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Abstract. We introduce a novel concept of dual-system simulation-
sound non-interactive zero-knowledge (NIZK) proofs. Dual-system NIZK
proof system can be seen as a two-tier proof system. As opposed to the
usual notion of zero-knowledge proofs, dual-system defines an intermedi-
ate partial-simulation world, where the proof simulator may have access
to additional auxiliary information about the word, for example a mem-
bership bit, and simulation of proofs is only guaranteed if the membership
bit is correct. Further, dual-system NIZK proofs allow a quasi-adaptive
setting where the CRS can be generated based on language parameters.
This allows for the further possibility that the partial-world CRS sim-
ulator may have access to additional trapdoors related to the language
parameters. We show that for important hard languages like the Diffie-
Hellman language, such dual-system proof systems can be given which
allow unbounded partial simulation soundness, and which further al-
low transition between partial simulation world and single-theorem full
simulation world even when proofs are sought on non-members. The
construction is surprisingly simple, involving only two additional group
elements for general linear-subspace languages in asymmetric bilinear
pairing groups.
As a direct application we give a short keyed-homomorphic CCA-secure
encryption scheme. The ciphertext in this scheme consists of only six
group elements (under the SXDH assumption) and the security reduc-
tion is tight. An earlier scheme of Libert et al based on their efficient
unbounded simulation-sound QA-NIZK proofs only provided a loose se-
curity reduction, and further had ciphertexts almost twice as long as
ours.
We also show a single-round universally-composable password authenti-
cated key-exchange (UC-PAKE) protocol which is secure under adaptive
corruption in the erasure model. The single message flow only requires
four group elements under the SXDH assumption. This is the shortest
known UC-PAKE even without considering adaptive corruption. The lat-
est published scheme which considered adaptive corruption, by Abdalla
et al [ABB+13], required non-constant (more than 10 times the bit-size
of the password) number of group elements.

Keywords: NIZK, bilinear pairings, UC-PAKE, keyed-homomorphic encryp-
tion, SXDH.



1 Introduction

Since the introduction of simulation-sound non-interactive zero-knowledge proofs
(NIZK) in [Sah99] (based on the concept of non-malleability [DDN91]), simu-
lation-soundness has become an essential cryptographic tool. While the idea of
zero-knowledge simulation [GMR89] brought rigor to the concept of semantic
security, simulation-soundness of some form is usually implicit in most crypto-
graphic applications. While the original construction of [Sah99] was rather inef-
ficient, the advent of pairing based cryptography, and in particular Groth-Sahai
NIZK proofs [GS08], has led to much more efficient simulation-sound NIZK con-
structions. Pairing-based cryptography has also led to efficient construction of
powerful primitives where simulation-soundness is not very explicit.

It has been shown that different forms of simulation-soundness suffice for
many applications. Indeed, the original application (CCA2-secure encryption)
considered in [Sah99] only required what is known as single-theorem simulation-
soundness (also known as one-time simulation-soundness). However, many other
cryptographic constructions are known only using unbounded simulation-sound
NIZK proofs. In this paper, we introduce the concept of dual-system sim-
ulation-sound NIZK proofs, which lie somewhere in between one-time and
unbounded simulation-sound NIZK proofs. The aim is to show that this weaker
concept suffices for constructions where unbounded simulation-soundness was
being used till now. We also show that in many applications this new concept
of dual-system simulation soundness is implicit, in the sense that although we
cannot get a generic construction from a NIZK proof, we can use the underlying
ideas of the dual-system simulation-sound NIZK proofs.

Indeed, our novel definition is inspired by the dual-system identity-based en-
cryption (IBE) scheme of Waters [Wat09], where such a concept was implicit,
and led to the first IBE scheme which was fully-secure under static and stan-
dard assumptions. So without further ado, we jump straight into the main idea
of the new concept. In dual-system simulation-sound NIZK proof systems we
will consider three worlds: the real-world, the partial-simulation world, and the
one-time full-simulation world. The real world consists of a common-reference
string (CRS), an efficient prover P, and an efficient verifier V. The concept of
completeness and soundness of P and V with respect to a witness-relation R is
well-understood. The full-simulation world is also standard, and it includes two
simulators: a CRS simulator and a proof simulator. The proof simulator is a
zero-knowledge simulator in the sense that it can simulate proofs even without
access to the witness. In order to achieve this, the CRS simulator generates the
CRS in a potentially different way and produces a trapdoor for the proof sim-
ulator. The partial-simulation world we consider also has a CRS simulator,
and a proof simulator, but this proof simulator is allowed partial access to the
witness (or some other auxiliary information) about the member on which the
proof is sought.

At this point, we also bring in the possibility of the CRS being generated as
a function of the language or witness-relation under consideration. The recent
quasi-adaptive NIZK (QA-NIZK) proofs of [JR13] allow this possibility for dis-



tributions of witness-relations. The CRS in the real and the full-simulation world
is generated based on a language parameter generated according to some dis-
tribution. Now we consider the possibility that in the partial-simulation world,
the CRS simulator actually generates the language parameter itself. In other
words, the CRS simulator has access to the “witness” of the language parame-
ter. For example, the CRS simulator may know the discrete-logs of the language
parameters. This leads to the possibility that in the partial simulation world the
proof simulator may have access to additional trapdoors which makes simulation
and/or simulation soundness easier to achieve.

In this paper, we will only define and consider dual-system simulation sound
QA-NIZK proofs (called DSS-QA-NIZK), where the only auxiliary information
that the partial proof simulator gets is a single bit which is called the member-
ship bit. The membership bit indicates whether the word on which the proof is
sought is in the language or not. We show that we can achieve unbounded partial-
simulation soundness for important languages like the Diffie-Hellman language
by relatively simple constructions. The constructions also allow one-time full-ZK
simulation, and hence form a DSS-QA-NIZK for the Diffie-Hellman language. We
actually give a general construction for arbitrary languages which allow smooth
and universal2 projective hash proofs [CS02] and have QA-NIZKs for the lan-
guage augmented with such a hash proof. We show that for linear subspace
languages (over bilinear groups), like the Diffie-Hellman and decisional-linear
(DLIN) languages, the requirements for the general construction are easy to
obtain. Thus, for all such languages, under the standard and static SXDH as-
sumption in bilinear pairing groups, we get a DSS-QA-NIZK proof of only two
group elements.

Table 1 summarizes comparison among existing schemes and ours. DSS is
weaker than unbounded simulation soundness, and although incomparable with
one time simulation soundness, it seems to enjoy better properties. Consis-
tent with this, we observe that the proof sizes also place in the middle of
the shortest known OTSS-NIZKs [ABP15,KW15] and the shortest known USS-
NIZKs [KW15] for linear subspaces.

Applications. We now give the main idea as to why such a construction is use-
ful. The security of most applications is shown by reduction to a hard language.
However, a particular application may have a more complex language for which
the NIZK proofs are required, and the security proof may require soundness of
the NIZK system while proofs of many elements (real or fake) of such a complex
language are being simulated. The idea is that multiple simulations of such ele-
ments can be performed in a partial-simulation manner (i.e. it is always possible
to supply the correct membership-bit), and full simulation is only required of
one member at a time, on which the hardness assumption can then be invoked.

Keyed-Homomorphic CCA-secure Encryption. As a first application we consider
the keyed-homomorphic CCA-secure encryption scheme notion of [EHO+13]. In
such an encryption scheme, a further functionality called Eval is available which



Table 1. Comparison with existing NIZK schemes for linear subspaces with table
adapted from [KW15]. The language of interest is a t dimensional subspace of an n
dimensional ambient space. m is the bit-size of the tag. AS is adaptive-soundness.
OTSS is one-time simulation-soundness and USS is unbounded simulation-soundness.

