
Another Tradeoff Attack on Sprout-like Stream
Ciphers?

Bin Zhang†,‡ and Xinxin Gong†

† TCA Laboratory, SKLCS, Institute of Software, Chinese Academy of Sciences
‡ State Key Laboratory of Cryptology, P.O.Box 5159, Beijing, 100878, China

{zhangbin, gongxinxin}@tca.iscas.ac.cn

Abstract. Sprout is a new lightweight stream cipher with shorter in-
ternal state proposed at FSE 2015, using key-dependent state updating
in the keystream generation phase. Some analyses have been available
on eprint so far. In this paper, we extend the design paradigm in general
and study the security of Sprout-like ciphers in a unified framework. Our
new penetration is to investigate the k-normality of the augmented func-
tion, a vectorial Boolean function derived from the primitive. Based on
it, a dedicated time/memory/data tradeoff attack is developed for such
designs. It is shown that Sprout can be broken in 279−x−y time, giv-
en
[
c · (2x + 2y − 58) · 271−x−y

]
-bit memory and 29+x+y-bit keystream,

where x/y is the the number of forward/backward steps and c is a small
constant. Our attack is highly flexible and compares favorably to all the
previous results. With carefully chosen parameters, the new attack is at
least 220 times faster than Lallemand/Naya-Plasencia attack at Cryp-
to 2015, Maitra et al. attack and Banik attack, 210 times faster than
Esgin/Kara attack with much less memory.

Keywords: Cryptanalysis, Stream Ciphers, Sprout, Tradeoff

1 Introduction

Design of secure lightweight stream ciphers for constrained hardware environ-
ments is important both in theory and practice. The most area/power consuming
component in a lightweight design is the number of memory gates, which corre-
sponds to the internal state size of the primitive. On the other hand, a common
rule of thumb for stream cipher design is that the internal state size should be
at least twice as long as the key size to resist against time/memory/data (TMD)
tradeoff attacks [4].

This design principal indeed works, and security analysis of the eSTREAM
finalists, e.g., Grain v1, Mickey v2 and Trivium [7] evolves rather slowly. At FSE
2015, another design paradigm for stream ciphers is proposed and instantiated
by a new design, called Sprout, aiming to reduce the internal state size, thus

? This work is supported by the program of the National Natural Science Foundation
of China (Grant No. 61572482) and the National Grand Fundamental Research 973
Program of China (Grant No. 2013CB338002).

the hardware area size by using key-dependent state updating in the keystream
generation phase [2]. It is expected that the immunity against TMD tradeoff
attacks will not be compromised.

Surprisingly, there have been some cryptanalysis of Sprout appearing on the
IACR eprint monthly after ESC 2015 and FSE 2015. In the time order of the
open literature, a related key chosen IV attack on Sprout is presented in [9], but
the designers have already ruled out the related key model in [2]. Then the first
attack in the single key model is found in [12] by using a list merging technique
with a time complexity around 269 Sprout encryptions at Crypto 2015. In [13],
another attack based on a SAT solver is given with a complexity of 254 attempts,
where each attempt takes a time equivalent to 6.6 · 254 · 2e encryptions which
is more than 280 if e > 23. Thus, it is questionable whether this work in [13]
translates into a feasible attack on Sprout or not. To directly challenging the
design rationale, Esgin and Kara presented a TMD tradeoff attack in [8] with an
online time complexity of 233 Sprout encryptions and 770 TB of memory after
a pre-computation around 253 basic operations. Finally in [3], a key recovery
attack is launched against Sprout with a complexity of 266.7 Sprout encryptions
together with some other analysis results.

In this paper, we extend the design paradigm in general and study the secu-
rity of Sprout-like ciphers in a unified framework. The model involves the secret
key not only in the initialization process but also in the non-linear state updating
in a Sprout-like manner during the keystream generation phase. Then based on
the notion of normality first introduced by Dobbertin in [6], we investigate the
k-normality of the augmented function [5], a vectorial Boolean function derived
from the underlying primitive. This property is relevant for the design and anal-
ysis of cryptosystems. In [14] and [15], security implications of k-normal Boolean
functions are considered when they are employed in certain stream ciphers. We
make a systematic security analysis based on this property for Sprout-like stream
ciphers and develop a dedicated TMD tradeoff attack framework for such de-
signs. In particular, it is shown that Sprout can be broken in 279−x−y time, given[
c · (2x+ 2y − 58) · 271−x−y

]
-bit memory and 29+x+y-bit keystream, where x is

the number of forward steps, y is the number of backward steps and c is a small
constant. Our attack is highly flexible and compares favorably to all the previous
attacks on Sprout. With carefully chosen attack parameters, our method is at
least 220 times faster than Lallemand/Naya-Plasencia attack at Crypto 2015,
Maitra et al. attack and Banik attack, 210 times faster than Esgin/Kara attack
with much less memory. Practical simulations confirmed our analysis.

This paper is structured as follows. In Section 2, the stream cipher Sprout
is described and generalized to a generic Sprout-like model. In Section 3, based
on a natural extension of normality from Boolean functions to vectorial Boolean
functions, a generic TMD cryptanalysis framework of such ciphers is formal-
ized with complexity analysis. In Section 4, the framework is applied to Sprout
with comparisons to other attacks. Section 5 provides the experimental results.
Finally, some conclusions are given in Section 6.

2 Sprout-like Stream Ciphers

In this section, a brief description of Sprout that is relevant to our work and
a generic Sprout-like model that inherits the design spirit are presented. The
following notations will be used throughout the paper.

- Lt = [lt, lt+1, ..., lt+39], the internal state of the LFSR at time t.
- N t = [nt, nt+1, ..., nt+39], the internal state of the NFSR at time t.

- [a, b]
∆
= {a, a+ 1, ..., b}, for two positive integers a, b (a < b).

- N t
[a,b]

∆
= {nt+a, nt+a+1, ..., nt+b} and Lt[a,b]

∆
= {lt+a, lt+a+1, ..., lt+b}, for two

positive integers a, b (a < b).
- IV = (iv0, iv1, ..., iv69), the 70-bit initialization vector.
- K = (k0, k1, ..., k79), the 80-bit secret key.
- k∗t , the round key bit generated at time t.
- zt, the keystream bit generated at time t.
- c4t , the round constant at time t, generated by a counter.

2.1 Description of Sprout

Sprout adopts a structure similar to the Grain family of stream ciphers [1, 10,
11], which consists of four parts, an 80-bit fixed key register, a 40-bit NFSR with
a linked 40-bit LFSR, and a counter register, depicted in Fig.1. Since storing a
fixed key requires less area size than realizing a register of the same length, it is
reported in [2] that the hardware area of Sprout is significantly less compared
to the existing lightweight stream ciphers.

Fig. 1. Keystream Generation of Sprout

Denote the feedback functions of the NFSR, the LFSR and the nonlinear filter
function by g, f and h respectively. There is a 9-bit counter register in Sprout, of
which the lower 7 bits are a modulo 80 counter, denoted by (c6t , c

5
t , c

4
t , c

3
t , c

2
t , c

1
t , c

0
t)

at time t. The 4-th LSB c4t of the counter is employed in the keystream genera-
tion. It should be noted that, c4t has a cycle of length 80, i.e., in each cycle, this
bit takes the values 0, 0, ..., 0︸ ︷︷ ︸

16

1, 1, ..., 1︸ ︷︷ ︸
16

0, 0, ..., 0︸ ︷︷ ︸
16

1, 1, ..., 1︸ ︷︷ ︸
16

0, 0, ..., 0︸ ︷︷ ︸
16

.

The 40-bit LFSR is updated recursively by f as lt+40 = lt ⊕ lt+5 ⊕ lt+15 ⊕
lt+20 ⊕ lt+25 ⊕ lt+34. The NFSR is updated recursively by a non-linear feedback
function g as

nt+40 = k∗t ⊕ lt ⊕ c4t ⊕ g(N t)

= k∗t ⊕ lt ⊕ c4t ⊕ nt ⊕ nt+13 ⊕ nt+19 ⊕ nt+35 ⊕ nt+39

⊕ nt+2nt+25 ⊕ nt+3nt+5 ⊕ nt+7nt+8 ⊕ nt+14nt+21 ⊕ nt+16nt+18

⊕ nt+22nt+24 ⊕ nt+26nt+32 ⊕ nt+33nt+36nt+37nt+38

⊕ nt+10nt+11nt+12 ⊕ nt+27nt+30nt+31.

Let ut = lt+4 ⊕ lt+21 ⊕ lt+37 ⊕ nt+9 ⊕ nt+20 ⊕ nt+29, then

k∗t =

{
kt, 0 ≤ t ≤ 79
kt(mod 80) · ut, otherwise.

Given the internal state at time t, the keystream bit is generated as

zt = h(nt+4, lt+6, lt+8, lt+10, lt+32, lt+17, lt+19, lt+23, nt+38)⊕lt+30⊕
(⊕

i∈A
nt+i

)
,

where A = {1, 6, 15, 17, 23, 28, 34}, and the filter function is

h(·) = nt+4lt+6 ⊕ lt+8lt+10 ⊕ lt+32lt+17 ⊕ lt+19lt+23 ⊕ nt+4lt+32nt+38.

During the key/IV setup phase, since the key is fixed, first load the IV in the
following way: ni = ivi, 0 ≤ i ≤ 39; li = ivi+40, 0 ≤ i ≤ 29 and li = 1, 30 ≤ i ≤
38, l39 = 0. Then run the cipher 320 rounds as follows.

