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Abstract. Differential and linear cryptanalysis are the general purpose
tools to analyze various cryptographic primitives. Both techniques have
in common that they rely on the existence of good differential or linear
characteristics. The difficulty of finding such characteristics depends on
the primitive. For instance, AES is designed to be resistant against dif-
ferential and linear attacks and therefore, provides upper bounds on the
probability of possible linear characteristics. On the other hand, we have
primitives like SHA-1, SHA-2, and Keccak, where finding good and
useful characteristics is an open problem. This becomes particularly in-
teresting when considering, for example, competitions like CAESAR. In
such competitions, many cryptographic primitives are waiting for anal-
ysis. Without suitable automatic tools, this is a virtually infeasible job.
In recent years, various tools have been introduced to search for charac-
teristics. The majority of these only deal with differential characteristics.
In this work, we present a heuristic search tool which is capable of find-
ing linear characteristics even for primitives with a relatively large state,
and without a strongly aligned structure. As a proof of concept, we ap-
ply the presented tool on the underlying permutations of the first round
CAESAR candidates Ascon, ICEPOLE, Keyak, Minalpher and Prøst.

Keywords: linear cryptanalysis · authenticated encryption · automated
tools · guess-and-determine · CAESAR competition

1 Introduction

Research in symmetric cryptography in the last few years is mainly driven by
dedicated high-profile open competitions such as NIST’s AES and SHA-3 selec-
tion procedures, or ECRYPT’s eSTREAM project. While these focused com-
petitions in symmetric cryptography are generally viewed as having provided a
tremendous increase in the understanding and confidence in the security of these
cryptographic primitives, the impressive increase of submissions to such competi-
tions reveal major problems related to the analytical effort for the cryptographic
community. To better evaluate the security margin of the various submissions,
automatic tools are needed to assist cryptanalysts with their work.

One important class of attacks is linear cryptanalysis [25,15]. The success
of these attacks relies on the existence of suitable linear characteristics. The



difficulty of finding such characteristics depends on the primitive. For example,
the wide-trail design strategy [7] incorporated by AES provides lower bounds on
the minimum number of active S-boxes in a linear characteristic and therefore,
gives an upper bound on the highest possible bias. On the other hand, we have
primitives with weak alignment [1], such as the winner of the SHA-3 competition
Keccak, where finding good characteristics is an open problem, and heuristic
search results are required to evaluate the security margin of the primitive. This
is particularly interesting in the context of the CAESAR competition [26]. We
noticed that many first round submissions focus their analysis on differential
cryptanalysis, but provide only few results for linear cryptanalysis.

Our contribution. The main contribution of this paper is a dedicated au-
tomatic tool for linear cryptanalysis, which is available at github1. The tool
performs heuristic searches for good linear characteristics in cryptographic prim-
itives. It was designed for primitives based on substitution-permutation networks
(SP networks).

The modular design of the tool allows easy extension to other cryptographic
primitives. It also allows to easily develop and test new dedicated search strate-
gies. To facilitate further improvements and analysis, the tool is publicly avail-
able and its source code is published together with this paper. Such a tool is
particularly useful when designing new cryptographic primitives. It allows to
easily explore the effects of, for instance, different S-boxes and linear layers on
linear characteristics and reveals possible bad decisions in an early stage of the
design process. Even in wide-trail designs with provable bounds, it can be useful
to evaluate different choices for building blocks with respect to their long-term
behaviour over a larger number of rounds, where the quality of the best charac-
teristics can deviate significantly from the derived bounds (i.e., two algorithms
with the same bounds may behave quite differently in a heuristic search, which
can be a basis for the decision of choosing one design over the other).

As a proof of concept and to demonstrate the advantages of the tool, we
have chosen the first round CAESAR candidates Ascon [9], ICEPOLE [19],
Keyak [4], Minalpher [22] and Prøst [13] as analysis targets. Ascon, ICEPOLE,
and Keyak are sponge-based authenticated encryption schemes. All three prim-
itives use permutations that are not strongly aligned, making it hard to find
good linear characteristics. We demonstrate the capability of our automated
search tool by giving linear characteristics suitable for different attack scenarios.
In comparison, the permutations used in Minalpher and Prøst provide more
“structure” by incorporating an “AES-like” design strategy. Hence, the designers
of these two primitives are able to give computer-aided bounds on the minimum
number of active S-boxes by using mixed-integer linear programming (MILP)
for a number of rounds sufficient to thwart attacks. For Minalpher and Prøst,
we show that our tool is capable of finding linear characteristics which match
the provided bounds. Our results are summarized in Table 1 (Sect. 4).

1 https://github.com/iaikkrypto/lineartrails



Related Work. While several automatic tools for differential cryptanalysis
have been published in the last few years [23,8,12,6,16,14,5,20], in particular for
hash functions, the work on automatic tools dedicated to linear cryptanalysis is
very limited. One example is a tool designed by Sun et al. [24], extending previous
work of Mouha et al. [21]. They model the differential and linear behavior of a
block cipher as a mixed-integer linear program (MILP) and use general-purpose
MILP tools to solve the optimization problem (i.e., find the optimal character-
istics for the – often simplified – model of the cipher). This approach works
well for lightweight ciphers like Simon or Present, but faces problems when it
comes to large-state and less structured ciphers such as Ascon, ICEPOLE, and
Keyak. Hence, a dedicated search tool for linear characteristics will complement
the existing tools.

