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Abstract. We study the adaptive security of constrained PRFs in the
standard model. We initiate our exploration with puncturable PRFs. A
puncturable PRF family is a special class of constrained PRFs, where
the constrained key is associated with an element x′ in the input domain.
The key allows evaluation at all points x 6= x′.
We show how to build puncturable PRFs with adaptive security proofs
in the standard model that involve only polynomial loss to the underly-
ing assumptions. Prior work had either super-polynomial loss or applied
the random oracle heuristic. Our construction uses indistinguishability
obfuscation and DDH-hard algebraic groups of composite order.
More generally, one can consider a t-puncturable PRF: PRFs that can
be punctured at any set of inputs S, provided the size of S is less than
a fixed polynomial. We additionally show how to transform any (single)
puncturable PRF family to a t-puncturable PRF family, using indistin-
guishability obfuscation.

1 Introduction

Pseudorandom functions (PRFs) are one of the fundamental building blocks in
modern cryptography. A PRF system consists of a keyed function F and a set
of keys K such that for a randomly chosen key k ∈ K, the output of the function
F (k, x) for any input x in the input space “looks” random to a computationally
bounded adversary, even when given polynomially many evaluations of F (k, ·).
Recently, the concept of constrained pseudorandom functions3 was proposed in
the concurrent works of Boneh and Waters [4], Boyle, Goldwasser and Ivan [6]
and Kiayias, Papadopoulos, Triandopoulos and Zacharias [21]. A constrained
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PRF system is associated with a family of boolean functions F = {f}. As
in standard PRFs, there exists a set of master keys K that can be used to
evaluate the PRF F . However, given a master key k, it is also possible to derive
a constrained key kf associated with a function f ∈ F . This constrained key kf
can be used to evaluate the function F (k, ·) at all inputs x such that f(x) = 1.
Intuitively, we would want that even if an adversary has kf , the PRF evaluation
at an input x not accepted by f looks random. Security is captured by an adaptive
game between a PRF challenger and an adversary. The adversary is allowed to
make multiple constrained key or point evaluation queries before committing to
a challenge x∗ not equal to any of the evaluation queries or accepted by any of
the functions for which he obtained a constrained key. 4 The challenger either
sends the PRF evaluation at x∗ or an output chosen uniformly at random from
the PRF range space, and the adversary wins if he can distinguish between these
two cases.

Since their inception, constrained PRFs have found multiple applications.
For example, Boneh and Waters [4] gave applications of broadcast encryption
with optimal ciphertext length, identity-based key exchange, and policy-based
key distribution. Sahai and Waters [24] used constrained PRFs as a central ingre-
dient in their punctured programming methodology for building cryptosystems
using indistinguishable obfuscation. Boneh and Zhandry [5] likewise applied con-
strained PRFs for realizing multi-party key exchange and broadcast systems.

Adaptive Security in Constrained PRFs In their initial work, Boneh and Wa-
ters [4] showed constructions of constrained PRFs for different function fami-
lies, including one for the class of all polynomial circuits (based on multilinear
maps). However, all their constructions offer selective security - a weaker no-
tion where the adversary must commit to the challenge input x∗ before making
any evaluation/constrained key queries.5 Using complexity leveraging, one can
obtain adaptive security by guessing the challenge input x∗ before any queries
are made. However, this results in exponential security loss. The works of [6, 21]
similarly dealt with selective security.

Recently, Fuchsbauer, Konstantinov, Pietrzak and Rao [11] showed adaptive
security for prefix-fixing constrained PRFs, but with quasi-polynomial security
loss. Also recently, Hofheinz [16] presented a novel construction that achieves
adaptive security for bit-fixing constrained PRFs, but in the random oracle
model.

While selective security has been sufficient for some applications of con-
strained PRFs, including many recent proofs leveraging the punctured program-
ming [24] methodology (e.g., [24, 19, 5, 2]), there are applications that demand
adaptive security, where the security game allows the adversary to query the
PRF on many inputs before deciding on the point to puncture. For instance, [5]
give a construction for multiparty key exchange that is semi-statically secure,

4 This definition can be extended to handle multiple challenge points. See Section 3
for details.

5 The prefix construction of [6] and [21] were also selective.



and this construction requires adaptively secure constrained PRFs for circuits.
We anticipate that the further realization of adaptively secure PRFs will intro-
duce further applications of them.

Our Objective and Results Our goal is to study adaptive security of constrained
PRFs in the standard model. We initiate this exploration with puncturable PRFs,
first explicitly introduced in [24] as a specialization of constrained PRFs. A punc-
turable PRF family is a special class of constrained PRFs, where the constrained
key is associated with an element x′ in the input domain. The key allows evalua-
tion at all points x 6= x′. As noted by [4, 6, 21], the GGM tree-based construction
of PRFs from one-way functions (OWFs) [14] can be modified to construct a
puncturable PRF. 6 A selective proof of security follows via a hybrid argument,
where the reduction algorithm uses the pre-determined challenge query x∗ to
“plant” its OWF challenge. However, such a technique does not seem powerful
enough to obtain adaptive security with only a polynomial-factor security loss.
The difficulty in proving adaptive security arises due to the fact that the re-
duction algorithm must respond to the evaluation queries, and then output a
punctured key that is consistent with the evaluations. This means that the re-
duction algorithm must be able to evaluate the PRF at a large set S (so that all
evaluation queries lie in S with non-negligible probability). However, S cannot
be very large, otherwise the challenge x∗ will lie in S, in which case the reduction
algorithm cannot use the adversary’s output.

In this work, we show new techniques for constructing adaptively-secure
puncturable PRFs in the standard model. A central contribution is to over-
come the conflict above, by allowing the reduction algorithm to commit to the
evaluation queries, and at the same time, ensuring that the PRF output at the
challenge point is unencumbered by the commitment.

Our main idea is to execute a delayed commitment to part of the PRF by
partitioning. Initially, in our construction all points are tied to a single (Naor-
Reingold [23] style) PRF. To prove security we begin by using the admissible
hash function of Boneh and Boyen [3]. We partition the inputs into two distinct
sets. The evaluable set which contains about (1− 1/q) fraction of inputs, and a
challenge set which contains about 1/q fraction of inputs, where q is the number
of point evaluation queries made by the attacker. Via a set of hybrid steps using
the computational assumptions of indistinguishability obfuscation and subgroup
hiding we modify the construction such that we use one Naor-Reingold PRF
function to evaluate points in the evaluable set and a completely independent
Naor-Reingold PRF to evaluate points in the challenge set.

After this separation has been achieved, there is a clearer path for our proof
of security. At this point the reduction algorithm will create one PRF itself and
use it to answer any attacker point query in the evaluable set. If it is asked
for a point x in the challenge set, it will simply abort. (The admissible hash
function ensures that we get through without abort with some non-negligible

6 In fact, the GGM PRF construction can be used to construct prefix-fixing con-
strained PRFs.



probability.) Eventually, the attacker will ask for a punctured key on x∗, which
defines x∗ as the challenge input. Up until this point the reduction algorithm has
made no commitments on what the second challenge PRF is. It then constructs
the punctured key using the a freshly chosen PRF for the challenge inputs.
However, when constructing this second PRF it now knows what the challenge
x∗ actually is and can fall back on selective techniques for completing the proof.