Soundness Assumption Proof CRS #pairings

[GS08] AS DLIN 2n+ 3t 6 3n(t+ 3)
[LPJY14] AS DLIN 3 2n+ 3t+ 3 2n+ 4
[JR13] AS k-Linear k(n− t) 2kt(n− t) + k + 1 k(n− t)(t+ 2)
[JR14a] AS k-Linear k kn+ kt+ k2 kn+ k2

[ABP15] AS k-Linear k kn+ kt+ k kn+ k
[KW15] AS k-Linear k kn+ kt+ k − 1 kn+ k − 1

[ABP15] OTSS k-Linear k 2m(kn+ (k + 1)t) + k mkn+ k
[KW15] OTSS k-Linear k 2m(kn+ (k + 1)t)+k−1 mkn+k−1

This paper DSS k-Linear k + 1 k(n+ 1) + kt+ k2 k(n+ 1) + k2

[CCS09] USS DLIN 2n+ 6t+ 52 18 O(tn)
[LPJY14] USS DLIN 20 2n+ 3t+ 3m+ 10 2n+ 30
[KW15] USS k-Linear 2k + 2 kn+ 4(k + t+ 1)k + 2k k(n+ k + 1) + k

using a key can homomorphically combine valid ciphertexts. The scheme should
provide IND-CCA2 security when this Eval key is unavailable to the adversary,
and should continue to enjoy IND-CCA1 security when the Eval key is exposed
to the adversary. Emura et al. also gave constructions for such a scheme, albeit
schemes which are not publicly verifiable, and further satisfying a weaker notion
than CCA1-security when Eval key is revealed. Recently, Libert et al gave a
publicly-verifiable construction which is more efficient and also CCA1-secure
when Eval key is revealed. Their construction is based on a new and improved
unbounded simulation-sound QA-NIZK for linear subspace languages. We show
in this paper that a DSS-QA-NIZK for the Diffie-Hellman language suffice, and
leads to a much improved construction. While the construction in [LPJY14],
under the SXDH assumption, requires nine group elements in one group, and
two more in the other plus a one-time signature key pair, our construction only
requires six group elements in any one of the bilinear groups. Further, while the
earlier construction was loose (i.e. loses a factor quadratic in number of Eval
calls), our reduction is tight.

UC Password-Authenticated Key Exchange (UC-PAKE). The UC-PAKE ideal
functionality was introduced in [CHK+05] where they also gave a three-round
construction. In [KV11] a single-round construction for UC-PAKE was given
using Groth-Sahai NIZK proofs along with unbounded simulation-soundness
construction of [CCS09] (also see [JR12]). Later [BBC+13] gave a UC-PAKE
construction based on novel trapdoor smooth projective hash functions, but se-
cure only under static corruption; each message consisted of six group elements
in one group, and another five elements in the other group (under the SXDH
assumption).

In this paper, we construct a a single-round construction based on dual-
system simulation-soundness which is UC-secure under adaptive corruption (in
the erasure model), and which has only a total of four group elements in each



message. The key is generated in the target group. The construction is not a
black-box application of the DSS-QA-NIZK for the Diffie-Hellman language,
but uses its underlying idea as well as the various component algorithms of the
DSS-QA-NIZK. The main idea of the construction is given in more detail in
Section 6.2.

To the best of our knowledge, this is the shortest known UC-PAKE, even
without considering adaptive corruption. The first UC-PAKE to consider adap-
tive corruption was by Abdalla, Chevalier and Pointcheval [ACP09], which was
a two round construction. Recently, Abdalla et al [ABB+13] also constructed a
single round protocol, which required a non-constant (more than 10 times the
bit-size of the password) number of group elements in each flow. Comparison
with existing UC-PAKEs is given in Table 2.

Table 2. Comparison with existing UC-PAKE schemes. m is the password size in bits
and λ is the security parameter. AC stands for Adaptive Corruption. For one-round
schemes, message size is per flow.

AC One-round Assumption Message size

[ACP09] yes no DDH O(mλ)
[KV11] no yes DLIN > 65×G
[JR12] no yes SXDH > 30 total group elements
[BBC+13] no yes SXDH 6×G1 + 5×G2

[ABB+13] yes yes SXDH 10 ∗m×G1 +m×G2

This paper yes yes SXDH 3×G1 + 1×G2

Identity-Based Encryption (IBE). In the full version of this paper [JR14b], we
show that the recent efficient dual-system IBE [JR13] (inspired by the original
dual-system IBE of Waters [Wat09]) can also be obtained using the ideas of
DSS-QA-NIZK. While the construction is not black-box and utilizes additional
“smoothness” and “single-pairing-product test” properties of the verifier, it along
with the other two applications clearly demonstrate the power and utility of the
new notion, which we expect will find many more applications.

2 Preliminaries: Quasi-Adaptive NIZK Proofs

A witness relation is a binary relation on pairs of inputs, the first called a word
and the second called a witness. Note that each witness relation R defines a
corresponding language L which is the set of all x for which there exists a
witness w, such that R(x,w) holds.

We will consider Quasi-Adaptive NIZK proofs [JR13] for a probability distri-
bution D on a collection of (witness-) relations R = {Rρ} (with corresponding
languages Lρ). Recall that in a quasi-adaptive NIZK, the CRS can be set after
the language parameter has been chosen according to D. Please refer to [JR13]
for detailed definitions.



Definition 1. ([JR13]) We call (pargen, crsgen, prover, ver) a (labeled) quasi-
adaptive non-interactive zero-knowledge (QA-NIZK) proof system for witness-
relations Rλ = {Rρ} with parameters sampled from a distribution D over asso-
ciated parameter language Lpar, if there exist simulators crs-sim, sim such that
for all non-uniform PPT adversaries A1,A2,A3 we have (in all of the following
probabilistic experiments, the experiment starts by setting λ as λ← pargen(1m),
and choosing ρ as ρ← Dλ):

Quasi-Adaptive Completeness:

Pr

[
crs← crsgen(λ, ρ); (x,w, l)← A1(crs, ρ);

π ← prover(crs, x, w, l) : ver(crs, x, l , π) = 1 if Rρ(x,w)

]
= 1

Quasi-Adaptive Soundness:
Pr[crs←crsgen(λ, ρ); (x, l , π)← A2(crs, ρ) : x 6∈ Lρ ∧ ver(crs, x, l , π) = 1] ≈ 0

Quasi-Adaptive Zero-Knowledge:

Pr[crs← crsgen(λ, ρ) : Aprover(crs,·,·,·)3 (crs, ρ) = 1] ≈
Pr[(crs, trap)← crs-sim(λ, ρ) : Asim

∗
(crs,trap,·,·,·)

3 (crs, ρ) = 1],
where sim∗(crs, trap, x, w, l) = sim(crs, trap, x, l) for (x,w) ∈ Rρ and both
oracles (i.e. prover and sim∗) output failure if (x,w) 6∈ Rρ.

The QA-NIZK is called a statistical zero-knowledge QA-NIZK if the view of
adversary A3 above in the two experiments is statistically indistinguishable.

3 Dual-System Simulation-Soundness

To define dual-system simulation soundness of QA-NIZK proofs, we will con-
sider three worlds: the real-world, the partial-simulation world, and the one-
time (or single theorem) full-simulation world. While the real-world and the
full-simulation world should be familiar from earlier definitions of NIZK proof
systems, the partial-simulation world leads to interesting possibilities. To start
with, in the partial simulation world, one would like the proof simulator to have
access to partial or complete witness of the word3. Finally, in the quasi-adaptive
setting, the language parameters may actually be generated by the CRS simu-
lator and hence the simulator may have access to, say, the discrete logs of the
language parameters, which can serve as further trapdoors.

Rather than considering these general settings, we focus on a simple partial-
simulation setting, where (a) the CRS simulator can generate the language pa-
rameters itself and (b) the proof simulator when invoked with a word x is given
an additional bit β, which we call the membership bit, that represents the
information whether x is indeed a member or not.

3 In case the proof simulator is being invoked on a non-language word, it is not im-
mediately clear what this witness can be, unless we also define a language and a
distribution for a super-language which includes the language under consideration
as a subset.



The partial simulation world is required to be unbounded simulation-sound,
and hopefully this should be easier to prove than usual unbounded simulation-
soundness (given that its simulators have additional information). We also allow
the partial simulation world to be sound with respect to a private verifier (this
concept has been considered earlier in [JR12]), and this further leads to the pos-
sibility of easier and/or simpler constructions. A surprising property achievable
under such a definition is that one can go back and forth between the partial-
simulation world and the one-time full-simulation world even when simulating
fake tuples.

Definition 2 (Dual-System Non-Interactive Proofs). A Dual-system non-
interactive proof system consists of PPT algorithms defined in three worlds as
follows:

Real World consisting of:

– A pair of CRS generators (K0,K1), where K0 takes a unary string and
produces an ensemble parameter λ. (The ensemble parameter λ is used to
sample a witness-relation parameter ρ using Dλ in the security definition.)
PPT algorithm K1 uses ρ (and λ) to produce the real-world CRS ψ.

