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Abstract. The security of pairing-based crypto-systems relies on the
difficulty to compute discrete logarithms in finite fields Fpn where n is
a small integer larger than 1. The state-of-art algorithm is the number
field sieve (NFS) together with its many variants. When p has a special
form (SNFS), as in many pairings constructions, NFS has a faster vari-
ant due to Joux and Pierrot. We present a new NFS variant for SNFS
computations, which is better for some cryptographically relevant cases,
according to a precise comparison of norm sizes. The new algorithm is an
adaptation of Schirokauer’s variant of NFS based on tower extensions,
for which we give a middlebrow presentation.
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1 Introduction

The discrete logarithm problem (DLP) in finite fields is a central topic in public
key cryptography. The case of Fpn where p is prime and n is a small integer
greater than 1, albeit less studied than the prime case, is at the foundation of
pairing-based cryptography.

The number field sieve (NFS) started life as a factoring algorithm but was
rapidly extended to compute discrete logarithms in Fp [33,19,20] and has today
a large number of variants. In 2000 Schirokauer [34] proposed the tower number
field sieve (TNFS), as the first variant of NFS to solve DLP in fields Fpn with
n > 1. When n is fixed and the field cardinality Q = pn tends to infinity, he
showed that TNFS has the heuristic complexity LQ(1/3, 3

√
64/9), where

LQ(α, c) = exp
(
(c+ o(1))(logQ)α(log logQ)1−α

)
.

Schirokauer explicitly suggested that his algorithm might be extended to arbi-
trary fields Fpn with p = Lpn(α, c) and α > 2/3, while maintaining the same
complexity. Another question that he raised was whether his algorithm could
take advantage of a situation where the prime p has a special SNFS shape,
namely if it can be written p = P (u) for an integer u ≈ p1/d and a polynomial
P ∈ Z[x] of degree d, with coefficients bounded by an absolute constant. By that
time, even for prime fields the answer was not obvious.



In 2006 Joux, Lercier, Smart and Vercauteren [21] presented a new variant
of NFS which applies to all finite fields Fpn with p = LQ(α, c) for some α ≥ 1/3
and c > 0, the JLSV algorithm. When α > 2/3, their variant has complexity
LQ(1/3,

3
√

64/9). The question of extending TNFS to arbitrary finite fields be-
came obsolete, because, in case of a positive answer, it would have the same
complexity as the JLSV algorithm.

In 2013 Joux and Pierrot [22] designed another variant of NFS which applies
to non-prime fields Fpn where p is an SNFS prime. Their algorithm has com-
plexity LQ(1/3, 3

√
32/9), which is the same as that of Semaev’s SNFS algorithm

for prime fields [35]. It shows that the pairing-based crypto-systems which use
primes of a special form are more vulnerable to NFS attacks than the general
ones. With this SNFS algorithm, the second question of Schirokauer lost its ap-
peal as well, because this is the complexity that one can expect if Schirokauer’s
algorithm can be adapted when p is an SNFS prime.

In 2014 Barbulescu, Gaudry, Guillevic and Morain improved the algorithm
in [21] and set a record computation in a field Fp2 of 180 decimal digits. However,
since their improvements do not apply to SNFS fields and since the algorithm
of Joux and Pierrot was never implemented, it is important to find a practical
algorithm for this case.

In this work, we wish to rehabilitate Schirokauer’s TNFS algorithm. First,
we show that indeed, the heuristic complexity carries over to the expected range
of finite fields. In order to make this analysis, we restate the original TNFS with
less technicalities than in the original presentation, taking advantage of tools
that were invented later (virtual logarithms).

We also show that for extension fields based on SNFS primes, the complexity
of TNFS drops as expected to LQ(1/3, 3

√
32/9).

Finally, going beyond the asymptotic formulae, we compute estimates that
strongly suggest that TNFS is currently the most efficient algorithm for solving
discrete logarithms in small degree extensions of SNFS prime fields, like the ones
arising naturally in several pairing constructions.

Outline. After a brief description of Schirokauer’s TNFS algorithm in Section 2,
we present it with sufficiently many details to get a proper asymptotic analy-
sis in Section 3. In Section 4, several variants are described and analyzed, in
particular the SNFS variant. This is followed, in Section 5 by more precise esti-
mates for cryptographically relevant sizes and comparisons with other methods.
Further technicalities about TNFS are given in an appendix; these are mostly
details that could be useful for an implementation but which do not change the
complexities.

2 Overview of TNFS

To fix ideas, we consider the case of “large” characteristic, so that we target fields
FQ with Q = pn so that p = LQ(α, c) for some constants α > 2/3 and c > 0.
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Pohlig and Hellman explained how to retrieve the discrete logarithm mod-
ulo the group order N from the value of the discrete logarithms modulo each
prime factor ` of N . Furthermore, Pollard’s rho algorithm allows to compute
discrete logarithms for small primes. Hence it is enough to explain how to use
NFS to compute discrete logarithms modulo prime factors ` of #F∗pn larger that
Lpn(1/3, c) for some c > 0.

A classical variant of the NFS algorithm, e.g. one of the variants used for
factoring and DLP in prime fields, would involve two irreducible polynomials
f and g in Z[x] which have a common irreducible factor of degree n modulo p.
Here, in TNFS, we consider two polynomials f and g defined over a ring R which
is of the form R = Z[t]/(h(t)) for a monic irreducible polynomial h of degree
n. We ask furthermore that h remains irreducible modulo p, so that there is a
unique ideal p above p in R. Finally, we require that f and g are irreducible over
Q[t]/(h(t)) and have a common root modulo p in R.

Q(ι)

Q

Kf Kg

h

f g

In the rest of the article, we denote by Kf the number
field Kf defined by f , and by Kg the one defined by g. Also
we write Q(ι) for the number field defined by h, so that Kf

and Kg are as in the figure aside.

The conditions imposed on f , g and h are such that there
exist two ring homomorphisms from R[x] to R/p = Fpn , one
going through R[x]/f(x), and the other through R[x]/g(x),
and for any polynomial in R[x], the resulting values in Fpn
coincide, so that we get a commutative diagram as in the classical NFS algorithm.
In Figure 1, we recall this diagram, where we have denoted by αf (resp. αg) a
root of f (resp. of g) and by m the common root of f and g modulo p in R.
These notations will be used all along the article.

R[x]

Kf ⊃ R[x]/〈f(x)〉 R[x]/〈g(x)〉 ⊂ Kg

R/pR = Fpn

αf 7→ m
R 7→ R mod p

αg 7→ m
R 7→ R mod p

Fig. 1. Commutative diagram of TNFS for discrete logartihm in Fpn . In the classical
case, R = Z; here R = Z[ι] is a subring of a number field of degree n where p is inert.
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Among the constructions that we tried, the best one uses polynomials f and
g with coefficients in Z, so that Kf and Kg can also be seen as compositum of
two fields. If one could find a construction where f and g have coefficients in R
one might find a faster algorithm. In any case, it is interesting to consider f and
g as polynomials in R[x], since this makes it easier to follow the analogy with
the classical NFS.