At a lower level our core PRF will be the Naor-Reingold PRF [23], but
based in composite-order groups. Let G be a group of order N = pq, where p
and q are primes. The master key consists of a group element v ∈ G and 2n
exponents di,b ∈ ZN (for i = 1 to n and b ∈ {0, 1}). The PRF F takes as input
a key k = (v, {di,b}), an `-bit input x, uses a public admissible hash function

h : {0, 1}` → {0, 1}n to compute h(x) = b1 . . . bn and outputs v
∏n

j=1 dj,bj . A
punctured key corresponding to x′ derived from master key k is the obfuscation
of a program P which has k, x′ hardwired and outputs F (k, x) on input x 6= x′,
else it outputs ⊥.

We will use a parameterized problem (in composite groups) to perform some

of the separation step. Our assumption is that given g, ga, . . . , ga
n−1

for randomly
chosen g ∈ G and a ∈ Z∗N it is hard to distinguish ga

n

from a random group
element. While it is somewhat undesirable to base security on a parameterized
assumption, we are able to use the recent results of Chase and Meiklejohn [8]
to reduce this to the subgroup decision problem in DDH hard composite order
groups.

t-puncturable PRFs We also show how to construct t-puncturable PRFs: PRFs
that can be punctured at any set of inputs S, provided |S| ≤ t (where t(·) is
a fixed polynomial). We show how to transform any (single) puncturable PRF
family to a t-puncturable PRF family, using indistinguishability obfuscation. In
the security game for t-puncturable PRFs, the adversary is allowed to query
for multiple t-punctured keys, each corresponding to a set S of size at most t.
Finally, the adversary sends a challenge input x∗ that lies in all the sets queried,
and receives either the PRF evaluation at x∗ or a uniformly random element of
the range space.

In the construction, the setup and evaluation algorithm for the t-puncturable
PRF are the same as those for the puncturable PRF. In order to puncture a key
k at set S, the puncturing algorithm outputs the obfuscation of a program P
that takes as input x, checks that x /∈ S, and outputs F (k, x).

For the proof of security, we observe that when the first t-punctured key query
S1 is made by the adversary, the challenger can guess the challenge x̃ ∈ S1. If this
guess is incorrect, then the challenger simply aborts (which results in a 1/t factor
security loss). However, if the guess is correct, then the challenger can now use
the punctured key Kx̃ for all future evaluation/t-punctured key queries. From the
security of puncturable PRFs, it follows that even after receiving evaluation/t-
punctured key queries, the challenger will not be able to distinguish between
F (k, x̃) and a random element in the range space.



We detail this transformation and its proof in Section 5.1. We also believe
that we can use a similar approach to directly modify our main construction to
handle multiple punctured points, however, we choose to focus on the generic
transformation.

Related Works Two recent works have explored the problem of adaptive security
of constrained PRFs. Fuchsbauer, Konstantinov, Pietrzak and Rao [11] study
the adaptive security of the GGM construction for prefix-free constrained PRFs.
They show an interesting reduction to OWFs that suffers only a quasi-polynomial
factor qO(logn) loss, where q is the number of queries made by the adversary,
and n is the length of the input. This beats the straightforward conversion from
selective to adaptive security, which results in O(2n) security loss.

Hofheinz [16] shows a construction for bit-fixing constrained PRFs that is
adaptively secure, assuming indistinguishability obfuscation and multilinear maps
in the random oracle model. It also makes novel use of the random oracle for
dynamically defining the challenge space based on the output of h. It is currently
unclear whether such ideas could be adapted to the standard model.

Fuchsbauer et al. also show a negative result for the Boneh-Waters [4] con-
struction of bit-fixing constrained PRFs. They show that any simple reduction
from a static assumption to the adaptive security of the Boneh-Waters [4] bit-
fixing constrained PRF construction must have an exponential factor security
loss. More abstractly, using their techniques, one can show that any bit-fixing
scheme that has the following properties will face this obstacle: (a) fingerprinting
queries - By querying for a set of constrained keys, the adversary can obtain a
fingerprint of the master key. (b) checkability - It is possible to efficiently check
that any future evaluation/constrained key queries are consistent with the finger-
print. While these properties capture certain constructions, small perturbations
to them could potentially circumvent checkability.

Partitioning type proofs have been used in several applications including
identity-based encryption [3, 25, 1, 17], verifiable random functions [20], and proofs
of certain signature signature schemes [9, 18, 19]. We believe ours is the first to
use partitioning for a delayed commitment to parameters. We note that our
delayed technique is someway reminiscent to that of Lewko and Waters [22].

Recently, there has been a push to prove security for indistinguishability
obfuscation from basic multilinear map assumptions. The recent work of Gentry,
Lewko, Sahai and Waters [13] is a step in this direction, but itself requires the use
of complexity leveraging. In the future work, we might hope for such reductions
with just polynomial loss — perhaps for special cases of functionality. And thus
give an end-to-end polynomial loss proof of puncturable PRFs from multilinear
maps assumptions.

Two works have explored the notion of constrained verifiable random func-
tions (VRFs). Fuchsbauer [10] and Chandran, Raghuraman and Vinayagamurthy
[7] show constructions of selectively secure constrained VRFs for the class of all
polynomial sized circuits. The construction in [7] is also delegatable.



Future Directions A natural question is to construct adaptively-secure con-
strained PRFs for larger classes of functions in the standard model. Given the
existing results of [11] and [16], both directions seem possible. While the tech-
niques of [16] are intricately tied to the random oracle model, it is plausible there
could be constructions in the standard model that evade the negative result of
[11]. On the other hand, maybe the negative result of [11] (which is specific
to the [4] construction) can be extended to show a similar lower bound for all
constructions of constrained PRFs with respect to function family F .

2 Preliminaries

First, we recall the notion of admissible hash functions due to Boneh and Boyen [3].
Here we state a simplified definition from [19]. Informally, an admissible hash
function family is a function h with a ‘partition sampling algorithm’ AdmSample.
This algorithm takes as input a parameter Q and outputs a ‘random’ partition of
the outputs domain, where one of the partitions has 1/Q fraction of the points.
Also, this partitioning has special structure which we will use in our proof.

Definition 1. Let l, n and θ be efficiently computable univariate polynomials,
h : {0, 1}l(λ) → {0, 1}n(λ) an efficiently computable function and AdmSample a
PPT algorithm that takes as input 1λ and an integer Q, and outputs a string
u ∈ {0, 1,⊥}n(λ). For any u ∈ {0, 1,⊥}n(λ), define Pu : {0, 1}l(λ) → {0, 1} as
follows: Pu(x) = 0 if for all 1 ≤ j ≤ n(λ), h(x)j 6= uj, else Pu(x) = 1.

We say that (h,AdmSample) is θ-admissible if the following condition holds:
For any efficiently computable polynomial Q, for all x1, . . . , xQ(λ), x

∗ ∈ {0, 1}l(λ),
where x∗ /∈ {xi}i,

Pr[(∀i ≤ Q(λ), Pu(xi) = 1) ∧ Pu(x∗) = 0] ≥ 1

θ(Q(λ))

where the probability is taken over u← AdmSample(1λ, Q(λ)).

Theorem 1 (Admissible Hash Function Family [3], simplified proof in
[9]). For any efficiently computable polynomial l, there exist efficiently com-
putable polynomials n, θ such that there exist θ-admissible function families map-
ping l bits to n bits.

Note that the above theorem is information theoretic, and is not based on
any cryptographic assumptions.