– A prover P that takes as input a CRS, a language member and its witness,
a label, and produces a proof.

– A verifier V that takes as input a CRS, a word, a label, and a proof, and
outputs a single bit.

Partial-Simulation World consisting of:

– A semi-functional CRS simulator sfK1 that takes ensemble parameter λ
as input and produces a witness relation parameter ρ, a semi-functional CRS
σ, as well as two trapdoors τ and η. The first trapdoor is used by the proof
simulator, and the second by the private verifier.

– A semi-functional simulator sfSim that takes a CRS, a trapdoor τ , a word,
a membership-bit β, and a label, to produce a proof.

– A private verifier pV that takes a CRS, a trapdoor η, a word, a label, and
a proof and outputs a single bit.

One-time Full Simulation World consisting of:

– A one-time full-simulation CRS generator otfK1, that takes as input
the ensemble parameter λ, the witness relation parameter ρ to produce a CRS
and three trapdoors τ , τ1 and η.

– A one-time full simulator otfSim that takes as input a CRS, a trapdoor
τ1, a word, a label, and produces a proof4.

4 We remark here that the One-time Full Simulation World also uses a semi-functional
simulator as can be seen in Figure 1. It has the same black-box properties as in the
Partial-Simulation World, but could potentially have a different internal construc-
tion. In this paper it turns out that the same construction suffices for both the
worlds, so for the sake of simplicity we forgo making this explicit in the definition.



– A semi-functional verifier sfV that takes as input a CRS, a trapdoor η, a
word, a label, a proof and outputs a bit. The adversaries also have access to
the semi-functional simulator.

Definition 3 (DSS-QA-NIZK). The definition of the real-world components
of a dual-system non-interactive proof to be complete and (computationally)
sound are same as in QA-NIZK definition 1. Such a proof system is called a
dual-system simulation-sound quasi-adaptive NIZK (DSS-QA-NIZK)
for a collection of witness relations Rλ = {Rρ}, with parameters sampled from a
distribution D, if its real-world components are complete and (computationally)
sound, and if for all non-uniform PPT adversaries A = (A0,A1,A2,A3,A4)
all of the following properties are satisfied (in all of the following probabilistic
experiments, the experiment starts by setting λ as λ← K0(1m)):

• (Composable) Partial-ZK:

Pr[ρ← Dλ;σ ← K1(λ, ρ) : A0(σ, ρ) = 1] ≈
Pr[(ρ, σ, τ, η)← sfK1(λ) : A0(σ, ρ) = 1],

and

Pr[(ρ, σ, τ, η)← sfK1(λ) : A P(σ,·,·,·), sfSim(σ,τ,·,·,·), V(σ,·,·,·)
1 (σ, ρ) = 1] ≈

Pr[(ρ, σ, τ, η)← sfK1(λ) : A sfSim∗(σ,τ,·,·,·), sfSim(σ,τ,·,·,·), pV(σ,η,·,·,·)
1 (σ, ρ) = 1],

where sfSim∗(σ, τ, x, w, l) is defined to be sfSim(σ, τ, x, β = 1, l) (i.e. witness is
dropped, and membership-bit β = 1), and the experiment aborts if either a call
to the first oracle (i.e. P and sfSim∗) is with (x,w, l) s.t. ¬Rρ(x,w), or call to
the second oracle is with an (x, β, l) s.t. x 6∈ Lρ or β = 0.

• Unbounded Partial-Simulation Soundness:

Pr

[
(ρ, σ, τ, η)← sfK1(λ); (x, l , π)← A sfSim(σ,τ,·,·,·), pV(σ,η,·,·,·)

2 (σ, ρ) :
((x 6∈ Lρ) ∨ V(σ, x, l , π) = 0) ∧ pV(σ, η, x, l , π) = 1

]
≈ 0.

• One-time Full-ZK:

Pr

[
(ρ, σ, τ, η)← sfK1(λ); (x∗, l∗, β∗, s)← A sfSim(σ,τ,·,·,·), pV(σ,η,·,·,·)

3 (σ, ρ);

π∗ ← sfSim(σ, τ, x∗, β∗, l∗) : A sfSim(σ,τ,·,·,·), pV(σ,η,·,·,·)
4 (π∗, s) = 1

]

≈ Pr

 ρ← Dλ; (σ, τ, τ1, η)← otfK1(λ, ρ);

(x∗, l∗, β∗, s)← A sfSim(σ,τ,·,·,·), sfV(σ,η,·,·,·)
3 (σ, ρ);

π∗ ← otfSim(σ, τ1, x
∗, l∗) : A sfSim(σ,τ,·,·,·), sfV(σ,η,·,·,·)

4 (π∗, s) = 1

 ,
where the experiment aborts if either in the call to the first oracle, or in the
(x∗, β∗) produced by A3, the membership-bit provided is not correct for Lρ, or
if 〈x∗, l∗, π∗〉 is queried to sfV/pV. Here s is a state variable.

The three worlds and the properties of a DSS-QA-NIZK are depicted in
Figure 1.



Fig. 1. The three worlds of a DSS-QA-NIZK

Remark 1. In the partial-simulation soundness definition, there is no restriction
of x, l , π being not the same as that obtained from a call to the first oracle sfSim.

Remark 2. Note that in the partial-ZK definition, the calls to the prover are
restricted to ones satisfying the relation. However, the calls to the simulator
sfSim in the one-time full-ZK definition are only restricted to having the correct
membership bit β.

Remark 3. It can be shown that sfSim generated proofs on words (whether
members or not) are accepted by real-world verifier V (with semi-functional
CRS). Of course, the private verifier pV will even reject proofs generated by sfSim
on non-language words. This justifies the name “semi-functional simulator”. See
[JR14b] for a precise claim and proof.

It can also be shown that the semi-functional verifier sfV is still complete, i.e.
it accepts language members and proofs generated on them by P(σ, ·, ·, ·) (with
σ generated by otfK1). As opposed to P and pV, it may no longer be sound.
This justifies the name “semi-functional verifier” a la Waters’ dual-system IBE
construction. However, if the one-time full-ZK property holds statistically, it can
be shown that the semi-functional verifier is sound in the one-time full-simulation
world. See [JR14b] for a precise statement.

Remark 4. The composable partial-ZK and unbounded partial-simulation sound-
ness imply that that the system is true-simulation-sound (cf. true-simulation
extractable [Har11]) w.r.t. the semi-functional simulator, as stated below.



Lemma 1. (true-simulation-soundness) For a DSS-QA-NIZK, for all PPT A,

Pr

[
(ρ, σ, τ, η)← sfK1(λ); (x, l , π)← AsfSim(σ,τ,·,·,·) (σ, ρ) :

(x 6∈ Lρ) ∧ V(σ, x, l , π) = 1

]
≈ 0, where the

experiment aborts if A calls the oracle with some (y, β, l), s.t. y 6∈ Lρ or β = 0.

4 DSS-QA-NIZK for Linear Subspaces

In this section we show that languages that are linear subspaces of vector spaces
of hard bilinear groups have very short dual-system simulation sound QA-NIZK.
In fact, under the Symmetric-eXternal Diffie-Hellman (SXDH) assumption, such
proofs only require two group elements, regardless of the subspace. It was shown
in [JR14a] that such subspaces have a QA-NIZK proof of just one group ele-
ment (under the SXDH assumption). Our construction essentially shows that
with one additional group element, one can make the QA-NIZK dual-system
simulation-sound. We will actually show a more general construction which is
more widely applicable, and does not even refer to bilinear groups or linear sub-
spaces. Informally speaking, the requirement for such a general construction for
parameterized languages is that each language has a 2-universal projective hash
proof system and the augmented language with this hash proof attached has a
QA-NIZK proof system with statistical zero-knowledge. A few other properties
of the QA-NIZK are required for this construction, and we show that such prop-
erties already hold for the construction of [JR14a]. Since for linear subspaces,
2-universal projective hash proofs are rather easy to obtain, the general construc-
tion along with the QA-NIZK of [JR14a] allows us to obtain a short DSS-QA-
NIZK for linear subspaces. Apart from abstracting the main ideas involved in
the DSS-QA-NIZK construction for linear subspaces, the general construction’s
wider applicability also allows us to extend our results to linear subspaces with
tags.