- the LFSR update function is changed to lt+40 = zt ⊕ f(Lt).
- the NFSR update function is changed to nt+40 = zt ⊕ k∗t ⊕ lt ⊕ c4t ⊕ g(Nt).
- no keystream bit is generated.

After the initialization phase, the keystream generation phase starts and there
is no feedback keystream anymore.

2.2 A Model for Sprout-like Stream Ciphers

There are three functions involved in the model: a non-linear function G(x), a
linear function F (x) and a non-linear filter function h(·).

The internal state of the model consists of the non-linear state N and the
linear state L. At each step, the function G(·) is applied to N and F (·) to
L, respectively. Besides, there may also be some other mixing procedure that
xoring some bits of N into L, and vice versa. Further, the secret key is involved
in the non-linear state updating selectively by a function u(·). The output of the
current state is also computed as the xoring of the bits from both N and L and
a non-linear filter function h(·), which takes some input values from both N and
L, respectively. Some notations that will be used in the description are listed
here.

- Lt = [Lt0, L
t
1, ..., L

t
l1−1], the internal state of the linear component.

- N t = [N t
0, N

t
1, ..., N

t
l2−1], the internal state of the non-linear component.

- rLt = {Ltγ1 , L
t
γ2 , ..., L

t
γa1
}, a subset of Lt and the linear part of u(·).

- rN t = {N t
δ1
, N t

δ2
, ..., N t

δa2
}, a subset of N t and the non-linear part of u(·).

- pLt = {Ltα1
, Ltα2

, ..., Ltαn1
}, a subset of Lt with the variables of the filter

function h(·) coming from the LFSR.
- pN t = {N t

β1
, N t

β2
, ..., N t

βn2
}, a subset of N t with the variables of the filter

function h(·) coming from the NFSR.
- qLt = {Ltσ1

, Ltσ2
, ..., Ltσm1

}, a subset of Lt and the linear masking in the
keystream generation function.

- qN t = {N t
τ1 , N

t
τ2 , ..., N

t
τm2
}, a subset of N t and the non-linear masking in

the keystream generation function.
- pqN t = pN t ∪ qN t, the variables used in the keystream generation coming

from the NFSR.

The general framework is specified by the following items (we only focus on
the keystream generation phase).

1. Components

- The linear component is Lt = [Lt0, L
t
1, ..., L

t
l1−1] ∈ F l12 , whose initial state

is denoted by L0. It is updated recursively as Lt+1 = F (Lt). Without loss
of generality, we assume this process is invertible, and the inverse process is
Lt−1 = F ′(Lt).

- The non-linear component is N t = [N t
0, N

t
1, ..., N

t
l2−1] ∈ F l22 , whose initial

state is denoted by N0. It is updated recursively as

N t+1 = G(N t ⊕ L1(Lt))⊕ L2(Lt)⊕ u(rLt, rN t) ·R(t,K)⊕ Ct,

where G(·) is a (l2, l2)-vectorial Boolean function, Ct is a counter related
vector of length l2. Note that whether the key is involved in the state up-
dating is dependent on the value of u(·). If u(rLt, rN t) = 1, the key will be
involved. Similarly, we assume this non-linear process is invertible, and the
inverse process is computed as

N t−1 = G′(N t⊕L′1(Lt−1))⊕L′2(Lt−1)⊕u(rLt−1, rN t−1)·R(t−1,K)⊕Ct−1.

- A filter function h(·) from Fn1+n2
2 into F2 is used as part of the output func-

tion in the form h(pLt, pN t), which takes n1 input values {Ltα1
, Ltα2

, ..., Ltαn1
}

from Lt and n2 input values {N t
β1
, N t

β2
, ..., N t

βn2
} from N t, respectively.

- A linear Boolean function l(·) from Fm1+m2
2 into F2 is used as part of

the output function in the form l(qLt, qN t), which takes m1 input values
{Ltσ1

, Ltσ2
, ..., Ltσm1

} from Lt and m2 input values {N t
τ1 , N

t
τ2 , ..., N

t
τm2
} from

N t, respectively.
- An output function φ(·) = l(·)⊕h(·), which generates the keystream {zt}t≥0

based on the inputs taken from both Lt and N t, t = 0, 1, ...

2. Keystream generation

The keystream {zt}t≥0 is recursively generated as

zt = h(pLt, pN t)⊕ l(qLt, qN t), t = 0, 1, ...

Let U be the subspace of Fm2 and denote the dimension as dim(U), define
U := {a ∈ Fm2 : a /∈ U} ∪ {0} as the complementary space of U . Now a coset
of the subspace U is represented by Ua := a ⊕ U, a ∈ U , also called a flat. The
following definitions are needed in our model.

Definition 1. An m-variable Boolean function f is k-normal (resp. k-weakly
normal) if there exists a flat V ⊆ Fm2 of dimension k such that f is constant
(resp. affine) on V .

For example, the 5-variable Boolean function h(·) in Grain-v1 is 2-normal
and 3-weakly normal, and the 9-variable Boolean function h(·) in Sprout and
Grain-128a is 5-normal.

Next, we study a natural generalization of the above definition for vectorial
Boolean functions [5].

Definition 2. An (m, n)-function F : Fm2 → Fn2 is called k-normal if there
exists a flat V ⊆ Fm2 of dimension k such that F is constant on V .

In our analysis, we investigate the k-normality of the augmented function defined
as follows.

Definition 3. For a (n1 + n2)-variable Boolean function h(pLt, pN t), the (b+

f + 1)-th augmented function of h, H(b,f) : FM1+M2
2 → F b+f+1

2 is defined as

H(b,f)(PLt, PN t) =
(
h(pLt−b, pN t−b), ..., h(pLt, pN t), ..., h(pLt+f , pN t+f)

)
,

where b, f are two positive integers, and

PLt
∆
=
⋃f
i=−b pL

t+i, M1
∆
= |PLt| ≤

f∑
i=−b

|pLt+i| = n1(b+ f + 1),

PN t ∆=
⋃f
i=−b pN

t+i, M2
∆
= |PN t| ≤

f∑
i=−b

|pN t+i| = n2(b+ f + 1).

3. Assumptions

- 3.1 : there exists two positive integers b, f such that
⋃f
i=−b pqN

t+i ⊆ N t

for any t ≥ b. In this case, the output segment zt−b, ..., zt, ..., zt+f can be
computed from the complete state (Lt, N t) at time t.

- 3.2 : H(b,f), the (b+ f + 1)-th augmented function of the filter function h, is
a k-normal Boolean function such that H(b,f)(x1, ..., xn) = 0b+f+1 when xj
is fixed for all j ∈ Ω, where Ω is a subset of [1, n] and |Ω| = n− k.

- 3.3 : there exists two positive integers d, e such that
⋃e
i=−d rN

t+i ⊆ N t

for any t ≥ d. In this case, u(rLt+i, rN t+i), i = −d, ...,−1, 0, 1, ..., e can be
computed from the complete state (Lt, N t) at time t.

- 3.4 : assume pqN t+f+1 6⊂ N t and pqN t+f+1 ⊂ N t+1 for any t ≥ b, meaning
that we cannot get pqN t+f+1 from the state (Lt, N t). Note that the secret
key is incorporated in the non-linear state updating selectively, if we assume a
special state (Lt, N t) such that u(rLt, rN t) = 0, N t+1 can be computed from
(Lt, N t), thus we further get the output bit zt+f+1. Repeat this process for x
steps, i.e., we assume a special state (Lt, N t) such that u(rLt+i, rN t+i) = 0
for i = 0, 1, ..., x− 1, then we get the output bits zt+f+1, ..., zt+f+x.

- 3.5 : assume rN t+e+1 6⊂ N t and rN t+e+1 ⊂ N t+1 for any t ≥ d. For the above
special state (Lt, N t) such that u(rLt+i, rN t+i) = 0 for i = 0, 1, ..., x − 1,
if x − 1 ≤ e, we have only unknowns from (Lt, N t); if x − 1 > e, then the
unknowns from N t+1, N t+2,... will appear with some nonlinear equations
N t+j+1 = G(N t+j ⊕ L1(Lt+j))⊕ L2(Lt+j)⊕ Ct+j , j = 0, 1, ..., x− e− 2.

- 3.6 : assume pqN t−b−1 6⊂ N t and pqN t−b−1 ⊂ N t−1 for any t ≥ b, which
means we cannot get pqN t−b−1 from the state (Lt, N t). If we assume a special
state (Lt, N t) such that u(rLt−1, rN t−1) = 0, N t−1 can be computed from
(Lt, N t), thus we further get the output bit zt−b−1. Repeat this process for y
steps, i.e., we assume a special state (Lt, N t) such that u(rN t−j , rLt−j) = 0
for j = 1, ..., y, then we get the output bits zt−b−1, ..., zt−b−y.

- 3.7 : assume rN t−d−1 6⊂ N t and rN t−d−1 ⊂ N t−1 for any t ≥ d. For the
above special state (Lt, N t) such that u(rLt−j , rN t−j) = 0 for j = 1, ..., y, if
y ≤ d, we have only unknowns from (Lt, N t); if y > d, then the unknowns
from N t−1, N t−2,... will appear with some nonlinear equations N t−j−1 =
G′(N t−j ⊕ L′1(Lt−j−1))⊕ L′2(Lt−j−1)⊕ Ct−j−1, j = 0, 1, ..., y − d− 1.