Next, we recall the definition of indistinguishability obfuscation from [12, 24].
Let PPT denote probabilistic polynomial time.

Definition 2. (Indistinguishability Obfuscation) A uniform PPT machine iO
is called an indistinguishability obfuscator for a circuit class {Cλ} if it satisfies
the following conditions:



– (Preserving Functionality) For all security parameters λ ∈ N, for all C ∈ Cλ,
for all inputs x, we have that C ′(x) = C(x) where C ′ ← iO(λ,C).

– (Indistinguishability of Obfuscation) For any (not necessarily uniform) PPT
distinguisher B = (Samp,D), there exists a negligible function negl(·) such
that the following holds: if for all security parameters λ ∈ N,Pr[∀x,C0(x) =
C1(x) : (C0;C1;σ)← Samp(1λ)] > 1− negl(λ), then

|Pr[D(σ, iO(λ,C0)) = 1 : (C0;C1;σ)← Samp(1λ)]−
Pr[D(σ, iO(λ,C1)) = 1 : (C0;C1;σ)← Samp(1λ)]| ≤ negl(λ).

In a recent work, [12] showed how indistinguishability obfuscators can be con-
structed for the circuit class P/poly. We remark that (Samp,D) are two algo-
rithms that pass state, which can be viewed equivalently as a single stateful
algorithm B. In our proofs we employ the latter approach, although here we
state the definition as it appears in prior work.

2.1 Assumptions

Let G be a PPT group generator algorithm that takes as input the security
parameter 1λ and outputs (N, p, q,G,Gp, Gq, g1, g2) where p, q ∈ Θ(2λ) are
primes, N = pq, G is a group of order N , Gp and Gq are subgroups of G of order
p and q respectively, and g1 and g2 are generators of Gp and Gq respectively.

Assumption 1 (Subgroup Hiding for Composite DDH-Hard Groups)
Let (N, p, q,G,Gp,Gq, g1, g2)← G(1λ) and b← {0, 1}. Let T ← G if b = 0, else
T ← Gp. The advantage of algorithm A in solving Assumption 1 is defined as

AdvSGH
A =

∣∣∣∣Pr[b← A(N,G,Gp,Gq, g1, g2, T )]− 1

2

∣∣∣∣
We say that Assumption 1 holds if for all PPT A, AdvSGH

A is negligible in λ.

Note that the adversary A gets generators for both subgroups Gp and Gq. This
is in contrast to bilinear groups, where, if given generators for both subgroups,
the adversary can use the pairing to distinguish a random group element from
a random subgroup element.

Analogously, we assume that no PPT adversary can distinguish between a
random element of G and a random element of Gq with non-negligible advantage.
This is essentially Assumption 1, where prime q is chosen instead of p, and Gq
is chosen instead of Gp.

Assumption 2 This assumption is parameterized with an integer n ∈ Z. Let
(N, p, q,G,Gp,Gq, g1, g2) ← G(1λ), g ← G, a ← Z∗N and b ← {0, 1}. Let D =

(N,G,Gp,Gq, g1, g2, g, ga, . . . , ga
n−1

). Let T = ga
n

if b = 0, else T ← G. The
advantage of algorithm A in solving Assumption 2 is defined as

AdvA =

∣∣∣∣Pr[b← A(D,T )]− 1

2

∣∣∣∣
We say that Assumption 2 holds if for all PPT A, AdvA is negligible in λ.



We will use Assumption 2 for clarity in certain parts of our proof, but we
do not give it a name because it is implied by other named assumptions. First,
Assumption 2 is implied by the n-Power Decisional Diffie-Hellman Assumption
[15]. Second, it is also implied by the non-parameterized Assumption 1. The
recent results of Chase and Meiklejohn [8] essentially show this latter implica-
tion, but that work focuses on the target groups of bilinear maps, whereas our
algebraic focus does not involve bilinear maps.

3 Constrained Pseudorandom Functions

In this section, we define the syntax and security properties of a constrained
pseudorandom function family. This definition is similar to the one in Boneh-
Waters [4], except that the keys are constrained with respect to a circuit family
instead of a set system.

Let K denote the key space, X the input domain and Y the range space. The
PRF is a function F : K × X → Y that can be computed by a deterministic
polynomial time algorithm. We will assume there is a Setup algorithm F.setup
that takes the security parameter λ as input and outputs a random secret key
k ∈ K.

A PRF F : K × X → Y is said to be constrained with respect to a circuit
family C if there is an additional key space Kc, and three algorithms F.setup,
F.constrain and F.eval as follows:

– F.setup(1λ) is a PPT algorithm that takes the security parameter λ as input
and outputs a description of the key space K, the constrained key space Kc
and the PRF F .

– F.constrain(k,C) is a PPT algorithm that takes as input a PRF key k ∈ K
and a circuit C ∈ C and outputs a constrained key kC ∈ Kc.

– F.eval(kC , x) is a deterministic polynomial time algorithm that takes as input
a constrained key kC ∈ Kc and x ∈ X and outputs an element y ∈ Y. Let kC
be the output of F.constrain(k,C). For correctness, we require the following:

F.eval(kC , x) =

{
F (k, x) if C(x) = 1

⊥ otherwise

Security of Constrained Pseudorandom Functions: Intuitively, we require that
even after obtaining several constrained keys, no polynomial time adversary
can distinguish a truly random string from the PRF evaluation at a point not
accepted by the queried circuits. This intuition can be formalized by the following
security game between a challenger and an adversary A.

Let F : K×X → Y be a constrained PRF with respect to a circuit family C.
The security game consists of three phases.

Setup Phase The challenger chooses a random key k ← K and b← {0, 1}.



Query Phase In this phase, A is allowed to ask for the following queries:

– Evaluation Query A sends x ∈ X , and receives F (k, x).
– Key Query A sends a circuit C ∈ C, and receives F.constrain(k,C).
– Challenge Query A sends x ∈ X as a challenge query. If b = 0, the

challenger outputs F (k, x). Else, the challenger outputs a random element
y ← Y.

Guess A outputs a guess b′ of b.

Let E ⊂ X be the set of evaluation queries, L ⊂ C be the set of constrained
key queries and Z ⊂ X the set of challenge queries. A wins if b = b′ and
E ∩ Z = φ and for all C ∈ L, z ∈ Z,C(z) = 0. The advantage of A is defined to
be AdvFA(λ) = Pr[A wins].

Definition 3. The PRF F is a secure constrained PRF with respect to C if for
all PPT adversaries A AdvFA(λ) is negligible in λ.

3.1 Puncturable Pseudorandom Functions

In this section, we define the syntax and security properties of a puncturable
pseudorandom function family. Puncturable PRFs are a special class of con-
strained pseudorandom functions.

A PRF F : K × X → Y is a puncturable pseudorandom function if there is
an additional key space Kp and three polynomial time algorithms F.setup, F.eval
and F.puncture as follows:

– F.setup(1λ) is a randomized algorithm that takes the security parameter λ
as input and outputs a description of the key space K, the punctured key
space Kp and the PRF F .

– F.puncture(k, x) is a randomized algorithm that takes as input a PRF key
k ∈ K and x ∈ X , and outputs a key kx ∈ Kp.