We start this section by briefly reviewing projective hash proofs [CS02], and
their extensions to distributions of languages, as they are extensively used in the
rest of the section.

Projective Hash Proof System. For a language L, let X be a superset of L and
let H = (Hk)k∈K be a collection of (hash) functions indexed by K with domain
X and range another set Π. The hash function family is generalized to a notion
of projective hash function family if there is a set S of projection keys, and a
projection map α : K → S, and further the action of Hk on subset L of X is
completely determined by the projection key α(k). Finally, the projective hash
function family is defined to be ε-universal2 is for all s ∈ S, x, x∗ ∈ X, and
π, π∗ ∈ Π with x 6∈ L ∪ {x∗}, the following holds:

Pr[Hk(x) = π | Hk(x∗) = π∗ ∧ α(k) = s] ≤ ε.

A projective hash function family is called ε-smooth if for all x ∈ X \ L, the
statistical difference between the following two distributions is ε: sample k uni-
formly from K and π′ uniformly from Π; the first distribution is given by the



pair (α(k), Hk(x)) and the second by the pair (α(k), π′). For languages defined
by a witness-relation R, the projective hash proof family constitutes a projective
hash proof system (PHPS) if α, Hk, and another public evaluation function Ĥ
that computes Hk on x ∈ L, given a witness of x and only the projection key
α(k), are all efficiently computable. An efficient algorithm for sampling the key
k ∈ K is also assumed.

The above notions can also incorporate labels. In an extended PHPS, the
hash functions take an additional input called label. The public evaluation al-
gorithm also takes this additional input called label. All the above notions are
now required to hold for each possible value of label. The extended PHPS is now
defined to be ε-universal2 is for all s ∈ S, x, x∗ ∈ X, all labels l and l∗, and
π, π∗ ∈ Π with x 6∈ L and (x, l) 6= (x∗, l∗), the following holds: Pr[Hk(x, l) = π
| Hk(x∗, l∗) = π∗ ∧ α(k) = s] ≤ ε.

Since, we are interested in distributions of languages, we extend the above
definition to distribution of languages. So consider a parametrized class of lan-
guages {Lρ}ρ∈Lpar with the parameters coming from an associated parameter

language Lpar. Assume that all the languages in this collection are subsets of
X. Let H as above be a collection of hash functions from X to Π. We say that
the hash family is a projective hash family if for all Lρ, the action of Hk on
Lρ is determined by α(k). Similarly, the hash family is ε-universal2 (ε-smooth)
for {Lρ}ρ∈Lpar if for all languages Lρ the ε-universal2 (resp. ε-smooth) property

holds.

Intuition for the Construction. The main idea of the construction is to first
attach (as a proof component) a universal2 and smooth projective hash proof
T . The DSS-QA-NIZK is then just (T, π), where π is a QA-NIZK proof of the
original language augmented with hash proof T . So, why should this work? First
note that the smooth projective hash function is a designated-verifier NIZK,
and hence this component T is used in private verification. Secondly, since it
is universal2, its soundness will hold even when the Adversary gets to see the
projection key α(k) plus one possibly fake hash proof (i.e. Hk(x), where x not
in the language).

We will assume in our general construction that the parameterized language is
such that the simulator can sample the language parameters along with auxiliary
information that allows it to easily verify a language member. For example, this
auxiliary information can be discrete logs of the language parameters. The idea of
obtaining partial-ZK and unbounded partial-simulation soundness is then pretty
simple. The proof simulation of T is easy to accomplish given the hash keys and,
crucially, the correct membership-bit. In fact, if the membership-bit is false, T
can just be set randomly (by smoothness). The simulation of π part of the proof
is done using the QA-NIZK simulation trapdoor. The private verification is done
as conjunction of three separate checks: (a) using the auxiliary information, (b)
using the hash proof and (c) using the real-world verifier.

Now, in the one-time full simulation, the auxiliary information is not avail-
able, but the semi-functional verifier can still use hash keys. Further, we can
have one bad use of keys (in full simulation of one proof. Since the oracle calls to



semi-functional simulator sfSim are restricted to having correct membership-bit,
they do not yield any additional information about the hash keys.

Requirements of the General Construction. Consider a parameterized class of
languages {Lρ}ρ∈Lpar, and a probability distribution D on Lpar. Assume that

this class has a projective hash proof system as above. Let Rρ be the corre-
sponding witness relation of Lρ. Now consider the augmented witness-relation
R∗ρ,s defined as follows (for ρ ∈ Lpar and s ∈ S):

R∗ρ,s(〈x, T, l〉, w) ≡ (Rρ(x,w) ∧ T
?
= Ĥ(s, 〈x, l〉, w)).

Note, the witness remains the same for the augmented relation. Since H is a pro-
jective hash function, it follows that for s = α(k), the corresponding augmented

language is L∗ρ,s = {(x, T, l) | x ∈ Lρ ∧ T
?
= Hk(x, l)}. Let the distribution

D′ on pairs (ρ, s) be defined by sampling ρ according to D and sampling k uni-
formly from K, and setting s = α(k). We remark that the language parameters
of the augmented language include projection keys s (instead of keys k) because
it is crucial that the CRS simulator in the quasi-adaptive NIZK gets only the
projection key s (and not k).

We will also assume that the distribution D on Lpar is efficiently witness sam-
plable which is defined by requiring that there are two efficient (probabilistic)
algorithms E1, E2 such that E1 can sample ρ from D along with auxiliary infor-
mation ψ (which can be thought of as witness of ρ in the language Lpar), and
E2 can decide w.h.p. if a word x is in Lρ given ρ and ψ, where the probability
is defined over choice of ρ according to D and the internal coins of E2.

Finally, we need a few additional properties of QA-NIZK proofs (Section 2)
that we now define. We will later show that the single group element QA-NIZK
construction for linear-subspaces of [JR14a] already satisfies these properties.

Definition 4. There are various specializations of QA-NIZK of interest:

– The QA-NIZK (Section 2) is said to have composable zero-knowledge
[GS08] if the CRS are indistinguishable in the real and simulation worlds, and
the simulation is indistinguishable even if the adversary is given the trapdoor.
More precisely, for all PPT adversary A1,A2,

Pr[crs← crsgen(λ, ρ) : A1(crs, ρ) = 1] ≈
Pr[(crs, trap)← crs-sim(λ, ρ): A1(crs, ρ) = 1],

and
Pr[(crs, trap)← crs-sim(λ, ρ) : Aprover(crs,·,·,·)2 (crs, ρ, trap) = 1] ≈
Pr[(crs, trap)← crs-sim(λ, ρ) : Asim

∗
(crs,trap,·,·,·)

2 (crs, ρ, trap) = 1],
where A2 is restricted to calling the oracle only on (x,w, l) with (x,w) ∈ Rρ.

– The QA-NIZK is called true-simulation-sound [Har11] if the verifier is
sound even when an adaptive adversary has access to simulated proofs on
language members. More precisely, for all PPT A,

Pr

[
(crs, trap)← crs-sim(λ, ρ)

(x, l , π)← Asim(crs,trap,·,·)(crs, ρ)
: x 6∈ Lρ ∧ ver(crs, x, l , π) = 1

]
≈ 0,



where the experiment aborts if the oracle is called with some y 6∈ Lρ.

– The simulator is said to generate unique acceptable proofs if for all x, all
labels l , and all proofs π∗,

Pr

[
(crs, trap)← crs-sim(λ, ρ)
π ← sim(crs, trap, x, l)

: (π∗ 6= π) ∧ ver(crs, x, l , π∗) = 1

]
≈ 0.

General Construction. We now show that given:

1. An ε-smooth and ε-universal2 (labeled) projective hash proof system for the
collection {Lρ}ρ∈Lpar, and

2. A composable zero-knowledge, true-simulation-sound QA-NIZK Q= (pargen,
crsgen, prover, ver, crs-sim, sim) for the augmented parameterized language
L∗ρ,s with probability distribution D′, such that the simulator generates
unique acceptable proofs, and

3. Efficient algorithms (E1, E2) s.t. D is efficiently witness-samplable using
(E1, E2), and

4. An efficient algorithm E3 to sample uniformly from Π,

one can construct a DSS-QA-NIZK for {Lρ}ρ∈Lpar with probability distribution

D. We first give the construction, and then prove the required properties. The
QA-NIZK Q need not take any labels as input. The various components of the
dual-system non-interactive proof system Σ are as follows.