It is easy to check that the proposed model includes a number of primitives,
e.g., Sprout and the Grain family. For Grain family, the term u(rLt, rN t) = 0
for any time t. For Sprout, N t = [nt, nt+1, ..., nt+39], Lt = [lt, lt+1, ..., lt+39], and
for any t, u(rLt, rN t) = lt+4⊕ lt+21⊕ lt+37⊕nt+9⊕nt+20⊕nt+29. The positive
integers b, f, d, e are b = 1, f = 1, d = 9, e = 10 respectively.

3 A TMD Tradeoff Attack Framework

In this section, we provide a systematic security analysis for Sprout-like stream
ciphers. A dedicated TMD tradeoff attack framework is developed for such de-
signs based on the k-normality of the augmented function.

The goal of cryptanalysis is to recover the internal state which has generated
a sample segment, and if possible, given the internal state, to further restore the
secret key. There are two phases in the framework: the pre-processing phase and
the processing phase. The offline pre-processing phase is performed only once
and is independent of the employed secret key and the keystream sample.

3.1 Pre-Processing Phase

In the offline pre-processing phase, some tables are prepared which will be used
later in the processing phase. Given the parameters l1, l2 and b, f, d, e, x, y, define

a two-dimensional counter array C̄ = [Ct−y, ..., Ct−1, Ct, Ct+1, ..., Ct+(x−1)], we
construct the State-Keystream pair tables as follows.

1. Under the assumptions in the model, construct a system of equations which
implies a “special” state (Lt, N t) satisfying the following conditions.

- (1.1) H(b,f)(PLt, PN t) = 0b+f+1 and l(qLt+i, qN t+i) = 0, for i =
−b, ...,−1, 0, 1, ..., f .

- (1.2) u(rLt+i, rN t+i) = 0 for i = 0, 1, ..., x − 1, from which we can get
the output bits zt+f+1,...,zt+f+x.

- (1.3) u(rLt−j , rN t−j) = 0 for j = 1, ..., y, from which we can get the
output bits zt−b−1,...,zt−b−y.

2. Suppose Assumptions 3.2, 3.5 and 3.7 hold,

- if x−1 ≤ e and y ≤ d, the above system of equations has only unknowns
from the state (Lt, N t).

- if x − 1 > e and y ≤ d, the unknowns from N t+1, N t+2,... will appear
with some non-linear equations:

N t+j+1 = G(N t+j ⊕ L1(Lt+j))⊕ L2(Lt+j)⊕ Ct+j , j = 0, 1, ..., x− e− 2.

Define another counter array C̄′ = [Ct, Ct+1, ..., Ct+(x−e−2)], note that
the round constant vectors in C̄′ are involved in these equations.

- if x − 1 ≤ e and y > d, the unknowns from N t−1, N t−2,... will appear
with some nonlinear equations:

N t−j−1 = G′(N t−j⊕L′1(Lt−j−1))⊕L′2(Lt−j−1)⊕Ct−j−1, j = 0, 1, ..., y−d−1.

Define counter array C̄′ = [Ct−(y−d), ..., Ct−2, Ct−1], the round constant
vectors in C̄′ are involved in these equations.

- if x − 1 > e and y > d, the unknowns from N t+1, N t+2,... and N t−1,
N t−2,... will appear with some nonlinear equations:

N t+j+1 = G(N t+j ⊕ L1(Lt+j))⊕ L2(Lt+j)⊕ Ct+j , j = 0, 1, ..., x− e− 2,
N t−j−1 = G′(N t−j ⊕ L1′(L

t−j−1))⊕ L2′(L
t−j−1)⊕ Ct−j−1, j = 0, 1, ..., y − d− 1.

Define counter array C̄′ = [Ct−(y−d), ..., Ct−1, Ct, Ct+1, ..., Ct+(x−e−2)],
the round constant vectors in C̄′ are involved in these equations.

3. For each possible counter array C̄′, solve the constructed system of equations
and get the special states (Lt, N t) satisfying 1 and 2. Memorize the special
state (Lt, N t) in the first column of a row in table TC̄′ , further for this
state and for each possible counter array C̄∗ = C̄\C̄′, get the corresponding
(x + y) output bits zt−b−1, ..., zt−b−y︸ ︷︷ ︸

y

, zt+f+1, ..., zt+f+x︸ ︷︷ ︸
x

and store them in

the second column as a sub-row in table TC̄′ .

Remarks. Denote the number of rows (in the first column) of table TC̄′ as 2r,
if r < x+ y, we only need to store (x+ y− r) output bits in the second column,

indexed by r-bit of the output. Next, let Z
(b+f+1)
t = [zt−b, ..., zt, ..., zt+f] ∈

F b+f+1
2 , then an internal state satisfying the condition (1.1) implies Z

(b+f+1)
t =

0b+f+1. Further, for each counter array C̄′, N t+1,...,N t+x and N t−1,...,N t−y can
be computed directly from a “special” state (Lt, N t) according to the non-linear
state updating function without involving the secret key.

3.2 Processing Phase

Now we discuss how to recover the internal state which has generated a sample
segment, and if possible, given the internal state, to further restore the secret
key. The following two propositions have provided us a direct way of key recovery
from an internal state candidate and some keystream bits.

Proposition 1. For a special state (Lt, N t) satisfying the conditions (1.1) and
(1.2), N t+1,...,N t+x can be computed directly from the complete state (Lt, N t)
and the non-linear state updating function without involving the secret key.
Besides, if u(rLt+x, rN t+x) = 1, we may get some secret key information
R(t+x,K) when the keystream bit zt+f+x+1 is known. Further, more key infor-
mation R(t+x+j,K), j = 0, 1, ... will probably be obtained when more keystream
bits zt+f+x+j+1, j = 0, 1, ... are known.

Proof. The first half is clear from the condition (1.2).
For a special state (Lt, N t), if u(rLt+x, rN t+x) = 1, the secret key informa-

tion R(t + x,K) is incorporated into the updating of the non-linear part from
N t+x to N t+x+1. One can check that the keystream bit zt+f+x+1 is dependent
on N t+x+1. In a word, R(t + x,K) is likely to affect (if u(rLt+x, rN t+x) = 1)
the keystream bit zt+f+x+1. Accordingly, we may obtain some key information
R(t+ x,K) from zt+f+x+1. This procedure can be repeated many times. 2

Similar to the proof of Proposition 1, we have the following proposition.

Proposition 2. For a special state (Lt, N t) satisfying the conditions (1.1)
and (1.3), N t−1,...,N t−y can be computed directly from the complete state
(Lt, N t) and the non-linear state updating function without involving the secret
key. Besides, if u(rLt−y−1, rN t−y−1) = 1, we may get some key information
R(t − y − 1,K) when the keystream bit zt−b−y−1 is known. Further, more key
information R(t − y − j,K), j = 1, 2, ... will probably be obtained when more
keystream bits zt−b−y−j, j = 1, 2, ... are known.

By utilizing the pre-computed tables and the given keystream sample, the
processing phase is carried out as follows.

The Internal State Recovery Algorithm. Given the parameters b, f, x, y,
the tables TC̄′ , and the keystream sample {zt}t≥0, the processing steps are as
follows.

1. Search the keystream sequence {zt}t for the next non-considered block of
(b+f+1) zeros. If there are no more blocks, output a flag that the algorithm
has failed.

2. For each detected block, compute the corresponding counter array C̄, C̄′ and
C̄∗ from the time t, compare the x-bit segment of the keystream subsequent
to the block and y-bit segment prior to the block with the memorized (x+y)-
bit segments in the second column (sub-row is indexed by C̄∗) of the table
TC̄′ , and do the following:

- If the matching does not exist, go the the processing Step 1.

- If the (x+ y)-bit output segment matches with a segment in table TC̄′ ,
go to Step 3.

3. Read the corresponding state, and if appropriate, recover (part of) the secret
key according to Propositions 1 and 2 from this state and more keystream
bits.

3.3 Complexity Analysis

In the Sprout-like model, the keystream bit is generated as zt = h(pLt, pN t) ⊕
l(qLt, qN t). For the (b, f) derived from Assumption 3.3, we define a flat V (b,f)

of dimension dim(V (b,f)) such that H(b,f) = 0b+f+1 over it. i.e.,

V (b,f) = {(Lt, N t) : H(b,f)(PLt, PN t) = 0b+f+1},

We have the following lemma which is closely related to the time complexity of
processing (table look-ups) of our proposed algorithm.

Lemma 1. Suppose Pr[u(·) = 0] = p, assume all the events in (1.1),(1.2) and
(1.3) are independent, then the probability that an internal state (Lt, N t) is a
special state satisfying the conditions (1.1), (1.2) and (1.3) simultaneously when

the keystream segment Z
(b+f+1)
t = 0b+f+1 is

Pr
[

(Lt, N t) is a special state
∣∣Z(b+f+1)

t = 0b+f+1
]

=
1

2l1+l2−dim(V (b,f))
· px+y,

where V (b,f) is a flat such that H(b,f) = 0b+f+1 over it.

Proof. For any internal state (Lt, N t) and keystream segment Z
(b+f+1)
t , the un-

derlying assumptions directly imply the following:

Pr
[
(Lt, N t) is a special state

]
=

1

2l1+l2−dim(V (b,f))
· 1

2b+f+1
· px+y,

and Pr
[
Z
(b+f+1)
t = 0b+f+1

]
= 2−(b+f+1), and

Pr
[

Z
(b+f+1)
t = 0b+f+1

∣∣∣ (Lt, N t) is a special state
]

= 1.

