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Abstract. Hash functions are often constructed based on permutations
or blockciphers, and security proofs are typically done in the ideal per-
mutation or cipher model. However, once these random primitives are
instantiated, vulnerabilities of these instantiations may nullify the secu-
rity. At ASIACRYPT 2007, Knudsen and Rijmen introduced known-key
security of blockciphers, which gave rise to many distinguishing attacks
on existing blockcipher constructions. In this work, we analyze the impact
of such attacks on primitive-based hash functions. We present and for-
malize the weak cipher model, which captures the case a blockcipher has
a certain weakness but is perfectly random otherwise. A specific instance
of this model, considering the existence of sets of B queries whose XOR
equals 0 at bit-positions C, where C is an index set, covers a wide range
of known-key attacks in literature. We apply this instance to the PGV
compression functions, as well as to the Grøstl (based on two permuta-
tions) and Shrimpton-Stam (based on three permutations) compression
functions, and show that these designs do not seriously succumb to any
differential known-key attack known to date.

Keywords. Hash functions, known-key security, Knudsen-Rijmen, PGV,
Grøstl, Shrimpton-Stam, collision resistance, preimage resistance.

1 Introduction

Cryptographic hash functions are conventionally built on top of compression
functions, and in turn on one or more blockciphers. Since the first appearance
of such compression function F(h,m) = DESm(h) by Rabin [49] in the late 70s,
many blockcipher-based functions appeared in the literature [23,25,29,30,40,43,
48,58]. These all enjoy security proofs in the ideal model, where the underlying
ciphers are assumed to behave ideally. Characteristic to these designs is that the
key input to the cipher depends on the input to the compression function, and
that the key scheduling needs to be sufficiently strong. For instance, Biryukov
et al. [6] derived a related-key attack on AES and claimed that it invalidates the
security of the Davies-Meyer compression function when the underlying primitive
is instantiated with AES. A more recent approach to compression function design
is to base them on a limited number of permutations [8, 41, 42, 51, 57]. These
permutations could be designed from scratch, or obtained by fixing a small set



of keys and using a blockcipher for these keys only. Related- or chosen-key attacks
on blockciphers do not help the adversary here, as the keys are fixed.

Known-Key Security of Blockciphers. While in the classical security models
for blockciphers the key is secret and randomly drawn and the adversary’s tar-
get is to distinguish the instantiation of the cipher from a random permutation
(also known as (strong) pseudorandom permutation security), this notion does
not apply if the key is known to the adversary. At ASIACRYPT 2007, Knudsen
and Rijmen [27] introduced known-key security of blockciphers. Here, the key is
presumed known, and the adversary succeeds in distinguishing if it identifies a
structural property of the cipher. Andreeva et al. [1] proposed a way to formalize
the known-key security of blockciphers based on the underlying primitives. The
model is derived from the indifferentiability framework [37] and hence all compo-
sition results carry over. Intuitively: suppose some cryptosystem F is proven to
achieve a certain level of security in the ideal permutation model, and consider
F′ to be F with the permutations replaced by independent blockcipher instanti-
ations. Then, F′ achieves the same level of security as F, up to the known-key
indifferentiability bound of the underlying blockciphers.

In [1], several blockcipher constructions are proven to be known-key indiffer-
entiable, such as the multiple Even-Mansour cipher and 14 rounds of balanced
Feistel with random functions (using a result of Holenstein et al. [24]). For such
ciphers, the above approach works well, although for Even-Mansour the com-
position is trivial (one essentially replaces an ideal permutation by an ideal
permutation) and for Feistel with 14 rounds security is only guaranteed up to
2n/32 queries, where n is the state size of the cipher.

Known-Key Attacks on Blockciphers. Knudsen and Rijmen also demon-
strated that the Feistel network on n bits with 7 rounds (called “Feistel7”) is not
known-key indifferentiable [1, 27]: an adversary can generically find 2n/2 plain-
text/ciphertext tuples (m, c) and (m′, c′) satisfying Rin/2(m ⊕ c ⊕m′ ⊕ c′) = 0
(where Rir(x) outputs the r rightmost bits of x). This result has lead to a
wave of other known-key attacks on practical constructions, including gener-
alized/extended variants of Feistel [1, 27, 47, 53, 56], reduced versions of AES
or Rijndael [22, 27, 38, 44, 52], reduced variants of the blockciphers underly-
ing SHA-2 and SHA-3 finalists BLAKE and Skein [2, 7, 31, 34, 60], and many
more [3,11,12,14,17,18,28,33,46,47,54,55]. This paper will mostly be concerned
with differential known-key attacks, including rebound- and boomerang-based
attacks (the majority of above-mentioned attacks). We highlight two results that
are among the best-known ones and that exemplify the idea of the other attacks.
Gilbert and Peyrin [22] used the rebound technique [39] to derive a known-key
attack on 8 rounds of AES (called “AES8”). It starts from the middle, and results
in a differential trail with four active words in the beginning, and four at the end.
These active words are overlapping at two positions, hence one could consider
this result as two tuples (m, c) and (m′, c′) satisfying m ⊕ c ⊕ m′ ⊕ c′ = 0 at
10n/16 bit-positions. The adversary has 215 ≤ 2n/8 degrees of freedom in the at-
tack, and for any choice it results in such a tuple with a certain probability. (The



bound of 2n/8 is used for simplicity later on.) The second attack we highlight is
by Yu et al. [60], who employ the boomerang technique [59] to attack 36 rounds
of the blockcipher Threefish-512 (called “Threefish36”) used in Skein. This at-
tack results in four tuples (m1, c1), . . . , (m4, c4) satisfying m1 ⊕ · · · ⊕ c4 = 0.
The adversary has 2n degrees of freedom, but any trial succeeds with probabil-
ity approximately 2−454. Therefore, the expected number of solutions is about
2n−454 ≤ 2n/8. This attack is in fact a known-related-key attack, where a fixed
difference in the key exists. For simplicity, we condone this, observing that an
attack with no key difference must logically be harder.

In any of these cases, the traditional and commonly employed ideal ci-
pher/permutation model falls short: results achieved in this model do not nec-
essarily hold if the primitives are instantiated with Feistel7, AES8, Threefish36,
or any other known-key distinguishable cipher.

1.1 Our Contributions

In their seminal work, Knudsen and Rijmen state: “In some cases blockciphers
are used with a key that is known to the adversary, and at least to a certain
extent, the key is under the adversary’s control. Our attacks are quite relevant to
this case.” We investigate this fundamental question whether known-key attacks
invalidate the security of primitive-based hash functions, but we do so in a much
more general way. At a high level, we present a model that goes beyond the tra-
ditional ideal cipher model as well as the principle of known-key attacks and that
allows to generically analyze the impact of various weaknesses of blockciphers
on various blockcipher- and permutation-based cryptosystems.

Model. A naive approach to analyzing the impact of known-key attacks would
be to simply plug a certain blockcipher construction into a hash function and
to analyze its security, but this would be a devious and complex combinatorial
task: for a function based on r permutations, plugging Feistel7 into it would lead
to 7r underlying primitive calls. Note that proving security of the Feistel con-
struction itself is already extraordinarily hard [16,24,32]. Instead, we model the
blockciphers in such a way that they behave randomly, except that an adversary
can exploit the particular relation. More formally, we pose a certain predicate
Φ, and we draw blockciphers randomly from the set of all ciphers that comply
with predicate Φ. Throughout, we refer to this model as the “weak cipher model
(WCM).” It corresponds to the ideal cipher model if Φ is trivial.

We present an explicit description of a random weak cipher for the case where
Φ implies for each key k the existence ofA sets ofB queries {(k,m1, c1), . . . , (k,mB , cB)}
that comply with a certain condition ϕ. These ciphers are modeled to have three
interfaces: forward queries, inverse queries, and predicate queries. Forward and
inverse queries are as usual; on a predicate query, an adversary is given a set of
B queries satisfying ϕ. Multiple technicalities are involved in this formalization.
Most importantly, predicate Φ applies to tuples of queries, rather than single
queries only, and some query responses may have a reduced entropy.