– F.eval(kx, x
′) is a deterministic algorithm that takes as input a punctured

key kx ∈ Kp and x′ ∈ X . Let k ∈ K, x ∈ X and kx ← F.puncture(k, x). For
correctness, we need the following property:

F.eval(kx, x
′) =

{
F (k, x′) if x 6= x′

⊥ otherwise

Security of Puncturable PRFs: The security game between the challenger and
the adversary A consists of the following four phases.

Setup Phase The challenger chooses uniformly at random a PRF key k ← K
and a bit b← {0, 1}.

Evaluation Query Phase A queries for polynomially many evaluations. For each
evaluation query x, the challenger sends F (k, x) to A.



Challenge Phase A chooses a challenge x∗ ∈ X . The challenger computes kx∗ ←
F.puncture(k, x∗). If b = 0, the challenger outputs kx∗ and F (k, x∗). Else, the
challenger outputs kx∗ and y ← Y chosen uniformly at random.

Guess A outputs a guess b′ of b.

Let E ⊂ X be the set of evaluation queries. A wins if b = b′ and x∗ /∈ E. The
advantage of A is defined to be AdvFA(λ) = Pr[A wins].

Definition 4. The PRF F is a secure puncturable PRF if for all probabilistic
polynomial time adversaries A AdvFA(λ) is negligible in λ.

t-Puncturable Pseudorandom Functions The notion of puncturable PRFs
can be naturally extended to that of t-puncturable PRFs, where it is possible
to derive a key punctured at any set S of size at most t. A formal definition of
t-puncturable PRFs can be found in Section 5.

4 Construction

We now describe our puncturable PRF family. It consists of the PRF F : K×X →
Y and the three algorithms F.setup, F.puncture and F.eval. The input domain is
X = {0, 1}`, where ` = `(λ). We define the key space K and range space Y as
part of the setup algorithm described next.

F.setup(1λ) F.setup, on input 1λ, runs G to compute (N, p, q,G,Gp,Gq, g1, g2)←
G(1λ). Let n, θ be polynomials such that there exists a θ-admissible hash function
h mapping `(λ) bits to n(λ) bits. For simplicity of notation, we will drop the
dependence of ` and n on λ.

The key space is K = G ×
(
Z2
N

)n
and the range is Y = G. The setup

algorithm chooses v ∈ G, di,b ∈ ZN , for i = 1 to n and b ∈ {0, 1}, and sets
k = (v, ((d1,0, d1,1) , . . . , (dn,0, dn,1))).

The PRF F for key k on input x is then computed as follows. Let k =
(v, ((d1,0, d1,1) , . . . , (dn,0, dn,1))) ∈ G ×

(
Z2
N

)n
and h(x) = (b1, . . . , bn), where

bi ∈ {0, 1}. Then,

F (k, x) = v
∏n

j=1 dj,bj .

F.puncture(k,x′) F.puncture computes an obfuscation of PuncturedKeyk,x′ (de-
fined in Figure 1); that is,Kx′ ← iO(λ,PuncturedKeyk,x′) where PuncturedKeyk,x′
is padded to be of appropriate size. 7

7 Looking ahead, in the proof of security, the program PuncturedKeyk,x′
will be replaced by PuncturedKey′V,w,D,u,x′ , PuncturedKeyAltu,k,k′,x′ and
PuncturedKeyAlt′u,W,E,k,x′ in subsequent hybrids. Since this transformation re-
lies on iO being secure, we need that all programs have same size. Hence, all
programs are padded appropriately to ensure that they have the same size.



PuncturedKeyk,x′

Input: x ∈ {0, 1}`

Constants : The group G, k = (v, ((d1,0, d1,1) . . . (dn,0, dn,1))) ∈ G×
(
Z2
N

)n
x′ ∈ {0, 1}`

Compute h(x) = b1 . . . bn ∈ {0, 1}n.
if x = x′ then

Output ⊥.
else

Output v
∏n

j=1 dj,bj .
end if

Fig. 1. Program PuncturedKey

F.eval(Kx′ ,x) The punctured key Kx′ is a program that takes an `-bit input.
We define

F.eval(Kx′ , x) = Kx′(x).

4.1 Proof of Security

We will now prove that our construction is a secure puncturable PRF as defined
in Definition 4. Specifically, the claim we show is:

Theorem 2 (Main Theorem). Assuming iO is a secure indistinguishability
obfuscator and the Subgroup Hiding Assumption holds for groups output by G, the
PRF F defined above, together with algorithms F.setup, F.puncture and F.eval,
is a secure punctured pseudorandom function as defined in Definition 4.

Proof. In order to prove this, we define the following sequence of games. Assume
the adversary Amakes Q = Q(λ) evaluation queries (where Q(·) is a polynomial)
before sending the challenge input.

Sequence of Games We underline the primary changes from one game to the
next.

Game 0 This game is the original security game from Definition 4 between
the challenger and A instantiated by the construction under analysis. Here the
challenger first chooses a random PRF key, then A makes evaluation queries
and finally sends the challenge input. The challenger responds by sending a key
punctured at the challenge input, and either a PRF evaluation at the challenged
point or a random value.

1. Let (N, p, q,G,Gp,Gq, g1, g2) ← G(1λ). Choose v ∈ G, di,b ∈ ZN , for i = 1
to n and b ∈ {0, 1}, and set k = (v, ((d1,0, d1,1) , . . . , (dn,0, dn,1))).



2. On any evaluation query xi ∈ {0, 1}`, compute h(xi) = bi1 . . . b
i
n and output

v

∏n
j=1 dj,bi

j .
3. A sends challenge input x∗ such that x∗ 6= xi ∀ i ≤ Q. Compute Kx∗ ←
iO(λ,PuncturedKeyk,x∗) and h(x∗) = b∗1 . . . b

∗
n. Let y0 = v

∏n
j=1 dj,b∗j and y1 ←

G.
4. Flip coin β ← {0, 1}. Output (Kx∗ , yβ).
5. A outputs β′ and wins if β = β′.

Game 1 This game is the same as the previous one, except that we simulate a
partitioning game while the adversary operates and if an undesirable partition
arises, we abort the game and decide whether or not the adversary “wins” by
a coin flip. This partitioning game works as follows: the challenger samples u ∈
{0, 1,⊥}n using AdmSample and aborts if either there exists an evaluation query
x such that Pu(x) = 0 or the challenge query x∗ satisfies Pu(x∗) = 1.

1. Let (N, p, q,G,Gp,Gq, g1, g2) ← G(1λ). Choose v ∈ G, di,b ∈ ZN , for i = 1
to n and b ∈ {0, 1}, and set k = (v, ((d1,0, d1,1) , . . . , (dn,0, dn,1))).
Choose u← AdmSample(1λ, Q) and let Su = {x : Pu(x) = 1} (recall Pu(x) =
0 if h(x)j 6= uj ∀1 ≤ j ≤ n).

2. On any evaluation query xi ∈ {0, 1}`, check if Pu(xi) = 1.
If not, flip a coin γi ← {0, 1} and abort. A wins if γi = 1.

Else compute h(xi) = bi1 . . . b
i
n and output v

∏n
j=1 dj,bi

j .
3. A sends challenge input x∗ such that x∗ 6= xi ∀ i ≤ Q. Check if Pu(x∗) = 0.

If not, flip a coin γ∗ ← {0, 1} and abort. A wins if γ∗ = 1.
Else compute Kx∗ ← iO(λ,PuncturedKeyk,x∗) and h(x∗) = b∗1 . . . b

∗
n. Let

y0 = v
∏n

j=1 dj,b∗j and y1 ← G.
4. Flip coin β ← {0, 1}. Output (Kx∗ , yβ).
5. A outputs β′ and wins if β = β′.