Once this setting is done, the TNFS algorithm proceeds as usual. For many
polynomials a(ι)− b(ι)x in R[x], we consider their two images in R[x]/f(x) and
R[x]/g(x), and test them for smoothness as ideals. Each time the images are
simultaneously smooth, we can write a relation: modulo the usual complications
with principality defects and units that can be handled with the help of Schi-
rokauer maps, it is possible to convert a relation into a linear relation between
virtual logarithms of the factor base elements. Then follows a sparse linear al-
gebra step to deduce the values of these virtual logarithms. And finally, the
logarithm of an individual element of Fpn can be computed using a descent step.

In the next section, we will enter into details, define more precisely the factor
base elements and the associated smoothness notion, and estimate the size of
the objects involved in the computation.

3 Detailed description and analysis

3.1 Polynomial selection

In the overview of the previous section, nothing is said about the respective
degrees of f and g. In fact, there is some freedom here, and we could in principle
have balanced degrees and use for instance the algorithm of [20] or we can use a
linear polynomial g, both methods leading to the same asymptotic complexity.
The only difference comes in the individual logarithm stage. In order to keep the
exposition short, we will only present this stage in the case where g is linear, but
in practice one must take the one which minimizes the overall time.

To fix ideas, we take a linear polynomial g and a polynomial f with a degree
of the form

deg f = d = δ (logQ/ log logQ)1/3,

where the constant δ is to be fixed later, so that f and g have a common root
modulo p. They can be obtained by a simple base-m algorithm applied to p,
yielding coefficients for f and g of size

‖f‖∞ ≈‖g‖∞ ≈ p
1/(d+1),

where the infinite norm of a polynomial with integer coefficients denotes the
infinite norm of the vector formed with the coefficients of a polynomial.

In practice, instead of a naïve base-m approach, one can use any of the
methods known for the polynomial selection of NFS, when tackling prime fields
or integer factorization [13,23,24,3,4].

What is left is to select a polynomial h of degree n with small coefficients
which is irreducible modulo p. This is done by testing polynomials with small
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coefficients and, heuristically, we succeed after n trials, on average, because the
proportion of irreducible polynomials modulo p is ≈ 1/n. As we will explain
later, rather than having the polynomial h with the smallest coefficients, we
might prefer some polynomial with slightly larger coefficients but with the addi-
tional property that the Galois group of h is cyclic of order n. For this, we test
polynomials in families with a cyclic Galois group; for example Foster [17] gives
a list of such families when deg h = 2, 3, 4, 5 or 6.

If one is interested in rigorous results and not in the most efficient polyno-
mials, then one can give a proof of existence based on Corollary 10 given in the
Appendix. Indeed, using cyclotomic fields one provably finds h with coefficients
upper bounded by (AnB log(pn)C)n for some effective constants A, B and C.

3.2 Relation collection

In the top of the diagram of Figure 1 one usually takes a − bx with a, b ∈ R.
However, in the most general version of NFS one considers polynomials in R[x]
of arbitrary degrees; this is in particular necessary for the medium characteristic
case [21]. In our study, we did not find any case where it was advantageous to
consider polynomials of degree more than 1. Therefore we stick to the traditional
(a, b)-pairs terminology for designating a linear polynomial a(ι) − b(ι)x in R[x]
that we consider as a candidate for producing a relation.

Ideals of degree 1. In our case, just like in the classical NFS, only ideals of
degree 1 can occur in the factorizations of the elements in the number rings
(except maybe for a finite number of ideals dividing the discriminants). This is,
of course only true when thinking in the relative extensions; we formalize this in
the following proposition that holds for f , but is also true for g if it happens to
be non-linear.

Proposition 1 Let Q(ι) be a number field and let Oι be its ring of integers. Let
f be a monic irreducible polynomial in Oι[x], and denote by α one of its roots.
We denote by Kf = Q(ι, α) the corresponding extension field, and Of its ring of
integers.

If q is a prime ideal of Oι not dividing the index-ideal [Of : Oι[α]], then the
following statements hold.

i) The prime ideals of Of above q are all the ideals of the form

Q = 〈q, T (α)〉,

where T (x) are the lifts to Oι[x] of the irreducible factors of f in Oι/q[x].
Moreover degQ = deg T .

ii) If a(t), b(t) ∈ Z[t] are such that q divides NKf/Q(ι)(a(ι)−b(ι)α) and a(ι)Oι+
b(ι)Oι = Oι, then the unique ideal of Of above q which divides a(ι)− b(ι)α
is Q = 〈q, α− r(ι)〉 with r ≡ a(ι)/b(ι) (mod q).
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Proof. i) This is Proposition 2.3.9 of [14].

ii) LetQ = 〈q, T (α)〉 be a prime ideal ofK above q that divides a(ι)−b(ι)α. If
Q divides b(ι) then it also divides a(ι), and therefore we have a contradiction with
the condition a(ι)Oι+ b(ι)Oι = Oι. Therefore we can simplify valQ(a(ι)− b(ι)α)
by dividing out by b(ι):

valQ(a(ι)− b(ι)α) = valQ(b(ι)) + valQ(a(ι)/b(ι)− α) = valQ(α− r(ι)).

This expression is non-zero only when Q = 〈q, α− r(ι)〉, which proves the state-
ment.

Note that the coprimality condition is similar to the one we have in the classical
case, and the proportion of coprime pairs is∏

q prime ideal in Q(ι)

(
1− 1

N(q)2

)
=

1

ζQ(ι)(2)
,

replacing 1/ζQ(2) in the classical variant.

Factor base. The consequence of this result is that we keep only the degree 1
ideals in the factor bases for each side. With the same notations as above, and
for a smoothness bound B, we define the factor base for f by

Ff (B) =

{
prime ideals of Of , coprime to Disc(Kf ), of norm less than B,

whose inertia degree over Q(ι) is one

}
.

We define Fg(B) similarly; if g is linear this is just the set of prime ideals of
Oι ∼= Og of norm less than B. Prime ideals that divide the ideal-index [Of :
Oι[α]] are not covered by Proposition 1, and can still occur in the factorization
of (a(ι)− b(ι)α). Moreover, since the index-ideal cannot be computed effectively,
we consider together all the ideals above Disc(f) and above the leading coefficient
of f . We denote them by Df on the f -side, and Dg on the g-side. The cardinalities
of these sets are bounded by a polynomial in logQ. Since Proposition 1 cannot
be used for detecting which elements of Df divide (a(ι)− b(ι)α), we have to use
general algorithms, and again, we refer to [14].

Finally, we join the two factor bases and these exceptional ideals in the global
factor base defined by

F = Ff (B) ∪ Fg(B) ∪ Df ∪ Dg.

We note that, as usual, the parameter B will be chosen of the form B =
LQ(1/3, β), for a constant β to be fixed later.