Above-mentioned known-key attacks are covered by our model if the condi-
tion ϕ states for some C ⊆ {1, . . . , n} that

BitsC
(
m1 ⊕ c1 ⊕ · · · ⊕mB ⊕ cB

)
= 0 , (1)

where BitsC(x) outputs a string consisting of all bits of x whose index is in C. (In
fact, our model is much more general: above-mentioned attacks aim to generate
only one relation, while we allow an adversary to see multiple relations.) The
value A usually depends on n and C is regularly a large subset. We consider B
being a relatively small number (independent of n). For the above-mentioned
attack on Feistel7, A = 2n/2, B = 2, and C corresponds to the rightmost n/2
bits. Similarly, the attacks on AES8 (for A = 2n/8, B = 2, and C a certain
set of size 10n/16) and Threefish36 (for A = 2n/8, B = 4, and C = {1, . . . , n})
are covered, and so are almost all known differential (rebound- or boomerang-
based) known-key attacks. We remark that, on the other hand, the predicate is
not well-suited for integral-based known-key attacks: upon a predicate query an
attacker would receive B ≈ 2n queries.

The weak cipher model is similar to an approach followed by Bresson et
al. [15] for the indifferentiability analysis of the SHA-3 candidate Shabal if the
underlying blockcipher shows some non-random behavior, and by Bouillaguet et
al. [13] to analyze the indifferentiability security of SIMD when the underlying
compression function is distinguishable from a random function. However, in
both approaches, the underlying biased primitives were relatively easy to model.
For instance in [15] (using our terminology), predicate Φ is a relation that holds
for single queries only, and not for combinations of queries. This considerably
simplifies the analysis: one can derive a bias β to measure the distance between
primitive responses and fully random responses, and consider oracle responses
to be drawn from a set of size at least 2n−β , and the original indifferentiability
analysis carries over with minor modifications. The predicate used in the analy-
sis in [13], on the other hand, does apply to tuples of queries, but the model can
simply be described using two sampling algorithms, and an adversary cannot
hit a weak pair by accident (which is possible in our analysis). Liskov [35] used
a similar approach to prove indifferentiability security of the zipper hash if the
underlying compression function is invertible up to a certain degree. However,
the analysis is significantly simpler, as this primitive can be perfectly modeled.
We finally remark that Katz et al. [26] analyze the impact of related-key at-
tacks on blockciphers to hash functions. However, in their model, the differences
∆k,∆x,∆y are fixed, an ideal cipher is generated for half of the key space, and
for the other half the cipher is adjusted as Ek(x, y) = Ek⊕∆k(x⊕∆x)⊕∆y. This
primitive can be easily modeled, but is also too generous to the attacker.

To our knowledge, this is the first attempt to formally analyze the effect
of a wide class of blockcipher attacks on higher level cryptographic functions.
Nonetheless, the weak cipher model is in essence still a model: we use an ab-
straction of the cryptanalytic known-key attacks in such a way that the ideal
cipher model can be relaxed to cope them. A further discussion on the accuracy
of the model is given in Sect. 7.



Table 1. Security results for the PGV, Grøstl, and Shrimpton-Stam compression
functions in the weak cipher model. Ideal cipher/permutation model bounds
match the ones of B ≥ 3. All results are tight except for the case (B = 1, |C| >
n/2) for Shrimpton-Stam.

PGV Grøstl Shrimpton-Stam

B |C| collision preimage collision preimage collision preimage

1 ≤ n/2 2(n−|C|)/2 2n−|C| 2(n−|C|)/4 2(n−|C|)/2 2(n−|C|)/2 2n/2

> n/2 2(n−|C|)/2 2n−|C| 2(n−|C|)/4 2(n−|C|)/2 2(n−|C|)/2 2n−|C|

2 ≤ n/2 2n/2 2n 2n/4 2n/2 2n/2 2n/2

> n/2 2n−|C| 2n 2(n−|C|)/2 2n/2 2n−|C| 2n/2

≥ 3 arbitrary 2n/2 2n 2n/4 2n/2 2n/2 2n/2

Application to Blockcipher-Based Hash Functions. Preneel, Govaerts,
and Vandewalle (PGV) [48] classified the 64 most basic ways of constructing
a 2n-to-n-bit compression function from a blockcipher with n-bit key and n-
bit state, and claimed security of 12 of them. A formal security analysis of
these functions in the ICM has been performed by Black et al. [9], and later by
Duo and Li [19], Stam [58], and Black et al. [10]. In more detail, in the ICM
these constructions achieve tight collision security up to about 2n/2 queries and
preimage security up to about 2n queries. Baecher et al. [4] recently showed that
the 12 secure PGV functions can be divided into two classes, in such a way that
if a primitive makes one function secure it makes the entire class secure.

As first application of our model, we consider the PGV compression functions
in the WCM and derive collision and preimage bounds for general (A,B,C).
A schematic summary of the results for various B and C is given in Table 1
(we remark that A is merely a technical parameter that has no influence on
the results). We also show that the bounds are optimal, by providing matching
attacks. Some of these attacks are similar to methods used in [27,53,56] to detect
(near-)collisions in certain PGV modes of operations using known-key attacks.

Application to Permutation-Based Hash Functions. We also apply the
WCM to permutation-based compression functions. This is particularly interest-
ing for two reasons: (i) it allows us to understand the impact of distinguishers
on permutations that are used in hash functions, and (ii) a blockcipher with a
fixed and known key is a permutation and can be used as such. In more detail,
we consider the Grøstl compression function [21] and the permutation-based
equivalent of the Shrimpton-Stam compression function [57] (see also Fig. 4). In
the IPM, the former is proven to achieve collision security up to 2n/4 queries,
where n is the state size, and preimage security up to 2n/2 [20]. Rogaway and
Steinberger [51] showed via an automated analysis that the latter function is
collision and preimage resistant up to 2n/2 queries (asymptotically). This has
been confirmed in the generalized work of Mennink and Preneel [41].



A summary of our findings for the Grøstl and Shrimpton-Stam compression
functions in the WCM is given in Table 1. All results are tight, except for the case
(B = 1, |C| > n/2) for Shrimpton-Stam, for which we leave proving tightness as
an open problem. We remark that the analysis for these schemes is much more
demanding as multiple primitives are involved.

Impact. An application of our formalization to the PGV functions and vari-
ous permutation-based functions shows that these achieve a comparable level
of security in the ideal and weak cipher model for a spectrum of choices for
(A,B,C). This result particularly implies that most relevant rebound-based (in-
cluding [12,22,28,38,52,53,56]) and boomerang-based (including [2,7,31,54,60])
known-key attacks known to date do not invalidate the security of such func-
tions, or only have a little effect. For instance, the above-discussed attack on
Feistel7 satisfies B = 2 and |C| = n/2 and it does not affect the security; simi-
larly for Threefish36 for which B = 4. The attack on AES8 is covered for B = 2
and |C| = 10n/16, which demonstrates a slight security degradation to 26n/16

for the PGV functions, but this may in part be due to our over-generosity to the
adversary. We remark that, even though we focused on collision and preimage
resistance, the techniques can be generalized to other security notions, such as
near-collisions. This may entail differences in the security results.

We stress that these results do not mean that the analyzed functions are
secure when the underlying permutations are instantiated with, say, Feistel7
or Threefish36: it only means that existing known-key attacks, or more general
weaknesses such as relation (1), alone are not sufficient to invalidate the collision
and preimage security of the construction. Indeed, more sophisticated attacks
which are not yet covered by our application of the WCM may still invalidate
the security of certain modes [6]. It remains a challenging open research problem
to generalize the findings to underlying primitives that have multiple or different
weaknesses.