Outline. This paper is divided into two main parts: the description of our new
automated search tool for linear characteristics in Sect. 3, and its application
to the CAESAR candidates in Sect. 4. However, first, we start with a short
introduction to linear cryptanalysis and our notation in Sect. 2. Then, we deal
with the propagation of linear masks in Sect. 3.2 and discuss the proposed search
strategy for linear characteristics in Sect. 3.3. The application of the tool (Sect. 4)
is first discussed in detail for Keyak in Sect. 4.1. Then, our results for the other
ciphers are summarized and briefly discussed in Sect. 4.2 to 4.5. Finally, we
conclude in Sect. 5.

2 Linear cryptanalysis

The goal of linear cryptanalysis [25,15] is to identify good affine linear approxi-
mations for the target cipher. More specifically, we want to find linear equations
between the plaintext bits, ciphertext bits and key bits that hold with prob-
ability significantly different from 1

2 (bias). Then, in the actual attack phase,
these equations can be used to derive information on the key bits from known
plaintext-ciphertext pairs.

For linear cryptanalysis, the operation of the cipher, or building blocks of
the cipher, is considered as a vectorial boolean function f : Fm2 → Fn2 (where the
key bits might be part of Fm2 ). A (probabilistic) linear relation between input
and output bits of f is then characterized by two linear masks α ∈ Fm2 , β ∈ Fn2 .
For x ∈ Fm2 , y ∈ Fn2 with y = f(x), the masks represent the relation

αt · x = βt · y,

where vt · w denotes the natural inner product of vectors. The quality of a
linear approximation α, β is measured by the probability that the corresponding
relation holds; or more precisely, by how far this probability deviates from the



average 1
2 . This deviation is referred to as the bias of the masks α, β:

εα,β = biasf (α, β) =

∣∣∣∣P [αt · x = βt · y | y = f(x)
]
− 1

2

∣∣∣∣
=

1

2m
·
∣∣∣ ∣∣{x ∈ Fm2 | αt · x = βt · f(x)

}∣∣− 2m−1
∣∣∣.

If m is very small, the expression for εα,β can easily be evaluated explicitly for all
masks α, β to determine the best masks. This information is summarized in the
linear distribution table (LDT), where non-zero entries mark masks α, β with
non-zero bias.

However, this is obviously infeasible for the complete cipher at once. To
obtain an approximation of the complete cipher, it is split into smaller parts
that are easier to analyze. Matsui’s piling-up lemma [15] is used to combine the
individual biases of multiple building blocks to derive the overall bias (under the
assumption that the validity of the partial approximations is independent). If ε
denotes the bias of the overall approximation of the block cipher, Matsui [15]
showed that the necessary number of plaintext-ciphertext pairs to derive the bit
of key information from the approximation is proportional to 1

ε2 .
The difficult part is to find a network or “trail” of partial approximations

that are compatible with each other and give a good overall bias. In particular,
each involved approximation must have non-zero bias, otherwise the overall bias
becomes zero. For this reason, we refer to non-zero entries in the individual LDTs
as “valid transitions” of masks for this building block. In the the following, such
a “trail” of partial linear approximations is called linear characteristic.

Several algorithms and improvements thereof have been proposed for finding
characteristics with the highest overall bias, typically by a sort of branch-and-
bound algorithms. For more complex, modern ciphers, such a complete search is
not feasible. Two possible approaches to handle this situation are (a) to design
ciphers in a way to allow to prove bounds on the best possible bias, and (b)
to use heuristic search methods to find stronger biases (for reduced versions of
the cipher) to make better predictions on the security margin of the complete
cipher.

In the following, we will focus on the second approach, and heuristically
search for good characteristics. Unlike the original, complete search algorithms,
our search will not proceed in a “linear”, round-by-round manner. Instead, we
will take inspiration from similar searching tools for differential cryptanalysis [8],
and randomize the search order. This naturally implies that we will often start
building inconsistent characteristics, which will need to be fixed or discarded.

3 An automated tool for linear cryptanalysis

The proposed automated tool can be roughly split into two main parts. The
first part is described in Sect. 3.2 and deals with the description of crypto-
graphic primitives within the search tool, including the representation of linear
approximations and, most importantly, their propagation. The other part of the



tool is the choice of the search algorithm to find good linear characteristics (see
Sect. 3.3). Before we start with the description of the tool, we take a look at
the requirements we have for the design and implementation of such a heuristic
search tool.

3.1 Implementation requirements for the search tool

In order for any automatic cryptanalysis tool to be useful for general application,
for example to analyze the 57 first round CAESAR submissions, there are a
number of flexibility and usability requirements:

– Easy to add new primitives. This is one of the main goals for the cre-
ation of this tool. To fulfill this requirement, we have decided to put the
focus on primitives based on SP networks, i.e., with alternating S-box and
linear layers. This simplifies the design process of the tool, since we did not
have to consider every possible specialty, while still having a large group
of applicable primitives. The programming interface should be designed to
require as little effort as possible for converting, for example, a CAESAR
reference implementation to a suitable cipher definition for the tool – ide-
ally, it should possible to just copy the corresponding code fragments for the
round transformation steps.

– An easily adaptable, parameterized search algorithm. The linear
tool implements a heuristic guess-and-determine search algorithm. This al-
gorithm delivers good results for various primitives. However, the success of
the search is highly dependent on various different parameters, such as the
configuration of the searching order and conflict-handling behavior. There-
fore, it is crucial that these parameters can be adjusted easily. For this rea-
son, our standard guess-and-determine algorithm is parameterizable via an
XML-file. This XML-file specifies the search starting point and allows to
configure various other parameters.