By the prime ideal theorem, the number of prime ideals in Q(ι) of norm
less than B is B

logB (1 + o(1)). Using Chebotarev’s density theorem, the average
number of roots of f (resp. g) modulo a random prime ideal q is one. Hence the
cardinality of the factor base is

#F =
B

logB
(2 + o(1)),
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which is similar to its value in the classical variant of NFS. As usual, in the
complexity analysis, we approximate #F by the quantity LQ(1/3, β), since
polynomial-time factors are, in the end, hidden in the o(1) added to the ex-
ponent constant.

Finding doubly-smooth (a, b)-pairs. Among various choices for the shape of
the a(t) and b(t) polynomials that we tried, the one giving the smallest norms is
that where a and b are of maximal degree, n− 1, and for which their coefficients
are all of more or less the same size.

Let us denote by A a bound on these coefficients of a(t) and b(t). In the end,
it will be chosen to be just large enough so that we get enough relations to get
a full-rank system by browsing through all the possible coprime (a, b)-pairs of
degree at most n− 1 fitting this bound.

In order to estimate the probability that an (a, b)-pair gives a relation, the
first step is to bound the size of the absolute norms on the f - and the g-side.
The main tool is the following bound on the resultant.

Theorem 2 [10, Thm 7] If f, g ∈ C[c] have degree df and dg, then

|Res(f, g)| ≤‖f‖dg∞‖g‖
df
∞ (df + 1)dg/2(dg + 1)df/2.

We can now give the formula for the bound on the norm. We write it with
the notations of the f -side, but it applies also to the g-side, after replacing the
degree d by 1.

Theorem 3 Let h and f be monic irreducible polynomials over Z of respective
degrees n and d. Let K be the compositum of the number fields defined by h and
f , and let ι and αf be roots in K of h and f , respectively.

Let a(t) and b(t) be two polynomials of degree less than n and with coefficients
bounded by A. Then, the absolute norm of the element a(ι) − b(ι)αf of K is
bounded by

|NK/Q
(
a(ι)− b(ι)αf

)
| < And‖f‖n∞‖h‖

d(n−1)
∞ C(n, d), (1)

where C(n, d) = (n+ 1)(3d+1)n/2(d+ 1)3n/2.

Proof. We have NK/Q = NQ(ι)/Q ◦NK/Q(ι) and, since f is monic, we get

NK/Q
(
a(ι)− b(ι)αf

)
= NQ(ι)/Q

(
F (a, b)

)
,

where F (a, b) =
∑
i∈[0,d] fia(t)

ib(t)d−i. The i-th term of this sum is a product
of fi and of d factors that are polynomials of degree less than n. Each term of
the sum is therefore a polynomial of degree less than or equal to d(n − 1) with
coefficients bounded by ‖f‖∞Adnd. Therefore, we have∥∥F (a, b)∥∥∞ ≤ (d+ 1)‖f‖∞Adnd.
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Finally, since h is monic, we have NQ(ι)/Q(F (a, b)) = Res
(
h, F (a, b)

)
, and we

can apply Theorem 2 to get the following upper bound:

NQ(ι)/Q(F (a, b)) ≤
∥∥F (a, b)

∥∥n
∞‖h‖

d(n−1)
∞ (n+ 1)d(n−1)/2(d(n− 1) + 1)n/2

<‖h‖d(n−1)∞ And‖f‖n∞ (d+ 1)
3
2n(n+ 1)

(3d+1)n
2

If the polynomials f , g or h are not monic, the theorem does not apply, since
the element a(ι)−b(ι)αf is not an integer anymore. However, the denominators,
that are powers of the primes dividing the leading coefficients are under control
in term of smoothness (it suffices to add a few prime ideals in the factor bases).
And in fact, the quantity based on resultants computed in the proof of the
theorem is the one that is really used for smoothness testing. Therefore, the
monic hypothesis is not a restriction, and is just there to avoid technicalities.

It remains to plug-in‖h‖ = O(1) and the bounds for‖f‖∞ and‖g‖∞ coming
from our choice of polynomial selection and we get:

NKf/Q(a− bαf ) ≤ (And‖f‖n∞)1+o(1) = (EdQ1/(d+1))1+o(1), (2)

and
NKg/Q(a− bαg) ≤ (An‖g‖n∞)1+o(1) = (EQ1/(d+1))1+o(1), (3)

where we have set E = An, so that the quantity of pairs that are tested is E2,
just like in the classical NFS analysis. It is to be noted that the contribution of
C(n, d) remains negligible. Indeed, it would reach a value of the form LQ(2/3),
only when n gets larger than an expression of the form (logQ/ log logQ)1/3,
which is not the case, since we ask that p is larger than any expression of the
form LQ(2/3). It is worth noticing that the expressions for the norms are the
same as for the prime field case, where Q = p.

3.3 Writing and solving linear equations

Mapping a factorization of ideals to a linear combination of logarithms is not
immediate unless the ring is principal and there are no units other than ±1; both
things are highly unlikely since the fields Kf and Kg have large degrees over Q.
Therefore, we have to resort to the notion of virtual logarithms, just like in the
classical case.

For this, it is easier to work with absolute extensions. Then, we can use
the same strategy as in Section 4.3 of [21], that we summarize in the following
theorem which can be applied to Kf and Kg.

Theorem 4 ([21, Section 4.3]) Let K = Q(θ) be a number field and P a non-
ramified ideal of its ring of integers OK , with residual field isomorphic to Fpn in
which we fix a generator t. Let ` be a prime factor of pn − 1 and let U = {x ∈
K | ∀L above `, valL(x) = 0}.

We assume that there exists a Schirokauer function, i.e. an injective group
homomorphism λ = (λ1, . . . , λr) : (U/U `, ·) → (Z/`Z,+)r, where r is the unit
rank of OK .
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Assuming furthermore that ` neither divides the class number of K nor its
discriminant, the following holds.

There exists a map log : {ideals of OK coprime to P} → Z/`Z and a map
χ : {1, . . . , r} → Z/`Z called virtual logarithms, so that, for all φ ∈ Z[x], such
that φ(θ) is in U and coprime to P, we have

logt φ(θ)
P
=

∑
Q prime ideal

valQ(φ(θ)) logQ+

r∑
j=1

λj(φ(θ))χj , (4)

where φ(θ)
P

is the projection of φ(θ) in the residual field Fpn of P.

In [33], Schirokauer explained how to construct an explicitly and efficiently
computable map λ as in the theorem and brought heuristics to support the
assumptions. These heuristics and the fact that the other hypothesis of the
theorem are expected to be true rely on the condition that ` is not too small.
These are the main reasons why we asked that ` grows at least like LQ(1/3) in
the beginning.

For each (a, b)-pair that gives two smooth ideals in Kf and Kg, the element
a(ι)− b(ι)αf can be expressed in the absolute representation of Kf = Q(θf ) by
a polynomial form φf (θf ), and similarly a(ι) − b(ι)αg can be written φg(θg) in
Kg = Q(θg). We refer for instance to [14] for algorithms to manipulate relative
extensions as absolute extensions. Then, applying Theorem 4 to φf in Kf and
φg in Kg, we obtain two linear expressions that must be equal, since they both
correspond to the logarithm of the same element in Fpn .