Game 2 In this game, the challenger modifies the punctured key and outputs
an obfuscation of PuncturedKeyAlt defined in Figure 2. On inputs x such that
Pu(x) = 1, the altered punctured key uses the same master key k as before.
However, if Pu(x) = 0, the altered punctured key uses a different master key k′

that is randomly chosen from the key space.

1. Let (N, p, q,G,Gp,Gq, g1, g2) ← G(1λ). Choose v ∈ G, di,b ∈ ZN , for i = 1
to n and b ∈ {0, 1}.
Set k = (v, ((d1,0, d1,1) , . . . , (dn,0, dn,1))).
Choose u← AdmSample(1λ, Q).

2. On any evaluation query xi ∈ {0, 1}`, check if Pu(xi) = 1.
If not, flip a coin γi ← {0, 1} and abort. A wins if γi = 1.

Else compute h(xi) = bi1 . . . b
i
n and output v

∏n
j=1 dj,bi

j .
3. A sends challenge input x∗ such that x∗ 6= xi ∀ i ≤ Q. Check if Pu(x∗) = 0.

If not, flip a coin γ∗ ← {0, 1} and abort. A wins if γ∗ = 1.
Else choose w ∈ G, ei,b ∈ ZN , for i = 1 to n and b ∈ {0, 1}.



Set k′ = (w, ((e1,0, e1,1), . . . , (en,0, en,1))).

Compute Kx∗ ← iO(λ,PuncturedKeyAltu,k,k′,x∗) and h(x∗) = b∗1 . . . b
∗
n. Let

y0 = w
∏n

j=1 ej,b∗j and y1 ← G.
4. Flip coin β ← {0, 1}. Output (Kx∗ , yβ).
5. A outputs β′ and wins if β = β′.

PuncturedKeyAltu,k,k′,x′

Input: x ∈ {0, 1}`

Constants : The group G, k = (v, ((d1,0, d1,1) . . . (dn,0, dn,1))) ∈ G×
(
Z2
N

)n
k′ = (w, ((e1,0, e1,1) . . . (en,0, en,1))) ∈ G×

(
Z2
N

)n
x′ ∈ {0, 1}`, u ∈ {0, 1,⊥}n

Compute h(x) = b1 . . . bn.
if x = x′ then

Output ⊥.
else if Pu(x) = 0 then

output w
∏n

j=1 ej,bj .
else

Output v
∏n

j=1 dj,bj .
end if

Fig. 2. Program PuncturedKeyAlt

Game 3 In this game, the challenger changes how the master key k′ is chosen
so that some elements contain an a-factor, for use on inputs x where Pu(x) = 0.

1. Let (N, p, q,G,Gp,Gq, g1, g2) ← G(1λ). Choose v ∈ G, di,b ∈ ZN , for i = 1
to n and b ∈ {0, 1}, and set k = (v, ((d1,0, d1,1) , . . . , (dn,0, dn,1))).
Choose u← AdmSample(1λ, Q).

2. On any evaluation query xi ∈ {0, 1}`, check if Pu(xi) = 1.
If not, flip a coin γi ← {0, 1} and abort. A wins if γi = 1.

Else compute h(xi) = bi1 . . . b
i
n and output v

∏
j dj,bi

j .
3. A sends challenge input x∗ such that x∗ 6= xi ∀ i ≤ Q. Check if Pu(x∗) = 0.

If not, flip a coin γ∗ ← {0, 1} and abort. A wins if γ∗ = 1.
Else choose w ← G, a← Z∗N and e′i,b ← ZN .

Let ei,b = e′i,b · a if h(x∗)i = b, else ei,b = e′i,b.

Let k′ = (w, ((e1,0, e1,1), . . . , (en,0, en,1))),Kx∗ ← iO(PuncturedKeyAltu,k,k′,x∗).

Let h(x∗) = b∗1 . . . b
∗
n and y0 = w

∏
j ej,b∗j and y1 ← G.

4. Flip coin β ← {0, 1}. Output (Kx∗ , yβ).
5. A outputs β′ and wins if β = β′.



Game 4 This game is the same as the previous one, except that the altered

punctured program contains the constants {wai

}ni=0 hardwired. These terms are
used to compute the output of the punctured program. The punctured key is an
obfuscation of PuncturedKeyAlt′ defined in Figure 3.

1. Let (N, p, q,G,Gp,Gq, g1, g2) ← G(1λ). Choose v ∈ G, di,b ∈ ZN , for i = 1
to n and b ∈ {0, 1}, and set k = (v, ((d1,0, d1,1) , . . . , (dn,0, dn,1))).
Choose u← AdmSample(1λ, Q).

2. On any evaluation query xi ∈ {0, 1}`, check if Pu(xi) = 1.
If not, flip a coin γi ← {0, 1} and abort. A wins if γi = 1.

Else compute h(xi) = bi1 . . . b
i
n and output v

∏
j dj,bi

j .
3. A sends challenge input x∗ such that x∗ 6= xi ∀ i ≤ Q. Check if Pu(x∗) = 0.

If not, flip a coin γ∗ ← {0, 1} and abort. A wins if γ∗ = 1.
Else choose w ← G, a← Z∗N and e′i,b ← ZN .

Let W = (w,wa, . . . , wa
n−1

), E = ((e′1,0, e
′
1,1), . . . , (e′n,0, e

′
n,1)).

LetK ′′x∗ ← iO(PuncturedKeyAlt′u,W,E,k,x∗), h(x∗) = b∗1 . . . b
∗
n, y0 =

(
wa

n)∏j e
′
j,b∗

j

and y1 ← G.
4. Flip coin β ← {0, 1}. Output (K ′′x∗ , yβ).
5. A outputs β′ and wins if β = β′.

PuncturedKeyAlt′u,W,E,k,x′

Input: x ∈ {0, 1}`

Constants : The group G, k = (v, ((d1,0, d1,1) . . . (dn,0, dn,1))) ∈ G×
(
Z2
N

)n
W = (w0, . . . , wn−1) ∈ Gn, E = ((e′1,0, e

′
1,1), . . . , (e′n,0, e

′
n,1)) ∈

(
Z2
N

)n
x′ ∈ {0, 1}`, u ∈ {0, 1,⊥}n

Compute h(x) = b1 . . . bn and h(x′) = b′1 . . . b
′
n. Let tx′(x) = |{i : bi = b′i}|.

if x = x′ then
Output ⊥.

else if Pu(x) = 0 then

output
(
wtx′ (x)

)∏n
j=1 e′j,bj .

else
Output v

∏n
j=1 dj,bj .

end if

Fig. 3. Program PuncturedKeyAlt’

Game 5 In this game, we replace the term wa
n

with a random element from
G. Hence, both y0 and y1 are random elements of G, thereby ensuring that any
adversary has zero advantage in this game.



1. Let (N, p, q,G,Gp,Gq, g1, g2) ← G(1λ). Choose v ∈ G, di,b ∈ ZN , for i = 1
to n and b ∈ {0, 1}, and set k = (v, ((d1,0, d1,1) , . . . , (dn,0, dn,1))).
Choose u← AdmSample(1λ, Q).