On the other hand,

Pr
[

(Lt, N t) is a special state|Z(b+f+1)
t = 0b+f+1

]
=

Pr[(Lt,Nt) is a special state]·Pr
[
Z
(b+f+1)
t =0b+f+1

∣∣∣(Lt,Nt) is a special state
]

Pr
[
Z
(b+f+1)
t =0b+f+1

]
= 1

2l1+l2−dim(V (b,f))
· px+y

which yields the statement of the lemma. 2

Theorem 1. Suppose V (b,f) is a flat such that H(b,f) = 0b+f+1 over it, then the
complexities of the proposed generic algorithm for cryptanalysis are as follows:

(1) The processing data complexity is D = 2l1+l2−dim(V (b,f)) ·2b+f+1 ·p−(x+y).
(2) The expected space complexity in the pre-processing phase is proportional

to the sum of number of rows in each table TC̄′ .
(3) The processing (table look-ups) time complexity is proportional to

2l1+l2−dim(V (b,f)) · p−(x+y).
(4) The pre-processing time complexity is equivalent to the workload for solv-

ing the system of equations constructed.

Proof. The data complexity is determined by the probability that an internal
state is a special state satisfying conditions (1.1), (1.2) and (1.3) simultane-
ously in the pre-processing phase, which is given in the proof of Lemma 1 as

2−(l1+l2−dim(V (b,f))) · 2−(b+f+1) · px+y. Thus we have D = 2l1+l2−dim(V (b,f)) ·
2b+f+1 · p−(x+y).

For each possible counter array C̄′, we have constructed the corresponding
table TC̄′ , thus the estimated space complexity is proportional to the sum of
number of rows in each table TC̄′ .

In the processing phase, the expected number of table look-ups depends on
the probability that an internal state (Lt, N t) is a special state satisfying the
conditions (1.1), (1.2) and (1.3) simultaneously when the keystream segment

Z
(b+f+1)
t = 0b+f+1, which is given in Lemma 1 as 2−(l1+l2−dim(V (b,f))) · px+y.

Thus the number of table look-ups is 2l1+l2−dim(V (b,f)) · p−(x+y).
The pre-processing time complexity is determined by the workload for solving

the system of equations constructed. 2

4 Cryptanalysis of Sprout

In this section, we apply the framework proposed in Section 3 to Sprout with
the comparisons to the previous relevant attacks.

4.1 Fitting into the Model

Sprout fits into the model with the parameters l1 = l2 = 40, which are the length
of LFSR and NFSR respectively. The keystream bit zt at time t is generated as

zt = h(nt+4, lt+6, lt+8, lt+10, lt+32, lt+17, lt+19, lt+23, nt+38)
⊕lt+30 ⊕ nt+1 ⊕ nt+6 ⊕ nt+15 ⊕ nt+17 ⊕ nt+23 ⊕ nt+28 ⊕ nt+34,

where h(·) = nt+4lt+6 ⊕ lt+8lt+10 ⊕ lt+32lt+17 ⊕ lt+19lt+23 ⊕ nt+4lt+32nt+38.
As described in Section 2, whether the secret key is involved in the NF-

SR state updating is determined by the value ut = lt+4 ⊕ lt+21 ⊕ lt+37 ⊕
nt+9 ⊕ nt+20 ⊕ nt+29, to fit in the model, we have rLt = {lt+4, lt+21, lt+37},
rN t = {nt+9, nt+20, nt+29} and the two parameters d = 9, e = 10 such that⋃10
i=−9 rN

t+i ⊆ N t.

Let pLt = {lt+6, lt+8, lt+10, lt+17, lt+19, lt+23, lt+32}, pN t = {nt+4, nt+38},
qLt = {lt+30}, and qN t = {nt+1, nt+6, nt+15, nt+17, nt+23, nt+28, nt+34}. From
this we have b = 1, f = 1 to fit into the Sprout-like model. Given (b, f) = (1, 1),

H(1,1)(PLt, PN t) =
(
h(pLt−1, pN t−1), h(pLt, pN t), h(pLt+1, pN t+1)

)
,

where PLt = Lt[5,11]∪L
t
[16,20]∪L

t
[22,24]∪L

t
[31,33] and PN t = N t

[3,5]∪N
t
[37,39], thus

H(1,1)(·) is a (24, 3)-vectorial Boolean function.
Suppose nt+3 = nt+4 = nt+5 = 0, by a computer computation, there

are 12096(> 213) possible values for the following 16-bit of LFSR such that
H(1,1)(·) = 03:

P t = [lt+7lt+8lt+9lt+10||lt+11lt+16lt+17lt+18

||lt+19lt+20lt+22lt+23||lt+24lt+31lt+32lt+33] ⊆ Lt.

For example, P t = 0x0000, 0x8000, 0x4000, 0xc000, ... when denoted by hex-
adecimal digits. We denote all the 12096(> 213) values of P t as a1, a2, a3,
a4,...,a12096 such that a1 = 0x0000, a2 = 0x8000, a3 = 0x4000, a4 = 0xc000,...
respectively.

For Sprout, we will use 213 flats defined as follows:

Vi = {(Lt, N t) : P t = ai and nt+j = 0, j = 3, 4, 5}, i = 1, ..., 213

Note that in each Vi, 19 bits of (Lt, N t) are fixed, then each Vi has a dimension
of dim(Vi) = 61 , and H(1,1)(·) = 03 over Vi. Further we define a flat V as

V =
⋃213

i=1 Vi. Thus the dimension of V is dim(V) = 74.

4.2 Cryptanalysis

We first discuss how to construct tables that will be used in the processing phase.

Pre-processing Phase. Given the parameters x, y and do the following:

1. Define a counter array as C = [c4t−y, ..., c
4
t−1, c

4
t , c

4
t+1, ..., c

4
t+(x−1)] of size

|C| = x+y. For an internal state (Lt, N t) such that nt+3 = nt+4 = nt+5 = 0
(thus there are 77 unknowns), construct a system of equations which implies
a state (Lt, N t) satisfying the following conditions.

- (a). l(qLt+i, qN t+i) = 0, for i = −1, 0, 1.
- (b). ut+i = 0 for i = 0, 1, ..., x − 1, from which we can get the output

bits zt+2,...,zt+x+1 (suppose the round constants c4t , c
4
t+1, ..., c

4
t+(x−1) are

known).
- (c). ut−j = 0 for j = 1, ..., y, from which we can get the output

bits zt−2,...,zt−y−1 (suppose the round constants c4t−1, c
4
t−2, ..., c

4
t−y are

known).

2. We discuss it in the following situations:

- Case 1: If x ≤ 11 and y ≤ 9, we have the corresponding system of
(3+x+y) linear equations with only 77 unknowns from the state (Lt, N t):
40 unknowns from Lt and 37 unknowns from N t.

lt+30+k ⊕
(⊕

i∈A nt+i+k

)
= 0, k = −1, 0, 1

lt+4+i ⊕ lt+21+i ⊕ lt+37+i ⊕ nt+9+i ⊕ nt+20+i ⊕ nt+29+i = 0, i = 0, 1, ..., x− 1
lt+4−j ⊕ lt+21−j ⊕ lt+37−j ⊕ nt+9−j ⊕ nt+20−j ⊕ nt+29−j = 0, j = 1, ..., y

- Case 2: If x ≥ 12 and y ≤ 9, in addition to the 77 unknowns from the
state (Lt, N t), the unknowns nt+40, nt+41,...,nt+40+(x−12) will appear
with some non-linear equations. Thus we obtain a system of equations
with (66 + x) unknowns, and (2x+ y − 8) equations ((3 + x+ y) linear
equations and (x − 11) non-linear equations). Define another counter
array C ′ = [c4t , c

4
t+1, ..., c

4
t+(x−12)] of size |C ′| = x − 11, note that the

round constants in C ′ are involved in this system.
lt+30+k ⊕

(⊕
i∈A nt+i+k

)
= 0, k = −1, 0, 1

lt+4+i ⊕ lt+21+i ⊕ lt+37+i ⊕ nt+9+i ⊕ nt+20+i ⊕ nt+29+i = 0, i = 0, 1, ..., x− 1
lt+4−j ⊕ lt+21−j ⊕ lt+37−j ⊕ nt+9−j ⊕ nt+20−j ⊕ nt+29−j = 0, j = 1, ..., y
nt+40+m ⊕ lt+m ⊕ c4t+m ⊕ g(N t+m) = 0,m = 0, 1, ..., x− 12 (non− linear)

- Case 3: If x ≤ 11 and y ≥ 10, in addition to the 77 unknowns from
the state (Lt, N t), the unknowns nt−1, nt−2,...,nt−(y−9) will appear with
some non-linear equations. Thus we obtain a system of equations with
(68+y) unknowns, and (x+2y−6) equations ((3+x+y) linear equations
and (y − 9) non-linear equations). Define C ′ = [c4t−(y−9), ..., c