As a consequence, each relation is rewritten as a linear equation between the
virtual logarithms of the elements of the factor base and the χj for each field.
We make the now classical heuristic that collecting roughly the same number
of relations as the size of the factor base (say, a polynomial factor times more),
then the linear system obtained in such a manner has a kernel of dimension
one. A vector of this kernel is computed using Wiedemann’s algorithm [36] in a
quasi-quadratic time B2+o(1). This gives the logarithms of all the ideals in the
factor base.

3.4 Overall complexity of the main phase

From the previous sections, we can now conclude about the complexity of the
main steps of the algorithm. In fact, with our choice for the polynomial selection,
and the kind of (a, b)-pairs that we test for smoothness, we have obtained exactly
the same expressions for the sizes of the norms as in the usual NFS complexity
analysis for prime fields, and in particular the same probability Prob that the
product of the norms is smooth. Also, since the linear algebra step is also similar,
the final complexity is the same: we have then to minimize B2 + E2 subject to
the condition E2 · Prob ≥ B1+o(1), and we refer for example to Conjecture 11.2
of [13]. Hence, the optimal values of the parameters are E = B = LQ(1/3,

3

√
8
9 )
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and d = 3
√
3( logQ

log logQ )
1/3, and the heuristic complexity of the main phase of

TNFS is LQ(1/3, 3

√
64
9 ).

3.5 Individual logarithms

Let s be an element of F∗pn for which we want to compute the discrete logarithm.
If s is very small, then it factors into ideals of the factor base, and its logarithm
is easily retrieved. However, in general, this requires a 2-phase process that is
not so trivial, although negligible compared to the other steps.

First, in what we call a smoothing phase, the element s is randomized and
tested for B1-smoothness with the ECM algorithm. The bound B1 will be of the
form LQ(2/3), so that the cost of the smoothing test is in LQ(1/3).

Thereafter, each prime ideal Q which is not in the factor base is considered
as a special-q and we search for a relation involving Q and other smaller ideals.
Continuing recursively, we get a special-q descent tree, from which the logarithm
of s can be deduced.

Smoothing. The randomization is simple: we compute z = se in Fpn for random
values e, and test z for smoothness. The logarithm of s is just the logarithm of
z divided by e modulo `.

To be more precise, the smoothness is not tested for the element z as an
element of the finite field, but as the corresponding element in Kg. Indeed, in
our construction, z ∈ Fpn is represented by a polynomial of degree less than
n with coefficients modulo p. Lifting these coefficients to integers, we obtain a
polynomial which makes sense modulo h(t), therefore an element of Q(ι) = Kg

(this is where we use that g is linear). As usual, to test the smoothness of z as an
element of Q(ι), we test the smoothness of its norm as an integer. Using again
the estimate of Theorem 3, the size S of this norm is Q1+o(1).

The bound B1 can then be optimized w.r.t. this only step, like in the classical
NFS: if this is too small, the probability of being smooth is too small, while if it is
too large, the cost of testing the smoothness by ECM is prohibitive. The analysis
is the same as in [15] and gives a value B1 = LQ(2/3, (

1
3 )

1/3); the corresponding
cost for the smoothing phase is LQ(1/3, 31/3).

After the smoothing phase, the logarithm of s has been rewritten in terms
of the logarithms of small prime ideals of Kg for which the logarithm is already
known, and some largish prime ideals of Kg, of norm bounded by B1. The next
step is to compute the logarithms of these largish ideals.

Descent by special-q. As in NFS, the algorithm is recursive: if Q is a prime
ideal of degree one in Kf (respectively Kg), then we write logQ as a formal
sum of virtual logs of ideals Q′ of Kf and Kg with norm less than N(Q)c, for
a positive parameter c < 1. For this, we consider the lattice of (a, b)-pairs for
which Q divides the element a − bαf (resp. a − bαg). A basis for this lattice
can be constructed and LLL-reduced. Small combinations of these basis vectors
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are then formed and the norms of the corresponding (a, b) pairs are tested for
N(Q)c-smoothness. We refer to Appendix 7.1 for the description of this special-q
lattice technique, that is also used in practice during the collection of relations
in the main stage. When a relation is found, this gives a new node in the descent
tree, the children of it being the ideals of the relations that are still too large to
be in the factor base. The total number of nodes is quasi-polynomial.

The cost of each step is determined by the size of N(a(ι) − αfb(ι)) (resp.
N(a(ι)− αgb(ι))) which are tested during the computations. The matrix MQ of
the basis of the lattice has determinant detMQ = N(Q), so a short vector in the
LLL-reduced basis has coordinates of size ≈ N(Q)1/(2n). We make the heuristic
assumption that all the vectors of the reduced basis, (a(k), b(k)) for k = 1, . . . , 2n,
have coordinates of the same size. The pairs (a, b) tested for smoothness are
linear combinations (a, b) =

∑2n
k=1 ik(a

(k), b(k)) where ik are rational integers
with absolute value less than a parameter A′, we set E′ = (A′)n. By Theorem 3,
the size of the norms tested for smoothness is

NKf/Q(a−bαf ) ≤ (max(‖a‖∞ ,‖b‖∞)nd‖f‖n∞)1+o(1) = (N(Q)d/2(E′)dQ1/d)1+o(1),

NKg/Q(a− bαg) ≤ (max(‖a‖∞ ,‖b‖∞)n‖g‖n∞)1+o(1) = (N(Q)1/2E′Q1/d)1+o(1).

These expressions coincide with the ones in the analogous stage of the classical
variant (for example in Equation (7.11) in [5]) and we obtain a complexity of
LQ(1/3, 1.1338...) which is the same as in the classical case [15]. We conclude that
the overall complexity of individual logarithm is dominated by the LQ(1/3, 31/3)
complexity of the smoothing test.

4 Variants

Note on the boundary case. TNFS can be applied to the boundary case p =
LQ(2/3, cp), cp > 0, where one obtains a complexity LQ(1/3, c). The constant
c is strictly larger then 3

√
64/9 as the factor C(n, d) in Equation (1) is not

negligible any more. Yet, for some values of cp, TNFS overcomes the method
of [21], which was state-of-art until recently. Using the generalized Joux-Lercier
method, the authors of [6,7] reduced the constant c to (64/9)1/3 ≈ 1.92 and
Pierrot [31] showed that a multiple fields variant allows to further reduce c to
≈ 1.90. Therefore, we do not reproduce here the tedious computations of the
complexity in the boundary case.

The case of primes of special form (SNFS) Given a positive integer d, an
integer p, not necessarily prime, is said to be a d-SNFS integer if it can be written
as p = P (u) for some integer u ≈ p1/d and a polynomial P ∈ Z[x] such that
‖P‖∞ is small (say, bounded by a constant). We remark that when a number is
SNFS, then there can be several valid choices for d and P . This is typically the
case for integers of the form 2k + ε, for tiny ε.
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When solving DLP in fields Fpn for d-SNFS primes p, we can follow the
classical SNFS construction [27] and set f(x) = P (x) and g(x) = x − u, which
is possible since f and g share the root u modulo p.