Real World consisting of:
– The algorithm K0 takes a unary string 1m as input and generates parameters
λ using pargen of Q on 1m. The CRS generation algorithm K1 uses crsgen of
Q and produces the CRS as follows: it takes λ and the language parameter
ρ, and first samples k uniformly from Kλ (recalling that the hash function
families are ensembles, one for each λ). It then outputs the CRS to be the
pair (crsgen(λ, 〈ρ, α(k)〉), α(k)).

– The prover P takes a CRS (σ, s), input x, witness w, and label l and outputs
the proof to be (T, W ) where T is computed using the public evaluation
algorithm Ĥ as Ĥ(s, 〈x, l〉, w) and W = prover(σ, 〈x, T, l〉, w).

– The verifier V on input CRS = (σ′, s) , x, l , and proof (T,W ), returns the
value ver(σ′,〈x, T, l〉, W ) (using ver of Q).

Partial-Simulation World consisting of:
– The semi-functional CRS simulator sfK1 takes λ as input and samples

(ρ, ψ) using E1, and also samples k uniformly from Kλ. It then uses crs-sim
of Q, and key projection algorithm α to generate the CRS σ as follows: Let
(σ′, trap) = crs-sim(λ, 〈ρ, α(k)〉). The CRS σ is then the pair (σ′, α(k)). sfK1

also outputs k, trap as proof simulator trapdoors τ , and ρ, ψ, k as private
verifier trapdoors η.

– The semi-functional simulator sfSim uses trapdoors k, trap to produce a
(partially-simulated) proof for a word x, a label l and a binary bit β using
sim of Q as follows: if β = 1, output

T = Hk(x, l), W = sim(σ, trap, 〈x, T, l〉),



else sample π′ at random from Π (using E3) and output

T = π′ , W = sim(σ, trap, 〈x, T, l〉).

This proof is partially simulated as it uses the bit β.
– The private verifier pV uses trapdoors (ρ, ψ, k) to check a word x, label l

and a proof T,W as follows: it outputs 1 iff (a) E2 using ρ and ψ confirms
that x is in Lρ, and (b) Hk(x, l) = T , and (c) verifier of Q accepts, i.e.
ver(σ, 〈x, T, l〉,W ) = 1.

One-time Full Simulation World consisting of:
– The one-time full-simulation CRS generator otfK1 takes as input λ

and language parameter ρ, and using crs-sim of Q outputs σ as follows: first
it samples k uniformly from Kλ. Let (σ′, trap) = crs-sim(λ, 〈ρ, α(k)〉). Then
σ = (σ′, α(k)). otfK1 also outputs k, trap as proof simulator trapdoors τ and
τ1, and outputs k as private verifier trapdoor η.

– The one-time full simulator otfSim takes as input the trapdoors k, trap
and a word x and a label l to produce a proof as follows:

T = Hk(x, l), W = sim(σ, trap, 〈x, T, l〉).

– The semi-functional verifier sfV uses trapdoors k to verify a word x, a
label l and a proof T,W as follows: output 1 iff (a) Hk(x, l) = T , and (b)
ver(σ, 〈x, T, l〉,W ) = 1.

Theorem 1. For a parameterized class of languages {Lρ}ρ∈Lpar with probabil-

ity distribution D, if the above four conditions hold for projective hash family
H, QA-NIZK Q, and efficient algorithms E1, E2, E3, then the above dual-system
non-interactive proof system Σ is a DSS-QA-NIZK for {Lρ}ρ∈Lpar with proba-

bility distribution D.

Remark. In [JR14b] we instantiate the general construction for linear subspaces
of vector spaces of hard bilinear groups. As a corollary, it follows that under the
SXDH assumption the Diffie-Hellman (DH) language has a DSS-QA-NIZK with
only two group elements.

Due to space limitations, we will focus on only the proof of one-time zero-
knowledge (otzk) property, as that is the most non-trivial proof. Indeed, this
property is a significant generalization of the usual dual-system technique em-
ployed in IBE constructions because although in otzk only one proof needs to be
fully simulated (i.e. without its membership bit being available), all the private
verifier calls in the partial-simulation world need to be simulated in the otzk
world without the quasi-adaptive trapdoors (i.e. trapdoor obtained by witness-
sampling the language parameters). Recall, in the IBE construction the cipher-
text is the counterpart of our verifier, and the IBE private keys are the QA-NIZK
proofs. Thus, in IBE only a single ciphertext needs to be simulated when the
different private keys are being “fixed” one-by-one by otzk simulation.

The detailed proof of all other properties is given in [JR14b]. The main idea
of the proof of these properties is already sketched earlier in this section.



Lemma 2. In the context of Theorem 1, let the maximum probability that the
simulator of Q does not generate unique acceptable proofs be δ. Let H be an
ε-smooth and ε-universal2 (labeled) projective hash proof system for the collec-
tion {Lρ}ρ∈Lpar. Let M be the number of calls to the second oracle (verifier) by

A3 and A4 combined in the two experiments of the one-time full-ZK property of
DSS-QA-NIZK Σ. Then the maximum statistical distance (over all PPT Adver-
saries A3 and A4) between the views of the adversaries (A3,A4) in these two

experiments, denoted distotzk(Σ), is at most (ε+ δ) ∗ (1 +M).

Proof. We will show that the one-time full-ZK property holds statistically. We
will define a sequence of experiments and show that the view of the PPT adver-
sary is statistically indistinguishable in every two consecutive experiments. The
first experiment H0 is identical to the partial-simulation world. First, note that
ρ is identically generated using D in both worlds. Next, note that the CRS σ
and trapdoors τ generated by sfK1 is identically distributed to the CRS σ and
both the trapdoors τ and τ1 generated by otfK1.

The next experiment H1 is identical to H0 except that on A3 supplied input
(x∗, l∗, β∗) the proof π∗ generated by sfSim is replaced by proof generated by
otfSim. If β∗ provided by A3 is not the valid membership bit for x∗ then both
experiments abort. So, assume that β∗ is the correct membership bit. In case
β∗ = 1, both sfSim and otfSim behave identically. When β∗ = 0, the random T ∗

produced by sfSim is identically distributed to the T ∗ generated by Hk(x∗, l∗)
since H is assumed to be smooth.

The next experiment H2 is identical to H1 except that the second oracle is
replaced by sfV (from being pV). In order to show that the view of the adver-
sary is indistinguishable in experiments H2 and H1, we define several hybrid
experiments H1,i (for 0 ≤ i ≤ N , where N is the total number of calls to the
second-oracle by A3 and A4 combined). Experiment H1,0 is identical to H1, and
the intermediate experiments are defined inductively, by modifying the response
of one additional second-oracle call starting with the last (N -th) second-oracle
call, and ending with the changed response of the first second-oracle call. The
last hybrid experiment H1,N will then be same as H2. The second-oracle call
response in experiment H1,i+1 differs only in the (N − i)-th second-oracle call
response in H1,i. In the latter experiment, this call is still served as in H1 (i.e.
using pV). In the former experiment H1,i+1, the (N − i)-th call is responded to
as defined in H2 above (i.e. using sfV).

To show that the view of the adversary is statistically indistinguishable in
H1,i and H1,i+1, first note that the view of the adversary (A3 and A4 combined)
till it’s (N − i)-th call in both experiments is identical. Moreover, as we next
show, the dependence on k of this partial view (i.e. till the (N − i)-th call) is
limited to α(k) and at most one evaluation of Hk (by otfSim) on an input that is
not in Lρ. To start with, the CRS generated by sfK1 depends only on α(k). Next,
the first oracle sfSim produces T using Hk on its input only if the membership bit
β is 1 and correct, and since H is projective this hash value is then completely
determined by α(k). Finally, all calls to the second oracle till the (N − i)-th call
are still served using pV, and again using the projective property of H, it is clear



that the conjunct (b) in pV can be computed using only α(k), because for non
Lρ members, the conjunct (a) is already false, and hence (b) is redundant.