1.2 Outline

In Sect. 2, we formally present the “weak cipher model,” and in Sect. 3 we show
how it relates to known-key attacks. We apply the model to the PGV functions
in Sect. 4, to the Grøstl compression function in Sect. 5, and to Shrimpton-Stam
in Sect. 6. We conclude this work in Sect. 7.

2 Weak Cipher Model

If X is a set, by x
$←− X we denote the uniformly random sampling of an element

from X. By X
∪←− x, we denote X ← X ∪ {x}. For a bit string x, its bits are

numbered x = x|x| · · ·x2x1. If C ⊆ {1, . . . , |x|}, the function BitsC(x) outputs a
string consisting of all bits of x whose index is in C. Abusing notation, BitsC(x)
always denotes the remaining bits (technically, C = {1, . . . , |x|}\C). For 0 ≤ r ≤
|x|, we consider Rir(x) that outputs the r rightmost bits of x. In other words,



Rir(x) = Bits{1,...,r}(x). For a function f , by dom(f) and rng(f) we denote its
domain and range, respectively.

2.1 Security Model

For κ ≥ 0 and n ≥ 1, by BC(κ, n) we denote the set of all blockciphers with κ-bit
key operating on n bits. If κ = 0, BC(n) := BC(0, n) denotes the set of all n-bit
permutations. If Φ is a predicate, by BC[Φ](κ, n) we denote the subset of ciphers
of BC(κ, n) that satisfy predicate Φ. For π ∈ BC[Φ](κ, n), the input-output tuples
are denoted (k, x, z), where π(k, x) = πk(x) = z and π−1(k, z) = π−1

k (z) = x.
The key k is omitted in case κ = 0.

Let F : {0, 1}s → {0, 1}n be a compressing function instantiated with ` ≥ 1
primitives from BC[Φ](κ, n), for some predicate Φ. Throughout, we consider secu-
rity of F in an idealized model: we consider an adversary A that is a probabilistic

algorithm with oracle access to a randomly sampled primitive π = (π1, . . . , π`)
$←−

BC[Φ](κ, n)`. A is information-theoretic and its complexity is only measured by
the number of queries made to its oracles. The adversary can make forward and
inverse queries to its oracles, and these queries are stored in a query history Q.

A collision-finding adversary A for F aims at finding two distinct inputs to F
that compress to the same range value. In more detail, we say that A succeeds
if it finds two distinct inputs X,X ′ such that F(X) = F(X ′) and Q contains all
queries required for these evaluations of F. We define by

Advcol
F (A) = Pr

(
π

$←− BC[Φ](κ, n)`, X,X ′ ← Aπ : X 6= X ′ ∧ F(X) = F(X ′)
)

the probability that A succeeds in this. By Advcol
F (q) we define the maximum

collision advantage taken over all adversaries making q queries.
For preimage resistance, we focus on everywhere preimage resistance [50],

which captures preimage security for every point of {0, 1}n. Let Z ∈ {0, 1}n
be any range value. Then, we say that A succeeds in finding a preimage if it
obtains an input X such that F(X) = Z and Q contains all queries required for
this evaluation of F. We define by

Advepre
F (A) = max

Z ∈{0,1}n
Pr
(
π

$←− BC[Φ](κ, n)`, X ← Aπ(Z) : F(X) = Z
)

the probability that A succeeds, maximized over all possible choices for Z. By
Advepre

F (q) we define the maximum (everywhere) preimage advantage taken over
all adversaries making q queries.

If Φ is a trivial relation, we have BC[Φ](κ, n) = BC(κ, n), and the above
definitions boil down to security in the ideal cipher model (ICM) if κ > 0 or
the ideal permutation model (IPM) if κ = 0. On the other hand, if Φ is a non-
trivial predicate, it strictly reduces the set BC(κ, n). In this case, we will refer
to the model as the “weak cipher model (WCM),” for both κ > 0 and κ = 0.
Very informally, this model still involves random ciphers/permutations, with
the difference that an adversary may exploit a certain additional property. The
modeling of a randomly drawn weak ciphers is much more delicate.



2.2 Random Weak Cipher

For a certain class of predicates, we discuss how to model a randomly drawn
weak cipher π from BC[Φ](κ, n). Let A,B ∈ N. We will consider predicates
that imply, for every k ∈ {0, 1}κ, the existence of A sets of B distinct queries
{(x1, z1), . . . , (xB , zB)} that satisfy ϕk

(
{(x1, z1), . . . , (xB , zB)}

)
for some condi-

tion ϕ depending on key k. The predicate is denoted Φ(A,B, ϕ). A is merely a
technical parameter, and throughout we assume it is larger than q, the number of
oracle calls an adversary can make. This definition of Φ(A,B,ϕ) is fairly general.
Particularly, predicate B-sets may overlap and the condition ϕ can represent any
function on the inputs. We note that Φ can be easily generalized to tuples of
different length and/or to multiple types of conditions at the same time.

Traditionally, an adversary has only forward πk(x) and inverse π−1
k (z) query

access. In order for the adversary to be able to exploit the weakness present
in π, we give it additional access to π via a “predicate query” πΦk (y): on input
of y ∈ {1, . . . , A}, the adversary obtains a B-set {(x1, z1), . . . , (xB , zB)} that
satisfies ϕk

(
{(x1, z1), . . . , (xB , zB)}

)
.

A formal description of how to model π
$←− BC[Φ(A,B,ϕ)](κ, n) is given in

Fig. 1. Here, for every k ∈ {0, 1}κ, Pk is an initially empty list of πk-evaluations,
where a regular forward/inverse query adds one element (x, z) to Pk and a πΦk -
query may add up to B elements. Additionally, PΦk is an initially empty list of

queries to πΦk . We denote by Σk(Pk, P
Φ
k ) ⊆ ({0, 1}n × {0, 1}n)

B
the set of all

tuples {(x1, z1), . . . , (xB , zB)} such that

(i) x1, . . . , xB are pairwise distinct and z1, . . . , zB are pairwise distinct;
(ii) ∀B`=1 : x` ∈ dom(Pk) =⇒ z` = Pk(x`) and z` ∈ rng(Pk) =⇒ x` = P−1

k (z`);
(iii) ϕk

(
{(x1, z1), . . . , (xB , zB)}

)
holds;

(iv) {(xp(1), zp(1)), . . . , (xp(B), zp(B))} 6∈ rng(PΦk ) for any permutation p on {1, . . . , B}.

For a new query πΦk (y), the response is then randomly drawn from Σk(Pk, P
Φ
k ).

Conditions (i-iii) are fairly self-evident; note particularly that an existing (x, z) ∈
Pk may appear in multiple predicate queries. Condition (iv) assures that the
drawing from Σk(Pk, P

Φ
k ) is not just an old predicate query or a reordering

thereof. The usage of this set Σk(Pk, P
Φ
k ) allows for a uniform behavior of πΦk for

every k, and in general of π
$←− BC[Φ(A,B,ϕ)](κ, n), modulo the known existence

of condition ϕ. This step is fundamental to our model and new compared with
previous approaches of [13,15,35]. We remark that the model allows adversaries
to make their queries at their own discretion, e.g., duplicate queries and regular
queries after predicate queries are allowed.