4
t−1] of size

|C ′| = y − 9, the round constants in C ′ are involved in this system.
lt+30+k ⊕

(⊕
i∈A nt+i+k

)
= 0, k = −1, 0, 1

lt+4+i ⊕ lt+21+i ⊕ lt+37+i ⊕ nt+9+i ⊕ nt+20+i ⊕ nt+29+i = 0, i = 0, 1, ..., x− 1
lt+4−j ⊕ lt+21−j ⊕ lt+37−j ⊕ nt+9−j ⊕ nt+20−j ⊕ nt+29−j = 0, j = 1, ..., y
nt−n ⊕ lt−n ⊕ c4t−n ⊕ g′(N t−n+1) = 0, n = 1, ..., y − 9 (non− linear)

- Case 4: If x ≥ 12 and y ≥ 10, in addition to the 77 unknowns from
the state (Lt, N t), the unknowns nt+40, nt+41,...,nt+40+(x−12) and nt−1,
nt−2,...,nt−(y−9) will appear with some non-linear equations. Thus we
obtain a system of equations with (57+x+y) unknowns, and (2x+2y−
17) equations ((3 + x + y) linear equations and (x + y − 20) non-linear
equations). Define C ′ = [c4t−(y−9), ..., c

4
t−1, c

4
t , c

4
t+1, ..., c

4
t+(x−12)] of size

|C ′| = x+ y− 20, the round constants in C ′ are involved in the system.
lt+30+k

(⊕
i∈A nt+i+k

)
= 0, k = −1, 0, 1

lt+4+i ⊕ lt+21+i ⊕ lt+37+i ⊕ nt+9+i ⊕ nt+20+i ⊕ nt+29+i = 0, i = 0, 1, ..., x− 1
lt+4−j ⊕ lt+21−j ⊕ lt+37−j ⊕ nt+9−j ⊕ nt+20−j ⊕ nt+29−j = 0, j = 1, ..., y
nt+40+m ⊕ lt+m ⊕ c4t+m ⊕ g(N t+m) = 0,m = 0, 1, ..., x− 12 (non− linear)
nt−n ⊕ lt−n ⊕ c4t−n ⊕ g′(N t−n+1) = 0, n = 1, ..., y − 9 (non− linear)

3. For each possible counter array C ′, solve the constructed system of equations.
Observe that all the round constants in C ′ are added to the system linearly,
by guessing at most 274−(x+y) appropriate unknowns we can solve the system
and get 274−(x+y) solutions (Lt, N t) for each possible counter array C ′.

4. For each possible counter array C ′, check each of the 274−(x+y) solutions
(Lt, N t). If (Lt, N t) ∈ Vi, i.e., P t = ai for any i = 1, 2, ..., 213, store the 61-
bit (L∗t, N∗t) in the first column of a row in table TC′,i, where L∗t = Lt\P t
and N∗t = N t\{nt+3, nt+4, nt+5}. Further for this state and for each possible
round constants of C∗ = C\C ′, get the corresponding (x + y) output bits
(zt−y−1, ..., zt−2, zt+2, ..., zt+x+1) and put them in the second column as a
sub-row in table TC′,i. Thus there are expected 258−x−y rows in the first

column and 258−x−y× Count(|C|)
Count(|C′|) rows in the second column, where Count(n)

represents the number of all the possible counter arrays of size n.

We list in Table 1 the number of all the possible counter arrays Count(n) of size
n.

Table 1. The size of the counter array n and the number Count(n) for all the possible
counter arrays

n 6 7 8 9 10 11 12 13 14 15 16 17

Count(n) 12 14 16 18 20 22 24 26 28 30 32 33

n 18 19 20 21 22 23 24 25 26 27 28 29

Count(n) 35 37 39 41 43 45 47 49 51 53 55 57

n 30 31 32 33 34 35 36 37 38 39 40 41

Count(n) 59 61 63 64 65 66 67 68 69 70 71 72

n 42 43 44 45 46 47 48 49 50 51 52 53

Count(n) 73 74 75 76 77 78 79 80 80 80 80 80

Remarks. First, it can be seen that, the necessary and sufficient condition for a
state (Lt, N t) to be a “special” state is that (Lt, N t) ∈ V and the conditions (a),
(b) and (c) hold. Second, for each possible counter array C, nt+40,...,nt+40+(x−1)
and nt−1,...,nt−y can be computed directly from a special state (Lt, N t) accord-
ing to the state updating of NFSR without involving the key information. Third,
denote the number of rows (in the first column) of table TC′,i as 2ri , if ri < x+y,
we only need to store (x + y − ri) output bits in the second column, indexed
by ri-bit of the output. Finally, in the pre-processing phase, we have obtained
Count(|C ′|)× 213 tables TC′,i, each having 258−x−y rows in the first column to

store “special” states and 258−x−y × Count(|C|)
Count(|C′|) rows in the second column to

store the corresponding output bits.

Lemma 2. The probability that an internal state (Lt, N t) is a special state (
such that (Lt, N t) ∈ V and the conditions (a), (b) and (c) hold) when the

keystream segment Z
(3)
t = 03 is given by the following:

Pr
[

(Lt, N t) is a special state
∣∣Z(3)

t = 03
]

= 2−(6+x+y).

Proof. For any internal state (Lt, N t) and keystream segment Z
(3)
t , the under-

lying assumptions directly imply the following:

Pr
[
(Lt, N t) is a special state

]
=

1

240+40−dim(V)
× 1

23+x+y
= 2−(9+x+y),

and Pr
[
Z
(3)
t = 03

]
= 2−3, and

Pr
[

Z
(3)
t = 03

∣∣∣ (Lt, N t) is a special state
]

= 1.

On the other hand,

Pr
[

(Lt, N t) is a special state|Z(3)
t = 03

]
=

Pr[(Lt,Nt) is a special state]×Pr
[
Z
(3)
t =03

∣∣∣(Lt,Nt) is a special state
]

Pr
[
Z
(3)
t =03

]
= 2−(6+x+y).

which yields the statement of the lemma. 2

Next, we will present a State Checking and Key Recovery Mechanism spec-
ified for Sprout, by which we have the opportunity to check whether a state
candidate is correct, and if so, further recover the key for a correct guess.

State Checking and Key Recovery Mechanism. For a state candidate at
time t, Lt = [lt, lt+1, ..., lt+39], N t = [nt, nt+1, ..., nt+39], create an 80-bit vector
K for the possible values associated with it:

1. Compute the value of nt−1 given by the keystream bit zt−2 as nt−1 = zt−2⊕
h(nt+2, lt+4, lt+6, lt+8, lt+30, lt+15, lt+17, lt+21, nt+36)⊕lt+28⊕

(⊕
i∈A′ nt+i−2

)
where A′ = {6, 15, 17, 23, 28, 34}. And compute lt−1 by the LFSR updating
equation as lt−1 = lt+39 ⊕ lt+33 ⊕ lt+24 ⊕ lt+19 ⊕ lt+14 ⊕ lt+4, and deduce
from nt−1, lt−1 the value k∗t−1 by the NFSR updating equation as k∗t−1 =
nt+39 ⊕ c4t−1 ⊕ lt−1 ⊕ g(N t−1).

2. Compute the value of ut−1 = lt+3⊕ lt+20⊕ lt+36⊕nt+8⊕nt+19⊕nt+28 and
combine it with the value of k∗t−1 obtained in Step 1:

- if ut−1 = 0 and k∗t−1 = 0, set t→ t− 1 and go back to Step 1.
- if ut−1 = 0 and k∗t−1 = 1, there is a contradiction, conclude that this

guess for state is not correct and stop.
- if ut−1 = 1 and k∗t−1 = 0, check if k(t−1) mod 80 has already been set in
K. If no, set it to 0. Set t → t − 1 and go back to Step 1. Else, if there
is a contradiction, conclude that this guess for state is not correct and
stop.

- if ut−1 = 1 and k∗t−1 = 1, check if k(t−1) mod 80 has already been set in
K. If no, set it to 1. Set t → t − 1 and go back to Step 1. Else, if there
is a contradiction, conclude that this guess for state is not correct and
stop.

Similar to the statements in [8], the probability that a state candidate survives
for 2r clocks is 2−r. On average for each 2 clocks, half of the possible guesses will
be eliminated. For 2s candidate states, the average number of clocks for each
elimination is

s∑
i=0

2× 2s−i

2s
=

s∑
i=0

1

2i−1
≈ 4

We can conclude that 4 clocks of output is enough for checking the validity of a
candidate state and the recovery of the key bits for each candidate.

Next we illustrate the algorithm for the internal state and key recovery in
the processing phase.

Processing Phase. Given the parameter x, y, the corresponding Count(|C ′|)×
213 tables TC′,i and the given keystream sample {zt}t≥0, the processing steps
are as follows:

1. Search the keystream sequence {zt}t for the next non-considered block of 3
zeros. If there are no more blocks, output a flag that the algorithm has failed to
recover the key.
2. For each detected block, compute the corresponding counter array C, C ′ and
C∗ from the time t. For i = 1, ..., 213, compare the x-bit segment of the keystream
subsequent to the block and y-bit segment prior to the block with the memorized
(x+y)-bit segments in the second column (sub-row is indexed by C∗) of the table
TC′,i, and do the following:

- If the matching does not exist, go to the processing Step 1.

- If the (x + y)-bit sample segments match with a segment in table TC′,i, go
to Step 3.

3. Read the corresponding state, check whether it is a correct state or not and
recover the secret key by the State Checking and Key Recovery Mechanism stated
above. If this state survives, recover and output the key, else go to Step 1.

