ` b-bit blocks. Let K = (K1,K2,Kw) ∈ {0, 1}c×{0, 1}b×{0, 1}b
be a tuple of random keys. Then we have

AdvxxxDWNMACf
K

(A) ≤ 3 · `qCqf
2b+c

+ 2 · `qC
2

2c
·
(
d′(`) +

64`3

2c
+ 2

)
for all xxx ∈ {prf, dist-H, sr}.

Proof (sketch). The proofs are analogous to the proofs for WNMAC given in
Section 3, with the main modification needed in Lemma 3 where the probability
of an outer C-f-collision can be upper-bounded by qCqf/2

b+c. Roughly speaking,
this is because the outer call in DWNMAC does not contain the 0b−c padding and
instead processes b+ c bits of input that are hard to predict for the attacker. ut

Acknowledgments We thank the anonymous reviewers for their helpful com-
ments. Gaži and Pietrzak’s work was partly funded by the European Research
Council under an ERC Starting Grant (259668-PSPC). Tessaro’s research was
partially supported by NSF grant CNS-1423566 and by the Glen and Susanne
Culler Chair.

References

1. Jee Hea An and Mihir Bellare. Constructing VIL-MACs from FIL-MACs: Mes-
sage authentication under weakened assumptions. In Michael J. Wiener, editor,
CRYPTO’99, volume 1666 of LNCS, pages 252–269, Santa Barbara, CA, USA,
August 15–19, 1999. Springer, Heidelberg, Germany.

2. Mihir Bellare. New proofs for NMAC and HMAC: Security without collision-
resistance. In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages
602–619, Santa Barbara, CA, USA, August 20–24, 2006. Springer, Heidelberg,
Germany.

3. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for mes-
sage authentication. In Neal Koblitz, editor, CRYPTO’96, volume 1109 of LNCS,
pages 1–15, Santa Barbara, CA, USA, August 18–22, 1996. Springer, Heidelberg,
Germany.

4. Ivan Damg̊ard. A design principle for hash functions. In Gilles Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 416–427, Santa Barbara, CA, USA,
August 20–24, 1990. Springer, Heidelberg, Germany.

5. Itai Dinur and Gaëtan Leurent. Improved generic attacks against hash-based MACs
and HAIFA. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part
I, volume 8616 of LNCS, pages 149–168, Santa Barbara, CA, USA, August 17–21,
2014. Springer, Heidelberg, Germany.

6. Yevgeniy Dodis, Thomas Ristenpart, John P. Steinberger, and Stefano Tessaro.
To hash or not to hash again? (in)differentiability results for h2 and HMAC. In
Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of
LNCS, pages 348–366, Santa Barbara, CA, USA, August 19–23, 2012. Springer,
Heidelberg, Germany.

7. Peter Gaži, Krzysztof Pietrzak, and Michal Rybár. The exact PRF-security
of NMAC and HMAC. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part I, volume 8616 of LNCS, pages 113–130, Santa Barbara,
CA, USA, August 17–21, 2014. Springer, Heidelberg, Germany.

8. Peter Gaži, Krzysztof Pietrzak, and Stefano Tessaro. The exact PRF security
of truncation: Tight bounds for keyed sponges and truncated CBC. In Rosario
Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I, volume
9215 of LNCS, pages 368–387, Santa Barbara, CA, USA, August 16–20, 2015.
Springer, Heidelberg, Germany.

9. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the cryptographic ap-
plications of random functions. In G. R. Blakley and David Chaum, editors,
CRYPTO’84, volume 196 of LNCS, pages 276–288, Santa Barbara, CA, USA,
August 19–23, 1984. Springer, Heidelberg, Germany.

10. Jian Guo, Thomas Peyrin, Yu Sasaki, and Lei Wang. Updates on generic attacks
against HMAC and NMAC. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part I, volume 8616 of LNCS, pages 131–148, Santa Barbara, CA,
USA, August 17–21, 2014. Springer, Heidelberg, Germany.

11. G. H. Hardy and Edward M. Wright. An Introduction to the Theory of Numbers
(sixth edition). Oxford University Press, USA, 2008.

12. Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseu-
dorandom generator from any one-way function. SIAM Journal on Computing,
28(4):1364–1396, 1999.

13. Jongsung Kim, Alex Biryukov, Bart Preneel, and Seokhie Hong. On the security
of HMAC and NMAC based on HAVAL, MD4, MD5, SHA-0 and SHA-1 (extended
abstract). In Roberto De Prisco and Moti Yung, editors, SCN 06, volume 4116 of
LNCS, pages 242–256, Maiori, Italy, September 6–8, 2006. Springer, Heidelberg,
Germany.

14. Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC: Keyed-hashing for mes-
sage authentication. IETF Internet Request for Comments 2104, February 1997.

15. Gaëtan Leurent, Thomas Peyrin, and Lei Wang. New generic attacks against
hash-based MACs. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013,
Part II, volume 8270 of LNCS, pages 1–20, Bengalore, India, December 1–5, 2013.
Springer, Heidelberg, Germany.

16. Ralph C. Merkle. One way hash functions and DES. In Gilles Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 428–446, Santa Barbara, CA, USA,
August 20–24, 1990. Springer, Heidelberg, Germany.

17. Yusuke Naito, Yu Sasaki, Lei Wang, and Kan Yasuda. Generic state-recovery and
forgery attacks on ChopMD-MAC and on NMAC/HMAC. In Kazuo Sakiyama
and Masayuki Terada, editors, IWSEC 13, volume 8231 of LNCS, pages 83–98,
Okinawa, Japan, 2013. Springer, Heidelberg, Germany.

18. Jacques Patarin. The “coefficients H” technique (invited talk). In Roberto Maria
Avanzi, Liam Keliher, and Francesco Sica, editors, SAC 2008, volume 5381 of
LNCS, pages 328–345, Sackville, New Brunswick, Canada, August 14–15, 2009.
Springer, Heidelberg, Germany.

19. Thomas Peyrin, Yu Sasaki, and Lei Wang. Generic related-key attacks for HMAC.
In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of
LNCS, pages 580–597, Beijing, China, December 2–6, 2012. Springer, Heidelberg,
Germany.

20. Thomas Peyrin and Lei Wang. Generic universal forgery attack on iterative
hash-based MACs. In Phong Q. Nguyen and Elisabeth Oswald, editors, EU-
ROCRYPT 2014, volume 8441 of LNCS, pages 147–164, Copenhagen, Denmark,
May 11–15, 2014. Springer, Heidelberg, Germany.

21. Bart Preneel and Paul C. van Oorschot. MDx-MAC and building fast MACs from
hash functions. In Don Coppersmith, editor, CRYPTO’95, volume 963 of LNCS,
pages 1–14, Santa Barbara, CA, USA, August 27–31, 1995. Springer, Heidelberg,
Germany.

22. Yu Sasaki and Lei Wang. Generic attacks on strengthened HMAC: n-bit secure
HMAC requires key in all blocks. In Michel Abdalla and Roberto De Prisco, editors,
SCN 14, volume 8642 of LNCS, pages 324–339, Amalfi, Italy, September 3–5, 2014.
Springer, Heidelberg, Germany.

23. Kan Yasuda. “sandwich” is indeed secure: How to authenticate a message with
just one hashing. In Josef Pieprzyk, Hossein Ghodosi, and Ed Dawson, editors,
ACISP 07, volume 4586 of LNCS, pages 355–369, Townsville, Australia, July 2–4,
2007. Springer, Heidelberg, Germany.

	Generic Security of NMAC and HMAC with Input Whitening