2.3 Random Abortable Weak Cipher

Security analyses in the WCM are significantly more complex than in the ICM
or IPM, which is in part because predicate queries may consist of older queries.
This will particularly be an issue once collisions among queries are investigated.
To suit the analysis for this case, we transform the WCM to an abortable weak



procedure πk(x)

if Pk(x) = ⊥:

z
$←− {0, 1}n\rng(Pk)

Pk
∪←− (x, z)

end if
return Pk(x)

procedure π−1
k (z)

if P−1
k (z) = ⊥:

x
$←− {0, 1}n\dom(Pk)

Pk
∪←− (x, z)

end if
return P−1

k (z)

procedure πΦk (y)

if PΦk (y) = ⊥:

{(x1, z1), . . . , (xB , zB)} $←− Σk(Pk, P
Φ
k )

for ` = 1, . . . , B:

if (x`, z`) 6∈ Pk:

Pk
∪←− (x`, z`)

end if
end for

PΦk
∪←− (y, {(x1, z1), . . . , (xB , zB)})

end if
return PΦk (y)

Fig. 1. Random weak cipher π. An adversary has access to π, π−1, and πΦ.

cipher model (AWCM), which we denote as BC[Φ(A,B, ϕ)](κ, n). At a high-
level, an abortable weak cipher responds to predicate queries with new query
tuples only, and aborts once it turns out that an older query appears in a newer
predicate query.

For any k ∈ {0, 1}κ and partial Pk and PΦk , define by Σ̄k(PΦk ) ⊆ ({0, 1}n × {0, 1}n)
B

the set of all tuples {(x1, z1), . . . , (xB , zB)} such that

(iii) ϕk
(
{(x1, z1), . . . , (xB , zB)}

)
holds;

(iv) {(xp(1), zp(1)), . . . , (xp(B), zp(B))} 6∈ rng(PΦk ) for any permutation p on {1, . . . , B}.
Σ̄k(PΦk ) differs from Σ(Pk, P

Φ
k ) in that conditions (i) and (ii) are omitted, and

particularly: it is independent of Pk. A formal description of a random cipher

π̄
$←− BC[Φ(A,B,ϕ)](κ, n) is given in Fig. 2. It deviates from Fig. 1 as follows: for

every key k, π̄Φk responds randomly from Σ̄k(PΦk ), and it aborts if the response
violates one of the two skipped conditions of Σk(Pk, P

Φ
k ).

The next lemma shows that the WCM and AWCM are indistinguishable
as long as the abortable weak cipher does not abort, approximately up to the
birthday bound. Here, we assume that Σ̄k(PΦk ) is always large enough.

Lemma 1. Let π̄
$←− BC[Φ(A,B, ϕC)](κ, n). Consider an adversary that makes

q queries to π̄. Then,

Pr (π̄ sets abort) ≤ B2q(q + 1)

2n − B!q2n

|Σ̄k(∅)|

.

Proof. Consider the ith query, for i ∈ {1, . . . , q}, and assume it is a predicate
query π̄Φk (y). We will consider the probability that this query makes π̄ abort,
provided it has not aborted so far. Prior to this ith query, |Pk| ≤ B(i − 1) and
|PΦk | ≤ i. Basic combinatorics shows that

|Σ̄k(PΦk )| = |Σ̄k(∅)| −B! · |PΦk | ,



procedure π̄k(x)

if Pk(x) = ⊥:

z
$←− {0, 1}n\rng(Pk)

Pk
∪←− (x, z)

end if
return Pk(x)

procedure π̄−1
k (z)

if P−1
k (z) = ⊥:

x
$←− {0, 1}n\dom(Pk)

Pk
∪←− (x, z)

end if
return P−1

k (z)

procedure π̄Φk (y)

if PΦk (y) = ⊥:

{(x1, z1), . . . , (xB , zB)} $←− Σ̄k(PΦk )
for ` = 1, . . . , B:

if x` ∈ dom(Pk) ∧ z` 6= Pk(x`): abort
if z` ∈ rng(Pk) ∧ x` 6= P−1

k (z`): abort
if (x`, z`) ∈ {(x1, z1), . . . , (x`−1, z`−1)}: abort
if (x`, z`) 6∈ Pk:

Pk
∪←− (x`, z`)

end if
end for

PΦk
∪←− (y, {(x1, z1), . . . , (xB , zB)})

end if
return PΦk (y)

Fig. 2. Random abortable weak cipher π̄. An adversary has access to π̄, π̄−1,
and π̄Φ.

where we use that π̄ has not aborted so far. This ith query aborts only if for
some ` ∈ {1, . . . , B}, the value x` equals an element in dom(Pk)∪{x1, . . . , x`−1}
or the value z` equals an element in rng(Pk) ∪ {z1, . . . , z`−1}.

Define by Σ̄abort
k (PΦk ) the set of all elements of Σ̄k(PΦk ) that would lead to

abort. We have 2B possible values to cause the abort (namely, x1, . . . , zB), and
it causes the abort if it equals an element in a set of size at most |Pk|+B. For
any of these 2B(|Pk| + B) choices, the number of tuples in Σ̄k(PΦk ) complying

with this choice is at most |Σ̄k(∅)|
2n . Thus,

Pr
(
π̄Φ(y) sets abort

)
=
|Σ̄abort
k (PΦk )|
|Σ̄k(PΦk )|

≤
2B(|Pk|+B) · |Σ̄k(∅)|

2n

|Σ̄k(∅)| −B! · |PΦk |
≤ 2B2i

2n − B!q2n

|Σ̄k(∅)|

.

The proof is completed by summation over i = 1, . . . , q. ut

3 Modeling Known-Key Attacks

We next apply the WCM to known-key attacks. For the sake of explanation,
we first reconsider the Knudsen-Rijmen attack on Feistel7 [27]. (A detailed de-
scription of the attack is also given in the full version of this paper.) Let n ∈ N,
and let π := πk be an instance of Feistel7 with fixed key k. Knudsen and Ri-
jmen revealed four functions f, f ′, g, g′ : {0, 1}n/2 → {0, 1}n such that for all
y ∈ {0, 1}n/2:

g(y) = π(f(y)) and g′(y) = π(f ′(y)) ,

Rin/2 (f(y)⊕ g(y)) = Rin/2 (f ′(y)⊕ g′(y)) .
(2)



These four functions depend on the cryptographic primitive underlying Feistel7
in a complicated way. Therefore, we can safely assume that these functions be-
have sufficiently random, besides this particular relation (2), and that they are
unknown to the adversary. f, f ′, g, g′ are all injective and satisfy f(y) 6= f ′(y)
and g(y) 6= g′(y) for all y. On the other hand, collisions of the form f(y) = f ′(y′)
and g(y) = g′(y′) may occur.

Generically, the attack demonstrates that for key k there exist 2n/2 possibly
overlapping sets of distinct queries {(x1, z1), (x2, z2)} that satisfy Rin/2

(
x1⊕z1⊕

x2⊕ z2
)

= 0. In other words, Feistel7 meets predicate Φ(2n/2, 2, ϕFeistel7), where

ϕFeistel7
k

(
{(x1, z1), (x2, z2)}

)
: Rin/2

(
x1 ⊕ z1 ⊕ x2 ⊕ z2

)
= 0 .

Here, we remark that the Knudsen-Rijmen attack works for any fixed but known
key k, and that condition ϕFeistel7

k is in fact independent of the key. In this
work, we will consider a more general predicate Φ(A,B,ϕC) for A,B ∈ N and
C ⊆ {1, . . . , n}, where

ϕCk
(
{(x1, z1), . . . , (xB , zB)}

)
: BitsC

(
x1 ⊕ z1 ⊕ · · · ⊕ xB ⊕ zB

)
= 0 . (3)

This generalized predicate considers the case of arbitrary but fixed and known
keys, where the adversary can even choose the key every time it makes a predi-
cate query. Note that also the attacks on AES8 and Threefish36 (see Sect. 1)
are covered, as they satisfy Φ(2n/8, 2, ϕC) for certain C of size 10n/16 and
Φ(2n/8, 4, ϕ{1,...,n}), respectively. In general, all rebound- or boomerang-based
known-key attack in literature are covered by predicate Φ(A,B,ϕC) for some
A,B,C. Here, B is always a value independent of n (usually 2 or 4) and C is
regularly a large subset (of size at least n/4). Throughout, we consider A to be
sufficiently large.