– Easy to add other search algorithms. The currently implemented, stack-
based guess-and-determine algorithm is certainly not the only possible way to
search for linear characteristics. To be open for new ideas and evaluate other
algorithms, we have designed the tool in a way that the search algorithm is
clearly separated from the description of the cipher and thus, can be replaced
easily. This opens the door for experiments with various alternative search
algorithms and will hopefully lead to new insights in this direction.

– Portability of the code. We do not want the tool to require a specific
operating system or platform to run. Therefore, we have reduced the de-
pendence from external libraries whenever possible, and omitted the use of
platform-specific instructions.

3.2 Propagation of linear masks

Our overall search strategy is based on the “guess-and-determine” approach.
We want to build a consistent linear characteristic with high bias step by step,



starting from a “mostly unknown” (undetermined) characteristic of masks, and
progressively deciding which bits should be selected (activated) by the final mask.
For this purpose, we repeatedly “guess” the value of small parts of the masks,
and then “determine” the consequences of this guess (in particular, whether this
updated partial characteristic can still be completed to a “valid” characteristic).
We refer to the “determining” step as propagation of information.

Representation of partial linear masks. The tool represents the linear
masks on bit-level. During the search, we work with partially-determined search
masks. We represent an active bit in the linear mask with 1 and an inactive bit
of a linear mask with 0. Mask bits that are not yet determined are represented
by ?.

Propagation in SP networks. We want to find linear characteristics for
SP networks. Such a network consists of iterative applications of a substitu-
tion layer (consisting of relatively small S-boxes) and an (affine) linear layer
(which typically covers larger parts of the state at once). We use different tech-
niques for the propagation of information in these two layer types. The goal of
the propagation step is to investigate whether the guess allows to derive explicit
values for other (“neighbouring”) bits, and in particular whether this explicit
information is contradictory. The constraints that allow this propagation can be
derived from the linear distribution table of the involved functions, since the
characteristic must not contain any mask transitions with bias 0.

Propagation in the non-linear layer. We only deal with non-linear layers
which can be represented by parallel applications of S-boxes. So the propaga-
tion of the linear masks at the input and the output of the S-boxes can be
treated individually, since the parallel applications are considered independent
of each other (any dependencies induced by the linking linear layers are treated
separately). Therefore, we can do the propagation separately per S-box.

Many state-of-the-art ciphers use relatively small S-boxes. In many recent
cipher proposals, the S-boxes map 4- to 5-bit inputs to outputs of the same
size. Even the largest S-boxes hardly ever exceed a size of 8 bits. Therefore,
the propagation of the linear masks can be done in a brute-force manner, based
on the linear distribution table (LDT) of the S-box. The LDT is an exhaustive
list of all valid (biased) mask transitions from mask α to mask β. Our cur-
rent “knowledge” of the values of some input and output mask bits limits the
set of available transitions. Depending on the concrete values of α and β and
the remaining transition options, we have one of the following outcomes of the
propagation:

1. Contradiction: The LDT reveals that no valid, biased transitions remain
that satisfy the fixed mask bits; i.e., there is no linear relationship involving
the bits currently marked by α and β as 1 (and optionally the ? bits). In
other words, we have a contradiction. This means that the current, partially



determined linear characteristic is in fact invalid. This situation has to be
handled by the search algorithm by, e.g., backtracking and resolving the
contradiction.

2. Updated bits: The LDT reveals that one or more biased transitions re-
specting the partially determined α and β remain. In addition, all remaining
transitions share the same value (0 or 1) for one or more of the current ?

bits. Thus, we can refine some previously undefined bits in the masks to ac-
tive or inactive bits by using information from the LDT. Before taking any
further guesses, this newly-won information must in turn be propagated in
all connected function components.

3. No updates: The LDT reveals that α and β are possible, but no additional
explicit bit-wise information can be won. Nothing else happens.

Propagation in the linear layer. There are two main differences between the
linear and non-linear layers from the propagation perspective: On the one hand,
the linear layer typically involves significantly more variables than individual
S-boxes. On other hand, propagating partial linear masks for linear functions
can be achieved easily using basic linear algebra.

Assume that the function f : Fm2 → Fn2 is linear, i.e., f(x) = A · x = y for
some A ∈ Fn×m2 . Note that we can include affine linear functions in the same
model, since the affine (constant) part is irrelevant for the bias of the linear
model if we do not consider the sign of the bias. Then, for a fully determined
mask α, β, the bias εα,β is either 0 (wrong model) or 1

2 (exact, correct model).
More specifically, α, β is a valid input-output mask if

∀x : αt · x = βt · f(x) ⇔ ∀x : αt · x = βt · (A · x)

⇔ ∀x : αt · x = (At · β)t · x
⇔ α = At · β.

If α and β are only partially determined, all propagation can be performed by
propagating the information in the linear system α = At · β. For this purpose,
we always keep the half-solved system in reduced row echelon form for all linear
layers. Whenever mask values in α or β are updated, we perform partial Gaussian
elimination to retain reduced row echelon form. If in the process, other bits of α
or β are determined (case 1 or 2 from above), this information is extracted from
the system and instead stored in the regular representation α, β of the mask bits
that is also used for S-box propagation.