2. On any evaluation query xi ∈ {0, 1}`, check if Pu(xi) = 1.
If not, flip a coin γi ← {0, 1} and abort. A wins if γi = 1.

Else compute h(xi) = bi1 . . . b
i
n and output v

∏n
j=1 dj,bi

j .
3. A sends challenge input x∗ such that x∗ 6= xi ∀ i ≤ Q. Check if Pu(x∗) = 0.

If not, flip a coin γ∗ ← {0, 1} and abort. A wins if γ∗ = 1.

Else choose w ← G, a ← Z∗N , and e′i,b ← ZN . Let W = (w,wa, . . . , wa
n−1

),

E = ((e′1,0, e
′
1,1), . . . , (e′n,0, e

′
n,1)) andKx∗ ← iO(λ,PuncturedKeyAlt′u,W,E,k,x∗).

Let h(x∗) = b∗1 . . . b
∗
n. Choose T ← G and let y0 = (T )

∏n
j=1 e

′
j,b∗

j and y1 ← G.
4. Flip coin β ← {0, 1}. Output (Kx∗ , yβ).
5. A outputs β′ and wins if β = β′.

Adversary’s Advantage in these Games Let AdviA denote the advantage
of adversary A in Game i. We will now show that if an adversary A has non-
negligible advantage in Game i, then A has non-negligible advantage in Game
i+ 1. Finally, we show that A has advantage 0 in Game 5.

Claim 1 For any adversary A, Adv1A ≥ Adv0A/θ(Q).

Proof. This claim follows from the θ-admissibility of the hash function h. Recall
h is θ-admissible if for all x1, . . . , xq, x

∗, Pr[ ∀i, Pu(xi) = 1 ∧ Pu(x∗) = 0] ≥
1/θ(Q), where the probability is only over the choice of u← AdmSample(1λ, Q).
Therefore, if A wins with advantage ε in Game 0, then A wins with advantage
at least ε/θ(Q) in Game 1.

Claim 2 Assuming iO is a secure indistinguishability obfuscator and the Sub-
group Hiding Assumption holds, for any PPT adversary A,

Adv1A − Adv2A ≤ negl(λ).

Clearly, the two programs in Game 1 and Game 2 are functionally different
(they differ on ‘challenge partition’ inputs x where Pu(x) = 0), and therefore
the proof of this claim involves multiple intermediate experiments. In the first
hybrid experiment, we transform the program such that the program computes
the output in a different manner, although the output is the same as in the
original program. Next, the constants hardwired in the modified program are
modified such that the output changes on all ‘challenge partition’ inputs (this
step uses Assumption 2). Essentially, both programs use a different base for the
challenge partition inputs. Next, using Subgroup Hiding Assumption and Chi-
nese Remainder Theorem, even the exponents can be changed for the challenge
partition, thereby ensuring that the original program and final program use dif-
ferent PRF keys for the challenge partition. The formal proof can be found in
full version of this paper.



Claim 3 For any PPT adversary A, Adv3A = Adv2A.

Proof. Game 2 and Game 3 are identical, except for the manner in which the
constants ei,b are chosen. In Game 2, ei,b ← ZN , while in Game 3, the challenger
first chooses e′i,b ← ZN , a ← Z∗N , and sets ei,b = e′i,b · a if h(x)i = b, else sets
ei,b = e′i,b. Since a ∈ Z∗N (and therefore is invertible), e′i,b · a is also a uniformly
random element in ZN if e′i,b is. Hence the two experiments are identical.

Claim 4 If there exists a PPT adversary A such that Adv3A − Adv4A is non-
negligible in λ, then there exists a PPT distinguisher B that breaks the security
of iO with advantage non-negligible in λ.

Proof. Suppose there exists a PPT adversary A such that Adv3A−Adv4A = ε. We
will construct a PPT algorithm B that breaks the security of iO with advantage
ε by interacting with A. B first sets up the parameters, including u and k, and
answers the evaluation queries of A exactly as in steps 1 and 2 of Game 3, which
are identical to steps 1 and 2 of Game 4. When A sends B a challenge input x∗,
B checks that Pu(x∗) = 0 and if not aborts (identical in both games).

Next B chooses further values to construct the circuits: w ← G, a ← Z∗N
and e′i,b ← ZN . Let ei,b = e′i,b · a if h(x∗)i = b, else ei,b = e′i,b. Let k′ =

(w, ((e1,0, e1,1), . . . , (en,0, en,1))), W = (w,wa, . . . , wa
n−1

) and E = ((e′1,0, e
′
1,1),

. . . , (e′n,0, e
′
n,1)).

B constructs C0 = PuncturedKeyAltu,k,k′,x∗ , C1 = PuncturedKeyAlt′u,W,E,k,x∗ ,
and sends C0, C1 to the iO challenger. B receives Kx∗ ← iO(Cb) from the

challenger. It computes h(x∗) = b∗1 . . . b
∗
n, y0 = w

∏
j ej,b∗j , y ← G, β ← {0, 1},

sends (Kx∗ , yβ) to A and receives β′ in response. If β = β′, B outputs 0, else it
outputs 1.

We will now prove that the circuits C0 and C1 have identical functionality.
Consider any ` bit string x, and let h(x) = b1 . . . bn. Recall tx∗(x) = |{i : bi =
b∗i }|.

For any x ∈ {0, 1}` such that x = x∗, both circuits output ⊥.
For any x ∈ {0, 1}` such that x 6= x∗ and Pu(x) = 1, both circuits output

v
∏n

j=1 dj,bj .
For any x ∈ {0, 1}` such that x 6= x∗ and Pu(x) = 0, we have

C0(x) = PuncturedKeyAltu,k,k′,x∗(x) = w
∏n

j=1 ej,bj = w
a
tx∗(x)

∏n
j=1 e

′
j,bj =(

wtx∗ (x)
)∏n

j=1 e
′
j,bj = PuncturedKeyAlt′u,W,E,k,x∗(x) = C1(x).

As C0 and C1 have identical functionality, Pr[B wins ] = Pr[A wins in Game 3]
- Pr[A wins in Game 4]. If Adv3A−Adv4A = ε, then B wins the iO security game
with advantage ε.

Claim 5 If there exists a PPT adversary A such that Adv4A − Adv5A is non-
negligible in λ, then there exists a PPT adversary B that breaks Assumption 2
with advantage non-negligible in λ.



Proof. Suppose there exists an adversary A such that Adv4A−Adv5A = ε, then we
can build an adversary that breaks Assumption 2 with advantage ε. The games
are identical except that Game 5 replaces the term wa

n

with a random element
of G. On input an Assumption 2 instance (N,G,Gp,Gq, g1, g2, w, wa, . . ., wa

n−1

)
together with challenge value T (which is either wa

n

or a random element in G),
use these parameters as in Game 5 with A. If A guesses it was in Game 4, guess
that T = wa

n

, else guess that T was random.

Observation 1 For any adversary A, Adv5A = 0.

Proof. If the challenger aborts either during the evaluation or challenge phase,
then A has 0 advantage, since A wins with probability 1/2. If the challenger does
not abort during both these phases, then A receives (Kx∗ , yβ), and A must guess
β. However, both y0 and y1 are uniformly random elements in G, and therefore,
Adv5A = 0.