Basic Computations for AWCM

For the specific condition ϕC of (3), we derive a simpler bound on the probabil-

ity that a primitive π̄
$←− BC[Φ(A,B,ϕC)](κ, n) aborts, along with some other

elementary observations for π̄. To this end, we define the notation “[X],” which
equals 1 if X holds and 0 otherwise. For conciseness, we introduce the function
δB,C [b] defined as

δB,C [b] = 2|C|[B = b] + [B > b] . (4)

Lemma 2. Let π̄
$←− BC[Φ(A,B, ϕC)](κ, n). Consider an adversary that makes

q ≤ 2n−1/B queries to π̄. Then,

Pr (π̄ sets abort) ≤ B2q(q + 1)

2n −Bq
. (5)

Let k ∈ {0, 1}κ and let Z,Z ′, Z ′′ ∈ {0, 1}n. Consider any new query π̄Φk (y) and
assume it does not abort. Write the response as {(x1, z1), . . . , (xB , zB)}. Then,



(i) ∀ a ∈ {1, . . . , B} : Pr (xa = Z), Pr (za = Z) ≤ 1
2n−Bq ;

(ii) ∀ a ∈ {1, . . . , B} : Pr (xa ⊕ za = Z) ≤ δB,C [1]
2n−Bq ;

(iii) ∀ {a, b} ⊆ {1, . . . , B} : Pr
(
xa ⊕ za = Z ∧ xb ⊕ zb = Z ′

)
≤ δB,C [2]

22n−Bq ;

(iv) ∀ {a, b} ⊆ {1, . . . , B} :

Pr
(
xa = Z ∧ xb = Z ′ ∧ xa ⊕ za ⊕ xb ⊕ zb = Z ′′

)
≤ δB,C [2]

23n−Bq .

Proof. Recall from the proof of Lem. 1 that

|Σ̄k(PΦk )| = |Σ̄k(∅)| −B!|PΦk | ,

where |PΦk | ≤ q. For the specific predicate analyzed in this lemma, |Σ̄k(∅)| =
(2n)2B−12n−|C|. In the remainder, we regularly bound B! ≤ B · (2n)2B−2 for
B ≥ 1 or B! ≤ B · (2n)2B−4 for B ≥ 2.

Probability of abortion. The bound of (5) directly follows from Lem. 1, the
above-mentioned size of Σ̄k(∅), and the bound on B!.

Part (i). Define by Σ̄
(i)
k (PΦk ) the set of all elements of Σ̄k(PΦk ) that satisfy

xa = Z. Then, |Σ̄(i)
k (PΦk )| ≤ (2n)2B−22n−|C|, and

Pr (xa = Z) =
|Σ̄(i)
k (PΦk )|
|Σ̄k(PΦk )|

≤ 1

2n −Bq
.

A similar analysis applies to the case za = Z.

Part (ii). Define by Σ̄
(ii)
k (PΦk ) the set of all elements of Σ̄k(PΦk ) that satisfy

xa ⊕ za = Z. We make a distinction between B = 1 and B > 1. In case B > 1,

a similar reasoning as in (i) applies, and we have |Σ̄(ii)
k (PΦk )| ≤ (2n)2B−22n−|C|.

On the other hand, if B = 1, we have |Σ̄(ii)
k (PΦk )| = 0 if BitsC(Z) 6= 0 and

|Σ̄(ii)
k (PΦk )| ≤ 2n if BitsC(Z) = 0. In any case,

|Σ̄(ii)
k (PΦk )| ≤ (2n)2B−22n−|C|δB,C [1] ,

and

Pr (xa ⊕ za = Z) =
|Σ̄(ii)
k (PΦk )|
|Σ̄k(PΦk )|

≤ δB,C [1]

2n −Bq
.

Part (iii). This part only applies to B > 1; if B = 1 the probability equals

0 by construction. Define by Σ̄
(iii)
k (PΦk ) the set of all elements of Σ̄k(PΦk ) that

satisfy xa ⊕ za = Z and xb ⊕ zb = Z ′. We make a distinction between B = 2
and B > 2. In case B > 2, a similar reasoning as in (i) and (ii) applies, and

we have |Σ̄(iii)
k (PΦk )| ≤ (2n)2B−32n−|C|. On the other hand, if B = 2, we have

|Σ̄(iii)
k (PΦk )| = 0 if BitsC(Z⊕Z ′) 6= 0 and |Σ̄(iii)

k (PΦk )| ≤ (2n)2 if BitsC(Z⊕Z ′) = 0.
In any case,

|Σ̄(iii)
k (PΦk )| ≤ (2n)2B−32n−|C|δB,C [2] ,



and

Pr
(
xa ⊕ za = Z ∧ xb ⊕ zb = Z ′

)
=
|Σ̄(iii)
k (PΦk )|
|Σ̄k(PΦk )|

≤ δB,C [2]

22n −Bq
.

Part (iv). The approach is fairly similar to case (iii). If B = 1 the probability

is 0 by construction. Define by Σ̄
(iv)
k (PΦk ) the set of all elements of Σ̄k(PΦk )

that satisfy xa = Z, xb = Z ′, and xa ⊕ za ⊕ xb ⊕ zb = Z ′′. In case B > 2,

we have |Σ̄(iv)
k (PΦk )| ≤ (2n)2B−42n−|C|. On the other hand, if B = 2, we have

|Σ̄(iv)
k (PΦk )| = 0 if BitsC(Z ′′) 6= 0 and |Σ̄(iv)

k (PΦk )| ≤ 2n if BitsC(Z ′′) = 0. In any
case,

|Σ̄(iv)
k (PΦk )| ≤ (2n)2B−42n−|C|δB,C [2] ,

and

Pr
(
xa = Z ∧ xb = Z ′ ∧ xa ⊕ za ⊕ xb ⊕ zb = Z ′′

)
=
|Σ̄(iv)
k (PΦk )|
|Σ̄k(PΦk )|

≤ δB,C [2]

23n −Bq
.

ut

4 Application to PGV Compression Functions

We consider the 12 blockcipher-based compression functions from Preneel, Gov-
aerts, and Vandewalle (PGV) [48]. In the ICM these constructions achieve tight
collision security up to about 2n/2 queries and preimage security up to about
2n queries [9, 10, 19, 58]. The 12 constructions are depicted in Fig. 3. Here, we
follow the ordering of [10], where PGV1, PGV2, and PGV5 are better known as
the Matyas-Meyer-Oseas [36], Miyaguchi-Preneel, and Davies-Meyer [45] com-
pression functions.

Baecher et al. [4] analyzed the 12 PGV constructions under ideal cipher
reducibility, which at a high level covers the idea of two constructions being
equally secure for the same underlying idealized blockcipher. They divide the
PGV functions into two classes, in such a way that if some blockcipher makes
one of the constructions secure, it makes all functions in the corresponding class
secure. Applied to our WCM, the results of Baecher et al. imply the following:

Lemma 3 (Ideal Cipher Reducibility of PGV [4], informal). Let π
$←−

BC[Φ](n, n) for some predicate Φ. Let

G1 = {1, 4, 5, 8, 9, 12} , and G2 = {2, 3, 6, 7, 10, 11} .

For any α ∈ {1, 2} and i, j ∈ Gα, PGVi and PGVj achieve the same level of
collision and preimage security once instantiated with π.

Baecher et al. also derive a reduction between the two classes, but this reduction
requires a non-direct transformation on the ideal cipher π,1 making it unsuitable

1 If π makes the PGV constructions from group G1 secure, there is a transformation
τ such that τπ makes the constructions from G2 secure, and vice versa.



Group G1 Group G2

1 4

5 8

9 12

1

2 3
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Fig. 3. The 12 PGV compression functions. When in iteration mode, the message
comes in at the top. The groups G1 and G2 refer to Lem. 3.

for our purposes. Thanks to Lem. 3, it suffices to only analyze PGV1 and PGV2
in the WCM: the bounds carry over to the other 10 PGV constructions. In
Sect. 4.1 we analyze the collision security of these functions in the WCM. The
preimage security is considered in Sect. 4.2.