When evaluating the sizes of the norms, Equation (2) can be restated with
‖f‖∞ = O(1), so we obtain the following bound:

NKf/Q(a− bαf )NKg/Q(a− bαg) ≤ (Ed+1Q1/d)1+o(1). (5)

Following the analysis of Semaev [35], we obtain that if the degree d can be

chosen to grow precisely as d = 3

√
3
2

(
logQ

log logQ

)1/3, then the overall complexity of
SNFS is the same as that of factoring numbers from the Cunningham project,
namely LQ

(
1/3, 3

√
32
9

)
.

Using multiple number fields (MNFS) Given a choice of polynomials f
and g selected as in the first step of TNFS, one can construct a large number of
polynomials fi which share with f and g the root m modulo p. The idea goes
back to Coppersmith’s variant of NFS for factorization [16] and has been used
again in [28], [8] and [31]. Let V be a parameter of size LQ(1/3, cv) for some
constant cv > 0. For all µ(t) and ν(t) ∈ Z[t] so that degµ,deg ν ≤ n − 1 and
‖µ‖∞ ,‖ν‖∞ ≤ V 1/(2n), we set

fµ,ν = µ(ι)f + ν(ι)g, (6)

keeping only those polynomials that are irreducible (most of them are, so we
expect that the correcting factor on the bounds for ‖µ‖∞ and ‖ν‖∞ are only
marginally adjusted). Let us denote by Kfµ,ν the number field generated by fµ,ν
over Q(ι), and call αµ,ν a root of fµ,ν in its number field. For any pair (µ, ν) as
above and (a, b) in the sieving domain, by Theorem 3 we have

NKµ,ν (a− αµ,νb) ≤ And(V 1/(2n)‖f‖∞)n‖h‖nd∞ C(n, d) = (V 1/2EdQ1/d)1+o(1).
(7)

In the multiple number field sieve a relation is given by a pair (a, b) in the
sieving domain and a polynomial fµ,ν from the set constructed above so that
NKg/Q(a− bαg) is B-smooth and NKfµ,ν (a− bαµ,ν) is B/V -smooth. We use as
factor base the set

F =
(⋃
µ,ν

Ffµ,ν (B/V )
)⋃

Fg(B).

We collect relations as in Coppersmith’s modification: collect pairs (a, b) in the
sieving domain and keep only those for which NKg/Q(a−αgb) is B-smooth. Then,
for each surviving pair (a, b) we use ECM to collect polynomials fµ,ν such that
NKfµ,ν /Q(a− αµ,νb) is B/V -smooth.

We choose parameter E so that the number of collected pairs exceeds 2B,
which is an upper bound on #F . The same considerations as in [16] allow
us to find the optimal parameters: V = LQ(1/3, 1 − (

√
13−1
3 )1/3), E = B =

LQ(1/3, (
46+13

√
13

108 )1/3) and d = δ(logQ/ log logQ)1/3 where δ = ( 32−2
√
13

9 )1/3;
the complexity of the multiple field variant of TNFS is LQ(1/3, ( 92+26

√
13

27 )1/3).
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Automorphisms. Joux, Lercier, Smart and Vercauteren [21] proposed an im-
provement based on the field automorphisms of the number fields occurring in
NFS. A recent preprint proves (a reformulation of) the following result:

Theorem 5 (Theorem 3.5(i) of [6]) Let σ be a field automorphism of K/Q.
Assume that P is a prime ideal of K above p such that σP = P. Fix a prime `
dividing N(P)− 1, coprime to the class number and the discriminant of K. Fix
a generator t of the residual field of P and, for any prime ideal Q, denote by
logQ the virtual logarithm of Q with respect to t and a set of explicit generators
so that γσ(Q) = σ(γQ). Then, there exists a constant κ ∈ [0, ord(σ) − 1] such
that for any Q we have

log(σQ) ≡ pκ log(Q) mod `.

In Section 3.1 we noted that one might find ι so that Q(ι)/Q has n automor-
phisms over Q. All these automorphisms can be used to speed-up computations,
using the following result.

Corollary 6 Let σ be an automorphism of Q(ι)/Q and call σ̃ the unique field
automorphism of Kf such that σ̃(ι) = σ(ι) and σ̃(αf ) = αf . Assume that f has
small coefficients so that virtual logarithms are defined using explicit generators.
Then, there exists κ ∈ [0, ord(σ)− 1] such that, for all prime ideals Q of Kf , we
have

log(σ̃Q) ≡ pκ logQ mod `.

Proof. The only non-trivial condition, σ̃Pf = Pf , is tested directly:

σ̃Pf = σ̃〈pZ[ι], αf −m〉 = 〈σ̃(p)Z[ι], σ̃(αf )− σ̃(m)〉 = 〈pZ[ι], αf −m〉 = Pf .

According to [7], automorphisms allow us to sieve n times faster and to speed-
up the linear algebra stage by a factor n2. Note that, contrary to the classical
variant of NFS where automorphisms were available only for certain values of n,
TNFS has no restrictions.

5 Comparison for cryptographically relevant sizes

The complexity of NFS and its many variants is written in the form C1+o(1),
which can hide large factors, and therefore we cannot decide which variant to
implement based only on asymptotic complexity. We follow the methodology
of [7, Section 4.4] and do a more precise comparison by evaluating the upper
bound on the size of the integers which are tested for smoothness: the product
of the norms with respect to the two sides. In particular, we make explicit the
negligible terms of Equations (2) and (3) using Theorem 3.
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5.1 The case of general primes

When p is not an SNFS number, we compare TNFS to the algorithm of Joux,
Lercier, Smart and Vercauteren(JLSV) [21]. From Equations (2) and (3) we find
a formula for the logarithm of the product of the norms in TNFS:

CTNFS = (d+ 1) log2E +
2

d+ 1
log2Q = CNFS,

where d = deg f can be chosen as desired (unlike the SNFS variant of the
algorithm where d might be imposed by the shape of p). It is remarkable that
this formula is the same as for NFS in the integer factorization case.

Since the JLSV algorithm comes with a variety of methods of polynomial
selection, we cannot give a unified formula for the size of norms’ product, so we
use the minimum of the formulae in [7]. Therefore, in the following, when we say
JLSV, this covers both variants explained in [21] as well as the Conjugation and
Generalized Joux-Lercier methods. The choice of the parameter E depends on
the size of the norms, but for a first comparison we can use the default values of
CADO-NFS [7, Table 2].

In Figure 2 we compare TNFS to JLSV when p is a general prime (not SNFS),
for a range 400 ≤ log2Q ≤ 1000. We conclude that in this range, when n ≥ 5,
TNFS is competitive and must be kept for an even more accurate comparison.