Update process. Every time the propagation step leads to new, explicit infor-
mation in the linear masks (i.e., mask bits that were previously undetermined
are now fixed, case 2), this information has to be propagated over the connected
linear or non-linear layers, which share those updated mask bits. In other words,
the propagation step needs to be iterated to update the neighbouring layers.
Since we require that every linear layer is only connected to non-linear layers
and vice versa, we can use a very simple update process scheduling: After each



guess or update, we first perform propagation on all non-linear layers (with up-
dated bits), then on all linear layers (with updated bits). This process is iterated
until the propagation process has converged and no additional explicit informa-
tion can be learned anymore, or a contradiction was detected.

3.3 Search for linear characteristics

In this section, we discuss our proposed search strategy. The search strategy
guides the guessing behavior (choice of bits or bit sets to guess, and their val-
ues), as well as the backtracking behavior after detecting contradictions. We
currently implement a simple stack-based search algorithm, similar to the strat-
egy used in recent tools for differential characteristic search [16,17]. We first
give an algorithmic overview, before detailing the choices made for individual
ingredients.

Basic search algorithm. We start from a mostly-undetermined characteristic
A0 as a starting point, and incrementally guess more and more of its mask bits.
We refer to the current characteristic as A, and keep a history of the guesses
that led from A0 to A in the stack S. For each guess, we select a guessable item
X in the current characteristic A. Depending on the search strategy, this can
be a single bit, or all bits of an S-box input-output mask (unlike some tools for
differential characteristic search which only consider individual bits). The choice
of X is guided by the search and backtracking strategy. The characteristics
stored in S are used for backtracking, where some of the most recent guesses are
undone to resolve conflicts, i.e., we return to an older status stored in S. The
basic search algorithm is summarized in Algorithm 1.

Algorithm 1 Guess-and-determine search algorithm

choose characteristic A0 as starting point
loop

push A0 to empty stack S
repeat

get the topmost characteristic A from S
select a guessable item (bit or S-box) X in A
for all most preferable possible values x of X do

guess X to x
propagate information
if contradiction detected then

undo guess x and all resulting updates
else

push A to S and break
if no valid assignment x was found then

backtrack by popping characteristics from S
mark X critical

until exhausted or solution characteristic found



Choice of the starting point. The starting point is a linear characteristic,
in which most mask bits are still undetermined. The appearance of the starting
point depends highly on the scenario in which the linear characteristic will be
used, since it can be used to define which bits of the resulting characteristic must
definitely be active or inactive.

For instance, consider the search for a linear characteristic for a block cipher
or a permutation. In principle, every bit of the input or the respective output
mask can be active in such a scenario. So, we can use a starting point where
nearly every bit of the respective input and output linear masks is free for guess-
ing during the search. On the other hand, if we consider sponge-like modes, we
have more restrictions on the characteristic. Here, the attacker can only observe
or control a fraction of the state on the input and the output. Depending on the
actual attack, it can be necessary that bits belonging to unknown parts of the
state remain inactive, and that only observable or controllable bits are active.

Besides defining the possible use-cases of the linear characteristic, the choice
of the starting point also greatly influences the expected success of the search.
By fixing parts of the starting point, it is possible to reduce the search space
significantly, and thus accelerate the search to quickly find results that would
otherwise be out of range. However, reducing the search space also has the
potential to exclude classes of good characteristics. Thus, the starting point
is usually not too much restricted at the beginning of the analysis of a certain
cipher. Instead, the choice of the starting point is an adaptive process based on
the cryptographer’s intuition and the cipher’s structure, using information from
previous searches.

Guessing strategy. The guessing strategy specifies which undetermined bit
or S-box is picked next for guessing, and how it will be refined. In S-box-based
designs, the search success can profit significantly from guessing in an S-box-
oriented manner; that is, by guessing the value of all bits in an S-box input-
output mask at once. We refer to this as “guessing the S-box”. Even if guesses
are made S-box after S-box, the propagation procedure can produce half-guessed
S-boxes with some bits fixed and others undetermined. It is also possible to mix
S-box-wise and bit-wise guessing.

We refer to an S-box as “guessable” if the linear input and output masks
contain at least one remaining undetermined ?-bit, and “fixed” or “not guess-
able” otherwise. In addition, the search configuration may limit the selection
of S-boxes currently eligible for guessing, depending on the guessing progress.
The most important example for this is the “critical” status that is assigned
to an S-box after a failed attempt to find any valid assignment for this S-box,
and assigns top priority to this S-box. Additionally, it can be useful to impose
cipher-specific rules; for example, to demand that all S-boxes of the first few
rounds must be fixed before we start guessing values in the following rounds.

To guide the guessing procedure, each guessable S-box is assigned a proba-
bility for being selected as the next guessing target, for example based on the
criteria described above. In addition, all possible assignments for a guessable



S-box are ranked by how promising they are estimated to be for high-bias char-
acteristics. Of course, the primary guess for potentially inactive S-boxes (i.e.,
only with bits 0 and ? so far) is to keep them inactive (i.e., all 0). If this is
not possible, the S-box is marked as active. If the selected guessable S-box is
already marked active, we rank all possible assignments of the linear masks ac-
cording to their linear bias and the number of active bits. We pick a random
optimally ranked assignment as primary guess. If the following propagation re-
veals that this assignment is in fact impossible, we try other assignments until
no alternative is left, or we have reached a predefined threshold on the number
of trials.