Now, the difference in the (N − i)-th call is that the conjunct (a) of pV is
missing in sfV. Let x, l , T,W be the input supplied by the PPT Adversary to this
call. If Hk(x, l) is not equal to the supplied T , then both pV and sfV return 0.
So, suppose Hk(x, l) is equal to T , and yet x is not in Lρ, i.e. conjunct (a) of pV
is false. First, if this input x, l , T,W is same as (x∗, l∗, T ∗,W ∗) associated with
the one-time call to otfSim, then the experiment aborts. Thus, we can assume
that this is a different input. If (x, l) is same as (x∗, l∗), then (T,W ) 6= (T ∗,W ∗).
Now, by construction (i.e. by definition of otfSim) T ∗ = Hk(x∗, l∗), and hence
either T 6= Hk(x, l) which is not possible by hypothesis, or (x, l , T ) = (x∗, l∗, T ∗)
and W 6= W ∗. But, W ∗ is proof generated by the simulator of Q, and since the
simulator of Q generates unique acceptable proofs (by assumption), the verifier
ver of Q rejects (x, l , T,W ), and thus both pV and sfV return 0.

On the other hand, if (x, l) 6= (x∗, l∗) then by the ε-universal2 property of H,
the probability of T being same as Hk(x, l) is at most ε. Thus, both pV and sfV
return 0. That completes the induction step, and thus the view of the adversary
in experiments H1 and H2 is statistically indistinguishable.

The next experiment H3 is identical to H2 except that the CRS is generated
using otfK1. The only difference is that the (verifier) trapdoor does not include
ρ, ψ. But, since the second oracle is served by sfV and it does not need ρ, ψ,
the experiment H3 is well-defined and statistically indistinguishable from H2,
Further, H3 is identical to the one-time simulation world, and that completes
the proof.

The statistical distance between the views of the adversaries (A3,A4) in H0

and H3 is at most (ε+ δ) ∗ (1 +M). ut

5 Keyed-Homomorphic CCA Encryption

Keyed-Homomorphic Encryption is a primitive, first developed in [EHO+13],
which allows homomorphic operations with a restricted evaluation key, while
preserving different flavors of semantic security depending on whether access
to the evaluation key is provided or not. For an adversary not having access
to the evaluation key, the homomorphic operation should not be available and
this is ensured by requiring CCA security. However, if an adversary comes into
possession of the evaluation key, CCA security can no longer be preserved and
thus weaker forms of security, such as CCA1, are required. In [LPJY14], the au-
thors gave improved constructions for multiplicative homomorphism with better
security guarantees.

A KH-PKE scheme consists of algorithms (KeyGen,Enc,Dec,Eval), where
the first three are familiar from public-key encryption, and KeyGen generates
a public key pk, a decryption key skd and an Eval key skh. Algorithm Eval
takes two ciphertexts and returns a ciphertext or ⊥. Detailed definitions can
be found in [JR14b]. The scheme is said to be correct if (i) for Enc we have
Dec(skd, Enc(pk,M)) = M , where skd is the secret decryption key, and (ii) for



Eval we have Dec(skd, Eval(skh, C1, C2)) = Dec(skd, C1)�Dec(skd, C2), where
� is a binary operation on plaintexts, and if any operand of � is ⊥ then the
result is ⊥. The KH-PKE scheme is defined to be KH-CCA secure by a usual
public-key CCA experiment with the following twists: the challenger maintains
a set D of ciphertexts dependent on the challenge ciphertext (via Eval); decryp-
tion queries are not allowed on ciphertexts in D. Further, an adversary A can
adaptively ask for skh, which we call the reveal event. After the reveal event,
the Eval oracle is not available. Similarly, decryption is not available after A has
both requested skh and obtained the challenge ciphertext, in any order. Again,
detailed definitions can be found in [JR14b].

Construction. We present a construction of a KH-CCA secure KH-PKE en-
cryption scheme with multiplicative homomorphism which utilizes our general
DSS-QA-NIZK construction for the Diffie-Hellman (DH) language. In fact, if we
assume that the adversary never invokes RevHK, we can prove security generi-
cally assuming any DSS-QA-NIZK (with statistical one-time full-ZK) for the DH
language. When the adversary invokes RevHK, the partial-simulation trapdoor
is revealed to the Adversary, and hence the one-time full-ZK property of DSS-
QA-NIZK may not hold. Thus, we a need a stronger notion of DSS-QA-NIZK
that incorporates the reveal event, and includes an additional requirement that
the semi-functional verifier remains sound as before. Using this stronger notion,
we can prove generic security of the KH-PKE scheme even with RevHK, and we
further show that our general construction of Section 4 continues to satisfy this
stronger property.

We start with the observation that a standard ElGamal encryption scheme
(gx,m · fx) is multiplicatively homomorphic, but is not CCA secure due to the
exact same reason. The main idea of our construction is as follows. The cipher-
texts include an ElGamal encryption of the message M , say gr,M · gkr for a
public key gk. The public key also consists of a member ga, and the ciphertext
also include gar (we refer to this triple in the ciphertext as augmented ElGamal
encryption). It is well-known [JR12] that if a one-time simulation-sound NIZK
proof of gr and gar being of the correct form is also included in the cipher-
text then it becomes a publicly-verifiable CCA2-secure encryption scheme. In
our keyed-homomorphic construction, we include a DSS-QA-NIZK for gr and
gar being of the correct form (i.e. being a DH tuple). Although the DSS-QA-
NIZK itself is not homomorphic, we can take advantage of the corresponding
Semi-Functional Simulator sfSim and simulate the proof of a multiplicatively
generated (augmented) ElGamal encryption when computing a homomorphic
evaluation.

So, given a dual-system non-interactive proof Σ, consider the following algo-
rithms for a KH-PKE scheme P:

KeyGen: Generate g, a, k randomly. Use sfK1 of Σ to get CRS σ and trapdoors
τ and η, and language parameters ρ = (g,ga). Set pk = (g,ga,gk, σ), skh = τ ,
skd = k.

Enc: Given plaintext m, generate w ← Zq and compute (using P of Σ)
c := (gw,gaw, γ,P(σ, (gw,gaw), w, l = γ)), where γ := m · gkw.



Dec: Given ciphertext c = (ρ, ρ̂, γ, π), first check if V(σ, π, (ρ, ρ̂), γ) of Σ holds,
then compute m := γ/ρk.

Eval (multiplicative): Given ciphertexts c1 = (ρ1, ρ̂1, γ1, π1) and c2 = (ρ2,
ρ̂2, γ2, π2), first check if V(σ, πi, (ρi, ρ̂i), γi) of Σ holds for all i ∈ {1, 2}. Then
compute: ρ = ρ1ρ2ρ3, ρ̂ = ρ̂1ρ̂2ρ̂3, γ = γ1γ2γ3, where 〈ρ3, ρ̂3, γ3〉 is a fresh
random tuple obtained by picking r at random and setting the tuple to be
〈gr, (ga)r, (gk)r〉. Then compute π := sfSim(σ, τ, (ρ, ρ̂), β = 1, l = γ) using
sfSim of Σ. Output ciphertext c := (ρ, ρ̂, γ, π).

Theorem 2 (Security of Construction). The above algorithms P= (Key-
Gen, Enc, Dec, Eval) constitute a KH-CCA secure Keyed-Homomorphic Public
Key Encryption scheme with multiplicative homomorphism, if Σ is a DSS-QA-
NIZK for the parameterized Diffie-Hellman language (with language parameters
distributed randomly) and RevHK is not available.

The main idea of the proof of the above theorem is similar to proofs of
CCA2-secure public key encryption schemes using alternate decryption. In other
words, the ciphertext can be decrypted as m := γ/ρk, or as m := γ/(ρk0 ρ̂k1),
where k = k0 + ak1. But, this requires that the ciphertext has correct ρ̂ com-
ponent, i.e. ρ̂ = ρa. The ciphertexts include a NIZK for this purpose, but the
NIZK needs to be simulation-sound. Additional complication arises because of
dependent ciphertexts. To handle this, we first build an intermediate experiment
where all dependent ciphertexts are generated using fresh random ElGamal tu-
ples. Indistinguishability of such an intermediate experiment from the KH-CCA
experiment is shown inductively, by carefully employing one-time full-ZK and
partial-simulation unbounded simulation soundness. The theorem is proved in
detail in [JR14b]. The Adversary’s advantage in the KH-CCA security game is
at most (8L + 1) · advddh + O(L/q), where L is the total number of calls to
Eval.