400 600 800 1,000
200

300

400

500

n=2

400 600 800 1,000
200

300

400

500

n=3

400 600 800 1,000
200

300

400

500

n=4

400 600 800 1,000
200

300

400

500

n=5

Fig. 2. Comparison of TNFS (in black) and the best variant of JLSV algorithm
(in dashdotted blue). Vertical axis: bitlength of the norm’s product; horizontal axis:
bitlength of pn.
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5.2 The case of primes of special shape (SNFS)

The importance of the d parameter. If we want to compute discrete log-
arithms in a field Fpn such that p is d-SNFS for a parameter d, then the first
question to ask is whether to use a general algorithm like TNFS and JLSV or
a specialized variant of these two, namely the SNFS variant of TNFS that we
denote STNFS or the Joux-Pierrot algorithm.

When d = 6 we can rely on a real-life example: Aoki et al. [2] factored a
1039-bit integer with SNFS, using sextic polynomials, i.e. d = 6. The current
record, hold by Kleinjung et al. [26], was obtained with a MNFS variant and
targeted d-SNFS integers for d = 8. Their computations were much faster than
the evaluated time to factor a 1024-bit RSA modulus, so it is safe to say that
SNFS is the best option when log2Q ≈ 1024 and d = 6 or when d = 8 for slightly
larger targets. However, the value of d is fixed in most cases and can take very
different values among curves used in pairing-based crypto-systems, going from
d = 2 for MNT curves [29] to d = 56 in other constructions [18, Table 6.1],[30].

If the polynomial P such that p = P (u) has a special shape, one can try to
reduce the value of d using techniques from the Cunningham project records.
On the one hand, if P = T (xa) with T ∈ Z[x] and a ∈ N, we can also write
p = T (v) with v = ua, so p is (deg T )-SNFS. This technique can be used for
example in the construction of Brezing-Weng [12, Section 3, item 3(b)] where
P (x) = µa2 + νb2 for some small constants µ and ν and where a, b ∈ Z[x5]
have degree 5 and respectively 15; we replace P of degree 30 by a polynomial of
degree 6.

On the other hand, a construction of Freeman, Scott and Teske [18, Con-
struction 6.4] allows to divide the degree by 2. Indeed, in that case the polyno-
mial P is almost a palindrome, in the sense that it can be written as P (x) =
1
4x

(degP )/2T (x− 1
x ) with T ∈ Z[x]. Then we select f = T (x) and g = ux−(u2−1),

which share the root u − 1
u modulo p and are so that ‖f‖∞ = O(1) and

‖g‖∞ = p1/ deg f .

Modeling. A good comparison requires a precise estimation of the norms. How-
ever, several factors in Equation (1) can be negligible in some cases but can also
be very large in the others:

negligible factors = C(n, d)‖f‖n∞‖h‖
d
∞ .

The factor C(n, d) is itself a bad estimation of the number of terms in the
Sylvester discriminant, which can vary between 6 bits for n = 2 and d = 3 to 15
bits for n = 5 and d = 6. This determines us to restrict to n ≤ 5 and d ≤ 6. The
factor ‖f‖n∞ equals 1 if ‖f‖∞ = 1 but can be as large as 262 when n = 12 and
‖f‖∞ = 36. Hence, it is impossible to plot the size of the norms for all SNFS
numbers, independently of the polynomial f .

For our modeling, we consider the case ‖f‖∞ = ‖h‖∞ = 1 and neglect the
combinatorial factor C(n, d) for small values of n and d. From Equation (5) the
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dominant factor in the product of the norms for STNFS is

CSTNFS(n, d) = log(Ed+1) + log(Q1/d).

Note again that this formula is the same as that of the complexity of the factoring
variant of SNFS.

The product of the norms in the Joux-Pierrot algorithm is bounded by (n+
1)2t(log n)nd E2n(d+1)/t Q(t−1)/(nd) (discussion preceding Equation (5) in [22]),
and for the comparison we keep only the logarithm of most important factors:

CJP(n, d, t) =
2n

t
log(Ed+1) +

t− 1

n
log(Q1/d).

Let us see two examples in which we tackle fields of about one kilobit, for
which we use the approximation log2E = 30.4, as in [2].

A first example. We target a 1024-bit field Fp2 for a 6-SNFS prime p and we
set the parameters equal to their value in the computation of Aoki et al. If one
chooses to forget that p has a special shape and uses JLSV with conjugation
method, then the product of the norms has bitsize ≈ 439. If instead one uses the
special shape of p, the product of the norms for STNFS has bitsize CSTNFS(n =
2, d = 6) ≈ 386, while the best parameters for the Joux-Pierrot algorithm yield
CJP(n = 2, d = 6, t = 3) ≈ 457. A probabilistic experiment suggests that our
model is quite precise, as the negligible factors do not add more than 6 bits.

Barreto-Naehrig. The elliptic curves proposed by Barreto and Naehrig [9] cor-
respond to finite fields of parameters n = 12 and d = 4. We tackle a field of
1024-bit cardinality and we will use a value of E close to the one in the fac-
torization record, i.e. log2E = 30.4. If we forget that p is SNFS, then we can
choose the value of d in TNFS and we find CTNFS(n = 12, d = 7) = 500. If
instead we use the special shape of p we obtain CSTNFS(n = 12, d = 4) = 408
and CJP(n = 12, d = 4, t = 12) = 539.

In that case, the extension degree n (a.k.a. the embedding degree in the
pairing context) is already pretty large, so that we are not at all in the nominal
range of applicability of TNFS. As a consequence, our estimate for CTNFS is way
too optimistic, since the so-called negligible factors are no longer small. But in
fact, it is not that bad: computing explicitly the norms for a sample of typical
(a, b)’s of the appropriate size shows that the product of the norms for STNFS
is 60 to 80 bits larger than the ideal model when f = 36x4+12x3+16x2+2x+1
and h = x12 − x− 1. Therefore, it might still be better than Joux-Pierrot.

There are however examples when the specialized algorithms do not apply.

Fact 7 When d = 2, the JP and STNFS algorithms are not better than the
general ones, i.e.

CJLSV ≤ min(CJP, CSNFS),

where CJLSV is the complexity of the JLSV algorithm with conjugation method.
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To see this, note first that the Joux-Pierrot algorithm keeps unchanged the
stages of JLSV once finished the the polynomial selection. In the Joux-Pierrot
algorithm one constructs polynomials f and g such that deg(f) = nd, deg(g) =
n,‖f‖∞ = O(1) and‖g‖∞ = Q1/(nd). However, when n = 2, they have the same
characteristics as the polynomials constructed by the Conjugation method, which
applies to arbitrary primes.

Also note that the STNFS uses a polynomial g with coefficients of size p1/d.
When d = 2 the norm of the g-side has bitsize larger than 1

2 log2Q, which
is typical for algorithms of complexity LQ(1/2) and is larger than the norms
considered in the JLSV algorithm in the range log2Q ≤ 1000 and n ≤ 5.