Conclusion of the Main Proof Given Claims 1-5 and Observation 1, we can
conclude that if iO is a secure indistinguishability obfuscator and Assumption
1 holds (in the full version of this paper, we show that Assumption 1 implies
Assumption 2), then any PPT adversary A has negligible advantage in the punc-
turable PRF security game (i.e., Game 0).

5 t-Puncturable PRFs

Let t(·) be a polynomial. A PRF Ft : K×X → Y is a t-puncturable pseudoran-
dom function if there is an additional key space Kp and three polynomial time
algorithms Ft.setup, Ft.eval and Ft.puncture defined as follows.

– Ft.setup(1λ) is a randomized algorithm that takes the security parameter λ
as input and outputs a description of the key space K, the punctured key
space Kp and the PRF Ft.

– Ft.puncture(k, S) is a randomized algorithm that takes as input a PRF key
k ∈ K and S ⊂ X , |S| ≤ t(λ), and outputs a t-punctured key KS ∈ Kp.

– Ft.eval(kS , x
′) is a deterministic algorithm that takes as input a t-punctured

key kS ∈ Kp and x′ ∈ X . Let k ∈ K, S ⊂ X and kS ← Ft.puncture(k, S).
For correctness, we need the following property:

Ft.eval(kS , x
′) =

{
Ft(k, x

′) if x′ /∈ S
⊥ otherwise

The security game between the challenger and adversary is similar to the
security game for puncturable PRFs. However, in this case, the adversary is al-
lowed to make multiple challenge queries (as in the security game for constrained
PRFs). The game consists of the following three phases.

Setup Phase The challenger chooses a random key k ← K and b← {0, 1}.



Query Phase In this phase, A is allowed to ask for the following queries:

– Evaluation Query A sends x ∈ X , and receives Ft(k, x).
– Key Query A sends a set S ⊂ X , and receives Ft.puncture(k, S).
– Challenge Query A sends x ∈ X as a challenge query. If b = 0, the

challenger outputs Ft(k, x). Else, the challenger outputs a random element
y ← Y.

Guess A outputs a guess b′ of b.

Let x1, . . . , xq1 ∈ X be the evaluation queries, S1, . . . , Sq2 ⊂ X be the t-
punctured key queries and x∗1, . . . , x

∗
s be the challenge queries. A wins if ∀i ≤

q1, j ≤ s, xi 6= x∗j , ∀i ≤ q2, j ≤ s, x∗j ∈ Si and b′ = b. The advantage of A is

defined to be AdvFt

A (λ) = Pr[A wins].

Definition 5. The PRF Ft is a secure t-puncturable PRF if for all PPT adver-
saries A AdvFt

A (λ) is negligible in λ.

5.1 Construction

In this section, we present our construction of t-puncturable PRFs from punc-
turable PRFs and indistinguishability obfuscation. Let F : K × X → Y be
a puncturable PRF, and F.setup, F.puncture, F.eval the corresponding setup,
puncturing and evaluation algorithms. We now describe our t-puncturable PRF
Ft, and the corresponding algorithms Ft.setup, Ft.puncture and Ft.eval.

Ft.setup(1λ) Ft.setup is the same as F.setup.

Ft.puncture(k,S) Ft.puncture(k, S) computes an obfuscation of the program
PuncturedKeytk,S defined in Figure 4; that is, KS ← iO(λ,PuncturedKeytk,S).
As before, the program PuncturedKeytk,S is padded to be of appropriate size.

PuncturedKeytk,S

Input: x ∈ X

Constants : The function description F, k ∈ K, S ⊂ X such that |S| ≤ t

if x ∈ S then
Output ⊥.

else
Output F (k, x).

end if

Fig. 4. Program PuncturedKeyt



Ft.eval(KS,x) The punctured key KS is a program that takes an input in X .
We define

Ft.eval(KS , x) = KS(x).

5.2 Proof of Security

We will now prove that the above construction is a secure t-puncturable PRF
as defined in Definition 5.

Theorem 3. Assuming iO is a secure indistinguishability obfuscator and F ,
together with F.setup, F.puncture and F.eval is a secure puncturable PRF, the
PRF Ft defined above, together with Ft.setup, Ft.puncture and Ft.eval, is a secure
t-puncturable PRF.

For simplicity, we will assume that the adversary makes q1 evaluation queries,
q2 punctured key queries and 1 challenge query. As shown by [4], this can easily be
extended to the general case of multiple challenge queries via a hybrid argument.
We will first define the intermediate hybrid experiments.

Game 0 This game is the original security game between the challenger and
adversary A, where the challenger first chooses a PRF key, then A makes
evaluation/t-punctured key queries and finally sends the challenge input. The
challenger responds with either the PRF evaluation at challenge input, or sends
a random element of the range space.

1. Choose a key k ← K.
2. A makes evaluation/t-punctured key queries.

(a) If A sends an evaluation query xi, then output F (k, xi).
(b) If A sends a t-punctured key query for set Sj , output the key KSj ←

iO(PuncturedKeytk,Sj
).

3. A sends challenge query x∗ such that x∗ 6= xi ∀i ≤ q1 and x∗ ∈ Sj ∀j ≤ q2.
Choose β ← {0, 1}. If β = 0, output y = F (k, x∗), else output y ← Y.

4. A sends β′ and wins if β = β′.

Game 1 This game is the same as the previous one, except that the challenger
introduces an abort condition. When the first t-punctured key query S1 is made,
the challenger guesses the challenge query x̃← S1. The challenger aborts if any
of the evaluation queries are x̃, if any of the future t-punctured key queries does
not contain x̃ or if the challenge query x∗ 6= x̃.

1. Choose a key k ← K.
2. A makes evaluation/t-punctured key queries.

Let S1 be the first t-punctured key query. Choose x̃← S1 and output key
KS1

← iO(λ,PuncturedKeytk,S1
). For all evaluation queries xi before S1,

output F (k, xi).
For all queries after S1, do the following.



(a) If A sends an evaluation query xi and xi = x̃, abort.

Choose γ1i ← {0, 1}. A wins if γ1i = 1.

Else if xi 6= x̃, output F (k, xi).
(b) If A sends a t-punctured key query for set Sj and x̃ /∈ Sj , abort.

Choose γ2i ← {0, 1}. A wins if γ2i = 1.

Else if x̃ ∈ Sj , output KSj ← iO(λ,PuncturedKeytk,Sj
).

3. A sends challenge query x∗ such that x∗ 6= xi ∀i ≤ q1 and x∗ ∈ Sj ∀j ≤ q2.
If x̃ 6= x∗, abort. Choose γ∗ ← {0, 1}. A wins if γ∗ = 1.
Else if x̃ = x∗, choose β ← {0, 1}. If β = 0, output y = F (k, x∗), else output
y ← Y.

4. A sends β′ and wins if β = β′.

Next, we define q2 games, Game 1l, 1 ≤ l ≤ q2. Let Game 10 = Game 1.

Game 1l In this game, the first l punctured key queries use Kx̃, while the
remaining use k.

1. Choose a key k ← K.
2. A makes evaluation/t-punctured key queries.

Let S1 be the first t-punctured key query. Choose x̃← S1.
Compute Kx̃ ← F.puncture(k, x̃).

Output KS1
← iO(λ,PuncturedKeyAlttKx̃,S1

) (where PuncturedKeyAltt is de-

fined in Figure 5).
For all evaluation queries xi before S1, output F (k, xi).
For all queries after S1, do the following.
(a) If A sends an evaluation query xi and xi = x̃, abort. Choose γ1i ← {0, 1}.
A wins if γ1i = 1.
Else if xi 6= x̃, output F.eval(Kx̃, xi) = F (k, xi).