The more general theorem (with RevHK) is stated and proved in [JR14b].
Under the SXDH assumption, the above construction leads to ciphertexts of size
only five group elements. Further, using an augmented Diffie Hellman language
(augmented with a smooth hash proof of DH tuple) and its DSS-QA-NIZK,
we also extend our result to get CCA1-security despite the key being revealed
(see [JR14b]). The resulting scheme has KH-PKE ciphertexts of size six group
elements.

6 Single-Round UC Password-Based Key Exchange

The essential elements of the Universal Composability framework can be found
in [Can01]. In the following, we adopt the definition for password-based key
exchange (UC-PAKE) from Canetti et al [CHK+05].

6.1 UC-PAKE Definition

Just as in the normal key-exchange functionality, if both participating parties
are not corrupted, then they receive the same uniformly distributed session key



Functionality Fpake

The functionality Fpake is parameterized by a security parameter k. It interacts with an
adversary S and a set of parties via the following queries:

Upon receiving a query (NewSession, sid, Pi, Pj , pw, role) from party Pi:
Send (NewSession, sid, Pi, Pj , role) to S. In addition, if this is the first NewSession query,
or if this is the second NewSession query and there is a record (Pj , Pi, pw

′), then record
(Pi, Pj , pw) and mark this record fresh.

Upon receiving a query (TestPwd, sid, Pi, pw
′) from the adversary S:

If there is a record of the form (Pi, Pj , pw) which is fresh, then do: If pw = pw′, mark
the record compromised and reply to S with “correct guess”. If pw 6= pw′, mark the
record interrupted and reply with “wrong guess”.

Upon receiving a query (NewKey, sid, Pi, sk) from S, where |sk| = k:
If there is a record of the form (Pi, Pj , pw), and this is the first NewKey query for Pi,
then:
– If this record is compromised, or either Pi or Pj is corrupted, then output (sid, sk)

to player Pi.
– If this record is fresh, and there is a record (Pj , Pi, pw

′) with pw′ = pw, and a key
sk′ was sent to Pj , and (Pj , Pi, pw) was fresh at the time, then output (sid, sk′) to
Pi.

– In any other case, pick a new random key sk′ of length k and send (sid, sk′) to Pi.
Either way, mark the record (Pi, Pj , pw) as completed.

Upon receiving (Corrupt, sid, Pi) from S: if there is a (Pi, Pj , pw) recorded, return
pw to S, and mark Pi corrupted.

Fig. 2. The password-based key-exchange functionality Fpake

and the adversary learns nothing of the key except that it was generated. How-
ever, if one of the parties is corrupted, then the adversary determines the session
key. This power to the adversary is also given in case it succeeds in guessing the
parties’ shared password. Participants also detect when the adversary makes an
unsuccessful attempt. If the adversary makes a wrong password guess in a given
session, then the session is marked interrupted and the parties are provided ran-
dom and independent session keys. If however the adversary makes a successful
guess, then the session is marked compromised, and the adversary is allowed to
set the session key. If a session remains marked fresh, meaning that it is neither
interrupted nor compromised. uncorrupted parties conclude with both parties
receiving the same, uniformly distributed session key. The formal description of
the UC-PAKE functionality Fpake is given in Figure 2.

The real-world protocol we provide is also shown to be secure when different
sessions use the same common reference string (CRS). To achieve this goal, we
consider the universal Composability with joint state (JUC) formalism of Canetti
and Rabin [CR03]. This formalism provides a “wrapper layer” that deals with
“joint state” among different copies of the protocol. In particular, defining a
functionality F also implicitly defines the multi-session extension of F(denoted
by F̂): F̂ runs multiple independent copies of F , where the copies are distin-
guished via sub-session IDs ssid. The JUC theorem [CR03] asserts that for any
protocol π that uses multiple independent copies of F , composing π instead with
a single copy of a protocol that realizes F̂ , preserves the security of π.



Generate g1 ← G1,g2 ← G2 and a, b, c, d, e, u1, u2 ← Zq, and let H be a CRHF.

Compute a = ga1 , d = gd1, e = ge1, w1 = gu1
1 , w2 = gu2

1

b = gb2, c = gc2, v1 = gu1b−d−ca
2 , v2 = gu2b−e

2 .

CRS := (g1,g2,a,b, c,d, e,w1,w2,v1,v2,H).

Party Pi Network

Input (NewSession, sid, ssid, Pi, Pj ,pwd, initiator/responder)

Choose r1, s1
$←− Zq.

Set R1 = gr11 , S1 = pwd · ar1 , T1 = (d · ei1)r1 , ρ̂1 = bs1 ,
R1,S1,T1,ρ̂1−−−−−−−−→ Pj

W1 = (w1w
i1
2 )r1 , where i1 = H(sid, ssid, Pi, Pj , R1, S1, ρ̂1)

and erase r1. Send R1, S1, T1 and ρ̂1, and retain W1.

Receive R′2, S
′
2, T

′
2, ρ̂
′
2.

If any of R′2, S
′
2, T

′
2, ρ̂
′
2 is not in their respective group or is 1,

set sk1
$←− GT , else

compute i′2 = H(sid, ssid, Pj , Pi, R
′
2, S
′
2, ρ̂
′
2),

R′
2,S

′
2,T

′
2,ρ̂

′
2←−−−−−−−− Pj

ρ1 = gs12 , θ1 = cs1 , γ1 = (v1v
i′2
2 )s1 .

Compute sk1 = e(T ′2, ρ1) · e(S′2/pwd, θ1) · e(R′2, γ1) · e(W1, ρ̂
′
2)

Output (sid, ssid, sk1).

Fig. 3. Single round UC-secure Password-authenticated KE under SXDH Assumption.

6.2 Main Idea of the UC Protocol using DSS-QA-NIZK

For the sake of exposition, let’s call one party in the session the server and the
other the client. (There is no such distinction in the actual protocol, and in fact
each party will run two parallel protocols, one as a client and another as a server,
and output the product of the two keys generated). The common reference string
(CRS) defines a Diffie-Hellman language, i.e. ρ = g1,g

a
1 . The client picks a fresh

Diffie-Hellman tuple by picking a witness r and computing 〈x1 = gr1,x2 = ga·r1 〉.
It also computes a DSS-QA-NIZK proof on this tuple, which is a hash proof T
and a QA-NIZK proof W of the augmented Diffie-Hellman tuple. Note, the QA-
NIZK proof W is just a single group element [JR14a] (see [JR14b] for details).
It next modifies the Diffie-Hellman tuple using the password pwd it possesses.
Essentially, it multiplies x2 by pwd to get a modified group element which we
will denote by S - in fact (x1, S) is an ElGamal encryption of pwd. It next sends
this ElGamal encryption x1, S and the T component of the proof to the server.
It retains W for later use. At this point it can erase the witness r.

As a first step, we intend to utilize an interesting property of the real-world
verifier V of the DSS-QA-NIZK: the verifier is just the verifier of the QA-NIZK for
the DH language augmented with the hash proof, and the QA-NIZK verifiers for
linear subspaces are just a single bi-linear product test. Specifically (see [JR14b]),
V on input x1,x2 and proof T,W , computes ι = H(x1,x2), and outputs true iff

e(x1, (v1v
ι
2)) · e(x2, c) · e(T,g2) = e(W,b).



Thus, it outputs true iff the left-hand-size (LHS) equals the right-hand-side
(RHS) of the above equation. Note that the client sent x1, S (i.e. x2 linearly
modified by pwd) and T to the server. Assuming the server has the same pass-
word pwd, it can un-modify the received message and get x2 = S/pwd, and
hence can compute this LHS (using the CRS). The client retained W , and can
compute the RHS (using the CRS).

The intuition is that unless an adversary out-right guesses the password, it
cannot produce a different x′1, S

′, T ′, such that x′1, S
′/pwd, T ′ used to compute

the LHS will match the RHS above. While we make this intuition rigorous later
by showing a UC simulator, to complete the description of the protocol, and
using this intuition, the client and server actually compute the LHS and RHS
respectively of the following equation (for a fresh random s ∈ Zq picked by the
server):

e(x1, (v1v
ι
2)s) · e(x2, c

s) · e(T,gs2) = e(W,bs). (1)

Now note that for the client to be able to compute the RHS, it must have bs,
since s was picked by the server afresh. For this purpose, the protocol requires
that the server send bs to the client (note this can be done independently and
asynchronously of the message coming from the client). It is not difficult to see,
from completeness of the prover and verifier of the DSS-QA-NIZK, that both
parties compute the same quantity.