Plots. Let us plot the modelled bitsize of the norms product for STNFS and
Joux-Pierrot in the range which is currently feasible or might become in the near
future: 400 ≤ log2Q ≤ 1000. Together with CSTNFS and CJP (Joux-Pierrot), we
also plot CNFS which represents the bitsize of the product of the norms in NFS
when factoring RSA numbers. We make separate graphs for each pair (n, d)
where n is the degree of the target field and d is the parameter such that p is
d-SNFS, as those parameters are unique (in general) for each finite field: Figure 3
(n=2), Figure 4 (n=3), Figure 5 (n=4) and Figure 6 (n=5). Albeit the value of
E depends on the size of the norms, in a first approximation we can use the
formula E = c · LQ(1/3, (4/9)1/3) where c is a constant chosen such that the
formula fits the value of E in the example of Aoki et al.

We emphasize that our comparisons are imprecise since they are based only
on the product of the norms. Nevertheless, one might make two remarks:

– when d ≥ 3, the two algorithms specialized in fields of SNFS characteristic
have smaller norms than those of NFS when factoring RSA numbers;

– when d ≥ 4, STNFS is an important challenger for the Joux-Pierrot algo-
rithm.

6 Cryptographic consequences

The number field sieve algorithm is still far from being fully understood, in par-
ticular for extension fields that are so important for pairing-based cryptography.
In the past few years, several improvements have been made in the asymptotic
complexities in various scenarios, leading in particular to an L(1/3, 3

√
32/9) com-

plexity for small degree extensions of SNFS-prime fields, that are common in
pairing-friendly constructions.

We have shown, that in this setting, an old NFS variant due to Schirokauer
could compete and probably overcome the algorithm by Joux-Pierrot. We ac-
knowledge that the comparison is not perfect since it is based on a model where
the efficiency is directly linked to the size of product of the norms of the elements
that have to be tested for smoothness. Still, in some cases, the difference is large
enough (a few dozens of bits), so that we are confident that this should translate
into a significant practical difference.
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Fig. 3. Comparison of CNFS (in dashed blue), CSTNFS (in black) and CJP (in dasdotted
red) in Fpn with n = 2, for d-SNFS primes. Vertical axis: bitlength of the norm’s
product; horizontal axis: bitlength of pn.
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Fig. 4. Comparison of CNFS (in dashed blue), CSTNFS (in black) and CJP (in dashdot-
ted red) in Fpn with n = 3, for d-SNFS primes. Vertical axis: bitlength of the norm’s
product; horizontal axis: bitlength of pn.

18



400 600 800 1,000
200

300

400

500

d=3

400 600 800 1,000
200

300

400

500

d=4

400 600 800 1,000
200

300

400

500

d=5

400 600 800 1,000
200

300

400

500

d=6

Fig. 5. Comparison of CNFS (in dashed blue), CSTNFS (in black) and CJP (in dashdot-
ted red) in Fpn with n = 4, for d-SNFS primes. Vertical axis: bitlength of the norm’s
product; horizontal axis: bitlength of pn.
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Fig. 6. Comparison of CNFS (in dashed blue), CSTNFS (in black) and CJP (in dashdot-
ted red) in Fpn with n = 5, for d-SNFS primes. Vertical axis: bitlength of the norm’s
product; horizontal axis: bitlength of pn.
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Of course, only a careful implementation of both algorithms could confirm
this. Unfortunately, this goes way beyond the scope of this paper. As far as
we know, Joux-Pierrot’s algorithm has not been used so far for a record-setting
computation, and Schirokauer’s TNFS would require even more implementa-
tion work to handle the sieve in higher dimension. And since doing experiments
with non-optimized implementations and small field sizes could lead to highly
misleading conclusions, we preferred to keep this for future work.

7 Appendix: technicalities

7.1 Special-q sieving

In practice for prime fields the relation collection phase is split in subtasks fol-
lowing the so-called special-q sieving strategy. It is expected, but no so obvious,
that this technique can be adapted to the case of TNFS.

The general case. Given a prime ideal Q of Kf (resp. of Kg), the special-q
algorithm collects (most of) the coprime pairs (a, b) ∈ Z[ι]2 which satisfy

– a− bαf ≡ 0 mod Q;
– NKf/Q(a− bαf )/NKf/Q(Q) and NKg/Q(a− bαg) are B-smooth,

and which have coefficients bounded by NKf/Q(Q)1/2nI for a parameter I.
In the main lines, the sieving is done by Algorithm 1, where a key role is

played by the lattice LQ of (a, b)-pairs such that Q | a− bαf :

LQ =
{
(a0, . . . , an−1, b0, . . . , bn−1) ∈ Z2n |

( n−1∑
k=0

akι
k)− αf

( n−1∑
k=0

bkι
k) ≡ 0 mod Q

}
.

Algorithm 1 Special-q task
1: Compute an LLL-reduced basis of LQ, u(1), . . . , u(2n), and for each k define the

pair (a(k), b(k)) by a(k) =
∑n−1

i=0 u
(k)
i ιi and b(k) =

∑2n−1
i=n u

(k)
i ιi.

2: Initialize an array indexed by (i1, . . . , i2n) ∈
∏2n

k=1[−I, I] with the value of
log2 NKf/Q(a− bαf ) where

a =

2n∑
k=1

ika
(k) and b =

2n∑
k=1

ikb
(k).

3: For each L in Ff update the entries of the array such that a− bαf ∈ L.
4: Collect yield(f), the coprime pairs (a, b) associated to entries of the array with

value less than a given threshold.
5: Repeat Steps 2-4 with f replaced by g, and collect yield(g).
6: return yield(f)

⋂
yield(g)
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In more detail, if Q = 〈q, αf − ρQ(ι)〉 and q = 〈q, ϕq(ι)〉, we can assume that
ϕq is monic and define the matrix

MQ =



q 0 · · · · · · 0

. . .
...

...
q

vector(ϕq)

. . .
...

...
vector(ϕq) 0 · · · · · · 0

vector(ρQ(ι)) 1

vector(ρQ(ι)ι)
. . .

...
. . .

vector(ρQ(ι)ιn−1) 1



.

One can check that the rows of MQ form a basis of LQ, and that det(LQ) =
qdeg(ϕq) = NQ(ι)/Q(q) = NKf/Q(Q) and dimLQ = 2n. Then, the coefficients of
the shortest vector in an LLL-reduced basis have size about NKf/Q(Q)1/(2n). We
make the heuristic assumption that for a large proportion of ideals Q, all the
vectors in the reduced basis have coefficients of this size. Then, the coefficients
of the (a, b) pairs visited during Steps 3-4-5 of Algorithm 1 are approximatively
equal to I NKf/Q(Q)1/(2n).

The critical part of Algorithm 1 is Step 4., where we need to solve a problem
that Pollard [32] asked in the case m = 2.

Problem 1. Compute the intersection of a sub-lattice of Zm with an interval
product

∏m−1
k=0 Ik.

Since the dimension is fixed or small enough, we can use a generic lattice
enumeration algorithm like the Kannan-Fincke-Pohst algorithm. In the casem =
2, Franke and Kleinjung [25, Appendix A] gave an elegant algorithm that proved
very efficient in practice. Extending this algorithm to higher dimension is still
an open problem.