4.1 Collision Security

Theorem 1. Let n ∈ N. Let α ∈ {1, 2} and consider PGVα. Suppose π
$←−

BC[Φ(A,B, ϕC)](n, n). Then, for q ≤ 2n−1/B,

Advcol
PGVα(q) ≤ B2δB,C [1]q2

2n
+

(
B

2

)
2δB,C [2]q

2n
+

4B2q2

2n
.

Proof. We focus on PGV2. The analysis for PGV1 is a simplification due to
the absence of the feed-forward of the key. We consider any adversary that has

query access to π
$←− BC[Φ(A,B,ϕC)](n, n) and makes q queries. As a first step,

we move from π to π̄
$←− BC[Φ(A,B, ϕC)](n, n). By Lem. 2, this costs us an

additional term B2q(q+1)
2n−Bq .

A collision for PGV2 would imply the existence of two distinct query pairs
(k, x, z), (k′, x′, z′) such that k ⊕ x⊕ z = k′ ⊕ x′ ⊕ z′. We consider the ith query
(i ∈ {1, . . . , q}) to be the first query to make this condition satisfied, and sum
over i = 1, . . . , q at the end. For regular (forward or inverse) queries, the analysis
of [9, 10, 58] mostly carries over. The analysis of predicate queries is a bit more
technical.
Query π̄k(x) or π̄−1

k (z). The cases are the same by symmetry, and we consider
π̄k(x) only. Denote the response by z. There are at most B(i − 1) possible



(k′, x′, z′). As z is randomly drawn from a set of size at least 2n−Bq, it satisfies

z = k ⊕ x⊕ k′ ⊕ x′ ⊕ z′ with probability at most B(i−1)
2n−Bq .

Query π̄Φk (y). Denote the query response by {(k, x1, z1), . . . , (k, xB , zB)}. In
case the B-set contributes only to (k, x, z), the same reasoning as for regular
queries applies with the difference that any query of the B-set may be successful

and that the bound of Lem. 2 part (ii) applies:
B2δB,C [1](i−1)

2n−Bq .

Now, consider the case the predicate query contributes to both (k, x, z) and
(k, x′, z′). There are

(
B
2

)
ways for the predicate query to contribute (or 0 if

B = 1). By Lem. 2 part (iii), which considers the success probability for any
such combination, the predicate query results in a collision with probability at

most
(
B
2

) δB,C [2]2n

22n−Bq .

Conclusion. Taking the maximum of all success probabilities, the ith query is

successful with probability at most
B2δB,C [1](i−1)

2n−Bq +
(
B
2

) δB,C [2]2n

22n−Bq . Summation over
i = 1, . . . , q gives

Advcol
PGV2(q) ≤ B2δB,C [1]q2

2(2n −Bq)
+

(
B

2

)
δB,C [2]q

2n −Bq
+
B2q(q + 1)

2n −Bq
,

where the last part of the bound comes from the transition from WCM to
AWCM. The proof is completed by using the fact that 2n − Bq ≥ 2n−1 for
Bq ≤ 2n−1, and that q + 1 ≤ 2q for q ≥ 1. ut

We note that the bound gets worse for increasing values of B. This has a technical
cause: predicate queries are counted equally expensive as regular queries, but
result in up to B new query tuples. This leads to several factors of B in the
bound. As this work is mainly concerned with differential known-key attacks for
which B is regularly small, these factors are of no major influence.

The implications of the bound of Thm. 1 become more visible when consid-
ering particular choices of B and C.

(i) If B = 1, then Advcol
PGVα(q) ≤ 2|C|q2

2n + 4q2

2n ;

(ii) If B = 2, then Advcol
PGVα(q) ≤ 20q2

2n + 4·2|C|q
2n ;

(iii) If B ≥ 3 (independent of n), then Advcol
PGVα(q) ≤ 5B2q2

2n + B2q
2n .

In other words, for B = 2 and C with |C| ≤ n/2, or for B ≥ 3 constant and
C arbitrary, the PGV functions achieve the same 2n/2 collision security level
as in the ICM. On the other hand, if B = 1, collisions can be found in about
2(n−|C|)/2 queries, and if B = 2 with |C| > n/2, in about 2n−|C| < 2n/2 queries.
See also Table 1.

Tightness

For the cases B = 1 and C arbitrary, and B = 2 and C arbitrary such that
|C| > n/2, we derive generic attacks that demonstrate tightness of the bound of
Thm. 1. Knudsen and Rijmen [27] and Sasaki et al. [53, 56] already considered



how to exploit a known-key pair for the underlying blockcipher to find a col-
lision for the Matyas-Meyer-Oseas (PGV1) and/or Miyaguchi-Preneel (PGV2)
compression functions. Their attacks correspond to our B = 2 case.

Proposition 1 (B = 1). Let n ∈ N. Let α ∈ {1, 2} and consider PGVα.

Suppose π
$←− BC[Φ(A, 1, ϕC)](n, n). Then, Advcol

PGVα(q) ≥ q2

2n−|C| .

Proof. We construct a collision-finding adversary A for PGV2. It fixes key k = 0,
and makes predicate queries to πΦk on input of distinct values y to obtain q
queries (k, xy, zy) satisfying BitsC(xy ⊕ zy) = 0. Any two such queries collide on

the entire state, k⊕xy⊕ zy = k⊕xy′ ⊕ zy′ , with probability at least q2

2n−|C| . The
attack for PGV1 is the same as we have taken k = 0. ut

Proposition 2 (B = 2 and |C| > n/2). Let n ∈ N. Let α ∈ {1, 2} and

consider PGVα. Suppose π
$←− BC[Φ(A, 2, ϕC)](n, n). Then, Advcol

PGVα(q) ≥
q

2n−|C| .

Proof. We construct a collision-finding adversary A for PGV2. It fixes key k = 0,
and makes predicate queries to πΦk on input of distinct values y to obtain q 2-sets
{(k, x1

y, z
1
y), (k, x2

y, z
2
y)} satisfying BitsC

(
x1
y ⊕ z1

y

)
= BitsC

(
x2
y ⊕ z2

y

)
. These two

queries collide on the entire state, k⊕x1
y ⊕ z1

y = k⊕x2
y ⊕ z2

y , with probability at

least 1
2n−|C| . If the adversary makes q predicate queries, we directly obtain our

bound. The attack for PGV1 is the same as we have taken k = 0. ut

4.2 Preimage Security

Theorem 2. Let n ∈ N. Let α ∈ {1, 2} and consider PGVα. Suppose π
$←−

BC[Φ(A,B, ϕC)](n, n). Then, for q ≤ 2n−2/B,

Advepre
PGVα(q) ≤

(
2Bq

2n

)B
+

2B2δB,C [1]q

2n
.

The proof is given in App. A. It is much more involved than the one of Thm. 1,
particularly as we cannot make use of abortable ciphers. Entering various choices
of B and C shows that in the PGV functions remain mostly unaffected in the
WCM if B ≥ 2, and the same security level as in the ICM is achieved [9,10,58].
A slight security degradation appears for B = 1 as preimages can be found in
about 2n−|C|. In the full version, we present a matching attack in the WCM.

5 Application to Grøstl Compression Function

We consider the provable security of the compression function mode of operation
of Grøstl [21] (see also Fig. 4):

FGrøstl(x1, x2) = x2 ⊕ π1(x1)⊕ π2(x1 ⊕ x2) . (6)
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Fig. 4. Grøstl compression function (left) and Shrimpton-Stam (right).