Theorem 2. For two positive integers x, y, the dedicated TMD tradeoff on
Sprout has complexities as follows: (1) The data complexity for the processing is
D = 29+x+y; (2) The expected memory M(-bit) of pre-processing is computed as
follows:

M =

Count(|C′|)× 271−x−y ×
[
61 + Count(x+y)

Count(|C′|) · (x + y)
]
, if x + y < 30,

Count(|C′|)× 271−x−y ×
[
61 + Count(x+y)

Count(|C′|) · (2x + 2y − 58)
]
, if x + y ≥ 30.

(3) The time complexity of processing is 270.66−x−y Sprout encryptions along
with 26+x+y table look-ups. (4) The time complexity of pre-processing is propor-
tional to 274−x−y.

Proof. The data complexity is determined by the probability that an internal
state (Lt, N t) is a special state (such that (Lt, N t) ∈ V and the conditions (a),
(b) and (c) hold), which is given in the proof of Lemma 2 as 2−(9+x+y). Thus
we have D = 29+x+y.

As for the memory, we need Count(|C ′|) × 213 tables TC′,i, each having
258−x−y rows in the first column to store 61-bit “special” states (3+16=19-bit

are fixed for each table) and 258−x−y × Count(|C|)
Count(|C′|) rows in the second column

to store the corresponding output bits. If x + y < 30, each row in the second
column contains (x+y) output bits; if x+y ≥ 30, each row in the second column

contains 2(x + y) − 58 output bits, indexed by 58 − x − y bits of the output.
Hence the memory M(-bit) is computed as follows:

M =

Count(|C′|)× 213 × 258−x−y ×
[
61 + Count(x+y)

Count(|C′|) · (x + y)
]
, if x + y < 30,

Count(|C′|)× 213 × 258−x−y ×
[
61 + Count(x+y)

Count(|C′|) · (2x + 2y − 58)
]
, otherwise.

In the processing phase, the expected number of table look-ups is determined
by the probability that an internal state (Lt, N t) is a special state when the

keystream segment Z
(3)
t = 0, which is given in Lemma 2 as 2−(6+x+y). Thus

the number of table look-ups is 26+x+y. For each (x + y)-bit keystream bits,
we have 271−2(x+y) state candidates producing the output. As stated before, 4
more clocks of output is enough for checking the validity of the state and the
recovery of the key bits for each candidate. In total, the time complexity is

26+x+y × 271−2(x+y) × 4 = 279−x−y, which is equivalent to 279−x−y

324 = 270.66−x−y

Sprout encryptions.

The pre-processing time complexity is equivalent to solving the constructed
system of equations. We see that by guessing at most 274−(x+y) appropriate
unknowns we can solve the system for each possible counter array C ′. As the
counter values are added to the systems linearly, we can do the Gauss elimination
only once to store separate tables for each of the Count(|C ′|) counter arrays. 2

4.3 Detailed Workload for x = 16, y = 15

We now focus on the workload to solve the system of equations for x = 16,
y = 15. For a state (Lt, N t), let nt+j = 0, j = 3, 4, 5 and define N∗t =
N t\{nt+3, nt+4, nt+5}. We need to solve the following systems of equations,
which amounts to 34 linear equations, 11 non-linear equations and 88 unknowns
Lt,N∗t,nt+40,nt+41,...,nt+44,nt−1,nt−2,...,nt−6.

1 : lt+29 ⊕ nt ⊕ nt+5 ⊕ nt+14 ⊕ nt+16 ⊕ nt+22 ⊕ nt+27 ⊕ nt+33 = 0
2 : lt+30 ⊕ nt+1 ⊕ nt+6 ⊕ nt+15 ⊕ nt+17 ⊕ nt+23 ⊕ nt+28 ⊕ nt+34 = 0
3 : lt+31 ⊕ nt+2 ⊕ nt+7 ⊕ nt+16 ⊕ nt+18 ⊕ nt+24 ⊕ nt+29 ⊕ nt+35 = 0
4 : ut−15 = lt−11 ⊕ lt+6 ⊕ lt+22 ⊕ nt−6 ⊕ nt+5 ⊕ nt+14 = 0
5 : ut−14 = lt−10 ⊕ lt+7 ⊕ lt+23 ⊕ nt−5 ⊕ nt+6 ⊕ nt+15 = 0
......
18 : ut−1 = lt+3 ⊕ lt+20 ⊕ lt+36 ⊕ nt+8 ⊕ nt+19 ⊕ nt+28 = 0
19 : ut = lt+4 ⊕ lt+21 ⊕ lt+37 ⊕ nt+9 ⊕ nt+20 ⊕ nt+29 = 0
20 : ut+1 = lt+5 ⊕ lt+22 ⊕ lt+38 ⊕ nt+10 ⊕ nt+21 ⊕ nt+30 = 0
......
34 : ut+15 = lt+19 ⊕ lt+36 ⊕ lt+52 ⊕ nt+24 ⊕ nt+35 ⊕ nt+44 = 0

35 : nt+40 ⊕ lt ⊕ c4t ⊕ g(N t) = 0
36 : nt+41 ⊕ lt+1 ⊕ c4t+1 ⊕ g(N t+1) = 0
......
39 : nt+44 ⊕ lt+4 ⊕ c4t+4 ⊕ g(N t+4) = 0
40 : nt−1 ⊕ lt−1 ⊕ c4t−1 ⊕ g′(N t) = 0
41 : nt−2 ⊕ lt−2 ⊕ c4t−2 ⊕ g′(N t−1) = 0
......
45 : nt−6 ⊕ lt−6 ⊕ c4t−6 ⊕ g′(N t−5) = 0

In the following part, Lt is treated as a column vector of size 40.
First of all, we choose the 40 equations numbered by 1,2,...,34 and
40,41,...,45 from the above systems to represent Lt by the unknowns
N∗t,nt+40,nt+41,...,nt+44,nt−1,nt−2,...,nt−6 as M ·Lt = v, where M is the 40×40
coefficient matrix of Lt, and v is a column vector of size 40, and

M · Lt = [lt+29, lt+30, lt+31, lt−11 ⊕ lt+6 ⊕ lt+22, ...,

lt+19 ⊕ lt+36 ⊕ lt+52, lt−1, ..., lt−6]T ,

and

v = [
⊕

i∈Bnt+i−1,
⊕

i∈Bnt+i,
⊕

i∈Bnt+i+1, nt−6 ⊕ nt+5 ⊕ nt+14, ...,
nt+24 ⊕ nt+35 ⊕ nt+44, nt−1 ⊕ c4t−1 ⊕ g′(N t), ..., nt−6 ⊕ c4t−6 ⊕ g′(N t−5)]T .

We have checked that rank(M) = 39. Take lt as a free variable, we ob-
tain an invertible coefficient matrix of size 39 × 39. Let L′t = Lt\{lt}, then
each variable in L′t can be uniquely represented as linear combinations of
N∗t,nt+40,nt+41,...,nt+44,nt−1,nt−2,...,nt−6 and lt, together with 1 non-linear
equation with these unknowns. Plugging in the values lt+1,lt+2,lt+3,lt+4 in e-
quations numbered by 36,...,39, we get a system with 6 non-linear equations
and 49 unknowns N∗t,nt+40,nt+41,...,nt+44,nt−1,nt−2,...,nt−5 and lt. Define a
set GUESS = {nt+j : j ∈ S} of size 33, where

S = {−1, 0, 1, 3, 4, 6, 7, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21,
23, 24, 25, 26, 28, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41}.

By guessing the 33 unknowns in the set GUESS,

- If nt+9 = 0, we come up with 232 systems with 6 linear equations and 16
unknowns; For each of these systems, we do the Gauss elimination once by
choosing an invertible coefficient matrix of 6× 6. The systems can be solved
with 232 × (63 + 210) = 242.27 basic operations.

- If nt+9 = 1, we further guess nt+8, thus we get 233 systems with 6 linear
equations and 15 unknowns. Similarly, the systems can be solved with 233×
(63 + 29) = 242.51 basic operations.

In total, the pre-computation is approximately 243.39 basic operations.

We list in Table 2 more instances that illustrate the complexities of the TMD
tradeoff attacks on Sprout. The Comparison of our TMD tradeoff attacks with
the previous ones in [8] and [12] are presented in Table 3. With carefully chosen
attack parameters, our method is at least 220 times faster than the attack in
[12], 210 times faster than the attack in [8] with much less memory.

Table 2. The complexity issues of the attack on Sprout

x, y Count(x + y) Data Memory(-bit),(TB) Time Pre-computation

16,14 59 239 251.39-bit, 336 TB 240.66 244.03

16,15 61 240 250.63-bit, 198 TB 239.66 243.39

17,15 63 241 249.85-bit, 115 TB 238.66 243.81

17,16 64 242 249.03-bit, 65 TB 237.66 245.36

18,16 65 243 248.20-bit, 36 TB 236.66 247.09

Table 3. Comparison of our time/memory/data Tradeoff attacks with the previous
ones

Attack Data Memory(-bit),(TB) Time Pre-computation

[12] 112 ≥ 252.32-bit, ≥ 639 TB 266.80 268.87

[8] 240 252.58-bit, 770 TB 230.66 254.29

[8] 241 252.64-bit, 399 TB 229.66 ≈ 256.70

[8] 242 250.69-bit, 207 TB 228.66 ≈ 259.07

[8] 243 249.74-bit, 108 TB 227.66 ≈ 261.42

ours 239 251.39-bit, 336 TB 240.66 244.03

ours 240 250.63-bit, 198 TB 239.66 243.39

ours 241 249.85-bit, 115 TB 238.66 243.81

ours 242 249.03-bit, 65 TB 237.66 245.36

ours 243 248.20-bit, 36 TB 236.66 247.09

5 Practical Implementation

To verify the validity of our attack, we experimentally test it on a reduced cipher
with similar structure and properties as Sprout. In general, the simulation results
match well with the theoretical estimates.