The particular case of Gaussian integers When h = x2 + 1, ι = i and
we have a series of advantages. First of all, we have deg(h) = n = 2, so the
combinatorial overhead C(n, d) in Theorem 3 is small. Secondly, the ring Z[i] is
Euclidean, so that we can speed-up Step 1 of Algorithm 1.

Lemma 8 Let q and r be two elements of Z[i] such that q is irreducible and
r is not divisible by q. Assume that Q = 〈q, αf − r〉 is a prime ideal of Kf .
Let (uj , vj , dj)j≥0 be the sequence of Bezout coefficients such that ujq + vjr =
dj, obtained during the Extended Euclidean Algorithm(EEA). Let j ≥ 0 be an
integer. For k = 1, 2, 3, 4 we set

(a(1), b(1)) = (dj , vj), (a(2), b(2)) = (idj , ivj),
(a(3), b(3)) = (dj+1, vj+1), (a(4), b(4)) = (idj+1, ivj+1),

and define u(k) = (Re(a(k)), Im(a(k)),Re(b(k)), Im(b(k))). Then the vectors u(1),
u(2), u(3), u(4) form a basis of the lattice LQ.
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Proof. Note first that if two elements e1, e2 form a basis for a Z[i]-module M ,
then the set {e1, ie1, e2, ie2} is a basis of M seen as a Z-module. We apply this
fact to M = {(a, b) ∈ Z[i]× Z[i] | a− br ≡ 0 mod q}, so it is sufficient to show
that (dj , vj) and (dj+1, vj+1) form a basis of M when seen as a Z[i]-module.

By construction of the sequence (uj , vj , dj)j≥0, there exist invertible matrices
I1, I2, . . . ∈ GL(Z[i], 2) so that, for all j ≥ 1,(

uj+1 vj+1 dj+1

uj vj dj

)
= Ij

(
uj vj dj
uj−1 vj−1 dj−1

)
.

Therefore, for all j, the pairs (dj , vj) and (dj+1, vj+1) span the same Z[i]-module.
In particular, for j = 0, we have (d0, v0) = (q, 0) and (d1, v1) = (r, 1), which
is a basis of M , so that any pair in the sequence spans M . Finally, a pair
(a, b) ∈ Z[i]×Z[i] is inM if and only if the vector u = (Re(a), Im(a),Re(b), Im(b))
is in the lattice LQ, which completes the proof.

We interrupt the execution of EEA at its middle point, i.e. for the least index
j where NQ(i)/Q(dj) <

√
NQ(i)/Q(q). As in the classical variant of NFS, we make

the heuristic that for all k ∈ [1, 4], we have
∥∥∥(a(k), b(k))∥∥∥

∞
≈
√
|q|. Hence, we

replaced Step 1 in Algorithm 1 by EEA in Z[i].
Another advantage of Z[i] is that we can easily deal with the roots of unity.

Indeed, the roots of unity have a bad effect on the sieve since, for any pairs (a, b)
found during the sieve, one will also find (ua, ub) for all roots of unity u. For a
practical implementation one might prefer to choose h so that there are no roots
of unity other than ±1.

In the case h = x2+1, we can impose that we have no duplicates due to roots
of unity. For this, we modify Step 2 of Algorithm 1 so that the indices run in

(i1, i2, i3, i4) ∈ [0, I]× [0, I]× [−I, I]× [−I, I]

instead of [−I, I]4. By doing so we divide by four the number of pairs (a, b)
sieved in the special-q task associated to Q. Indeed, if a pair (a, b) is written as
(a, b) =

∑4
k=1 ik(a

(k), b(k)), then when we multiply (a, b) by roots of unity we
use the following indices where exactly one of the pairs has i1, i2 ≥ 0:

(a, b) ↔ (i1, i2, i3, i4) (−a,−b) ↔ (−i1,−i2,−i3,−i4)
(ia, ib)↔ (−i2, i1,−i4, i3) (−ia,−ib)↔ (i2,−i1, i4,−i3).

7.2 Using a cyclotomic field for Q(ι)

Although we found no practical advantage for cyclotomic fields other than Q(i),
they allow us to give a poof of existence for the polynomial h, as required in the
TNFS construction of Section 3.1.

Theorem 9 ([1], Prop. 3) Assuming the Extended Riemann Hypothesis (ERH),
there is a constant c > 0, such that for all p, n ∈ N, p prime and gcd(n, p) = 1,
there exists a prime q such that q ≡ 1 (mod n), q < cn4 log(pn)2 and p is inert
in the unique subfield K of Q(ζq) with [K : Q] = n.
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Corollary 10 Under ERH, there exists a constant c > 0 such that, for any in-
teger n and any prime p > n, there exists an effectively constructible polynomial
h ∈ Z[x] such that:

– h is irreducible modulo p;
– ‖h‖∞ < (2cn4 log(np)2)n.

Proof. Let c be the constant of the theorem above. Let q be a prime associated
with p and n and let ζq be a primitive qth root of unity and η a Gaussian period:

η =
∑

x∈F∗
q/(F∗

q)
(q−1)/n

ζxq .

If r1, . . . , rn are a set of representatives of F∗q/(F∗q)(q−1)/n, then the conjugates of
η are its images by the morphisms σi : ζq 7→ ζriq . Hence, the minimal polynomial
of η over Q is

h =

n−1∏
i=0

(x− σi(η)).

For k ∈ [0, n], a crude estimate of the kth coefficient of f is
(
n
k

)
|η|k, which

is further upper bounded by 2n(q − 1)n, and finally by (2cn4 log(np)2)n. The
coefficients of h add a factor‖h‖n(d−1)∞ in Equation (1). It remains negligible, i.e.
LQ(2/3)

o(1), when n2 = o(d) or equivalently when p = LQ(α) for α > 5/6.

7.3 The Waterloo improvement

At the beginning of the individual logarithm stage, the smoothing step can be
sped up in practice using the continued fraction method, also called “Waterloo
improvement”4. It allows to replace the probability of an integer of size S to
be smooth by the probability of two numbers of size

√
S to be simultaneously

smooth. This does not change the complexity, unless we make the o(1) expression
explicit, but has a measurable practical impact. A TNFS equivalent for the
continued-fraction method is to LLL-reduce the lattice generated by the rows of
the matrix

M(z) =



p
. . . 0

p
z 1
...

. . .
ιn−1z 1


,

where z is a lift of the target element of the finite field, and z, . . ., ιn−1z are
written by their coordinates as elements of Q(ι). Since detM(z) = pn = Q, a
4 The name, coined by Coppesmith, makes reference to the group who first used this
technique [11].
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short vector (u0, . . . , un−1, v0, . . . , vn−1) has coordinates of size ≈ Q1/2n. The
quotient u/v where u =

∑n−1
k=0 ukι

k and v =
∑n−1
k=0 vkι

k is an element of Q(ι)
that reduces to the same element of Fpn as z. Therefore, instead of testing for
smoothness the norm of z, of size S = Q, we test whether the norms of u and v,
both of size

√
Q, are smooth.
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