The Grøstl compression function is in fact designed to operate in a wide-pipe
mode, and in the IPM, the function is proven collision secure up to about 2n/4

queries and preimage secure up to 2n/2 queries [20]. We consider the security

of FGrøstl in the WCM, where (π1, π2)
$←− BC[Φ(A,B, ϕC)](n)2. We remark that

in this section we consider keyless primitives, hence κ = 0 and the k-input is
dropped throughout. We furthermore note that finding collisions and preimages
for FGrøstl is equivalent to finding them for

F′Grøstl(x1, x2) = x1 ⊕ x2 ⊕ π1(x1)⊕ π2(x2) , (7)

as FGrøstl(x1, x2) = F′Grøstl(x1, x1⊕x2), and we will consider F′Grøstl throughout.

5.1 Collision Security

Theorem 3. Let n ∈ N. Suppose (π1, π2)
$←− BC[Φ(A,B,ϕC)](n)2. Then, for

q ≤ 2n−1/B,

Advcol
F′Grøstl

(q) ≤ B4δB,C [1]q4

2n +
(
B
2

) 2δB,C [2](q2+2n/2−|C|q)
2n + B2q2

2·2n/2 + 4B2q2

2n .

The proof is given in the full version of the paper. If we enter particular choices
of B and C into the bound, we find results comparable to the case of Sect. 4.1.
In more detail, for B = 2 and C with |C| ≤ n/2, or for B ≥ 3 constant and C
arbitrary, FGrøstl achieves the same 2n/4 collision security level as in the ICM [20].
If B = 1, the bound guarantees security up to about 2(n−|C|)/4, and if B = 2 with
|C| > n/2, collisions can be found in about 2(n−|C|)/2 queries. See also Table 1.
In the full version, we also show that the bound is optimal, by presenting tight
attacks on F′Grøstl in the WCM.

5.2 Preimage Security

Theorem 4. Let n ∈ N. Suppose (π1, π2)
$←− BC[Φ(A,B,ϕC)](n)2. Then, for

q ≤ 2n−1/B,

Advepre
F′Grøstl

(q) ≤ 2B2δB,C [1](q2 + 2n/2−|C|q)

2n
+

Bq

2n/2
+

4B2q2

2n
.



The proof is given in the full version of the paper. As before, we find that FGrøstl

remains unaffected in the WCM for most cases, the sole exception being B = 1
for which preimages can be found in about 2(n−|C|)/2. In the full version, we
also show that the bound is optimal, by presenting a tight attack on F′Grøstl for
B = 1 in the WCM.

6 Application to Shrimpton-Stam Compression Function

In this section, we consider the provable security of the Shrimpton-Stam com-
pression function [57] (see also Fig. 4):

FSS(x1, x2) = x1 ⊕ π1(x1)⊕ π3(x1 ⊕ π1(x1)⊕ x2 ⊕ π2(x2)) . (8)

This function is proven asymptotically optimally collision and preimage secure
up to 2n/2 queries in the IPM [41, 51, 57]. We consider the security of FSS in

the WCM, where (π1, π2, π3)
$←− BC[Φ(A,B,ϕC)](n)3. (As in Sect. 5 we consider

keyless functions, hence κ = 0 and the key inputs are dropped throughout.) Our
findings readily apply to the generalization of FSS of [41]. The analysis of this
construction is significantly more complex than the ones of Sect. 4 and Sect. 5.

6.1 Collision Security

Theorem 5. Let n ∈ N. Suppose (π1, π2, π3)
$←− BC[Φ(A,B, ϕC)](n)3. Then,

(i) If B = 1 and C arbitrary, Advcol
FSS

(2(n−|C|)/2−nε)→ 0 for n→∞;

(ii) If B = 2 and C with |C| ≤ n/2, Advcol
FSS

(2n/2−nε)→ 0 for n→∞;

(iii) If B = 2 and C with |C| > n/2, Advcol
FSS

(2n−|C|−nε)→ 0 for n→∞;

(iv) If B ≥ 3 (independent of n) and C arbitrary, Advcol
FSS

(2n/2−nε) → 0 for
n→∞.

Due to the technicality of the proof, the results are expressed in asymptotic
terms. The proof is given in the full version of the paper. For B = 2 and C with
|C| ≤ n/2, or for B ≥ 3 constant and C arbitrary, FSS achieves the same security
level as in the IPM. On the other hand, if B = 1, or if B = 2 but |C| > n/2,
Thm. 5 results in a worse bound. See also Table 1. In the full version, we also
show that the bound is optimal, by presenting tight attacks on FSS in the WCM.

6.2 Preimage Security

Theorem 6. Let n ∈ N. Suppose (π1, π2, π3)
$←− BC[Φ(A,B, ϕC)](n)3. Then,

(i) If B = 1 and C with |C| ≤ n/2, Advepre
FSS

(2n/2−nε)→ 0 for n→∞;

(ii) If B = 1 and C with |C| > n/2, Advepre
FSS

(2n−|C|−nε)→ 0 for n→∞;

(iii) If B ≥ 2 (independent of n) and C arbitrary, Advepre
FSS

(2n/2−nε) → 0 for
n→∞.

As for collision resistance, the results are expressed in asymptotic terms. The
proof is given in the full version of the paper. The bounds match the ones in
the IPM, except for the case of B = 1 and |C| > n/2. We leave it as an open
problem to prove tightness of Thm. 6 part (ii).



7 Conclusions

Since their formal introduction by Knudsen and Rijmen at ASIACRYPT 2007
[27], numerous known-key attacks on blockciphers have appeared in literature.
These attacks are often considered delicate, as it is not always clear to what
extent they influence the security of cryptographic functions based on these
known-key blockciphers. We presented the weak cipher model in order to inves-
tigate this impact. For a specific instance of this model, considering the exis-
tence of A sets of B queries that satisfy condition ϕC of (3), we proved that the
PGV compression functions [48], the Grøstl compression function [21], and the
Shrimpton-Stam compression function [57] remain mostly unaffected by the gen-
eralized weakness. Additionally, preimage security of the functions turned out
to be significantly less susceptible to these types of weaknesses than collision se-
curity. The results can be readily generalized to other primitive-based functions,
such as the double block length compression functions Tandem-DM, Abreast-
DM, and Hirose’s compression functions [23, 30], and to the permutation-based
sponge mode [5].

Our model is general enough to cover practically all differential known-
key attacks in literature, such as latest results based on the rebound attack
[12, 22, 28, 38, 52, 53, 56] and on the boomerang attack [2, 7, 31, 54, 60]. To our
knowledge, our work provides the first attempt to formally analyze the effect of
a wide class of cryptanalytic attacks from a modular and provable security point
of view. It is a step in the direction of security beyond the ideal model, con-
necting practical attacks from cryptanalysis with ideal model provable security.
There is still a long way to go: in order to make the connection between the two
fields, we abstracted known-key attacks to a certain degree. It remains a highly
challenging open research problem to generalize our findings to multiple or dif-
ferent weaknesses, and to different permutation-based cryptographic functions.
These generalizations include the analysis of known-key based constructions for
more advanced conditions ϕ (such as arbitrary polynomials).

A Proof of Theorem 2

We focus on PGV2. The analysis for PGV1 is a simplification due to the absence
of the feed-forward of the key. We consider any adversary that has query access

to π
$←− BC[Φ(A,B,ϕC)](n, n) and makes q queries. Let Z ∈ {0, 1}n. A preimage

for Z would imply the existence of a query (k, x, z) such that x ⊕ z = k ⊕ Z.
We consider the ith query (i ∈ {1, . . . , q}) to be the first query to make this
condition satisfied, and sum over i = 1, . . . , q at the end. For regular (forward
or inverse) queries, the analysis of [9, 10, 58] mostly carries over. The analysis
of predicate queries is a more technical, particularly as we cannot make use of
abortable ciphers.
Query πk(x) or π−1

k (z). The cases are the same by symmetry, and we consider
πk(x) only. Denote the response by z. As z is randomly drawn from a set of size
at least 2n −Bq, it satisfies z = x⊕ k ⊕ Z with probability at most 1

2n−Bq .