Backtracking. If all alternative assignments fail (or a predefined threshold of
trials is reached), we need to backtrack. To resolve this conflict, we return to an
earlier version of the linear characteristic as stored on the stack S. Again, we try
to guess the same critical S-box that caused the conflict. If we cannot resolve
the conflict here, we jump further back, until it can be resolved.

Restarts. To better randomize the search process and avoid being “stuck” with
a few unhappy first guesses, it is helpful to occasionally restart the complete
search. For this purpose, we define a limit of “credits” or resources for one
search run. When this limit is exhausted before finding a valid, fully determined
characteristic, we clear the stack S and restart from scratch with the starting
point A0. Additionally, the search is also restarted after completing a successful
run, with the hope of finding new, better characteristics. If the cryptographer
detects promising patterns in the preliminary results, these can serve as a basis
for improved starting points for the next run.

4 Application to CAESAR candidates

In this section, we demonstrate the advantages of our tool for linear cryptanal-
ysis by applying it to several first round CAESAR candidates: Keyak, Ascon,
ICEPOLE, Prøst, and Minalpher. All the analyzed candidates are permutation-
based (rather than based on block ciphers). This is, however, not a constraint
of the linear tool, which works just as well for block ciphers, since the typical
round-key additions do not influence the linear characteristics. Rather, it is rep-
resentative of the trend that a significant portion of CAESAR candidates with
new, dedicated SPN primitives are permutation-based, since most block-cipher
modes employ AES.

For each candidate, we first consider linear characteristics for the (round-
reduced) permutation. However, for many modes (in particular for sponges),
an attacker cannot influence the complete input to the permutation, or cannot
observe its complete output. For this reason, we also investigate characteristics
with additional constraints, where parts of the linear masks are fixed beforehand.
We define the following three types of linear characteristics:



– Type I (permutation): For this type of characteristics, we do not require
any additional restrictions regarding the positions of active bits in the linear
characteristic. Hence, a characteristic of this type might not be usable in
a concrete attack on the duplex-like constructions of Keyak, Ascon, and
ICEPOLE. Nevertheless, even for modes where Type-I characteristics allow
no direct attacks, they still give insights in the resistance of the cryptographic
primitive against linear attacks.

– Type II (output constrained): Linear characteristics of this type have
the restriction that all active bits at the end of the characteristic have to be
“observable”. For duplex-like constructions, this means that all active mask
bits have to be in the outer (rate) part of the state. Such linear characteristics
can be used to create key-stream distinguishers in known-plaintext scenarios
for duplex-like constructions, or even to perform key-recovery attacks.

– Type III (input and output constrained): In addition to Type-II char-
acteristics, also all active bits of the input have to be in the outer (rate) part
of the state. This type of linear characteristic can act as a key-stream distin-
guisher in known-plaintext scenarios for duplex-like constructions, targeting
the encryption of the plaintext. A similar type of linear relations has been
used for instance by Minaud [18] to detect linear biases in the key-stream of
the CAESAR candidate AEGIS.

We first discuss our approach and our findings for Keyak in more detail, and
then briefly present our results for Ascon, ICEPOLE, Prøst, and Minalpher.

4.1 Keyak

Brief description of Keyak. Keyak is a family of authenticated encryption
algorithms designed by Bertoni et al. [4] and is one of the 57 submissions to
the first round of the CAESAR competition. It is based on the round-reduced
Keccak-f permutation and follows the duplex construction [2]. The designers
have defined four instances of Keyak; all instances share the same capacity
c = 252 and use 12 rounds of the Keccak-f permutation, but differ in their
state size b and the degree of parallelism p:

– River Keyak: b = 800, p = 1 (serial),
– Lake Keyak: b = 1600, p = 1 (serial),
– Sea Keyak: b = 1600, p = 2 (parallel),
– Ocean Keyak: b = 1600, p = 4, (parallel).

The Keyak duplex mode. Fig. 1 sketches the encryption of serial Keyak without
associated data: The initialization takes as input the secret key K and public
nonce N , and applies the permutation f once. This ensures that one always
starts with a random-looking state at the beginning of the encryption of the
plaintext. Afterwards, the plaintext is processed by xoring it block-wise to the
internal state, separated by invocations of the permutation f . The ciphertext
blocks are extracted from the state after adding the plaintext. After all data is



processed, the finalization applies the permutation f once more and returns the
tag. For more details on Keyak, including the rules for processing associated
data, we refer to the specification [4].
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Fig. 1. Simplified sketch of Lake Keyak encryption (without associated data).

The Keyak permutation. The Keyak permutation is a round-reduced version of
the Keccak-f permutation, reduced to 12 rounds. It operates on the 5×5 = 25
w-bit words (“lanes”) S[x][y][∗] of the state S, with w = 32 or 64. Each round
applies the five steps R = ι ◦χ ◦ π ◦ ρ ◦ θ, where all steps except ι are equivalent
for each round.

– Step θ adds to every bit of the state S[x][y][z] the bitwise sum of the neigh-
bouring columns S[x− 1][∗][z] and S[x+ 1][∗][z − 1]. This procedure can be
described by the following equation:

θ : S[x][y][z]← S[x][y][z] +

4∑
y′=0

S[x− 1][y′][z] +

4∑
y′=0

S[x+ 1][y′][z − 1].