As mentioned earlier, each pair of parties actually run two versions of the
above protocol, where-in each party plays the part of client in one version, and
the part of server in the other version. Each party then outputs the product of the
LHS of (1) computation (in the server version) and the RHS of (1) computation
(in the client version) as the session-key. We will refer to these two factors in
the session-key computation as the server factor and the client factor resp. This
is the final UC-PAKE protocol described in Fig. 6.1 (with the parties identities,
session identifiers and bs from its server version, used as label). The quantity x1

is called R in the protocol, as subscripts will be used for other purposes.

Theorem 3. Assuming the existence of SXDH-hard groups, the protocol given
in Fig 6.1 securely realizes the F̂pake functionality in the Fcrs hybrid model, in
the presence of adaptive corruption adversaries.

The theorem is proved in [JR14b]. We provide the intuition below.

6.3 Main Idea of the UC Simulator

We first re-define the various verifiers in the DSS-QA-NIZK for the DH language
described in [JR14b], to bring them in line with the above description. In partic-
ular, the real-world verifier V is defined equivalently to be: the verifier V takes as
input CRSv, a word 〈x1,x2〉, and a proof π = (T,W ), computes ι = H(x1,x2, l),
picks a fresh random s ∈ Zq, and outputs true iff

e(x1, (v1v
ι
2))s · e(x2, c)s · e(T,g2)s = e(W,bs).

This is equivalent as long as s 6= 0.



The partial-simulation world private-verifier pV is now defined as: it checks a
word 〈x1,x2〉 and a proof T,W as follows: compute ι = H(x1,x2, l); pick s and
s′ randomly and independently from Zq, and if x2 = xa1 and T = xd+ιe

1 then set

ξ = 1T else set ξ = e(g1,g2)s
′

and output true iff

e(x1, (v1v
ι
2))s · e(x2, c)s · e(T,g2)s · ξ = e(W,bs). (2)

This is equivalent to the earlier definition of pV with high probability by an
information-theoretic argument, if the trapdoors used were generated by the
semi-functional CRS generator sfK1.

The UC simulator S works as follows: It will generate the CRS for F̂pake

using the semi-functional CRS generator sfK1 for the Diffie-Hellman language.
The next main difference is in the simulation of the outgoing message of the
real world parties: S uses a dummy message µ instead of the real password
which it does not have access to. Further, it postpones computation of W till
the session-key generation time. Finally, another difference is in the processing
of the incoming message, where S decrypts the incoming message R′2, S

′
2, T

′
2 to

compute a pwd′, which it uses to call the ideal functionality’s test function. It
next generates a sk similar to how it is generated in the real-world (recall the
computation of server factor and client factor by LHS and RHS of (1)) except
that it uses the equation (2) corresponding to the private verifier. It sends sk to
the ideal functionality to be output to the party concerned.

Note, S simulating the server factor computation can compute the LHS of
equation (2), except S does not have direct access to pwd and hence cannot get
x2 from the modified Ŝ that it receives. However, it can do the following: Use the
TestPwd functionality of the ideal functionality F̂pake with a pwd′ computed as
Ŝ/xa1 . If this pwd′ does not match the pwd recorded in F̂pake for this session and

party, then F̂pake anyway outputs a fresh random session key, which will then
turn out to be correct simulation (note, this case is same as x2 (= S/pwd) 6= xa1 ,
which would also have resulted in the same computation on the LHS). If the
pwd′ matched the pwd, the simulator is notified the same, and hence it can now
do the following: if T = xd+ιe

1 then set ξ = 1T else set ξ = e(g1,g2)s
′
. Next,

it calls F̂pake’s NewKey with session key e(x1, (v1v
ι
2))s · e(xa1 , c)s · e(T,g2)s · ξ

(multiplied by a RHS computation of (2) in simulation of the client factor, which
we will discuss later).

The UC Simulator S must also simulate gr1,pwd ·(ga1)r and the T component
of the DSS-QA-NIZK, as that is the message sent out to the adversary by the real
party (“client” part of the protocol). However, S does not have access to pwd.
It can just generate a fake tuple gr1, µ · (ga1)r ·gr′1 (for some constant or randomly
chosen group element µ, and some random and independent r′ ∈ Zq). Now, the
semi-functional (proof) simulator sfSim of the DSS-QA-NIZK of [JR14b] has an
interesting property that when the tuple 〈x1,x2〉 does not belong to the language
(language membership-bit zero), the T component of the simulated proof can
just be generated randomly.

The simulator also needs W to compute the client factor, and we had post-
poned it till the session-key computation phase. As mentioned above, if the



password pwd′ “decrypted” from the incoming message is not correct then the
key is anyway set to be random, and hence a proper W is not even required.
However, if the pwd′ is correct, the simulator is notified of same, and hence it
can compute W component of the proof by passing x2 = µ · (ga1)r · gr′1 /pwd′

along with x1 (= gr1) to sfSim.
Of course, fixing the above fake tuples employs one-time full-simulation prop-

erty of the DSS-QA-NIZK (and the DDH assumption).

6.4 Main Idea of the Proof of UC Realization

The proof that the simulator S described above simulates the Adversary in the
real-world protocol, follows essentially from the properties of the DSS-QA-NIZK,
although not generically since the real-world protocol and the simulator use the
verifiers V and pV (resp.) in a split fashion. However, as described above the
proof is very similar and we give a broad outline here. The proof will describe
various experiments between a challenger C and the adversary, which we will just
assume to be the environment Z (as the adversary A can be assumed to be just
dummy and following Z’s commands). In the first experiment the challenger C
will just be the combination of the code of the simulator S above and F̂pake. In
particular, after the environment issues a NewSession request with a password
pwd, the challenger gets that password. So, while in the first experiment, the
challenger (copying S) does not use pwd directly, from the next experiment on-
wards, it can use pwd. Thus, the main goal of the ensuing experiments is to
modify the fake tuples gr1, µ · (ga1)r ·gr′1 by real tuples (as in real-world) gr1,pwd ·
(ga1)r, since the challenger has access to pwd. This is accomplished by a hybrid
argument, modifying one instance at a time using DDH assumption in group G1

and using one-time full-ZK property (and using the otfSim proof simulator for
that instance). A variant of the one-time full-ZK semi-functional verifier sfV (just
as the variants for pV and V described above) is easily obtained. Note that in
each experiment, whenever the simulator invokes partial proof simulation it can
provide the correct membership bit (with high probability) as in each experiment
it knows exactly which tuples are real and which are fake.

Once all the instances are corrected, i.e. R,S generated as gr1,pwd · (ga1)r,
the challenger can switch to the real-world because the tuples R,S/pwd are now
Diffie-Hellman tuples. This implies that the session keys are generated using the
V variant described above, which is exactly as in the real-world.

6.5 Adaptive Corruption

The UC protocol described above is also UC-secure against adaptive corruption
of parties by the Adversary in the erasure model. In the real-world when the
adversary corrupts a party (with a Corrupt command), it gets the internal state
of the party. Clearly, if the party has already been invoked with a NewSession
command then the password pwd is leaked at the minimum, and hence the
ideal functionality Fpake leaks the password to the Adversary in the ideal world.



In the protocol described above, the Adversary also gets W and s, as this is
the only state maintained by each party between sending R,S, T, ρ̂, and the
final issuance of session-key. Simulation of s is easy for the simulator S since
S generates s exactly as in the real world. For generating W , which S had
postponed to computing till it received an incoming message from the adversary,
it can now use the pwd which it gets from F̂pake by issuing a Corrupt call to F̂pake.
More precisely, it issues the Corrupt call, and gets pwd, and then calls the semi-
functional simulator with x2 = µ · (ga1)r ·gr′1 /pwd along with x1 (= gr1) to get W .
Note that this computation of W is identical to the postponed computation of
W in the computation of client factor of sk1 (which is really used in the output
to the environment when pwd′ = pwd).
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