Query πΦk (y). Denote the query response by {(k, x1, z1), . . . , (k, xB , zB)}. If all
tuples are old, the query cannot be successful as no earlier query was successful,
and so we assume it contains at least one new tuple. The response is drawn
uniformly at random from the set Σk(Pk, P

Φ
k ). For ` = 0, . . . , B, denote by

Σ`
k(Pk, P

Φ
k ) the subset of all responses that have ` new query tuples and B − `

old query tuples (which already appear in Pk). By construction,

Σk(Pk, P
Φ
k ) =

B⋃
`=0

Σ`
k(Pk, P

Φ
k ) . (9)

Define furthermore for ` = 1, . . . , B by Σ`,pre
k (Pk, P

Φ
k ) the subset of elements of

Σ`
k(Pk, P

Φ
k ) for which one of the new query tuples satisfies x⊕ z = k⊕Z (recall

that we have excluded the case of ` = 0). The predicate query is successful with
probability

Pr
(
πΦk (y) sets pre(Qi)

)
=

B∑
`=1

|Σ`,pre
k (Pk, P

Φ
k )|

|Σk(Pk, PΦk )|
. (10)

Using (9), we bound (10) as

Pr
(
πΦk (y) sets pre(Qi)

)
≤
|Σ1,pre
k (Pk, P

Φ
k )|

|ΣB
k (Pk, PΦk )|

+

B∑
`=2

|Σ`,pre
k (Pk, P

Φ
k )|

|Σ`
k(Pk, PΦk )|

. (11)

The reason why ` = 1 is treated differently, will become clear shortly.
We next bound all relevant sets. Here, for integers a ≥ b ≥ 1, we denote by

ab = a!
(a−b)! the falling factorial power. Starting with the numerators, for ` = 1

we have

|Σ1,pre
k (Pk, P

Φ
k )| ≤ B · |Pk|B−1 · (2n − |Pk|) .

Indeed, we have B positions for the sole new query to appear and |Pk|B−1
choices

for the old queries. For the new query, without loss of generality (k, xB , zB), it
needs to satisfy BitsC(xB ⊕ zB) = BitsC(x1⊕ · · · ⊕ zB−1) and xB ⊕ zB = k⊕Z.
We have 2n − |Pk| possible choices for xB , and any choice gives at most one
possible zB . We remark that |Σ1,pre

k (Pk, P
Φ
k )| will probably be about a factor

2−|C| less, as we should only count all possible solutions for the B−1 old queries
that satisfy BitsC(x1 ⊕ · · · ⊕ zB−1) = BitsC(k ⊕ Z). Deriving a tighter bound
would be a cumbersome exercise, but fortunately there is no need to do so: the
fraction of elements in Σk(Pk, P

Φ
k ) consisting of B−1 old tuples is already small

enough for the case B > 1. This is the reason why we use a special treatment
for the case of ` = 1 in (11).

For ` ∈ {2, . . . , B} we have

|Σ`,pre
k (Pk, P

Φ
k )| ≤

(
B

`

)
· |Pk|B−` · (2n − |Pk|)` · ` · (2n − |Pk|)`−2 · 2n−|C| .



Again, the first term comes from identifying at which positions the new queries
appear and the second term comes from the selection of old queries. Next, we
have (2n − |Pk|)` choices for the x-values and ` positions for the “winning query”
to occur. For this particular winning query, the corresponding z-value is fixed
by the equation x ⊕ z = k ⊕ Z. For the remaining ` − 1 z-values, there are
(2n − |Pk|)`−2

possibilities to freely fix the first `− 2 of them, and the last one
will be adapted to the predicate condition, and can take at most 2n−|C| values.

Regarding the denominators, for ` ∈ {1, . . . , B} we have

|Σ`
k(Pk, P

Φ
k )| ≥

(
B

`

)
· |Pk|B−` ·

(
(2n − |Pk|)` · (2n − |Pk|)`−1 · 2n−|C| −
Bq · (2n − |Pk|)`−1 · (2n − |Pk|)`−1 · 2n−|C|

)
,

which can be seen as follows. As before, we have
(
B
`

)
positions for the new

queries to appear and |Pk|B−` possible lists of old queries. Regarding the ` new
queries, without loss of generality (k, x1, z1), . . . , (k, x`, z`), these need to satisfy
BitsC(x1 ⊕ · · · ⊕ z`) = BitsC(x`+1 ⊕ · · · ⊕ zB). We first compute the number of
choices for these new queries where z` is only used to adapt to this condition
and does not need to satisfy that it is fresh. For this case, we have precisely
(2n − |Pk|)` · (2n − |Pk|)`−1

choices for x1, . . . , z`−1, x`, and 2n−|C| possibilities
for the adaption value z`.

Now, we subtract the cases where this adapted value happens to collide,
either with an older value in rng(Pk) or with any of the new z1, . . . , z`−1. Any of
these choices would fix z` (in total at most (|Pk|+ `− 1) possibilities). Similarly

to the analysis for |Σ`,pre
k (Pk, P

Φ
k )|, where now x` will be used to be adapted to

the predicate condition, there are at most

(|Pk|+ `− 1) · (2n − |Pk|)`−1 · (2n − |Pk|)`−1 · 2n−|C|

choices for the fresh values. As ` ≤ B, and additionally |Pk| ≤ B(i−1) ≤ B(q−1)
for the current query, we obtain our bound for |Σ`

k(Pk, P
Φ
k )|. The bound can be

simplified to

|Σ`
k(Pk, P

Φ
k )| ≥

(
B
`

)
· |Pk|B−` · (2n − |Pk|)`−1 · (2n − |Pk|)`−1 · 2n−|C| · (2n − 2Bq) ,

using that (2n−|Pk|)`

(2n−|Pk|)`−1 = 2n − |Pk| − (`− 1) ≥ 2n −Bq.
Plugging these bounds into (11), we find for the case B = 1:

Pr
(
πΦk (y) sets pre(Qi)

)
≤ 2n − |Pk|

2n−|C| · (2n − 2q)
≤ 2|C|

2n − 2q
.

For the case B > 1 the computation is a bit more elaborate:

Pr
(
πΦk (y) sets pre(Qi)

)
≤ B · (2n − |Pk|)

(2n − |Pk|)B−1 · 2n−|C| · (2n − 2Bq)
· |Pk|B−1

(2n − |Pk|)B−1
+

B∑
`=2

(2n − |Pk|)` · (2n − |Pk|)`−2

(2n − |Pk|)`−1 · (2n − |Pk|)`−1
· `

2n − 2Bq
.



For the first fraction we use that 2n − |Pk| ≤ (2n − |Pk|)B−1
as B > 1, and

additionally that |C| ≤ n. For the falling factorial powers of the second fraction,

we use that |Pk|B−1 ≤ (Bq)B−1 and (2n − |Pk|)B−1 ≥ (2n−|Pk|−(B−1))B−1 ≥
(2n−2Bq)B−1. For the fraction in the sum, we use that (2n−|Pk|)`·(2n−|Pk|)`−2

(2n−|Pk|)`−1·(2n−|Pk|)`−1 =
2n−|Pk|−(`−1)
2n−|Pk|−(`−2) ≤ 1. We obtain:

Pr
(
πΦk (y) sets pre(Qi)

)
≤ B

2n − 2Bq
· (Bq)B−1

(2n − 2Bq)B−1
+

B∑
`=2

`

2n − 2Bq

≤ BBqB−1

(2n − 2Bq)B
+

B2

2n − 2Bq
.

Conclusion. Taking the maximum of all success probabilities, the ith query

is successful with probability at most BBqB−1

(2n−2Bq)B
+

B2δB,C [1]
2n−2Bq . Summation over

i = 1, . . . , q gives

Advepre
PGV2(q) ≤ BBqB

(2n − 2Bq)B
+
B2δB,C [1]q

2n − 2Bq
.

The proof is completed by using the fact that 2n − 2Bq ≥ 2n−1 for Bq ≤ 2n−2.
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