– Step ρ rotates the bits in every lane by a constant value,

ρ : S[x][y][z]← S[x][y][z + C(x, y)],

where C(x, y) is a constant value.
– Step π permutes the lanes using the following function:

π : S[x][y][∗]← S[x′][y′][∗], where

(
x
y

)
=

(
0 1
2 3

)
·
(
x′

y′

)
.

– Step χ is the only non-linear step in Keccak and operates on each row of
5 bits:

χ : S[x][y][z]← S[x][y][z]⊕ ((¬S[x+ 1][y][z]) ∧ S[x+ 2][y][z]),

which can be seen as applying a 5-bit S-box in parallel to all rows.



– Step ι adds a round-dependent constant to the state. For the actual values
of the constants, we refer to the design document [4].

The designers provide some results on the linear properties of this permutation
online, as part of the KeccakTools package [3].

Results for Keyak. For our analysis, we focus on the primary recommenda-
tion Lake Keyak using state size b = 1600. Since Lake Keyak, in contrast
to Ascon and ICEPOLE, uses the same permutation (with the same num-
ber of rounds) in the initialization, finalization, and plaintext-processing phase,
Type-III characteristics (to target plaintext-processing) offer no remarkable ad-
vantage over Type-II characteristics (to target the initialization). For this reason,
we only consider Type-I and Type-II characteristics.

Type-I characteristics (for 3 and 4 rounds of the permutation). We first con-
sider Type-I characteristics, i.e., linear characteristics for the underlying round-
reduced Keyak permutation (Keccak-f) without any additional restrictions.
We performed a search for linear characteristics for 4 rounds of the 1600-bit per-
mutation. The best linear characteristic we found has 33 active S-boxes, which
results in a bias of 2−34. The best linear characteristic for 3 rounds with 13 active
S-boxes and a bias of 2−14 can be obtained by omitting the first round of the
4-round linear characteristic. Our results are very similar to the characteristic
given in the KeccakTools package [3].

Type-II characteristics (for 3 and 4 rounds of the initialization). The previous
3 and 4-round characteristics have active bits in the inner part (last four 64-bit
words) of the state after round 4. Therefore, we cannot use this characteristic in
an actual attack. For an attack on the initialization of round-reduced Keyak, we
have to apply additional restrictions on the linear characteristics. Since we can
only observe the outer (rate) part of the state at the output of the permutation
after the initialization, we apply the restriction that only this part is allowed to
contain active bits. Note that the input of the first permutation call is either
known or constant. Therefore, we have no problems with active bits there.

For the initialization reduced to 3, or 4 rounds, we found characteristics
which only have active S-boxes in the rate part of the state. Thus, considering
a known-plaintext attack, we know all the output bits of these S-boxes and can
invert them. This leads to the fact that the last round does not influence the
bias. So we have an expected bias of 2−13 for the 3-round version, and 2−49 for
the 4-round version of these characteristics. Taking the last S-box layer also into
account, the bias of those characteristics would be 2−26 and 2−70, respectively.
When inverting the last S-boxes, both characteristics result in trivial key-stream
distinguishers for round-reduced versions of Keyak with complexity 226 and 298,
respectively. Moreover, these distinguishers could also be used in a key-recovery
attack on round-reduced Keyak, resulting in similar complexities.



Configuration of the search. As already mentioned, the proposed search tool is a
heuristic one and thus, the quality of the results heavily depends on the applied
heuristic search criteria, as well as on the definition of the starting points. For
the search process that led to the Type-II characteristics for 3 and 4 rounds of
Keyak, we used a quite natural starting point: For both starting points, the
only restriction is that the S-boxes of the last round which “belong” to the inner
part of the state must be inactive. In addition, one S-box in the second round is
marked as active (to exclude the trivial, entirely inactive solution).

We split the search into two stages. In the first stage, we only pick poten-
tially inactive guessable S-boxes, and set them to the best possible assignment
(typically a completely inactive input and output linear mask). Which S-box is
picked and refined is determined by a heuristic that picks the S-boxes according
to a previously configured weight distribution. These weights can be manually
assigned in the search configuration file (the same file in which the starting
point is defined). In case of the search for the 3-round Type-II characteristic,
the weights were assigned so that S-boxes of the first and second round have a
50 times higher chance to be picked compared to an S-box of the last round.
The intention behind this distribution is that the majority of the active S-boxes
of the resulting linear characteristic should be located in the last round, because
their output is known in an attack. Hence, these active S-boxes can be inverted
and do not contribute to the bias. Our heuristic for the 4-round Type-II char-
acteristic prefers S-boxes from rounds 2 and 3 over S-boxes from rounds 1 and
4. Additionally, round 1 is favored over the last round 4. In the second stage,
after every guessable and potentially inactive S-box is already determined, we
continue by guessing active and yet not fully determined S-boxes until the linear
characteristic is fully determined.

As can be seen above, the choice of the starting point and search heuristic
depend on the structure of the target primitive, the planned use for the linear
characteristic, and on the intuition of the cryptographer. Thus, better search
strategies and starting points might exist, which may lead to better linear char-
acteristics than those given in this paper.

4.2 Ascon

Brief description of Ascon. Ascon is a family of sponge-based candidates,
designed by Dobraunig et al. [9]. Compared to Keyak, it features a significantly
smaller state of 320 bits, and the linear layer is applied to each of the 5 64-
bit words independently. The 5-bit S-box, on the other hand, is closely related
(affine equivalent) to that of Keyak. The primary proposal Ascon-128 has a
rate of 64 bits and hence, a capacity of 256 bits.