(b) If A sends a t-punctured key query for set Sj and x̃ /∈ Sj , abort. Choose
γ2i ← {0, 1}. A wins if γ2i = 1.
Else if x̃ ∈ Sj and j ≤ l, output KSj

← iO(λ,PuncturedKeyAlttKx̃,Sj
).

Else output KSj
← iO(λ,PuncturedKeytk,Sj

).

3. A sends challenge query x∗ such that x∗ 6= xi ∀i ≤ q1 and x∗ ∈ Sj ∀j ≤ q2.
If x̃ 6= x∗, abort. Choose γ∗ ← {0, 1}. A wins if γ∗ = 1.
Else if x̃ = x∗, choose β ← {0, 1}. If β = 0, output y = F (k, x∗), else output
y ← Y.

4. A sends β′ and wins if β = β′.

Game 2 In this game, the challenger outputs a random element as the response
to the challenge query.

1. Choose a key k ← K.
2. A makes evaluation/t-punctured key queries.

Let S1 be the first t-punctured key query. Choose x̃ ← S1 and compute



PuncturedKeyAlttKx̃,S

Input: x ∈ X

Constants : The function description F,Kx̃, S ⊂ X such that |S| ≤ t

if x ∈ S then
Output ⊥.

else
Output F.eval(Kx̃, x).

end if

Fig. 5. Program PuncturedKeyAltt

Kx̃ ← F.puncture(k, x̃).
Output KS1

← iO(λ,PuncturedKeyAlttKx̃,S1
).

For all evaluation queries xi before S1, output F (k, xi).
For all queries after S1, do the following.
(a) If A sends an evaluation query xi and xi = x̃, abort. Choose γ1i ← {0, 1}.
A wins if γ1i = 1.
Else if xi 6= x̃, output F.eval(Kx̃, xi) = F (k, xi).

(b) If A sends a t-punctured key query for set Sj and x̃ /∈ Sj , abort. Choose
γ2i ← {0, 1}. A wins if γ2i = 1.
Else if x̃ ∈ Sj , output KSj

← iO(λ,PuncturedKeyAlttKx̃,Sj
).

3. A sends challenge query x∗ such that x∗ 6= xi ∀i ≤ q1 and x∗ ∈ Sj ∀j ≤ q2.
If x̃ 6= x∗, abort. Choose γ∗ ← {0, 1}. A wins if γ∗ = 1.
Else if x̃ = x∗, choose β ← {0, 1} and output y ← Y.

4. A sends β′ and wins if β = β′.

Adversary’s Advantage in these Games Let AdviA denote the advantage
of adversary A in Game i.

Observation 2 For any adversary A, Adv1A ≥ Adv0A/t.

Proof. Since one of the elements of S1 will be the challenge input, and |S1| ≤ t,
the challenger’s guess is correct with probability 1/|S1| ≥ 1/t. Hence, Adv1A ≥
Adv0A/t.

We will now show that Game 1l and Game 1l+1 are computationally indis-
tinguishable, assuming iO is secure.

Claim 6 If there exists a PPT adversary A such that Adv1lA − Adv
1l+1

A is non-
negligible in λ, then there exists a PPT distinguisher B that breaks the security
of iO with advantage non-negligible in λ.

Proof. Note that the only difference between Game 1l and Game 1l+1 is in the
response to the (l+1)th t-punctured key query. In Game 1l, PuncturedKey

t
k,Sl+1



is used to compute KSl+1
, while in Game 1l+1, PuncturedKeyAlttKs̃,Sl+1

is used.

Suppose there exists a PPT adversary A such that Adv1lA −Adv
1l+1

A = ε. We will
construct a PPT algorithm B that interacts with A and breaks the security of
iO with advantage ε.
B chooses k ← K and for all evaluation queries xi before the first t-punctured

key query, outputs F (k, xi). On receiving the first t-punctured key query S1, B
chooses x̃ ← S1 and computes Kx̃ ← F.puncture(k, x̃). The evaluation queries
are computed as in Game 1l and 1l+1. The first l t-punctured key queries are
constructed using k, while the last q2 − l − 1 t-punctured keys are constructed
using Kx̃ (as in Game 1l and Game 1l+1). For the (l + 1)th query, B does the
following. B sets C0 = PuncturedKeytk,Sl+1

and C1 = PuncturedKeyAlttKx̃,Sl+1
,

and sends C0, C1 to the iO challenger, and receives KSl+1
in response, which it

sends to A.
Finally, after all queries, the challenger sends the challenge query x∗. B checks

that x̃ = x∗, sets y0 = F (k, x∗) and chooses y1 ← Y, β ← {0, 1}. It outputs yβ
and receives β′ in response. If β = β′, B outputs 0, else it outputs 1.

From the correctness property of puncturable PRFs, it follows that F.eval(Kx̃, x)
= F (k, x) for all x /∈ Sl+1. Hence, the circuits C0 and C1 are functionally iden-
tical. This completes our proof.

Next, we show that Game 1q2 and Game 2 are computationally indistinguishable.

Claim 7 If there exists a PPT adversary A such that Adv
1q2
A − Adv2A is non-

negligible in λ, then there exists a PPT distinguisher B that breaks the security
of puncturable PRF F with advantage non-negligible in λ.

Proof. We will use A to construct a PPT algorithm B that breaks the security

of puncturable PRF F with advantage Adv
1q2
A − Adv2A. Observe that in Game

1q2 , the challenger requires the master key k only for the evaluation queries
before the first t-punctured key query. After the first t-punctured key query S1,
the challenger chooses x̃← S1, computes a punctured key Kx̃, and uses this to
compute all future evaluation queries and t-punctured keys.
B begins interacting with A. For each evaluation query xi before the first t-

punctured key query, B sends xi to the puncturable PRF challenger, and receives
yi, which it forwards to A. On receiving the first t-punctured key query S1,
B chooses x̃ ← S1 and sends x̃ as challenge input to the puncturable PRF
challenger. B receives Kx̃ and y. It uses Kx̃ for all remaining queries. On receiving
challenge x∗ from A, B checks x∗ = x̃ and sends y. B sends A’s response to the
PRF challenger.

Note that until the challenge query is made, both games are identical and B
simulates them perfectly. If y is truly random, then A receives a response as per
Game 2, else it receives a response as per Game 1q2 .

Finally, we have the following simple observation.

Observation 3 For any adversary, Adv3A = 0.



From the above claims and observations, we can conclude that if iO is a
secure indistinguishability obfuscator as per Definition 2, and F , together with
F.setup, F.puncture, F.eval is a secure puncturable PRF as per Definition 4, then
any PPT adversary A has negligible advantage in Game 0.

6 Conclusion

Puncturable and t-puncturable PRFs have numerous cryptographic applications.
This work provides the first constructions and proofs of adaptive security in the
standard model. This is an interesting step forward in its own right, and we
believe the techniques used to achieve adaptiveness from indistinguishability
obfuscation may be useful elsewhere. Moreover, this work resolves for at least
the puncturable PRF space, the larger question of characterizing which classes
of functions admit an adaptively-secure constrained PRF in the standard model.
As noted earlier, the results of [11] and [16] provide intuition both for and against
whether this is indeed possible for many other function families.
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