5.1 The Reduced Version of Sprout

Similarly, there is an 8-bit counter register, of which the lower 6 bits are a
modulo 40 counter, denoted by (c5t , c

4
t , c

3
t , c

2
t , c

1
t , c

0
t) at a given round t. The 3-th

LSB c3t of the counter is employed in the keystream generation. It should be
noted that, c3t has a cycle of length 40, i.e., in each cycle, this bit takes the
values 0, 0, ..., 0︸ ︷︷ ︸

8

1, 1, ..., 1︸ ︷︷ ︸
8

0, 0, ..., 0︸ ︷︷ ︸
8

1, 1, ..., 1︸ ︷︷ ︸
8

0, 0, ..., 0︸ ︷︷ ︸
8

.

The reduced version of Sprout uses a 20-bit LFSR and a 20-bit NFSR. At
time t, the LFSR state is Lt = [lt, lt+1, ..., lt+19], and it is updated recursively
by f as lt+20 = lt ⊕ lt+1 ⊕ lt+14 ⊕ lt+15 ⊕ lt+16 ⊕ lt+19. The NFSR state N t =

[nt, nt+1, ..., nt+19] is updated recursively by a nonlinear feedback function g as

nt+20 = k∗t ⊕ c3t ⊕ lt ⊕ g(N t)

= k∗t ⊕ c3t ⊕ lt ⊕ nt ⊕ nt+13 ⊕ nt+15 ⊕ nt+17 ⊕ nt+19

⊕ nt+2nt+5 ⊕ nt+3nt+7 ⊕ nt+8nt+9 ⊕ nt+1nt+14 ⊕ nt+16nt+18 ⊕ nt+6nt+12

⊕ nt+13nt+16nt+17nt+18 ⊕ nt+10nt+11nt+12 ⊕ nt+4nt+7nt+11.

Let ut be ut = lt+1 ⊕ lt+4 ⊕ lt+17 ⊕ nt+4 ⊕ nt+10 ⊕ nt+14, then

k∗t =

{
kt, 0 ≤ t ≤ 39
kt(mod 40) · ut, otherwise

Given the internal state at time t, the keystream bit zt is generated as

zt = h(nt+4, lt+6, lt+8, lt+10, lt+12, lt+17, lt+19, lt+3, nt+18)⊕lt+10⊕
(⊕

i∈A
nt+i

)
,

where A = {1, 3, 6, 15, 17}, and the filter function h(·) is defined as

h(·) = nt+4lt+6 ⊕ lt+8lt+10 ⊕ lt+12lt+17 ⊕ lt+19lt+3 ⊕ nt+4lt+12nt+18.

During the key/IV setup phase, since the key is fixed, first load the IV in the
following way: ni = ivi, 0 ≤ i ≤ 19; li = ivi+20, 0 ≤ i ≤ 14 and li = 1, 15 ≤ i ≤
18, l19 = 0. Then run the cipher 160 rounds as follows.

- the LFSR update function is changed to lt+20 = zt ⊕ f(Lt).
- the NFSR update function is changed to nt+20 = zt ⊕ k∗t ⊕ lt ⊕ c3t ⊕ g(Nt).
- no keystream bit is generated.

After the initialization phase, the keystream generation phase starts and there
is no feedback keystream anymore.

5.2 Attack Process

Suppose lt+4 = 0, nt+3 = nt+4 = nt+5 = 0, by a computer computation,
there are 1728(> 210) possible values for the following 13-bit of LFSR such
that H(1,1)(·) is 0 (∈ F 3

2).

P t = [lt+2||lt+3lt+7lt+8lt+9||lt+10lt+11lt+12lt+13||lt+16lt+17lt+18lt+19] ⊆ Lt.

For example, P t = 0x0000, 0x0001, ... We denote all the 1728 values of P t

as a1,a2,...,a1024,...,a1728, where the first 1024 values are a1 = 0x0000, a2 =
0x0001,...,a1024 = 0x1ba1. For convenience, several notations are defined as fol-
lows:

- L∗t = Lt\({lt+4} ∪ P t) of 6-bit.
– N∗t = N t\{nt+3, nt+4, nt+5} of 17-bit.

- Define C = [c3t−5, ..., c
3
t−1, c

3
t , c

3
t+1, ..., c

3
t+5] of length 11, the employed counter

array. There are 21 different counter arrays, denoted by hexadecimal num-
bers, they are

0x007, 0x00f, 0x01f, 0x03f, 0x07f, 0x0ff, 0x1fe,
0x3fc, 0x7f8, 0x7f0, 0x7e0, 0x7c0, 0x780, 0x700,
0x601, 0x403, 0x600, 0x400, 0x000, 0x001, 0x003,

- Define C ′ = [c3t−1] of length 1, and C∗ = [c3t−5, ..., c
3
t−2, c

3
t , c

3
t+1, ..., c

3
t+5] of

length 10. There are 2 different values for C ′, denoted as c′1 = 0x0, c′2 = 0x1.
If c3t−1 = 0x0, there are 13 different values for C∗, they are 0x007, 0x00f,
0x01f,0x03f,0x3c0,0x380,0x301,0x203,0x300,0x200,0x000,0x001,0x003; If
c3t−1 = 0x1, there are 8 different values for C∗, they are 0x03f,0x07f,0x0fe,
0x1fc,0x3f8,0x3f0,0x3e0,0x3c0.

Pre-processing Phase. For any state (Lt, N t), suppose lt+4 = 0, nt+3 =
nt+4 = nt+5 = 0. In the pre-processing phase, we construct 2 × 210 tables
Tc′j ,ai indexed with c′j and ai, for c′1 = 0x0, c′2 = 0x1 and a1 = 0x0000, a2 =

0x0001,...,a1024 = 0x1ba1. In Table Tc′j ,ai , 23-bit (L∗t, N∗t) are stored in the

first column of a row such that
P t = [lt+2||lt+3lt+7lt+8lt+9||lt+10lt+11lt+12lt+13||lt+16lt+17lt+18lt+19] = ai

lt+10+i ⊕ nt+1+i ⊕ nt+3+i ⊕ nt+6+i ⊕ nt+15+i ⊕ nt+17+i = 0, i = −1, 0, 1
ut+j = lt+1+j ⊕ lt+4+j ⊕ lt+17+j ⊕ nt+4+j ⊕ nt+10+j ⊕ nt+14+j = 0, j = 0, 1, ..., 5
ut−k = lt+1−k ⊕ lt+4−k ⊕ lt+17−k ⊕ nt+4−k ⊕ nt+10−k ⊕ nt+14−k = 0, k = 1, 2, ..., 5
nt−1 ⊕ lt−1 ⊕ c3t−1 ⊕ g′(N t) = 0 (non− linear)

Similarly, we can solve all the systems by choosing a set of unknowns as
GUESS = {nt, nt+1, nt+6, nt+7, nt+10, nt+11, nt+15, nt+16, nt+17} with approxi-
mately 223 basic operations. Besides, for each (c′j , ai) pair, there are expect-

ed 29 solutions, we store the 23-bit (L∗t, N∗t) of the internal state (4+13=17-
bit are fixed for each table) in the first column of a row in table Tc′j ,ai . Fur-
ther for this state and for each possible round constants C∗, get the corre-
sponding 11-bit output (zt−6, ..., zt−2, zt+2, ..., zt+7) and put them in the sec-
ond column as a sub-row indexed by C∗. The number of sub-row is 13 for
c′1 = 0x0, while the number is 8 for c′2 = 0x1. In total, the memory needed
is M = 210× 29× (23 + 11× 13) + 210× 29× (23 + 11× 8) ≈ 227.11-bit, i.e., 17.3
MB1.

Next, we present the State Checking and Key Recovery Mechanism specified
for the reduced version of Sprout, which is similar to the one stated for Sprout.

State Checking and Key Recovery Mechanism. For a candidate state at
time t, Lt = [lt, lt+1, ..., lt+19], N t = [nt, nt+1, ..., nt+19], create a 40-bit vector
K for the possible values associated with it:

1 Since each table is expected to have 29 rows, we can only store 2 output bits in the
second column of each row, indexed by 9 bits of the output. Thus, the memory can
be reduced to 210 × 29 × (23 + 2× 13) + 210 × 29 × (23 + 2× 8) ≈ 225.46-bit, i.e., 5.5
MB.

1. Compute the value of nt−1 given by the keystream bit zt−2 as nt−1 = zt−2⊕
h(nt+2, lt+4, lt+6, lt+8, lt+10, lt+15, lt+17, lt+1, nt+16)⊕ lt+8 ⊕

(⊕
i∈A′ nt+i−2

)
where A′ = {3, 6, 15, 17}. And compute lt−1 by the LFSR updating equation
as lt−1 = lt+19⊕ lt+18⊕ lt+15⊕ lt+14⊕ lt+13⊕ lt, and deduce from nt−1, lt−1
the value k∗t−1 by the NFSR updating equation as k∗t−1 = nt+19 ⊕ c3t−1 ⊕
lt−1 ⊕ g(N t−1).