Results for Ascon. For the linear tool, the simple design of the linear layer
means that its linear model can be split into 5 separate, independent matrices.
Combined with a small state size, this property greatly reduces the cost for linear
algebra needed to perform the propagation compared to Keyak.



Our findings for Ascon are summarized in Table 1. The number of active
S-boxes of Type-I characteristics found with the help of this tool have already
been included in work presented at CT-RSA 2015 [10]. Note that the char-
acteristics given here are optimized for a minimum number of active S-boxes,
rather than minimal bias. For Ascon-128, we additionally search for Type-II and
Type-III characteristics. However, regarding Type-III characteristics, no mean-
ingful results were obtained.

4.3 ICEPOLE

Brief description of ICEPOLE. ICEPOLE is a family of authenticated en-
cryption schemes designed by Morawiecki et al. [19]. It consists of the three
proposals ICEPOLE-128, ICEPOLE-128a, and ICEPOLE-256, which all use the
same underlying 1280-bit permutation. All variants use 12 rounds of the permu-
tation for initialization, and 6 rounds for processing of plaintext and finalization.
However, they differ in details like size of the rate, key, nonce and tag.

The 1280-bit state of ICEPOLE is stored in 5 × 4 = 20 64-bit words. For
the linear layer, an MDS matrix over F25 is first applied 64 times in parallel (to
each 20-bit slice of the state). Then, each word is rotated, and the words swap
positions. The S-box layer applies 5-bit S-boxes (4 parallel row-wise applications
for each 20-bit slice).

ICEPOLE’s designers perform no dedicated linear analysis, but compare the
cipher’s resistance to linear cryptanalysis to its well-studied resistance against
differential cryptanalysis. They conclude that the attack complexity after 5–6
rounds should be “completely intractable” [19]. At FSE 2015, Huang et al. [11]
presented 3-round linear characteristics that they use in a differential-linear at-
tack on ICEPOLE.

Results for ICEPOLE. The Type-II and Type-III characteristics given in
Table 1 are constrained with respect to a capacity of 254 bits (due to padding,
256 bits are not observable), as defined for ICEPOLE-128 and ICEPOLE-128a.
In the case of ICEPOLE, we do not have an immediate output of a ciphertext
block right after the 12 rounds of the initialization. Before this happens, there is
the option to process a secret message number and at least an empty associated
data block is processed. Hence, 6 or even another 12 additional rounds have to
be passed before an output suitable for our Type-II characteristic is accessible.
Thus—in the worst case—our key-stream distinguisher using Type-II character-
istics works for round-reduced versions of ICEPOLE-128, where the initialization
plus the following processing is reduced to 5 out of 24 rounds with a complexity
of about 2120.

Type-III characteristics can be used to create distinguishers that target the
processing of the plaintext. Here, every version of ICEPOLE uses the 6 round
version of the ICEPOLE permutation. Thus, by using the Type-III characteristic
in Table 1, the key-stream produced by round-reduced variants of ICEPOLE-128,
where the permutation used in the plaintext processing is reduced to 4 (out of



6), rounds can be distinguished from a perfect randomly generated key-stream
with a complexity of about 288. The bias of the 5-round Type-III characteristic is
2−87.08 and hence, the complexity of a resulting key-stream distinguisher cannot
harm the 128-bit security of ICEPOLE-128. ICEPOLE-256a, on the other hand,
claims a security level of 256 bits regarding the confidentiality. However, it has a
higher capacity of 318 bits and therefore, the characteristics given in Table 1 can-
not be used directly. Taking the higher capacity of ICEPOLE-256a into account,
we get a Type-III characteristic with a bias of 2−89.49, which can be used to
distinguish the key-stream of a round-reduced variant of ICEPOLE-256a, where
the permutation used during the encryption is reduced to 5 (out of 6 rounds).
Note that ICEPOLE-256a limits the number of blocks encrypted under a sin-
gle key by 262. However, this type of key-stream distinguishers exploit relations
between ciphertext block Ci and the key-stream used to generate the following
ciphertext block Ci+1. Thus, distinguishers using Type-III characteristics in this
way do not rely on the fact that always the same key is used.

Table 1 contains the results with the best bias, but not necessarily the mini-
mal number of active S-boxes we found. For example, for 6 rounds, we also found
a Type-I characteristic with only 103 active S-boxes, but a bias of 2−133.49 (com-
pared to 104 active S-boxes with bias 2−126.32 as in the table).

4.4 Minalpher

Brief description of Minalpher. Minalpher is designed by Sasaki et al. [22].
In contrast to the previous 3 candidates, Minalpher is no sponge-based design.
Instead, the permutation is applied in a new tweakable block cipher construction,
called tweakable Even-Mansour. For this construction, the permutation size only
needs to be twice the security level, so for 128-bit security, Minalpher has the
smallest of all investigated permutation sizes with only 256 bits. This small state
is further divided into two halves, whose only interaction in each of the 17.5
rounds is that one half is once xored to the other half, and the two halves swap
places. Besides the interaction between the halves and some nibble reordering,
the linear layer features a near-MDS matrix multiplication over F24 . The S-box
size of 4 bits is also nibble-oriented.

For Minalpher’s construction, only Type-I characteristics are useful. We un-
derstand our results as an analysis of the underlying permutation. However,
since Minalpher claims security in nonce misuse settings and under unverified
plaintext release, the Type-I characteristics could also be useful for attacks on
the cipher. In particular, for a fixed nonce, the construction allows to control
the entire permutation input (at least differentially, due to the Even-Mansour
construction, which xors a key- and nonce-dependent value before and after the
permutation) and observe the entire output (again, differentially).