2. Compute the value of ut−1 = lt ⊕ lt+3 ⊕ lt+16 ⊕ nt+3 ⊕ nt+9 ⊕ nt+13 and
combine it with the value of k∗t−1 obtained in Step 1:

- if ut−1 = 0 and k∗t−1 = 0, set t→ t− 1 and go back to Step 1.
- if ut−1 = 0 and k∗t−1 = 1, there is a contradiction, conclude that this

guess for state is not correct and stop.
- if ut−1 = 1 and k∗t−1 = 0, check if k(t−1) mod 40 has already been set in
K. If no, set it to 0. Set t → t − 1 and go back to Step 1. Else, if there
is a contradiction, conclude that this guess for state is not correct and
stop.

- if ut−1 = 1 and k∗t−1 = 1, check if k(t−1) mod 40 has already been set in
K. If no, set it to 1. Set t → t − 1 and go back to Step 1. Else, if there
is a contradiction, conclude that this guess for state is not correct and
stop.

By utilizing the pre-computed tables and the given keystream sample, the pro-
cessing phase is carried out as follows.

The Internal State Recovery Algorithm. Given the 2 × 210 tables Tc′j ,ai ,

and the keystream sample {zt}t≥0 having at least 221 sample segments, the pro-
cessing steps are as follows:
1. Search the keystream sequence {zt}t≥6 for the next non-considered block of 3
zeros, i.e., zt−1ztzt+1 = 000. If there are no more blocks, output a flag that the
algorithm has failed.

2. For each detected block, compute the corresponding C ′ = [c3t−1]
∆
= c′ and

C∗ = [c3t−5, ..., c
3
t−2, c

3
t , c

3
t+1, ..., c

3
t+5]

∆
= c∗ from the time t. For a1 = 0x0000,

a2 = 0x0001,...,a1024 = 0x1ba1, compare (zt+2zt+3...zt+7) after the zero-
segment and (zt−6zt−5...zt−2) before the zero-segment with the memorized 11-bit
segments in the second column of a sub-row indexed by c∗ from the tables Tc′,ai ,
and do the following:

- If the matching does not exist, go to the processing Step 1.
- If the 11-bit sample segments match with a segment in table Tc′,ai , go to

Step 3.

3. Read the corresponding state, check whether it is a correct state or not and
recover the secret key by the State Checking and Key Recovery Mechanism stated
before. If this state survives, recover and output the key, else go to Step 1.

5.3 Simulation Results

Our attacks have been fully implemented on one core of a single PC, running
with Windows 7, Intel Core i3-2120 CPU @ 3.30 GHz and 4.00GB RAM. In

general, the experimental results match the theoretical analysis quite well. We
present the details as follows.

In our experiment, first of all, we constructed 2×210 tables indexed by (c′j , ai)
pairs for c′1 = 0x0, c′2 = 0x1 and a1 = 0x0000, a2 = 0x0001,...,a1024 = 0x1ba1,
storing the special internal states. We used 2 × 210 text files to store the
(State,Keystream1, keystream2, ..., keystreamcount(|C∗|)) tuples named with
the corresponding c′j and ai. Note that count(|C∗|) = 13 for c′1 = 0x0 and
count(|C∗|) = 8 for c′2 = 0x1. Experimental results show that there are 496 or
504 or 520 or 528 rows in each table, and totally 524448(≈ 219) rows for c′1 = 0x0

, 524128(≈ 219) rows for c′2 = 0x1. Thus the memory needed in the simulation
is 524448 × (23 + 11 × 13) + 524128 × (23 + 11 × 8) ≈ 227.11-bit, i.e., 17.3 MB,
which matches the theoretical estimate quite well.

For the key recovery algorithm illustrated above, the data complexity is es-
timated by the probability that an internal state (Lt, N t) is a special state
satisfying:

(1) lt+4 = 0, nt+3 = nt+4 = nt+5 = 0,
(2) P t = a1 or P t = a2 or ... P t = a1024,
(3) lt+10+d ⊕

(⊕
i∈A nt+i+d

)
= 0 for d = −1, 0, 1,

(4) ut+j = 0, for j = 0, 1, ..., 5,
(5) ut−k = 0, for k = 1, 2, ..., 5,

Thus the theoretical estimate is D = 221. In the experiment, we used the RC4
cipher to randomly generate 215 (K, IV) pairs and for each randomly chosen
(K, IV) pair, we ran the cipher and generated 221 keystream bits. Results show
that we can get a special state at time t ≤ 221 for 20423(≈ 214.32) (K, IV) pairs.
For example, suppose (K, IV) pair be

K = 1010100101011001101010110010011000110110
IV = 11010101101001001110100110010111011

where the left-most bit represents the value for index 0. At time t = 580697(≈
219.14), a special state arises in Table Tc′,a140 , where c′ = 0x0 and a140 = 0x0191,
such that (1)(3)(4)(5) hold and P t = 0x0191. This internal state is

Lt = 11110000010001110000
N t = 00100000011011010110

In the internal state and key recovery algorithm, we search the keystream
sequence for the 3 zeros blocks, and for each block, we try to find matching
pairs, and further recover the key. In the experiment, we first searched the given
keystream sequence and collected the time instances t implying 3 zeros. The
expected number of such instances is 221 × 2−3 = 218. Besides, for each 11-bit

output, the expected number of candidate states is 219

211 = 28 producing this
output. Thus we go through all the time instances, and for each time instance,
we go through all the candidate states. We have also verified by experiments
that 4 more clocks of output is enough for checking the validity of the state and
the recovery of the key bits for each candidate. In total, the estimate of the time
complexity is 218 × 28 × 4 = 228. In the simulation, for the (K, IV) pair above,
we have recovered all the key bits within 1 hour.

6 Conclusion

In this paper, we have studied the security of Sprout-like stream ciphers in a
unified framework from the viewpoint of k-normality of the augmented function.
We made a systematic security analysis based on this property and developed
a dedicated TMD tradeoff attack framework for such designs. In particular, it
is shown that Sprout can be broken by various TMD tradeoffs. Our attack is
highly flexible and compares favorably to all the previous attacks on Sprout,
which demonstrates the superiority of the new method. We believe that stream
ciphers with shorter internal state may suffer from the time/memory/data trade-
off attacks and the k-normality of the augmented function should be taken into
account for new stream cipher designs.

References

1. Ågren M., Hell M., Johansson T. and Meier W., A New Version of Grain-128 with
Authentication, Symmetric Key Encryption Workshop 2011, DTU, Denmark.

2. Armknecht F. and Mikhalev V., On Lightweight Stream Ciphers with Shorter In-
ternal States, Fast Software Encryption – FSE’2015, to appear.

3. Banik Subhadeep., Some Results on Sprout, available at
http://eprint.iacr.org/2015/327.pdf.

4. Biryukov A. and Shamir A., Cryptanalytic Time/Memory/Data Tradeoffs for
Stream Ciphers, In T. Okamoto (Ed.), Advances in Cryptology – ASIACRYPT’2000,
LNCS vol. 1976, Springer Berlin Heidelberg, pp. 1-13, 2000.

5. Braeken A., Wolf C. and Preneel B., Normality of Vectorial Functions, IMA In-
ternational Conference on Cryptography and Coding, Springer Berlin Heidelberg,
LNCS vol. 3796, pp. 186-200, 2005.

6. Dobbertin H., Construction of Bent Functions and Balanced Boolean functions with
High Nonlinearity, Fast Software Encryption – FSE’1995, Springer Berlin Heidel-
berg, LNCS 1008, pp. 61-74, 1995.

7. http://www.ecrypt.eu.org/stream/

8. Esgin M. F. and Kara O., Practical Cryptanalysis of Full Sprout with TMD Tradeoff
Attacks, available at http://eprint.iacr.org/2015/289.pdf.

9. Hao Y., A Related-Key Chosen-IV Distinguishing Attack on Full Sprout Stream
Cipher, available at http://eprint.iacr.org/2015/231.pdf

10. Hell M., Johansson T. and Meier W., Grain - a Stream Cipher for Constrained
Environments, International Journal of Wireless and Mobile Computing, 2007, 2(1):
86-93.

11. Hell M., Johansson T., Maximov A. and Meier W., A Stream Cipher Proposal:
Grain-128, IEEE International Symposium on Information Theory – ISIT’ 2006,
2006.

12. Lallemand V. and Naya-Plasencia M., Cryptanalysis of full sprout, R. Gennaro
and M. Robshaw (Eds.): Advances in Cryptology – CRYPTO’2015, Part I, LNCS
vol. 9215, pp. 663-682, 2015.

13. Maitra S., Sarkar S., Baksi A and Dey -P., Key Recovery from State Infor-
mation of Sprout: Application to Cryptanalysis and Fault Attack, available at
http://eprint.iacr.org/2015/236.pdf

14. Mihaljević M. J., Gangopadhyay S., Paul G. and Imai H., Internal State Recovery of
Grain-v1 Employing Normality Order of the Filter Function, Information Security,
IET, 2012, 6(2): 55-64.

15. Mihaljević M. J., Gangopadhyay S., Paul G. and Imai H., Generic Cryptographic
Weakness of k-normal Boolean Functions in Certain Stream Ciphers and Crypt-
analysis of Grain-128, Periodica Mathematica Hungarica, 2012, 65(2): 205-227.