The designers analyze the minimum number of active S-boxes (for differential
cryptanalysis) theoretically, and prove a minimum number of 22 S-boxes for 4
rounds. For up to 7 rounds, they extend the bounds with the help of mixed integer
linear programming (MILP). The bounds obtained this way for the numbers of



rounds r also covered by this work are 22 (r = 4), 41 (r = 5), and 58 (r = 6).
The designers claim that the same bounds apply for linear cryptanalysis.

Results for Minalpher. The existing bounds serve as a kind of benchmark
for our tool to check its capabilities. As shown in Table 1, we were able to match
the given bounds for up to 6 rounds. For better comparability, we included our
results with the minimal number of active S-boxes, but not necessarily the best
bias, in the table. For example, for 6 rounds, we also found a Type-I characteristic
with a smaller bias of 2−61, but with 60 active S-boxes (compared to 58 active
S-boxes with bias 2−62 in the table).

4.5 Prøst

Brief description of Prøst. Prøst, designed by Kavun et al. [13], offers
both a sponge-based mode and two block-cipher-based modes, where the latter
use the Prøst permutation in a single-key Even-Mansour construction. Each of
the three modes offers two security levels: one based on the 256-bit Prøst-128
permutation, and one based on the 512-bit Prøst-256 permutation. The state
is stored as 4 × 4 words of 16 or 32 bits, respectively. Both the 4-bit S-box
(row-wise) and the 16-bit linear mixing function (MDS over F24 are applied in a
bit-sliced way (using 1 bit of each word). Then, each word is rotated. The number
of rounds per permutation call is r = 16 (Prøst-128) or r = 18 (Prøst-256),
respectively.

We focus our analysis on Prøst-256 (formally offering 128-bit security). Like
Minalpher, Prøst comes with a MILP-based proof for the minimum number of
active S-boxes for differential and linear characteristics. For Prøst-256, the
bounds for different round numbers are 25 (r = 4), 41 (r = 5), 105 (r = 6), and
169 (r = 7).

Results for Prøst. Again, we used the existing bounds as benchmarks for
our linear tool. The tool is able to match each bound, mostly with optimal or
near-optimal bias (2−26 for r = 4, 2−42 for r = 5, 2−107 for r = 6, and 2−175 for
r = 7).



Table 1. Results for Keyak, Ascon, ICEPOLE, Minalpher, and Prøst. The corre-
sponding linear characteristics can be found in the full version of this paper.

Cipher Type Rounds Active S-boxes Bias

Keyak
I

3 13 2−14

4 33 2−34

II
3* 12 2−13

4* 43 2−49

Ascon

I
3 13 2−15

4 43 2−50

5 67 2−94

II
2 6 2−8

3 23 2−30

4 61 2−83

ICEPOLE

I
5 38 2−55.08

6 104 2−126.32

II
4 22 2−30.42

5 38 2−59.49

III
3 10 2−16.66

4 22 2−43.25

5 42 2−87.08

Minalpher I
4 22 2−23

5 41 2−42

6 58 2−62

Prøst-256 I

4 25 2−26

5 41 2−42

6 105 2−107

7 169 2−175

* Last S-box layer inverted.

5 Conclusion

We presented a dedicated tool for the automatic linear cryptanalysis of substitu-
tion-permutation networks. The goal of the tool is to identify linear characteris-
tics for a cryptographic function, which can subsequently be used by the crypt-
analyst to mount key-recovery or distinguishing attacks. The heuristic search is
based on an efficient guess-and-determine approach, which has previously been
proven successful for searching differential characteristics. We described how to
perform efficient propagation of linear masks in linear and non-linear building
blocks of a cipher.

From the cryptanalyst’s perspective, the tool is simple to use, flexible, and
easy to extend with regard to search strategies and target ciphers. The open-



source tool will be freely available to help analyze CAESAR candidates and other
symmetric cryptographic primitives. We hope that our work will be a valuable
contribution to get a better understanding of the security of these ciphers re-
garding linear cryptanalysis. In particular, we hope to encourage experiments
with alternative, sophisticated search strategies optimized for different target
ciphers.

We demonstrated the efficiency of our tool by applying it to several CAESAR
candidates. The results obtained by searching for linear characteristics for the
Minalpher and Prøst-256 permutation show that the presented heuristic search
tool can keep pace with MILP-based approaches. However, due to the heuristic
nature, we are not capable of providing bounds on the minimum number of
active S-boxes.

On the other side, when looking at the results obtained for Ascon, ICEPOLE
and Keyak– all designs with weak alignment – we have been able to find new
linear characteristics with a good bias that might be used in a key-recovery or
distinguishing attack on round-reduced versions of the ciphers in the future.
One highlight are the Type-III characteristics for round-reduced versions of
ICEPOLE, which can be used to distinguish the key-stream of ICEPOLE in
a nonce-respecting scenario.

Our results show that the existence of a publicly available analysis tool for lin-
ear characteristics will be of great help in the design of symmetric cryptographic
primitives, in order to evaluate the resistance against linear attacks already in
an early stage of the design. Thus, we think that this tool will facilitate new de-
signs which are more balanced in their resistance against linear and differential
attacks than some of today’s designs.
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